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Abstract

Given a graph G, we consider a game where two players, A and B, alternatingly color
edges of G in red and in blue, respectively. Let Lsym(G) be the maximum number of moves in
which B is able to keep the red and the blue subgraphs isomorphic, if A plays optimally to
destroy the isomorphism. This value is a lower bound for the duration of any avoidance game
on G under the assumption that B plays optimally. We prove that if G is a path or a cycle of
odd length n, then 2(log n)6 Lsym(G)6O(log2 n). The lower bound is based on relations with
Ehrenfeucht–Fra45ss6e games from model theory. We also consider complete graphs and prove that
Lsym(Kn) = O(1).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The symmetry breaking–preserving game SYM(G) is played by two players on a
graph G. The players, A and B, alternatingly color edges of G in red and in blue
respectively, one edge per move. Player A is <rst to move. A round of the game
consists of a move of A and the following move of B. The objective of B is to keep
the red and the blue subgraphs of G isomorphic after every round. As soon as B fails
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to do so, this is a win for A. If B succeeds until all the edges are colored, this is a
win for him.
This game was introduced in [5] in the context of the graph avoidance games [4,2].

The game AVOID(G; F) is a two-person edge-coloring game on a graph G with the
following ending condition: The player who <rst creates a monochromatic copy of a
forbidden subgraph F loses. As easily seen, as long as B does not lose in SYM(G),
he does not lose in AVOID(G; F) for any F .
In [5] we addressed the class Csym of those graphs G for which B has a winning

strategy in SYM(G). We now consider a more general problem: Given G, how long
is B able to keep the red and the blue subgraphs isomorphic if both players play
optimally? We de<ne Lsym(G), the length of the game SYM(G), to be the maximum
number of rounds in which B, playing optimally, does not lose, independently of A’s
strategy (a precise de<nition is given in Section 2). This function of a graph G will
be our main concern.
Note that G belongs to Csym iM Lsym(G) has the maximum possible value �m=2�,

where m is the size of G. In [5] we observe that Csym contains all graphs having
an involutory automorphism without <xed edges. Though generally it is NP-hard to
recognize if such an automorphism exists for a given graph, we nevertheless ob-
tain many examples of graphs in Csym. The simplest examples are even cycles and
paths. Let Cn (resp. Pn) denote the cycle (resp. path) of size n. Thus, we have
Lsym(Cn)=Lsym(Pn)= n=2 for n even.
In the present paper we treat odd cycles and paths. For odd n, we prove that

2(log n)6 Lsym(Pn)6 O(log2 n); 2(log n)6 Lsym(Cn)6 O(log2 n):

Our proof of the lower bound is based on the connections with Ehrenfeucht–Fra45ss6e
games known in model theory [1], what may be of independent interest. In particular,
we use the well-known fact that the length of the Ehrenfeucht–Fra45ss6e game on the
pair of paths Pn and Pn+1 equals log n up to an additive constant and the same is true
for the pair of cycles Cn and Cn+1.
We also consider symmetry breaking–preserving games on complete graphs. As im-

plicitly shown in [5], Lsym(Kn)6n − 2. We now improve this estimate showing that
Lsym(Kn) is for all n bounded by an absolute constant.
Note that all the upper (resp. lower) bounds proven here are based on eQciently

computable strategies for the player A (resp. B).
In the next section we give the de<nitions and state some useful facts. We estimate

the asymptotics of Lsym(G) for odd paths and cycles in Section 3 and for complete
graphs in Section 4.

2. Preliminaries

Given a graph G, we denote its vertex set by V(G) and its edge set by E(G).
The symmetry breaking–preserving game on a graph G, denoted by SYM(G), is a

two-person positional game of the following kind. Two players, A and B, alternatingly
color edges of a graph G in red and in blue, respectively. Player A starts the game. In
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a move, a player colors an edge that was so far uncolored. The ith round consists of
the ith move of A and the ith move of B. Let ai (resp. bi) denote an edge colored by
A (resp. B) in the ith round. Let Ai= {a1; : : : ; ai} (resp. Bi= {b1; : : : ; bi}) consist of
the red (resp. blue) edges colored up to the ith round. Player B wins in SYM(G) if the
subgraphs Ai and Bi are isomorphic for every i6|E(G)|=2. As soon as an isomorphism
between Ai and Bi is violated, this is a win for A.
A strategy for a player determines the edge to be colored by him at every round

of the game. Formally, let � denote the empty sequence. A strategy of A is a func-
tion S1 that maps every, possibly empty, sequence of pairwise distinct edges e1; : : : ; ei
into an edge diMerent from e1; : : : ; and ei and from S1(�); S1(e1); S1(e1; e2); : : : ; and
S1(e1; : : : ; ei−1). A strategy of B is a function S2 that maps every nonempty sequence
of pairwise distinct edges e1; : : : ; ei into an edge diMerent from e1; : : : ; and ei and from
S2(e1); S2(e1; e2); : : : ; and S2(e1; : : : ; ei−1). If A follows a strategy S1 and B follows a
strategy S2, then ai= S1(b1; : : : ; bi−1) and bi= S2(a1; : : : ; ai).
The length of the game is the total number of rounds under the condition that the

players play optimally. To be more precise, assume that A follows a strategy S1 and
B follows a strategy S2 and let l(S1; S2) denote the maximum l such that Ai and Bi are
isomorphic for every i6l. We denote the length of SYM(G) by Lsym(G) and de<ne
it by

Lsym(G) = max
S2

min
S1

l(S1; S2):

An alternative de<nition could be

L′sym(G) = minS1
max
S2

l(S1; S2):

Observe that the de<nitions are equivalent.

Proposition 1. Lsym(G)=L′sym(G).

Proof. The inequality Lsym(G)6L′sym(G) holds true by the universal min-max relation.
To prove the reverse inequality, de<ne a game SYMr(G) to be a variant of SYM(G) in
which B wins if he does not lose the <rst r rounds. A strategy of a player is winning if
it beats every strategy of the opponent. Since SYMr(G) is a <nite perfect information
game with no draws, in this game one of the players has a winning strategy. Assume
that Lsym(G)= l and l¡�|E(G)|=2�. This means that B has no winning strategy in
SYMl+1(G). Hence the winning strategy in SYMl+1(G) exists for A, which implies
that L′sym(G)6l.

We will refer to the following observation that follows from [5].

Proposition 2. If G has an involutory automorphism without :xed edges, then

Lsym(G) = |E(G)|=2:

Proof. If � : V(G) → V(G) is an automorphism of G, it determines a permutation
�′ : E(G) → E(G) by �′({u; v})= {�(u); �(v)}. We assume that � is involutory and
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�′ has no <xed element. Then the edge set E(G) is partitioned into 2-subsets of the
form {e; �′(e)}. This gives B the following winning strategy: Whenever A chooses
an edge e; B chooses the edge �′(e). After every round of the game, an isomorphism
between the red and the blue subgraphs is induced by �.

The Ehrenfeucht–Fra!;ss<e game can be played on an arbitrary structure. We give a
de<nition conformably to graphs. Assume that graphs G0 and G1 have disjoint vertex
sets. In the Ehrenfeucht–Fra45ss6e game on G0 and G1, denoted further on by EF(G0; G1),
the players A and B alternatingly pick up vertices of either G0 or G1, one vertex per
move. A starts the game. Let ui (resp. vi) be the vertex picked up by A (resp. by B)
in his ith move. In each round the objective of B is to obey the following conditions:
• If ui ∈V(Ga), then vi ∈V(G1−a).
• The correspondence “ui to vi” is a partial isomorphism between G0 and G1, i.e., an
isomorphism between the subgraphs of G0 and G1 induced by the chosen vertices.

The maximum number of rounds in which B, irrespective of A’s strategy, is able to
obey these two conditions is denoted by LEF(G0; G1) and is formally de<ned similarly
to Lsym(G).
Let log n denote logarithm base 2. We will use the following folklore result.

Proposition 3. For every n,
(1) log n− 2¡LEF(Pn; Pn+1)¡ log n+ 2.
(2) log n− 1¡LEF(Cn; Cn+1)¡ log n+ 1.

The proof can be found in [6, Theorems 2.1.2 and 2.1.3] for the case of paths. The
case of cycles can be treated similarly (cf. [1, Example 2.3.8]).

3. Games on paths and cycles

Given two functions f(n) and g(n), we use notation f(n)=2(g(n)) whenever
f(n)¿c · g(n) for some c¿0 and all n.
The main result of this section estimates the asymptotics of Lsym(G) for odd paths

and cycles. It should be contrasted with even paths and cycles, for which Lsym(Pn)=
Lsym(Cn)= n=2 by Proposition 2.

Theorem 4. If n is odd, then
(1) Lsym(Pn)=2(log n) and Lsym(Cn)=2(log n),
(2) Lsym(Pn)=O(log

2 n) and Lsym(Cn)=O(log
2 n).

The proof of the theorem is given in the rest of this section.

3.1. Lower bound

To prove the lower bounds for Lsym(Pn) and Lsym(Cn), we relate the symmetry
breaking–preserving game with the Ehrenfeucht–Fra45ss6e game. We are actually able to
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prove Claim 1 of Theorem 4 in two diMerent ways, both using Proposition 3. We will
refer to one way as the logical approach and to the other way as the combinatorial
approach.
We start with the brief overview of the logical approach for the case of paths; the

case of cycles is virtually identical. Given an odd path Pn, we consider also the even
path Pn+1 for which we know that Lsym(Pn+1)= (n+1)=2. As known from model theory,
the length of EF(Pn; Pn+1) tells us to which extent the properties of Pn+1 expressible
in <rst-order logic hold true for Pn (see Lemma 5). On the other hand, Lemma 6 tells
us to which extent the property of a graph G that Lsym(G)¿k is <rst-order expressible.
Putting it together, we see that, as the property Lsym(G)=2(log n) is true for Pn+1, it
must be true for Pn too (cf. Proposition 7). Curiously, this method proves the existence
of the desired strategy for player B without yielding it explicitly.
The combinatorial approach does not exploit the logical aspects of the Ehrenfeucht–

Fra45ss6e game. Instead, it directly exploits the partial isomorphism constructed during the
course of EF(Pn; Pn−1) in order to translate, as long as possible, the winning strategy
of B from SYM(Pn+1) into SYM(Pn) (see Proposition 8).
The combinatorial approach gives us a bound twice as good as the logical approach.

What is more important than the gain in a multiplicative constant, the former approach
provides us with an eQciently computable strategy for B. Nevertheless, though the
combinatorial approach is more preferable to the logical one in the particular cases of
odd paths and cycles, generally it has a more restrictive applicability range. We do not
exclude that both techniques may be useful in the analysis of other games on graphs
(cf. Remark 9).
We now present both the proof methods in detail, starting from the logical one.
From the logical point of view a graph G is a structure consisting of a single binary

predicate E on V(G) such that E(u; v) iM u and v are adjacent. Every closed <rst-order
formula over vocabulary {E;=} is either true or false on G.

Lemma 5 (Ehrenfeucht see [1, Theorem 2.2.8]). G0 and G1 satisfy precisely the same
:rst-order sentences with at most LEF(G0; G1) quanti:ers.

Observe that the sentence “Lsym(G)¿k” is expressible with 4k quanti<ers.

Lemma 6. There is a :rst-order formula  k with 4k quanti:ers that is true on G of
size at least 2k i? Lsym(G)¿k.

Proof. Let DIST(x1; x2; y1; y2) express the property that two pairs of vertices {x1; x2}
and {y1; y2} are distinct. Formally,

DIST(x1; x2; y1; y2)
def= ¬((x1 = y1 ∧ x2 = y2) ∨ (x1 = y2 ∧ x2 = y1)):

Let u1;1; u1;2; : : : ; uk;1; uk;2 and v1;1; v1;2; : : : ; vk;1; vk;2 be variables ranging over V(G) with
meaning that in the ith round A chooses an edge {ui;1; ui;2} and B chooses an edge
{vi;1; vi;2}. We also need a formula ISOj to express the fact that the subgraphs consisting
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of the edges chosen by the players during the <rst j rounds are isomorphic:

ISOj(u1;1; u1;2; : : : ; uj;1; uj;2; v1;1; v1;2; : : : ; vj;1; vj;2)
def=
∨
f

∧
16i;i′6j
16a;a′62

(ui;a = ui′ ;a′ ↔ vf(i;a) = vf(i′ ;a′));

where the disjunction is over all permutations of the index set {1; : : : ; j}×{1; 2} with
the property that if f(i; 1)= (m; a), then f(i; 2)= (m; 3 − a) for all i6j. The permu-
tation f should be thought of as a map from the multiset {ui;a}i6j;a62 to the multiset
{vi;a}i6j;a62 taking every edge {ui;1; ui;2} to some edge {vm;1; vm;2}. Such a permutation
is a subgraph isomorphism if it takes equal u’s to equal v’s and distinct u’s to distinct
v’s.
De<ne formulas

Aj
def= E(uj;1; uj;2) ∧

j−1∧
i=1

DIST(uj;1; uj;2; ui;1; ui;2) ∧
j−1∧
i=1

DIST(uj;1; uj;2; vi;1; vi;2)

and

Bj
def= E(vj;1; vj;2) ∧

j∧
i=1
DIST(vj;1; vj;2; ui;1; ui;2) ∧

j−1∧
i=1

DIST(vj;1; vj;2; vi;1; vi;2)

saying that {uj;1; uj;2} and, respectively, {vj;1; vj;2} are edges diMerent from the edges
chosen by the players previously. The formula

 k
def= ∀u1;1∀u1;2∃v1;1∃v1;2 : : :∀uk;1∀uk;2∃vk;1∃vk;2

(
k∧
j=1

Aj

→
k∧
j=1

Bj ∧
k∧
j=1

ISOj(u1;1; u1;2; : : : ; uj;1; uj;2; v1;1; v1;2; : : : ; vj;1; vj;2)

)

is as desired. Indeed, assume that B has a strategy nonlosing k rounds. Then  k is
true because, if all uj;1; uj;2 are chosen so that the antecedent in  k is satis<ed, then
vj;1; vj;2 satisfying the consequent are provided by B’s strategy.
On the other hand, if  k is true, then the following strategy of B does not lose k

rounds to any strategy of A. We describe the jth move of B. Assume that A and
B have previously chosen edges {u1;1; u1;2}; : : : ; {uj;1; uj;2} and {v1;1; v1;2}; : : : ; {vj−1;1;
vj−1;2}. In particular, u1;1; u1;2; : : : ; uj;1; uj;2 satisfy the antecedent in  k . Then B chooses
an edge {vj;1; vj;2} with vertices vj;1 and vj;2 whose existence is claimed by  k . Such
vj;1 and vj;2 satisfy the members Bj and ISOj of the consequent in  k because otherwise
one could choose the subsequent uj+1;1; uj+1;2; : : : ; uk;1; uk;2 satisfying the antecedent in
 k and therewith falsify the implication. It follows that this move of B is legitimate
and successful.

Proposition 7 (logical approach).

Lsym(G1)¿ min
{
1
4LEF(G0; G1); Lsym(G0)

}
:
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Proof. Assume that Lsym(G0)¿k and LEF(G0; G1)¿4k. The former inequality implies
that G0 has size at least 2k. By the latter inequality, the same must be also true for
G1. By Lemma 6, G0 satis<es  k . By Lemma 5, G1 also satis<es  k and therefore,
again by Lemma 6, Lsym(G1)¿k.

We now turn to the combinatorial approach to the proof of Theorem 4(1).
Given a graph H , let L(H) denote its line graph. Recall that V(L(H))=E(H)

and two vertices e1 and e2 of L(H) are connected by an edge in this graph iM they
have a common vertex in H . Two graphs H1 and H2 are edge-isomorphic if there is
a one-to-one map from E(H1) onto E(H2) preserving the adjacency of edges. In other
words, H1 and H2 are edge-isomorphic iM L(H1) and L(H2) are isomorphic. If two
graphs are isomorphic, then they are obviously edge-isomorphic. The Whitney theorem
[3, Theorem 8.3] says that the converse implication is also true for all connected H1
and H2 unless one of them is K3 and the other K1;3.
To avoid ambiguity, in the next proposition we keep the names A and B for the

players in the game SYM(G1), but rename them A0 and B0 in SYM(G0), and spoiler
and duplicator in EF(G0; G1).

Proposition 8 (combinatorial approach). If G1 does not contain a subgraph K3, then
Lsym(G1)¿min

{
1
2LEF(L(G0);L(G1)); Lsym(G0)

}
. Moreover, the player B in SYM

(G1) has an e@ciently computable strategy S with oracle access to a strategy D of
the duplicator in EF(L(G0);L(G1)) and to a strategy S0 of B0 in SYM(G0) such
that, if D does not lose l rounds irrespective of the spoiler’s strategy and S0 does
not lose m rounds irrespective of A0’s strategy, then S(D; S0) does not lose at least
min

{
1
2 l; m

}
rounds irrespective of A’s strategy.

Proof. To make a move according to S(D; S0), in each round of SYM(G1) the player B
simulates one round of SYM(G0) following S0 and two rounds of EF(L(G0);L(G1))
following D. Before describing S(D; S0), we introduce some notation. Let Ai; Bi⊂E
(G1) consist of the edges colored by A and B, respectively, up to the ith round of
SYM(G1) and A′i ; B

′
i ⊂E(G0) consist of the edges colored by A0 and B0, respectively,

up to the ith round of the simulated game SYM(G0). Initially A0 =B0 =A′0 =B
′
0 = ∅. It

will be the case that, up to the (2i− 1)th round of the simulated game EF(L(G0);L
(G1)), the spoiler and the duplicator choose exactly the vertices in Ai ∪A′i ∪Bi−1 ∪B′

i−1
and, up to the (2i)th round, they choose the vertices in Ai ∪A′i ∪Bi ∪B′

i .
Assume that S0 succeeds in i rounds of SYM(G0) and D succeeds in 2i rounds of

EF(L(G0);L(G1)) irrespective of the other players’s strategies. Under this assumption,
we describe the move of B in the ith round of SYM(G1) and then show that this move
is successful.
Assume that A colors an edge a and hence Ai=Ai−1 ∪{a}. Simulating the (2i−1)th

round of EF(L(G0);L(G1)), the player B makes the spoiler choose a, a vertex in
L(G1), and then makes the duplicator apply the strategy D. Let a′ denote the vertex
chosen by the duplicator in L(G0). Simulating the ith round of SYM(G0), the player
B makes A0 color the edge a′ thereby setting A′i =A

′
i−1 ∪{a′} and then makes B0

apply the strategy S0. Let b′ denote the edge colored by B0 and B′
i =B

′
i−1 ∪{b′}. Next
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B simulates the (2i)th round of EF(L(G0);L(G1)). He makes the spoiler choose
b′, a vertex in L(G0), and then makes the duplicator apply D. Let b denote the
vertex chosen by the duplicator in L(G1). Finally, B colors the edge b and hence
Bi=Bi−1 ∪{b}.
We now have to show that S(D; S0) succeeds in the ith round irrespective of the

player A’s strategy. Since by our assumption S0 succeeds against any strategy of A0,
the subgraphs A′i and B

′
i of G0 are isomorphic. By the de<nition of a line graph, the

subgraphs of L(G0) induced by the vertex sets A′i and B
′
i are isomorphic too. As

easily seen from the description of S(D; S0), the duplicator constructs A′i from Ai and
Bi from B′

i . Since by our assumption D succeeds against any strategy of the spoiler,
the subgraphs induced by Ai in L(G1) and by A′i in L(G0) are isomorphic, as well
as the subgraphs induced by Bi and B′

i are isomorphic. It follows that the subgraphs
of L(G1) induced by Ai and Bi are isomorphic. Since these are the line graphs of
the subgraphs Ai and Bi of G1, the latter two are edge-isomorphic. By the condition
imposed on G1, neither Ai nor Bi have a connected component K3. By the Whitney
theorem, we conclude that Ai and Bi are isomorphic and therefore the strategy S(D; S0)
of B does succeed in SYM(G1) independently of A’s strategy.

Remark 9. Propositions 7 and 8 actually hold true for any edge-coloring game in place
of SYM(G) if this game has isomorphism-invariant winning conditions.

We are now prepared to prove Claim 1 of Theorem 4.

Corollary 10. For odd n; Lsym(Pn)¿ 1
2 log(n− 1)− 1 and Lsym(Cn)¿ 1

2 log n− 1
2 .

Proof. By Proposition 2, Lsym(Pn+1)= (n+1)=2. A weaker bound Lsym(Pn)¿ 1
4 log n− 1

2
follows from Proposition 7, with G1 =Pn and G0 =Pn+1, and from Proposition 3. To
obtain the bound claimed, notice that L(Pm)=Pm−1 and apply Proposition 8 instead
of Proposition 7. For cycles the proof is the same and uses the fact that L(Cm)=Cm.

3.2. Upper bound

We now prove Claim 2 of Theorem 4.

Proposition 11. If n is odd,

Lsym(Pn)6 (3:5 + o(1)) log2 n and Lsym(Cn)6 (3:5 + o(1)) log2 n:

Proof. We prove the proposition for paths in full detail and then brieUy notice what
should be changed for cycles.
Given a subgraph A of Pn, we denote its size by |A|. The distance between two

subgraphs A and B, denoted by d(A; B), is the minimum distance between vertices
u∈V(A) and v∈V(B).
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We describe a strategy of A that aims to destroy the isomorphism between the red
and the blue subgraphs possibly sooner. All moves of A are split into consecutive
series. The <rst move of each series creates a new component of the red subgraph
and every subsequent move of the series prolongs the component in one edge. The
component created by A during the jth series will be denoted by Aj. It will be always
the case that

|Aj+1|¡ |Aj|: (1)

Convention: Throughout our description of A’s strategy, we assume that B plays
optimally against this strategy, that is, keeps the isomorphism between the red and the
blue subgraphs as long as possible. This, together with condition (1), implies that in the
<rst move of every series, B also must start constructing a new component of the blue
subgraph and in each subsequent move of the series he must extend this component (or
otherwise B violates the isomorphism and loses immediately). The component created
by B during the jth series will be denoted by A′j.

De(nition 12. In any position of the game such that it is A’s turn, we call two red
components Ai and Aj a distinctive pair if
(1) d(Ai; Aj) �= 2,
(2) no edge between Ai and Aj has been chosen by the players,
(3) d(A′i ; A

′
j) �= d(Ai; Aj) or between A′i and A

′
j there is at least one edge chosen by

the players.

Notation: We number all edges of Pn from one end edge to the other end edge.
For notational convenience we identify the edges with their numbers 1; 2; : : : ; n. By sj
and fj (s′j and f

′
j resp.) we denote the edges chosen by A (B resp.) in the <rst and

the last moves of the jth series. Note that it is unnecessary that sj and fj are the end
edges of Aj but most often this will be so.
Set

t = 4�log n�+ 22: (2)

With the exception of a few last series, the number of moves in the jth series and
hence the length of Aj will be t− j. The parameter t is chosen large enough to ensure
that, until the end of the game, t− j is a positive number; the proof is given by Claim
1 below.
To avoid separately handling several exceptional cases of small n, we just assume

n to be suQciently large to satisfy the inequality

n ¿ 14t: (3)

The cases of smaller n are covered by the o(1) term in the statement of Pro-
position 11.
The (rst series of moves by A. In the <rst move A chooses the middle edge of Pn,

that is, s1 = (n+1)=2. Without loss of generality assume that s′1¡s1. Then in the next
moves A chooses the edges s1 + 1; s1 + 2; : : : ; s1 + t − 2=f1.
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In our further description of A’s strategy, we distinguish two phases of the game.
Phase 1: A enforces appearance of a distinctive pair {C0; D0}.
The jth series of moves; j¿1. We assume that after completion of the preceding

series the following conditions are met for m= j − 1.
Condition 0: |A1|¿|A2|¿ · · ·¿|Am−1|¿|Am|.
Condition 1: n− fm¿2.
Condition 2: No vertex on the right from fm has been chosen by the players.
Condition 3: The edges of A1; A2; : : : ; Am have been chosen in the ascending order.

In particular,

s1 ¡ f1 ¡ s2 ¡ f2 ¡ · · ·¡ sm ¡ fm

and sp and fp are the end edges of Ap, for every p6m.
Condition 4: For notational convenience, de<ne A0 to be the subgraph of Pn induced

by the <rst vertex of Pn (A0 has a single vertex and no edge). Let q be such that A′m
is between Aq−1 and Aq. Then A′q; A

′
q+1; : : : ; A

′
m−1 all are also between Aq−1 and Aq,

exactly in this order (in the direction either from Aq−1 to Aq or from Aq to Aq−1). In
addition, d(A′p−1; A

′
p)=d(Ap−1; Ap) for every q¡p6m.

Condition 5: n− (sp − 1)¿d(Ap−1; Ap) for every 1¡p6m.
Observe that Conditions 0–5 are obeyed after the <rst series of moves, that is, they

are true for m=1. Condition 1 follows from (3); Conditions 2 and 3 follow from the
description of the <rst series; Conditions 0, 4, and 5 for the <rst series are trivial. The
ful<llment of Conditions 0–5 for every series excepting the last series of Phase 1 will
be proven in Claim 1 below.
De<ne a function � by �(x)= x + �(n − x)=2�. In the <rst move of the jth series

A chooses

sj = �(fj−1): (4)

Comment: This choice of sj implies Condition 5 for m= j, unless the jth series
concludes Phase 1. The function � provides the smallest value of sj with this property.
Note also that sj really starts a new component due to Condition 1 for m= j − 1.
The further moves of A depend much on the <rst move of B in the series.
Case 1: s′j¡sj.
A continues the series choosing sj + 1; sj + 2; : : : ; fj. The last edge in the series is

determined from the following rules.
Rule 1: If n− (sj − 1)6t − j, then fj = n. Otherwise:
Rule 2: If n− (�(sj + t − j − 1)− 1)¿t − (j + 1), then fj = sj + t − j − 1.
Rule 3: If n− (�(sj + t − j − 1)− 1)¡t − (j + 1), then fj is the smallest number

such that n− �(fj)¡fj − sj.
Comment: These rules can be reformulated as follows. Aj is constructed edge by

edge in the ascending order starting from sj so that |Aj|= t − j with two exceptional
cases:
(i) Assignment |Aj|= t − j and starting the next component Aj+1 from sj+1 =�(fj)

in the ascending order could not give |Aj+1|= t − (j + 1) because the <nal edge
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n would be reached earlier than in t− (j+1) moves. In this case |Aj| is taken as
smaller than t − j as possible to keep the relation |Aj+1|¡|Aj|, where Aj+1 starts
at �(fj) and <nishes at n.

(ii) |Aj| is shorter because the last edge n is reached.
Case (i) corresponds to Rule 3, and Case (ii) corresponds to Rule 1.
It is also useful to make the following observation. Assume that Case 1 occurs in

the (j − 1)th and in the jth series. Then, if Case (i) occurs in the (j − 1)th series,
Case (ii) must occur in the jth series. Vice versa, if Case (ii) occurs in the jth series,
then Case (i) must occur in the (j − 1)th series.

Subcase 1a: fj−1¡s′j¡sj. If fj¡n, then Phase 1 of the game continues and A
starts the (j + 1)th series. If fj = n, then B by (4) has not enough room to make A′j
so long as Aj. Therefore the isomorphism is violated and B loses.

Subcase 1b: s′j¡sj−1.
Let q be as in Condition 4 for m= j−1. If A′j is not between Aq−1 and Aq, then Aj−1

and Aj are a distinctive pair. Items 2 and 3 of De<nition 12 are clear, and Item 1 is
proved in Claim 2 below.A therefore terminates Phase 1 and takes C0 =Aj−1; D0 =Aj.
Suppose that A′j is between Aq−1 and Aq.
If d(A′j; A

′
j−1) �= d(Aj; Aj−1), then Aj−1 and Aj again are a distinctive pair and A

terminates Phase 1 with C0 =Aj−1; D0 =Aj. Suppose that d(A′j; A
′
j−1)=d(Aj; Aj−1).

If Condition 4 is violated for m= j, then A′j must be between A
′
j−1 and A

′
j−2 and

therefore Aj−1 and Aj−2 become a distinctive pair. In this case A terminates Phase 1
and takes C0 =Aj−1; D0 =Aj−2. A distinctive pair does not exist in the only case that
Condition 4 holds true for m= j. In this case Phase 1 of the game continues and A
starts the (j + 1)th series of moves.
Let us pay special attention to the case when fj = n. Condition 4 then cannot happen

in view of Condition 5 for p= q. Therefore, a distinctive pair exists and the game goes
to Phase 2.

Case 2: s′j¿sj. A continues the series choosing sj − 1; sj − 2; : : : ; fj = max{fj−1 +
2; sj − t + j + 1} unless this maximum equals fj−1 + 3. In the latter case the series is
shorter in one move and fj =fj−1 + 4. The series Aj−1 and Aj are a distinctive pair
and A terminates Phase 1 with C0 =Aj−1; D0 =Aj.

Comment 3: In other words, Aj is constructed starting from sj, edge by edge in the
descending order, until |Aj|= t − j or d(Aj; Aj−1)= 1. Special care is taken to ensure
that d(Aj; Aj−1) �= 2, one of the de<ning properties of a distinctive pair.

The above program for A makes sense as long as t − j, the length assigned to Aj,
is a positive number, which is the case for at most t − 1 series of moves. In fact, we
prove that �log n� series suQce for A to terminate Phase 1, that is, either to win the
game or to <nd a pair {C0; D0} (Item 3 of Claim 1 below). We will prove that the
pair {C0; D0} found by A is indeed distinctive (Claim 2). We also should prove our
assumption that Conditions 0–5 hold true at the start of every series of moves within
Phase 1 (Claim 1, Item 6). To verify (1), in addition to Condition 0 we need to prove
the inequality |Aj|¡|Aj−1| for components created in the last two series of Phase 1
(Claim 1, Item 4).



438 F. Harary et al. / Theoretical Computer Science 313 (2004) 427–446

Claim 1. Let A play as described above and B play optimally against this strategy
of A. Suppose that A has made the jth series of moves in Phase 1. Then
(1) d(Aj; Aj−1)¡ 1

2d(Aj−1; Aj−2), if j¿3.

(2) d(Aj; Aj−1)¡
(
1
2

)j−1
n, if j¿2.

(3) j6�log n�.
(4) |Aj|¡|Aj−1|, if j¿2.
(5) |Aj|¿ log n+ 4.
(6) If the jth series is not last in Phase 1, then Conditions 0–5 hold true for m= j.

Proof. We proceed by induction on j. Consider two base cases j=1; 2. Item 1 is
trivial. Item 2 reads d(A2; A1)¡ 1

2n and is straightforward by the description of A’s
strategy. Item 3 is equivalent to n¿2 and follows from (3) and (2). By (3) and by
the description of A’s strategy, |A1|= t − 1 and |A2|= t − 2 and hence Items 4 and 5
are true. Taking into account (3), it is also easy to check Item 6.
Assume that Items 1–6 are true for the (j − 1)th series and prove each of them for

the jth series.
Item 1: By the induction assumption applied to Item 5 we have

|Aj−1|¿ 4: (5)

Assume that Aj is created in Case 1. Then

sj−2 ¡ fj−2 ¡ sj−1 ¡ fj−1 ¡ sj ¡ fj;

d(Aj; Aj−1) = sj − fj−1 − 1; d(Aj−1; Aj−2) = sj−1 − fj−2 − 1:
By the choice of sj−1 (see (4)),

d(Aj−2; Aj−1) + 2¿ |Aj−1|+ d(Aj; Aj−1) + |Aj|+ (n− fj):
By the choice of sj,

|Aj|+ (n− fj) = n− sj + 1¿ d(Aj; Aj−1):

Taking into account (5), we infer that

d(Aj−2; Aj−1)¿ 2d(Aj; Aj−1): (6)

Assume now that Aj is created in Case 2. Then

sj−2 ¡ fj−2 ¡ sj−1 ¡ fj−1 ¡ fj ¡ sj;

d(Aj; Aj−1) = fj − fj−1 − 1; d(Aj−1; Aj−2) = sj−1 − fj−2 − 1:
By the choice of sj−1,

d(Aj−2; Aj−1) + 2¿ |Aj−1|+ d(Aj; Aj−1) + |Aj|+ (n− sj):
By the choice of sj,

n− sj + 1¿ d(Aj; Aj−1) + (|Aj| − 1):
Taking into account (5), we again easily infer (6).
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Item 2: By the induction assumption,

d(Aj−1; Aj−2)¡
(
1
2

)j−2
n:

Using Item 1, we derive

d(Aj; Aj−1)¡ 1
2d(Aj−1; Aj−2)¡

(
1
2

)j−1
n

as required.
Item 3: As d(Aj; Aj−1)¿1, this is a consequence of Item 2.
Item 4: Note that the component Aj−1 followed by Aj can be constructed according

to one of six scenarios.
Scenario 1. Case 1, Rule 2 followed by Case 1, Rule 2.
Scenario 2. Case 1, Rule 2 followed by Case 1, Rule 1.
Scenario 3. Case 1, Rule 2 followed by Case 1, Rule 3.
Scenario 4. Case 1, Rule 2 followed by Case 2.
Scenario 5. Case 1, Rule 3 followed by Case 1, Rule 1.
Scenario 6. Case 1, Rule 3 followed by Case 2.

In Scenarios 1–4 we have |Aj−1|= t− (j−1) and |Aj|6t− j. In Scenario 5, |Aj|= n−
(sj − 1) by Rule 2 and the inequality |Aj|¡|Aj−1| is enforced by Rule 3. In Scenario
6, |Aj| is even shorter than in Scenario 5 because |Aj|6sj −fj−1 − 1 and sj −fj−1 −
1¡n− (sj − 1) by the choice of sj.

Item 5: We distinguish the same six scenarios as above.
Scenarios 1 and 2. We have |Aj|= t− j and the claim follows from Item 3 and (2).
Scenario 3 will be considered a bit later.
Scenario 4. We have |Aj−1|= t−(j−1). Since Aj−1 is constructed according to Rule

2, we have n−(sj−1)¿t−j. Together with (4), this implies that sj−fj−1−1¿t−j−2.
As in Case 2 |Aj|¿min{t − j − 1; sj −fj−1 − 1}, we have |Aj|¿t − j − 2. The claim
now follows from Item 3 and (2).
Scenario 5. According to Rule 3,

n− �(fj−1)¡ fj−1 − sj−1 (7)

and

n− �(fj−1 − 1)¿ (fj−1 − 1)− sj−1: (8)

From (7) we infer

n− sj−1 ¡ 3(fj−1 − sj−1) + 1 (9)

and from (8) we infer

n− fj−1 + 1¿ 2(fj−1 − sj−1 − 1): (10)

As Aj−1 is constructed according to Rule 3 and therefore the assumption of Rule 1 is
false, we have

n− (sj−1 − 1)¿ t − (j − 1): (11)
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From (9) and (11) we conclude that

fj−1 − sj−1 ¿ (t − j − 1)=3: (12)

By Rule 1, |Aj| is equal to
n− (sj − 1) = n− �(fj−1) + 1¿ (n− fj−1 + 1)=2:

Using (10) and (12), we obtain

n− (sj − 1)¿ fj−1 − sj−1 − 1¿ (t − j − 1)=3− 1: (13)

Hence |Aj|¿(t − j − 4)=3 and the claim follows from Item 3 and (2).
Scenario 6. Since Aj−1 is constructed according to Rule 3, we have

(sj − 1)− fj−1 6 n− (sj − 1)− 16 (t − j)− 2:
In Case 2 we have |Aj|¿min{t − j− 1; sj −fj−1 − 1} and hence |Aj|¿sj −fj−1 − 1.
The latter value, by the choice of sj, is no less than n − (sj − 1) − 2. Similarly to
Scenario 5, relation (13) is true and hence

|Aj|¿ n− (sj − 1)− 2¿ (t − j − 10)=3:
It remains to apply Item 3 and (2).
Scenario 3. By Rule 3, |Aj|¿n− (sj+1 − 1). Applying precisely the same argument

as in Scenario 5, similarly to (13) we derive

n− (sj+1 − 1)¿ (t − (j + 1)− 4)=3:
It remains to apply Item 3 and (2).

Item 6: The assumption made in this item implies that for the jth series we have
Case 1 and fj¡n, that is, either Rule 2 or Rule 3 was applied. Condition 0 follows
from the induction assumption and Item 4. Condition 1 is ensured by Rules 2 and 3.
Conditions 2 and 3 can be violated only in Case 2 which always terminates Phase 1.
Condition 4 is obvious if q=m. If q6m− 1, the condition follows from the induction
assumption (see explanations accompanying the description of Case 1). Condition 5
follows from the choice of sp (see (4)) and Condition 3.

Claim 2. If A :nishes Phase 1 with some C0 and D0, then these components are a
distinctive pair.

Proof. If l is the number of series in Phase 1, then either {C0; D0}= {Al; Al−1} or
{C0; D0}= {Al−1; Al−2}. It is easy to check that this pair is always chosen so that
items 2 and 3 of De<nition 12 are true. Let us check item 1, i.e., d(C0; D0) �= 2.
If {C0; D0} is chosen in Case 1, then d(C0; D0) equals either sl − fl−1 − 1 or

sl−1 − fl−2 − 1. By choice (4) of sj these values are not less than |Al| − 2 and
|Al−1| − 2, respectively. By Item 5 of Claim 1, d(C0; D0)¿2.
If {C0; D0}= {Al; Al−1} is chosen in Case 2, then the inequality d(C0; D0) �= 2 is

true by the choice of the length |Al| in Case 2.
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Notation: In the sequel we denote the number of series in Phase 1 by l. Let t′= |Al|,
the length of the shortest component created in Phase 1.

Claim 3. (1) l6�log n�.
(2) t′¿ log n+ 4.

Proof. The claim is a direct corollary of Items 3 and 5 of Claim 1.

Phase 2: A reduces the distance between components of a distinctive pair to 1.
The (l + j)th series of moves (the jth series in Phase 2). Let {Cj−1; Dj−1} be the

distinctive pair created in the preceding series. In particular, {C0; D0} is the output of
Phase 1. If d(Cj−1; Dj−1)= 1; A makes the last move described below. Suppose that
s(Cj−1; Dj−1)¿3. Let a and b be two nearest edges in Cj−1 and Dj−1, respectively.
Without loss of generality, assume a¡b. In the <rst move of the series A chooses
the medium edge sl+j = �(a+ b− 1)=2�. The further moves of A depend on the <rst
move of B.

Case 1: a¡s′l+j¡sl+j. A continues the series choosing sl+j +1; sl+j +2; : : : ; fl+j =
min{b−2; sl+j+(t′−j−1)} unless sl+j+(t′−j−1)= b−3. In the latter case A stops
one move earlier at fl+j = b− 4. The new distinctive pair is Cj =Al+j and Dj =Dj−1.

Case 2: sl+j¡s′l+j¡b. A continues the series choosing sl+j − 1; sl+j − 2; : : : ; fl+j =
max{a + 2; sl+j − (t′ − j − 1)} unless sl+j − (t′ − j − 1)= a + 3. In the latter case
A stops one move earlier at fl+j = a + 4. The new distinctive pair is Cj =Cj−1 and
Dj =Al+j.

Case 3: s′l+j is not between Cj−1 and Dj−1. A continues the series choosing
sl+j + 1; sl+j − 1; sl+j + 2; sl+j − 2 and so on until one of the following situations
happens:
(1) d(Cj−1; Al+j)=d(Al+j; Dj−1)= 1.
(2) |Al+j|= t′ − j but d(Cj−1; Al+j) �= 2 and d(Al+j; Dj−1) �= 2.
(3) t′ − j − 36|Al+j|¡t′ − j and d(Cj−1; Al+j)=d(Al+j; Dj−1)= 3.
As shown in Claim 5 below, at least one of the pairs {Cj−1; Al+j} or {Al+j; Dj−1} is
distinctive and A takes it as {Cj; Dj}.
The last move. As soon as A creates a distinctive pair {C;D} with d(C;D)= 1, he

chooses the edge between C and D and wins. To keep isomorphism, B should make,
in place of two corresponding blue components C′ and D′, a new component of length
|C′|+ |D′|+ 1. This task is impossible to implement as d(C′; D′)¿1.
The description of A’s strategy in Phase 2 makes sense as long as the value assigned

to the length of a series is a positive number. The smallest value that can be assigned
for the (l + j)th series, if it is not last in Phase 2, is t′ − j − 3. Hence the condition
j¡t′ − 4 is required. The same condition is required also in order to pass by the
forbidden distance d(Cj; Dj)= 2 in cases d(Cj−1; Dj−1)= 4; 5; 6. We will show that
t′ − 4 series are indeed enough for A to <nish Phase 2 (Claim 4, Item 3) and that
{C;D}, the outcome of Phase 2, is indeed a distinctive pair with d(C;D)= 1 (Claim
5). We also will verify (1) for the components created during Phase 2 (Claim 4,
Item 4).
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Claim 4. Let A play as described above and let B play optimally against this strat-
egy of A. Suppose that A has made the (l + j)th series of moves in Phase 2.
Then
(1) d(Cj; Dj)6 1

2d(Cj−1; Dj−1).
(2) d(Cj; Dj)6

(
1
2

)j
d(C0; D0).

(3) j¡ log n− 1.
(4) |Al+j|¡|Al+(j−1)|.

Proof. Item 1 is clear from A’s strategy. Item 2 follows from Item 1. Item 3 follows
from Item 2, because d(Cj; Dj)¿1 and d(C0; D0)¡ 1

2n.
Item 4 is given by easy inspection of A’s strategy. If the (l+ j)th series is neither

last nor last but one in Phase 2, then |Al+(j−1)|= t′ − (j− 1) and |Al+j|= t′ − j. If the
(l+j)th series is last but one, then |Al+(j−1)|= t′−(j−1) and t′−j−36|Al+j|6t′−j.
If the (l+ j)th series is last, then either |Al+(j−1)|= t′ − (j − 1) and |Al+j|6t′ − j or
t′ − (j − 1)− 36|Al+(j−1)|6t′ − (j − 1)− 1 and |Al+j|=1. In the latter case Item 4
follows from Item 3 and Claim 3.

Claim 5. Let A play as described above and let B play optimally against this strat-
egy of A. Suppose that A has made the (l+ j)th series of moves in Phase 2. Then
{Cj; Dj} is a distinctive pair and eventually d(Cj; Dj)= 1.

Proof. Conditions 1 and 2 in De<nition 12 are directly enforced by A’s strategy.
Condition 3 is easy to see if the (l + j)th series of moves was done in Case 1 or
2. Assume it was done in Case 3. We have to prove that at least one of the pairs
{Cj−1; Al+j} or {Al+j; Dj−1} is distinctive. Suppose, to the contrary, that they both
are not. This implies for the corresponding blue components C′; D′; A′l+j that no edge
is chosen between C′; A′l+j and between A

′
l+j; D

′, and that d(C′; A′l+j)=d(Cj−1; Al+j)
and d(A′l+j; D

′)=d(Al+j; Dj−1). It follows that before the (l+ j)th series no edge was
chosen between C′ and D′ and d(C′; D′)=d(Cj−1; Dj−1). Thus, Cj−1 and Dj−1 could
not be a distinctive pair, a contradiction.

It remains to estimate the total number of moves in the game if A follows the
above strategy. Since {C0; D0} is always either {Al; Al−1} or {Al−1; Al−2}, we have
d(C0; D0)6d(Al−1; Al−2). By Item 2 of Claim 4 and Item 2 of Claim 1, in the last
(l + k)th series of moves of Phase 2 we have d(Ck; Dk)¡

(
1
2

)l+k−2
n and therefore

l + k6�log n� + 2. As the jth series has at most t − j moves, the total number of
rounds in the game does not exceed

∑�log n�+2
j=1 (t − j) + 1=3:5 log2 n+O(log n).

The proof of Proposition 11 for paths is complete.

Proof of Proposition 11 (for cycles (Sketch)). We employ the same idea as for paths
and refer to strategies in Phases 1 and 2 described above. The moves of A are
split into series, and in a series A creates a component of the red subgraph. The
jth series consists of t − j moves, with a few possible exceptions in the end of the
game.
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We adopt the notion of a distinctive pair of components with only one re<nement:
The distance d(A; B) between two components A and B is the minimum length of a
path that joins a vertex in A and a vertex in B and that consists of edges unchosen so
far. Thus, d(A; B) may diMer from the standard distance in a graph. The goal of A is
to create a distinctive pair and then to apply the strategy of Phase 2 literally. However,
creation of a distinctive pair in cycles is a bit more complicated task. Namely, before
applying the strategy of Phase 1 some additional eMorts are needed.
In the <rst series of moves A creates the component A1 and B, not to lose imme-

diately, creates the component A′1 of the same length. Denote two paths connecting A1
and A′1 by I1 and I2, and their lengths by l1 and l2. Note that one number of l1 and
l2 is odd and the other is even. Without loss of generality assume l1¿l2¿0.

Case 1: l1 is odd. A starts the second series choosing s2, the middle edge of I1.
If B chooses s′2 in I1 between s2 and A

′
1, then A completes A2 and {A1; A2} is a

distinctive pair. If B chooses s′2 in I1 between A1 and s2, then A continues to play on
I1 in the direction towards A′1 applying the strategy of Phase 1.
B has another possibility to try to avoid creating a distinctive pair: he can choose s′2

in I2 at the same distance from A′1 as between A1 and s2. In this case, if A continues
to play Phase 1 on I1 in the direction towards A′1; B can copy moves of A in I2.
Nevertheless, since l2¡l1, eventually either the isomorphism will be violated, or a
distinctive pair appears, or B will be forced to switch back to I1.

Case 2: l1 is even. Playing on I1 gives no gain for A because B can keep iso-
morphism using the involutory <xed-edge-free automorphism of I1 (this is a diMerence
between the cases of paths and cycles). Therefore, A should play in I2. However, it
is impossible for A to adapt the strategy of Phase 1 directly because B can just copy
moves of A in I1. To prevent this, A chooses s2 in I1 at distance (l2− 1)=2 from A1.
If B chooses s′2 in I1 at the same distance from A′1, then A completes A2 and starts

the third series choosing s3 at the center of I2. After this everything goes through as
in Case 1 with roles of I1 and I2 interchanged. Note that B is not able to choose s′3
in I1 at the same distance from A′1 as between s3 and A1 because the corresponding
edge is already occupied in the preceding series.
If B chooses s′2 in I1 between s2 and A

′
1 but not at distance (l2−1)=2 from A′1, then

A completes A2 so that {A1; A2} is a distinctive pair.
If B chooses s′2 in I1 between A1 and s2 or chooses s

′
2 to be the middle edge of I2,

then A continues the game on I1 as in Case 1.

Remark 13. Notice an essential diMerence between the Ehrenfeucht–Fra45ss6e game and
the symmetry breaking–preserving game. While in each round of the former game B is
obliged to extend the isomorphism established in the preceding round, in the latter game
no dependence between isomorphisms in two successive rounds is required. Eliminating
this diMerence, let SYM+ (G) be a modi<cation of the symmetry breaking–preserving
game SYM(G) in which B not merely keeps the red and the blue subgraphs isomorphic
but, moreover, extends the isomorphism between them from round to round. Clearly,
Lsym+(G)6Lsym(G).
Propositions 7 and 8 hold true for SYM + (G) with minor changes in the proofs.

In particular, in the proof of Proposition 8 we need to apply a stronger form of
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the Whitney theorem asserting that, with a few exceptions excluded by prohibiting
a subgraph K3, an isomorphism between L(H1) and L(H2) is induced by an iso-
morphism between H1 and H2 and, moreover, the latter is unique for graphs of size
more than 1. Since Proposition 2 holds true for SYM + (G) as well, we obtain the
same lower bounds Lsym+(Pn)=2(log n) and Lsym+(Cn)=2(log n) for odd paths and
cycles. The upper bound of Proposition 11 can be improved to Lsym+(Pn)=O(log n)
and Lsym+(Cn)=O(log n) for n odd. The proof becomes much simpler because now
the red and blue components Aj and A′j correspond to one another by the rules of the
game rather than by having the same distinctive length. In particular, A can now make
each series of moves being of constant length.
It would be interesting to know how much the values of Lsym+(G) and Lsym(G) can

diMer from each other.

4. Games on complete graphs

In this section we analyze the symmetry breaking–preserving game on the com-
plete graph of order n. Unlike the preceding section where we used the knowledge
of Lsym(Pn) and Lsym(Cn) for even n, we now have to estimate Lsym(Kn) for all n.
The relation with the Ehrenfeucht–Fra45ss6e game can still give us some information.
Similarly to Proposition 7 one can prove that, if LEF(G0; G1)¿4Lsym(G0) + 4, then
Lsym(G1)6Lsym(G0). Since LEF(Kn; Kn+1)= n, it follows that either Lsym(Kn)¿n=4− 1
for all n or Lsym(Kn)=O(1). We here prove the latter alternative.

Theorem 14. Lsym(Kn)66 for all n.

Proof. If n65, the assertion is trivial. We assume that n¿6 and describe a strategy of
A breaking the isomorphism in at most 7 moves. In the <rst three rounds A creates
a 3-star in such a way that B is not able to choose any edge connecting leafs of this
star without immediately losing. This can be done so that one of the <ve positions in
Fig. 1 occurs.
The next move of A from Position 1 creates a triangle and simultaneously blocks

creating a triangle by B. In Positions 2 and 3 the player A is able in the next three
moves to create a K4 in such a way that B cannot do the same.

Game from Position 4: In the next two rounds A chooses the edges {v1; v2} and
{v2; v3}. If B in these rounds chooses two edges of the triangle T = {u1; u2; u3} with
the common vertex ui, then A chooses {ui; v2} and wins. Otherwise in the 6th and
7th moves A chooses two edges of T and wins.

Game from Position 5: In the 4th and 5th rounds A chooses the edges {u3; v2} and
{v2; v1}, respectively. If B in these rounds chooses edges not both in T , in the next
two moves A chooses two edges of T and wins. Assume therefore that in the 4th
and 5th rounds B chooses {u3; u2} and {u2; u1} (the choice of {u3; u1} and {u1; u2} is
symmetric). In the next round A chooses {u1; v1} and B is forced to choose {u1; v2}.
Finally, A chooses {u2; v1} and wins.
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u1

u0

u2 u3 u1

u0

u2 u3v1 v2 v2

v0

v1v3

Position  1

Position  4 Position  5

Position  2 Position  3

Fig. 1. The <rst three rounds of SYM(Kn). A’s edges are dotted and B’s edges are continuous.

Remark 15. A more lengthy and complicated analysis allows us to lower the bound 6
of Theorem 14 to 5.

Finally we brieUy discuss the case of complete bipartite graphs. If at least one of m
and l is even, then Km;l has an involutory automorphism without <xed edges and, by
Proposition 2, Lsym(Km;l) is maximum possible for graphs of this size. If both m and
l are odd, Km;l has no involutory <xed-edge-free automorphism but removal of one
edge from Km;l leads to a graph Km;l − e with such an automorphism. It is therefore
interesting to estimate Lsym(Km;l) for ml odd.
An easy lower bound is

Lsym(Km;l)¿ max
{
m− 1
2

;
l− 1
2

}
: (14)

The appropriate strategy of B is based on a partial involutory automorphism of Km;l
constructed during the course of the game. The automorphism leaves one vertex class
<xed. Whenever during the course of the game in the other vertex class a new vertex
of the red subgraph appears, the automorphism interchanges it with an arbitrary vertex
in this class that is unchosen so far.
Note that, if ml is odd, then Km;l−e; Km−1;l, Km;l−1, and Km−1;l−1 all have involutory

automorphisms without <xed edges. One could therefore try to apply Propositions 7
and 8 with G1 =Km;l and G0 one of these graphs. However, in all the cases LEF(G0; G1)
and LEF(L(G0);L(G1)) are not large enough to give us anything better than (14).

Problem 16. What are the asymptotics of Lsym(Kn;n) for odd n?

Note added in proof: Problem 16 was recently solved by Oleg Pikhurko who proved
that Lsym(Kn;n)62n+38 for odd n¿51. This matches up to a constant factor the lower
bound (14) that reads Lsym(Kn;n)¿(n−1)=2. Pikhurko’s result is actually more general
and implies that, if m6l6mO(1), then Lsym(Km;l)=O(l).
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