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Abstract Search speed, quality of resulting paths and the cost of pre-processing are the principle

evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps,

rectangle expansion A* (REA*), is presented that improves the performance of A* significantly.

REA* explores maps in units of unblocked rectangles. All unnecessary points inside the rectangles

are pruned and boundaries of the rectangles (instead of individual points within those boundaries)

are used as search nodes. This makes the algorithm plot fewer points and have a much shorter open

list than A*. REA* returns jump and grid-optimal path points, but since the line of sight between

jump points is protected by the unblocked rectangles, the resulting path of REA* is usually better

than grid-optimal. The algorithm is entirely online and requires no offline pre-processing. Experi-

mental results for typical benchmark problem sets show that REA* can speed up a highly optimized

A* by an order of magnitude and more while preserving completeness and optimality. This new

algorithm is competitive with other highly successful variants of A*.
� 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Pathfinding is a basic problem in many domains, particularly
robotics, artificial intelligence planning, navigation and com-
mercial computer games. A great deal of research has been car-
ried out to improve the quality of resulting paths while keeping

costs low. The A* algorithm1 is now regarded as the gold stan-
dard for search algorithms because of its completeness, opti-
mality and effectiveness, and many of the current state-of-
the-art pathfinding algorithms are variants of A*.

Search speed, quality of resulting paths and cost of pre-
processing are the main evaluation metrics of a pathfinding
algorithm. Typical speed enhancements for pathfinding usually

involve either trading away optimality for speed or offline pre-
processing. The former makes it difficult to guarantee the qual-
ity of results. The latter requires extra memory and pre-

computing time as seen in hierarchical path-finding A*

(HPA*),2 swamp A*,3 compressed path databases (CPDs),4–7

subgoal graphs A* (SUB),8 and TRANSIT A*.9–11 Compared
with exclusively online algorithms, those employing pre-

processing will usually cause poorer performance in non-
static environments. On the other hand, algorithms such as
theta A*,12,13 lazy theta A*,12,14 and A* with post-smoothed

paths (A* PS)15 try to straighten the path during search or as
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Table 1 REA*() algorithm.

Require: S: the start point, G: the goal point;

1: Initialize();

2: if InsertS() then

3: return ‘‘path is found”;

4: While (Openlist! = £)

5: CBN:= the current best search node;

6: if Expand (CBN) then

7: return ‘‘path is found”;

8: return ‘‘no path is found”;
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part of the post-processing step to obtain better than grid-
optimal results and avoid constraining paths to grid edges.
This involves expensive visibility tests and sacrifices speed.

In this paper a new optimal algorithm, rectangle expansion
A* (REA*), is introduced that explores maps units of
unblocked rectangles. Without any pre-processing, REA* can

speed up a highly optimized A* by an order of magnitude
and more on typical benchmark problem sets. REA* executes
purely grid-optimal pathfinding, but the additional benefit of

rectangle expansion usually makes the final path better than
grid-optimal. This paper makes the following contributions:

(1) A detailed description of the REA* algorithm for 8-

connected grid maps.
(2) A theoretical proof for the completeness, optimality of

REA* and analysis of its effectiveness.

(3) Trade-off measures to further enhance the method.
(4) Experimental results of REA* and comparisons with

standard A* and some of its highly successful variants.

2. Related work

The concept of eliminating unnecessary symmetry paths on
grid maps has been seen in literature in the last few years,
and REA* is inspired by some of the recent successes. The idea

of improving a path by reducing unnecessary heading changes
also benefits REA*.

REA* is similar to rectangular symmetry reduction
(RSR)16–18 because both divide grid maps into several rectan-

gles free of interior obstacles, and all interior nodes of each
rectangle will be pruned during path search. However, they
are essentially different. RSR replaces interior nodes with a

series of macro-edges, and nodes are visited and expanded
individually during search. In REA*, each rectangle is oper-
ated in as a whole, ignoring all unnecessary interior connec-

tions. Outer perimeter nodes, continuously free of obstacles,
will be considered ‘‘search nodes”, which means fewer and
quicker list operations. What’s more, REA* is carried out

entirely online while RSR requires offline pre-processing to
divide grid maps into rectangles and assign nodes.

Block A*19 is another algorithm that searches using rectan-
gles. Information about all possible distances across a block of

grid cells (m � n region of nodes) is pre-computed and stored
in a new type of database, the local distance database (LDDB).
Distances between boundary points are queried from the

LDDB during an online A* search. The number of entries in
the LDDB increases extremely fast, so the size of blocks can-
not be large (no more than 5 � 5 in Ref. 19). Block A* requires

to pre-compute the LDDB and, though different LDDBs can
be chosen to improve the resulting path, it is only guaranteed
to be optimal in 4-connected grid maps.

Jump point search (JPS)20,21 is the current state-of-the-art

online algorithm. JPS identifies and selectively expands only
certain nodes in a grid map called jump points. All intermedi-
ate nodes on paths connecting two jump points are never

expanded. The algorithm can speed up A* greatly and, just like
REA*, returns skipped path points. However, while JPS guar-
antees grid-optimal paths, REA* returns paths better than

grid-optimal.
Anya A*22 is a recently proposed algorithm for grid maps
that uses contiguous sets of nodes in horizontal or vertical lines
as search nodes. Anya A* expands search nodes from each line

to a neighboring line with frequent, expensive line-of-sight
tests while REA* expands search nodes in units of rectangles,
a much cheaper operation. But, Anya A* offers any-angle opti-

mal pathfinding that is not artificially constrained to the points
of a grid.

3. Rectangle expansion A* algorithm

A grid map is one of the most popular types of maps used to
represent realistic terrain in literature. Assuming that (in 8-

connected grid maps) an agent operates on a grid map with
obstacles consisting of blocked cells and traversable areas con-
sisting of unblocked cells, it can move from any unblocked grid

center to another cardinally or diagonally if both adjacent car-
dinal directions are unblocked.

REA* is a variant of standard A*. Pseudo-code of REA* is
shown in Table 1. The octile distance is used to estimate the

distance between two cells heuristically. The respective lengths
of cardinal and diagonal moves are 1 and 1.414. A matrix the
same size as the map is used to store all the grid points. Point

(x, y) represents the point at the intersection of xth column and
yth row in the grid map with (1, 1) as the point in the upper left
corner. The octile distance between p(x, y) and p0(x0, y0) is:

octileðp; p0Þ ¼ 1:414�minðDx;DyÞ þ jDx� Dyj ð1Þ
where Dx ¼ jx� x0j and Dy ¼ jy� y0j.

Definition 1. A grid interval I is a set of contiguous points in
the same row or column of the grid. If all points in I are

unblocked, I is an unblocked interval. Each interval can be
defined in terms of its endpoints a and b, written as [a, b].

Search nodes in REA* are not individual cells in the grid
map but unblocked intervals of the map. To distinguish them
from our search nodes, traditional individual grid cells will be

called cells or points in this paper for simplicity. The key idea
of REA* is that, when exploring a grid map, REA* doesn’t
visit individual cells one by one. Instead, a linear search node

will expand an unblocked rectangle until stopped by obstacle
cells. Only interior boundary cells of the expanded unblocked
rectangle will be visited by parent cells from the original search

node, and unblocked points inside the rectangle will be pruned.
Then, interior boundaries of the rectangle (except the original
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search node) are ‘‘pushed outward” to generate successor
search nodes, which are unblocked intervals from outer
boundaries of the original rectangle. Successor search nodes

will be inserted into the open list with the minimum f value
of cells in the search node as its priority. The current best
search node is fetched and the above process is repeated until

an optimal path is found. Unblocked rectangles in REA* can
be seen as rooms protecting the path from obstacles, and suc-
cessor search nodes are the doors to next rooms.

Fig. 1(a) shows the result of A* in a simple instance with red
representing closed points and gray representing open points.
Fig. 1(b) shows the status of REA* after inserting the start
point onto the map. Fig. 1(c) shows the result of expanding

beyond the first unblocked rectangle. Fig. 1(d) is the final
result of REA* in the same instance. All points in REA* are
newpoints when a new pathfinding task begins, and member

parameters (for example, the gval and hval) of a newpoint
are regarded as invalid. The red points in Fig. 1(b)–(d) are
those that constitute search nodes of REA*, which are called

hpoints. The gray are those visited by REA* but not contained
by any search node, which are called gpoints. Since most points
visited by REA* will not ultimately become hpoints, in most

instances (except for the original rectangle expanded by the
start point), the gval of a point can be calculated through addi-
tion. REA* assigns a gpoint with a gval only while the hval,
which involves multiplication in octile distance, is omitted

for efficiency.
Fig. 1 Simple example of A* and REA*.
3.1. Insert start point on map

Pseudo-code to insert start point on map is shown in Table 2.
The start point S can be seen as the first search node of REA*

and expands in both the horizontal and vertical directions to

generate the original unblocked rectangle. For example, in
Fig. 1(b) S first expands vertically until stopped by the map
boundary and blocked cells in row 11, then the vertical axis
scans the map horizontally until stopped by the map boundary

and blocked cells in column 2. The unblocked rectangle
[(3,12), (10,12), (10,14), (3,14)] is the original rectangle of
REA*. The order of vertical expansion and horizontal expan-

sion may affect the original rectangle, but the completeness
and optimality of the algorithm is impervious.

If the goal point G is within the original rectangle, the opti-

mal path will be the line-of-sight between S and G, and REA*

will terminate successfully.
Otherwise, all points in the interior boundaries will become

gpoints, with S as the parent and the octile distance from S as
the gval. Then all the boundaries (as intervals, not the individ-
ual grid cells) will be used to generate the first successor search
nodes (details in Section 3.2) whose expansion directions are

just the relative position of their parent boundaries in the par-
ent rectangle. For example, in Fig. 1(b) the North boundary
[(3,12), (10,12)] and West boundary [(3,12), (3,14)] will be

the parents of the first search nodes. Notice that the point
(3,12) is contained in both intervals. The map boundaries
[(3,14), (10,14)] and [(10,12), (10,14)] are abandoned because

their successor search nodes traverse beyond the map.

3.2. Generate successor search node

Definition 2. The extend neighbor interval (ENI) of interval I
is calculated as Eq. (2), where corner points of I are NW for

northwest, NE for northeast, SW for southwest and SE for
southeast. DI is the expansion direction of I.

ENI ¼

½NWþ ð�1;�1Þ;NEþ ð1;�1Þ� if DI ¼ North

½SWþ ð�1; 1Þ; SEþ ð1; 1Þ� if DI ¼ South

½NWþ ð�1;�1Þ; SWþ ð�1; 1Þ� if DI ¼ West

½NEþ ð1;�1Þ; SEþ ð1; 1Þ� if DI ¼ East

8>>><
>>>:

ð2Þ
Table 2 InsertS() algorithm.

Require: S: the start point, G:the goal point;

1: RECT:= original rectangle expanded by S;

2: if G 2 RECT then

3: return ‘‘path is found”;

4: for all point p 2 boundaries of RECT do

5: p.gval:= octile(p,S);

6: p.mode:= gpoint;

7: for all valid boundaries of RECT do

8: if Successor(boundary) then

9: return ‘‘path is found”;

10: return NULL;
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Definition 3. Possible blocked member points may divide an

ENI into several unblocked subintervals that are neither adja-
cent nor overlap. Each of these unblocked subintervals is a free
subinterval (FSI) of the ENI. If an ENI is totally unblocked, it

is the only free subinterval of itself.

Definition 4. A search node (I, dir, minfval) is a tuple where I is
an unblocked interval and dir is the expansion direction of I
and minfavl is the minimum fval of points in I.

Pseudo-code to generate successor search node is shown in
Table 3. Assume that the ENI is of a valid boundary (interval

PB) of the parent rectangles in given expansion direction, and
the FSI is a free subinterval of ENI. Then, for each point
p 2 FSI, if p is newpoint or if there exists a shorter path from

PB to p, that is, p.gval > pb.gval+ 1(or 1.414 according to
the relative position of p and pb; pb is a reachable neighbor
point of p in PB), p will be updated by the smaller gval and
a new parent point pb.

If any point in an FSI is updated, a new successor search
node PN will be generated and inserted into the open list.
The FSI will be the unblocked interval of PN, and all points

in the FSI will become hpoints, with octile distance
octileðp;GÞ as the hval:

p:fval ¼ p:gvalþ p:hval ¼ p:gvalþ octileðp;GÞ ð3Þ
Expansion direction of PN depends on the position of PB in

the parent rectangle, and the minimum fval of points in an FSI
will be the minfval of the new search node PN. Notice that the
minfval represents the best condition of points in the FSI when

PN is generated. Points in an FSI can also be updated by other
search nodes, and when an FSI is expanded it will always use
the latest and current best status of points. If an FSI does not
exist, or if none of the member points in an FSI can be

updated, no successor search node will be generated.
A search node is in fact the entrance of a new unblocked

rectangle. Fig. 2 shows how the original unblocked rectangle

generates the first search nodes in Section 3.1. Since point
(11,11) and point (2,15) are off the map, interval [(2,11),
(10,11)] will be the extend neighbor interval of the north
Table 3 Successor() algorithm.

Require: PB: boundary of parent rectangle; PP: parent search

node of PB; PN: a new search node;

1: ENI:= extend neighbor interval of PB;

2: for all free subintervals FSI of ENI do

3: for all point p 2 FSI do

4: Try to update p with PB

5: p.mode:=hpoint;

6: p.hval:=octile(p,G);

7: p.fval:=p.hval + p.gval;

8: if G 2 FSI and

9: G.fval 6 PP.minval then

10: return ‘‘path is found”;

11: if 9 p 2 FSI updated by PB then

12: PN.I:= FSI;

13: PN.dir:= direction of PB;

14: PN.minfval:= minpf2FSIpf:gval;
15: Openlist.Insert(PN);

16: return NULL;
boundary with free subintervals [(2,11), (2,11)] and [(8,11),
(10,11)], and interval [(2,11), (2,14)] will be the extend neigh-
bor interval of the west boundary with free subinterval [(2,11),

(2,11)]. Since point (2,11) is not reachable directly because of
the obstacles, subinterval [(8,11), (10,11)] will be the only suc-
cessor search node of the original unblocked rectangle with

local optimal parents from the north boundary.
If goal point G belongs to ENI and is updated with a fval

not greater than the minfval of the search node PP, which

expands the parent rectangle, REA* will terminate successfully
with the optimal path.

3.3. Expand unblocked rectangle

The search node with minimum minfval is called the current
best search node (CBN). The CBN is fetched from the open list
and expands the new unblocked rectangle in its direction until

stopped by blocked cells. The current best search node can be
seen as the entrance of the new rectangle (or room) and the
other three interior boundaries can be seen as the walls.

If the goal point G belongs to the CBN or G is within an
unblocked rectangle, the point with the minimum fval in the
CBN will be the parent of G and an optimal path will be

found. Otherwise REA* only calculates the local minimum
gval for points on the walls, and all interior points of the room
will be pruned.

To get the local minimum gval of a point on the wall, REA*

does not need to calculate the octile distances between the
point and all entrance points. Fig. 3 shows an example when
CBN.dir= North and blocked points are not shown for sim-

plicity. The red interval in Fig. 3 is the CBN and gray points
are the wall points. REA* will only consider the potential par-
ents from the CBN, which are between the southeast diagonal

and the northwest diagonal of the wall points.
Assume W is the western interior boundary of the

unblocked rectangle. The letters in the center of points in

Fig. 3(a) are the order that REA* deals with points inW. First,
to determine the local minimum gval and local optimal parent,
point A examines its southern neighbor point (1,5) with verti-
cal distance 1 and its southeast diagonal point (2,5) with initial

diagonal octile distance 1.414. Then, point B examines its own
southern neighbor point A with vertical distance 1 and its
southeast diagonal point (3,5) with diagonal octile distance

1.414 larger than the last diagonal octile distance. Since point
A is local optimal and an octile path or equal octile path must
pass point A for all points west of point (3,5), it is easy to

understand that point B will be local optimal. This process
repeats and potential parents of each point in W are shown
with arrows in Fig. 3(a). Until all points in W are visited, the
Fig. 2 Generating the first search nodes in Fig. 1.



Fig. 3 Example of expanded unblocked rectangle when CBN.

dir = North.

Table 4 Expand() algorithm.

Require: CBN: the current best search node

1: if G 2 CBN then

2: return ‘‘path is found”;

3: /*only for CBN.dir=North, and other case is omitted here*/

4: RECT:= rectangle expanded by CBN;

5: if G 2 RECT then

6: return ‘‘path is found”;

7: W:= western interior boundary of RECT;

8: pw:= the most west point in CBN;

9: diagonal:= 1.414;

10: p:= pw+(0, �1);

11: pv0:= pw;

12: pd0:= pw+(1, 0);

13: while (p 2 W)

14: octile(p, pv0):= 1;

15: octile(p, pd0):= diagonal;

16: Try to update p with pv0 and pd’:

17: if p.mode–hpoint then

18: p.mode:= gpoint;

19: diagonal:= diagonal + 1.414;

20: p:= p+(0, �1);

21: pv0:= pv0 + (0, �1);

22: pd0:= pd0+(1, 0);

23: if Successor(W) then

24: return ‘‘path is found”;

25: /*eastern interior boundary is omitted here*/

26: N:= north interior boundary of RECT;

27: for all p 2 N do

28: dis:= CBN.row-N.row;

29: p10:= p20:=p+(0, CBN.row-N.row);

30: while(dis 6 1.414 � (CBN.row-N.row))

31: octile(p, p10):= dis;

32: octile(p, p20):= dis;

33: Tyr to update p with p10 and p20;
34: if p.mode–hpoint then

35: p.mode:=gpoint;

36: dis:= dis + 0.414;

37: p10:= p10+(�1,0);

38: p20:= p20+(1,0);

39: if Successor(N) then

40: return ‘‘path is found”;

41: return NULL;

42:
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current wall point will move to the north by one point and

increase the diagonal octile distance by 1.414 each time if the
southeast diagonal point is not beyond the CBN. All points
in W will be local optimal if points east of the southeast diag-
onal point of the current wall point are abandoned. The

absence of an eastern part of the CBN will not destroy the
optimality of REA* (proved in Section 4) and this process will
need no multiplication.

A wall point will follow its parents from itself to S and
choose the last point within the current unblocked rectangle
as its immediate parent, which will skip unnecessary in-

between points and straighten the path. The process to deal
with the eastern interior boundary of the unblocked rectangle
is similar and omitted here.

Assume N is the northern interior boundary of the

unblocked rectangle. Point (8,1) is a point in N, as seen in
Fig. 3(b). Point (8,1) examines the southern boundary point
(8,5), which is in the same column, and the initial octile dis-

tance is the distance from N to the CBN (5–1 = 4). Then,
the potential parents move west and east by one point (if not
beyond the CBN) and the octile distance increases by 0.414

each time until all potential parents between the southeast
diagonal and the northwest diagonal of point (8,1) have been
examined. This process will also not need multiplication.

Points in the walls will become gpoints if they are originally
not hpoints before this expansion, and the three interior
boundaries (walls) will generate new search nodes. The succes-
sor search nodes generated can be seen as the exit or outer

boundary of the current rectangle, which will also be the
entrance of a new unblocked rectangle. Pseudo-code to expand
unblocked rectangle is shown in Table 4.

3.4. Terminal conditions

After start point S is inserted into the map and the first search

nodes are generated, the main loop of REA* will fetch the cur-
rent best search node CBN in the open list, expand the new
unblocked rectangle, and generate successor search nodes in
each cycle.

If the open list is empty and there is no new CBN, no tra-
versable grid path between S and G exists. Otherwise an opti-
mal path will be found and REA* will terminate in one of these

three conditions:

(1) The goal point G belongs to the CBN.

(2) The goal point G belongs to the unblocked rectangle of
the CBN. The point with the minimum fval in the CBN
will be the parent of G in this condition.

(3) The goal point G belongs to a successor search node of

the CBN and G.fval 6 CBN.minfval.

REA* will follow the parents from G to S to retrieve the

optimal path. REA* guarantees grid-optimal path points, but



Fig. 4 A typical expansion process.
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since path points of REA* are either adjacent or skipped but
protected by an unblocked rectangle, the straight lines between
path points will be safe and shorter than grid-optimal without

any extra cost.

4. Optimality

Assuming path p = {p0, p1, . . . , pn} is an optimal grid path
with p0 = S and pn = G and SN0 is the search node generated
by the original rectangle and from which p leaves the original

rectangle.

Definition 5. A point p is optimal if p.gval equals the length of
the grid-optimal path from start point S to p. A search node
SN is optimal if there exists a point p 2 SN satisfying:

(1) p 2 p.
(2) p is optimal.

(3) jp:gval� p0:gvalj 6 octileðp; p0Þ8p0 2 SN.

It is obvious that SN0 is optimal, because for any p
and p0 in SN0, p.gval = octile(S,p), p0.gval= octile(S,p0) and
|octile(S,p) �octile(S,p0)| 6 octile(p,p0) is satisfied according

to triangle inequality.

Lemma 1. Whenever an optimal search node is expanded, the
optimal path will be found or a new optimal search node will be
generated whose minfval will be not greater than p.length. The
optimal point in the new optimal search node has greater gval
than that in the old optimal search node.

Proof. Assume SN is an optimal search node with pi the opti-

mal point in the optimal path p and SN.dir =North. Assume
also that RECT is the unblocked rectangle of SN and p leaves
RECT from a wall point pj and enters into the next unblocked
rectangle at point pk. NW is the northwest corner point of SN

and NE is the northeast. PSN is the interval [NW+(1,1), NE
+(�1,1)] and it is obvious that PSN is the minimal area in the
north boundary of the SN parent rectangle and PSN is totally

unblocked according to Definition 2. h

Assuming pp is the parent point of pi, pp must belong to

the interval [NW+(�1,1), NE+(1,1)]. pk cannot belong to
[NW+(0,1), NE+(0,1)] because the path from pp to pk
through pimust be non-optimal when PSN is unblocked. Since

RECT is surrounded by [NW+(0,1), NE+(0,1)] and the suc-
cessor search nodes of SN, pk must belong to one of the suc-
cessor search nodes of SN.

Fig. 4 shows an example in which SN.I= [(2,8), (11,8)],
pi= (8,8) and PSN= [(3,9), (10,9)]. Considering that all
points painted gray or red are undoubtedly unblocked, the
optimal path p (the blue line) must leave the RECT from a

point in one of the successor search nodes. In Fig. 4, pj is
(4,4), pk is (3,3) and pp is (9,9).

Assuming p is a point on the west wall of RECT, if pi

belongs to the interval between the southeast and the south-
west diagonal of p, p.gval 6 pi.gval + octile(p,pi) is guaranteed
according to Section 3.3. This example is shown in Fig. 4 as

p= (11,4).
Otherwise, assuming pd is the southeast diagonal intersec-

tion of p, p.gval 6 pd.gval+ octile(pd,p) is guaranteed accord-
ing to Section 3.3. Since pd.gval 6 pi.gval+ octile(pi,pd)
according to Definition 5 and octile(pi,p) equals octile(pi,pd)
+octile(pd,p) in this condition, p.gal 6 pd.gval+ octile(pd,

p) 6 pi.gval + octile(pi,pd) + octile(pd,p) = pi.gval + octile
(pi,p) is still guaranteed. This is illustrated by p = (3,4) and
pd = (7,8) in Fig. 4.

So, for each wall point p of RECT, p.gval 6 pi.gval + octile

(p,pi) is always guaranteed.
pj.gval 6 pi.gval + octile(pi,pj) is then also guaranteed.

Considering that pj is a downstream point of pi in p and pi

is optimal, pj.gval must equal pi.gval + octile(pi,pj) because
it is in fact the length of the optimal path from S to pj, thus
pj will be optimal.

For any point p0 in the same interior boundary with pj:

(1) p0.gval 6 pi.gval + octile(p0,pi) 6 pi.gval + octile(pi, pj)
+ octile(pj, p0) = pj.gval + octile(pj, p0) is guaranteed.

(2) p0.gval < pj.gval �octile(p0, pj) is not possible because a
path from S to pj passing p0 will be shorter than pj.gval,
which contradicts the optimality of pj.

So, the interior boundary that contains pj is optimal
according to Definition 5.

Condition 1. The same process occurs when the interior
boundary generates a successor search node that contains
pk, as in Section 3.2. So, the new search node that contains pk
is also optimal with its minfval 6 pk.fval 6 p. length according

to Definition 4.

Condition 2. A new search node containing pk will not be gen-
erated because all points in the search node have not already

had suboptimal parents and thus were not updated by SN.
An equal optimal path p0 from start point S to pk without
passing pj must exist in this condition. Since Condition 2 will
result in no children, pk will must have already been optimally

assigned in p0 by repeating Condition 1, and the process will
not be interrupted by Condition 2. Assuming pk is assigned
the optimal gval when expanding an unblocked rectangle

RECT’, entrance of RECT’ is certain by an optimal search
node as a result of the last Condition 1. If pk is an outer
boundary point of RECT’, Condition 1 must have happened.

Otherwise, p0 must leave RECT’ from another optimal outer
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exit point pm passing pk with pm.gval > pk.gval. Since for any

optimal point in p0 the gval is finite (no greater than length of
p0), the second assumption about pk and RECT’ cannot loop
infinitely. Therefore, Condition 2 will finally find the optimal

path or end with Condition 1.

As a result, Lemma 1 is always guaranteed in both

conditions.

Lemma 2. If path p0 is the path found by REA*, p0:length
6CBN.minfval is always guaranteed.

Proof. Lemma 2 is satisfied in the third terminal condition of

REA*. In the first two terminal conditions, the octile path
between G and points in CBN is obviously traversable and a
path with its length equal to CBN.minfval must exist. Since
points in CBN may be updated before CBN is expanded, but

minfval of the search node is never updated,
p0:length 6 CBN.minfval is always guaranteed. h

Theorem. REA* will always return an optimal path (if there

exists).

Proof. If a path is found when inserting S into the map, it is
obviously optimal and G.gval = octile(S,G). h

Otherwise, REA* will never end with an empty open list
since an optimal search node is always waiting to be expanded
in the open list according to Lemma 1. Assuming path p0 is

non-optimal and p0:length> p.length, when p0 is found,
CBN.minfvalPp0.length> p.length is guaranteed according
to Lemma 2. Since a search node with its minfval greater than

p:length will never be expanded earlier than any optimal search
node, p0 will never be found earlier than p according to
Lemma 1. So REA* will always end with an optimal path.

5. Efficiency

Compared with A*, the new method is unique and efficient

because of the advantages brought by rectangle expansion.
Fig. 5 Results of A* and R
Fig. 5 shows an example of A* and REA* on AR0020SR, a
map from the benchmark problem sets used in the experiment,
with S= (40,488) and G = (218,259).

5.1. Rectangle prune

REA* explores the map with unblocked rectangles and all

interior points pruned. Many fewer points will be visited by
REA* than A* and unnecessary multiplication and list opera-
tions will be omitted, so REA* can explore the map more

efficiently.

5.2. Length of open list

Only the entrance interval of an unblocked rectangle will be
considered as a search node and put into the open list, so there
will be fewer search nodes in the REA* open list, meaning
fewer and quicker list operations than A*.

5.3. Terminal conditions

REA* will terminate successfully whenever the goal point G is

reachable from the current best search node by an octile path,
which means unnecessary operations will be avoided in
many cases. For example, if G is in the original rectangle

expanded from start point S, REA* will reach the optimal path
immediately. A* will always have to expand the entire optimal
path.

5.4. Quality of resulting path

Though REA* returns grid-optimal path points, path points
of REA* are either adjacent or skipped but protected by an

unblocked rectangle. So, the straight lines between the
resulting points form a path better than grid-optimal. For
example, the path found by REA* in Fig. 1(d) has a

shorter length (23.63) with less inflection than the grid-
optimal path found by A* in Fig. 1(a) whose length is
(24.07).
EA* on a sample map.
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6. Improvements and enhancement

Certain measures can be taken to further strengthen the basic
REA*. They involve trade-offs that will make the algorithm

more efficient in most conditions while preserving optimality.

6.1. Avoiding rescanning

An area may be scanned more than once by different search
nodes. These rescans are usually unnecessary since latter
search nodes will not update the scanned area in most situa-

tions. An improvement would be to assign wall points with
an expansion direction. A new unblocked rectangle would then
be stopped by not only blocked points, but also gpoints with
the opposite expansion direction, which indicates the interior

boundary of an old unblocked rectangle. Another enhance-
ment measure is to shorten the length of search nodes by
including only those points inside the updated parts of inter-

vals in newly generated search nodes. For example, if CBN.
dir= North, the new unblocked rectangle will be stopped by
a gpoint whose expansion direction is South, Southeast or

Southwest (corner points). If none of the points in south inte-
rior boundary of the old unblocked rectangle can be updated
by CBN, the newly generated search node will avoid that rect-
angle and unnecessary rescanning.

6.2. Enlarge the original rectangle

Since boundary points of the original rectangle are always

optimal, a large original rectangle will benefit REA*. A
method to enlarge the original rectangle is to expand the start
point S in both vertical and horizontal directions and prune

the overlap to generate a cross rectangle. Another approach
is to generate original rectangles for both S and G, and swap
S and G if the original rectangle of G is larger than that of S.

6.3. Identifying the semi-closed area

A semi-closed area can be identified when expanding a search
node. For example, if CBN.dir= North, REA* will scan the

map row by row from South to North. A column is blocked
Fig. 6 Identifying a
if there was a blocked point in this column during past scan-
ning. When a row is being scanned, if a column is unblocked
and one of its blocked neighbor columns has an unblocked cell

in this row, the expanded area will not be narrowly semi-closed
in the north. The scanning stops if all columns in the expanded
area are blocked or the expanded area is identified to not be

narrowly semi-closed. In Fig. 6(a), the current best search node
is [(1,9), (12,9)] and the unblocked area will be semi-closed if
point (5,2) is blocked. Otherwise the area will not be narrowly

semi-closed since the unblocked column 6 has an unblocked
neighbor point (5,2) when scanning the row 2. If all blocked
points are not only north of the southeast diagonal of point
(1,6), which is the northernmost point in the western bound-

ary, but also north of the southwest diagonal of point (12,7),
which is the northernmost point in the eastern boundary, cal-
culations of gval for wall points will be unimpeded. Only the

western boundary [(1,6), (1,9)] and eastern boundary [(12,7),
(12,9)] will be used to generate new search nodes in Fig. 6(a)
unless goal point G is within the expanded area. Fig. 6(b)

shows another example in which no new search nodes will be
generated.

7. Experimental results

Experimental verification is performed to prove the optimality
of REA* and evaluate its effectiveness compared with standard

A*. The A* in the experiments has been highly optimized; a
matrix is used to store all map points and an ordered binary
heap is used as the open list. These enhancements speed up list
operations and decrease the disadvantages caused by the long

open list in A*. Even so, REA* can still improve upon this
highly optimized A* by an order of magnitude and more in
the experiments.

Four typical benchmark problem sets with 917835 instances
from 2015 Grid-Based Path Planning Competition23,24 (GPPC,
an international competition for grid based pathfinding) are

selected, which are popularly used as standard benchmarks
by many other researchers. All testing maps and instances
(pairs of start points and goal points) are freely available from

http://movingai.com. Fig. 7 shows sample maps from each of
the four types.
semi-closed area.

http://movingai.com
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Dragon age origins (DAO) 156 maps and 159465 instances
from the popular video game, with maps ranges from
22 � 28 to 1260 � 1104.

Baldur’s gate II (BG2) 75 maps and 93160 instances from
another popular role-playing game with all maps are scaled
to 512 � 512. BG2 is representative because all maps have a

distinctive 45� orientation.
Rooms 40 512 � 512 artificial maps and 78840 instances,

with all maps divided into small rooms (8 � 8, 16 � 16,

32 � 32 or 64 � 64) connected by randomly placed entrances.
Mazes 60 artificial maze maps and 586370 instances, with

all maps at 512 � 512 and having composed by corridor widths
of 1, 2, 4, 8, 16 or 32.

All 917835 instances from GPPC are randomly generated
while lengths of optimal paths in the same map are evenly dis-
tributed. The experiments are run on a Core i3 3.2 GHz PC

with 2 GB of RAM, and the results are shown in Table 5.
For each map type, Table 5 shows the average length of the

longest open list, the average total number of elements (open

points for A* and search nodes for REA*) in the open list,
the average length of the resulting path and the average time
(by millisecond) to solve an instance for both A* and REA*

in the experiments. Length of the path found by REA* is writ-
Fig. 7 Sample maps
ten as gridlength/reallength, and reallength is the sum of
straight line distances between path points returned by REA*.

Table 5 shows that REA* can greatly speed up A* in all of

the four types of maps and return the optimal path an order of
magnitude faster than the highly optimized A*. The grid paths
found by REA* always have the same length as the optimal

path found by A* in all the 917835 instances, while the values
of reallength are usually smaller than those of the grid-optimal
paths.

MAZE1 is special in that REA* cannot shorten the path
due to characteristics of this type of map. With the exception
of MAZE1, REA* returns paths 97.64–99.65% of the grid-
optimal length on average, and the total elements in open lists

of REA* are 0.06–10.02% that of A*. The longest REA* open
list is only 0.87–29.55% that of A*, which means fewer expan-
sions and quicker list operations.

REA* performs best in the maps of ROOM64 and
MAZE32, where REA*can increase A* speed by 23.22 and
26.27 times. This is because the existence of large open areas

and regular shaped obstacles allows REA* to prune more
unnecessary points. In maps of BG2 and DAO, a large propor-
tion of obstacles with irregular edges and a distinctive 45�
hypotenuse makes rectangular areas more piecemeal. This
in the experiment.



Table 5 Experiment results on typical benchmark problem sets from GPPC.

Map type Longest list Total list element Path length Time (ms)

A* REA* A* REA* A* REA* A* REA*

DAO 365 80 19662.2 953 418.57 418.57/413.00 14.43 3.25

BG2 488 71 16079.5 421 249.69 249.69/245.15 13.10 2.81

ROOM8 822 187 37953.5 3461 389.85 389.85/388.49 33.44 6.04

ROOM16 973 87 42649.9 986 385.66 385.66/381.94 37.19 3.01

ROOM32 982 40 56094.5 337 392.20 392.20/386.80 48.70 2.63

ROOM64 912 19 79885.6 131 426.37 426.37/419.00 68.50 2.95

MAZE1 74 76 64132.1 20202 2986.14 2986.14/2986.14 37.61 18.40

MAZE2 176 52 83425.0 8361 2193.1 2193.10/2156.53 54.86 10.95

MAZE4 296 32 104524.0 3104 1953.39 1953.39/1914.19 71.58 7.43

MAZE8 398 18 126648.0 1015 1927.86 1927.86/1879.90 87.05 5.33

MAZE16 514 10 145337.0 316 1730.85 1730.85/1690.04 102.24 4.29

MAZE32 688 6 149669.0 85 1246.84 1246.84/1218.26 110.28 4.20
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decreases the efficiency of REA*, but it can still speed up A* by
a factor of 4.67 in BG2 and 4.45 in DAO.

Table 6 compares REA* with the related algorithms on the
three main evaluation metrics. In order to eliminate the effects
of hardware differences, the speeds up factor over A*, instead

of the absolute run time, is chosen to measure the search speed.
Path length is the ratio of results for REA* to those of A*. 1
equates to grid-optimal, >1 is non-optimal and <1 means

better than grid-optimal. The data for other algorithms is
taken from the literature of their original authors. Data for
RSR is from Refs.16,17, data for Block A* is from Ref.19 and
data for JPS is from Refs.20,21 They use the same benchmark

problem sets from the GPPC except that not all map sets are
used in all the original literature. Theta A*, lazy theta A*, A*

PS and anya A* are all slower than A* and not shown in

Table 6.
Though all three algorithms prune interior points of rectan-

gles, REA* is more efficient than RSR and Block A* in all the
Table 6 Comparison with other variants of A*.

Algorithm Speed-up factor

REA* DAO 4.45

BG2 4.67

ROOMS 5.54–23.22

MAZES 2.04–26.27

RSR BG2 2.0–3.0

ROOMS 5.0–9.0

Block A* DAO 2.1

BG2 2.3

JPS DAO 3.0–26.0

BG2 2.0–30.0

ROOMS 3.0–16.0

SUB DAO 14.1

BG2 35.0

ROOMS 22.5–562.3

MAZES 3.3–675.5

JPS+ DAO 20.8–180.4

CPDs BG2 23.0–700.0
three main evaluation metrics, even though the latter two algo-
rithms pre-process the map. The reason is that RSR and Block

A* deal with individual boundary points while REA* adopts
linear search nodes to shorten the open list, which means fewer
and quicker list operations. In addition, rectangles in RSR and

REA* can be larger than the sedentary block in Block A* in
many instances, which means higher efficiency.

Both JPS and REA* prune unnecessary points online.

While REA* deals with entire unblocked rectangles, JPS con-
siders only the jump points (necessary inflection points) on a
map, which is more efficient. But, REA* can avoid rescanning
of points and identify semi-closed areas while JPS cannot. So,

the speed advantage of JPS is not absolute. Another advantage
is that rectangle expansion makes it possible for REA* to
return a path better than grid-optimal that is protected by

unblocked rectangles, which JPS cannot do. In addition,
REA* keeps more information about maps than JPS, which
can prove useful in many instances, such when as allowing a
Path length Pre-processing

<1 NO

1 YES

>1 YES

1 NO

1 YES

1 YES

1 YES
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moving target to reuse map information to avoid the unneces-
sary parts of a new search. Such cases are beyond the scope of
this paper and will be discussed in the future.

Table 6 also shows the results of the highly successful off-
line algorithms SUB8, JPS+25 and CPDs4–7, using data from
their original literature. The grid-optimal version of SUB is

selected from Ref.8 and the data on JPS+ is converted based
on the comparison of results with JPS in Ref.25 By pre-
processing the maps and sacrificing flexibility in a dynamic

environment, offline algorithms can gain huge advantage in
search speed. Generally, the tradeoff for search speed, quality
of resulting path and the cost of pre-processing, is an impor-
tant issue for researchers as it greatly affects the performance

of algorithms. An algorithm that dominates all others in each
of the three key metrics does not currently exist.

To classify all instances into different buckets according to

the length of the optimal paths, Fig. 8 shows the detailed
results in maps of MAZE, and similar results in other types
of maps. The speed-up factor of REA* over A* increases with

length of the optimal path in all maps. This is because, to
prune unnecessary points, REA* requires additional opera-
tions to scan and identify maps, and while lengths of the opti-

mal paths increase, the benefits brought by the additional
operations (a shorter open list) also increase significantly.
The upper limit of the REA* speed increase over A* is decided
by the proportion of how many unnecessary points can be

pruned, which depends on the characteristics of the map.
For example, REA* performs better in MAZE32 than in
MAZE1 because of the former’s larger open areas.
Fig. 8 Average speed-up of REA* with different path length in

MAZE.
8. Conclusions

REA* is a fast, efficient, optimality preserving online algo-

rithm that can always return grid-optimal path points with a
real path length shorter than grid-optimal.

REA* can speed up a highly optimized A* by an order of

magnitude and more in typical benchmark problem sets. The
average speed-up factor increases with the optimal path length.
The upper limit of the REA* speed increase over A* is decided
by map characteristics. While REA* performs better in maps

with large open areas and regular shaped obstacles, experi-
ments show it can still speed up A* more than 4 times in maps
with a high proportion of obstacles with irregular edges and a
45� hypotenuse. A comparison of results with those of related
algorithms shows that REA* performs well in all three main

evaluation metrics: search speed, quality of resulting path
and cost of pre-processing. This new algorithm is competitive
with other highly successful variants of A* and is not out-

moded even by state-of-the-art JPS.
Future work should include the development of more effi-

cient point pruning strategies and measures to enhance the per-

formance of REA* on irregular maps. Another focus should be
to extend the use of this method to more complex situations
like moving targets.
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