185 research outputs found

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    The brick polytope of a sorting network

    Get PDF
    The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of flip graphs on pseudoline arrangements with contacts supported by a given sorting network. In this paper, we construct the brick polytope of a sorting network, obtained as the convex hull of the brick vectors associated to each pseudoline arrangement supported by the network. We combinatorially characterize the vertices of this polytope, describe its faces, and decompose it as a Minkowski sum of matroid polytopes. Our brick polytopes include Hohlweg and Lange's many realizations of the associahedron, which arise as brick polytopes for certain well-chosen sorting networks. We furthermore discuss the brick polytopes of sorting networks supporting pseudoline arrangements which correspond to multitriangulations of convex polygons: our polytopes only realize subgraphs of the flip graphs on multitriangulations and they cannot appear as projections of a hypothetical multiassociahedron.Comment: 36 pages, 25 figures; Version 2 refers to the recent generalization of our results to spherical subword complexes on finite Coxeter groups (http://arxiv.org/abs/1111.3349

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Lattice Points in Orthotopes and a Huge Polynomial Tutte Invariant of Weighted Gain Graphs

    Full text link
    A gain graph is a graph whose edges are orientably labelled from a group. A weighted gain graph is a gain graph with vertex weights from an abelian semigroup, where the gain group is lattice ordered and acts on the weight semigroup. For weighted gain graphs we establish basic properties and we present general dichromatic and forest-expansion polynomials that are Tutte invariants (they satisfy Tutte's deletion-contraction and multiplicative identities). Our dichromatic polynomial includes the classical graph one by Tutte, Zaslavsky's two for gain graphs, Noble and Welsh's for graphs with positive integer weights, and that of rooted integral gain graphs by Forge and Zaslavsky. It is not a universal Tutte invariant of weighted gain graphs; that remains to be found. An evaluation of one example of our polynomial counts proper list colorations of the gain graph from a color set with a gain-group action. When the gain group is Z^d, the lists are order ideals in the integer lattice Z^d, and there are specified upper bounds on the colors, then there is a formula for the number of bounded proper colorations that is a piecewise polynomial function of the upper bounds, of degree nd where n is the order of the graph. This example leads to graph-theoretical formulas for the number of integer lattice points in an orthotope but outside a finite number of affinographic hyperplanes, and for the number of n x d integral matrices that lie between two specified matrices but not in any of certain subspaces defined by simple row equations.Comment: 32 pp. Submitted in 2007, extensive revisions in 2013 (!). V3: Added references, clarified examples. 35 p
    corecore