1,257 research outputs found

    Introduction for the Special Issue on Beyond the Hypes of Geospatial Big Data: Theories, Methods, Analytics, and Applications

    Get PDF
    We live in the era of ‘Big Data’. In particular, Geospatial data, whether captured through remote sensors (e.g., satellite imagery) or generated from large-scale simulations (e.g., climate change models) have always been significantly large in size. Over the last decade however, advances in instrumentation and computation has seen the volume, variety, velocity, and veracity of this data increase exponentially. Of the 2.5 quintillion (1018) bytes of data that are generated on a daily basis across the globe, a large portion (arguably as much as 80%) is found to be geo-referenced. Therefore, this special issue is dedicated to the innovative theories, methods, analytics, and applications of geospatial big data

    Location Gathering: An Evaluation of Smartphone-Based Geographic Mobile Field Data Collection Hardware and Applications

    Get PDF
    Mobile field spatial data collection is the act of gathering attribute data, including spatial position, about features in a study area. A common method of field data collection is to use a handheld computing device attached to a global navigation satellite system in which attribute data are directly inputted into a database table. The market for mobile data collection systems was formerly dominated by bulky positioning systems and highly specialized software. However, recent years have seen the emergence and widespread adoption of highly customizable and user-friendly mobile smartphones and tablets. In this research, smartphone devices and smartphone data collection applications were tested and compared to a conventional survey-grade field data collection system to compare the capabilities and possible use cases of each. The test consisted of an evaluation of the accuracy and precision of several mobile devices, followed by a usability analysis of several contemporary data collection applications for the Android operating system. The results of the experiment showed that mobile devices and applications are still less powerful than dedicated conventional data collection systems. However, the performance gap is shrinking over time. The use cases for mobile devices as data collection systems are currently limited to general use and small to mid-size projects, but future development promises expanding capability

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Development of an E-Learning Module For Global Navigation Satellite SystemsTraining

    Get PDF
    The Global Positioning System (GPS) has been operational since the early 1990’s. The system is constantly being upgraded while the Russian GLONASS and the European GALILEO systems will complement GPS in the next few years. Generically, these satellite-based positioning systems are referred to as Global Navigation Satellite Systems (GNSS). Previously, a part-time evening course in GPS was run at the Technological University Dublin (DIT) by the Department of Spatial Information Sciences (DSIS). This is now being replaced by two e-learning modules in GNSS designed for distance-based, on-line delivery. The first module covers GNSS for navigation and Geographical Information Systems (GIS) applications and the second module will cover GNSS for high-accuracy applications such as surveying and geophysics. This paper describes the development of the first GNSS module. The challenge for the course designers was to develop a module that, in the context of the spatial information industry, maximized the advantages of e-learning while addressing identified issues and maintaining a sound pedagogical approach. Potential users were identified as those engaged in continuous personal/professional development (CPD), organizations providing in-company training and academic institutions providing undergraduate and postgraduate modules in GNSS. An individual taking the module could, therefore, be based at home, in an office, in a classroom or in a remote work location. The advantages were identified as convenience, flexibility, facilitation of communication, tailoring and a varied learning experience. The issues were identified as no “hands-on” experience with GNSS field equipment and observing procedures, the difficulty of presenting complex software, learner isolation and the technical problems of delivering large files. To address these issues, as far as possible, a variety of presentation, delivery, contact and assessment approaches is being used. Content is presented in various formats including text, 2D and 3D graphics, animations with animation control, use of proprietary GNSS software with sample data and video with voiceover. Interaction between the parties is facilitated by email, discussion board and desktop videoconferencing. Self-assessment is included as a series of self-tests throughout the content in the form of multiple choice questions (MCQs) while written assignments are required at the end of each section, or theme, within the module. WebCT® is used to provide a consistent e-learning platform and environment. Quality assurance is provided for by questionnaires during the module and a feedback report by each participant after completion

    Drones and Geographical Information Technologies in Agroecology and Organic Farming

    Get PDF
    Although organic farming and agroecology are normally not associated with the use of new technologies, it’s rapid growth, new technologies are being adopted to mitigate environmental impacts of intensive production implemented with external material and energy inputs. GPS, satellite images, GIS, drones, help conventional farming in precision supply of water, pesticides, fertilizers. Prescription maps define the right place and moment for interventions of machinery fleets. Yield goal remains the key objective, integrating a more efficient use or resources toward an economic-environmental sustainability. Technological smart farming allows extractive agriculture entering the sustainability era. Societies that practice agroecology through the development of human-environmental co-evolutionary systems represent a solid model of sustainability. These systems are characterized by high-quality agroecosystems and landscapes, social inclusion, and viable economies. This book explores the challenges posed by the new geographic information technologies in agroecology and organic farming. It discusses the differences among technology-laden conventional farming systems and the role of technologies in strengthening the potential of agroecology. The first part reviews the new tools offered by geographic information technologies to farmers and people. The second part provides case studies of most promising application of technologies in organic farming and agroecology: the diffusion of hyperspectral imagery, the role of positioning systems, the integration of drones with satellite imagery. The third part of the book, explores the role of agroecology using a multiscale approach from the farm to the landscape level. This section explores the potential of Geodesign in promoting alliances between farmers and people, and strengthening food networks, whether through proximity urban farming or asserting land rights in remote areas in the spirit of agroecological transition. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons 4.0 license

    Analysis of Precipitable Water Vapour in Angola Using GNSS Observations

    Get PDF
    For accurate weather predictions and analysis of extreme events, a good estimate of the amount of water content in the atmosphere is essential. This information is provided by several techniques like radiosondes that measure this parameter at various heights. However, most of them are very limited spatially and temporarily or suffer from measurement specific constraints. To complement these techniques, Precipitable Water Vapor (PWV) can be measured with GNSS (Global Navigation Satellite System) at CORS (Continuously Operating Reference Stations) networks. when the temperature and pressure are also known at the station location. PWV can be derived from the delay in the GNSS signal when it passes through the troposphere. In the framework of SUGGEST-AFRICA, it is being implemented a system to use the national GNSS stations for the automatic computation of PWV in Angola. Thus, this dissertation intends to describe the necessary steps to develop a system to be used for supporting meteorological and climate applications in Angola. SUGGEST-AFRICA also funded the installation of 5 weather stations, collocated with GNSS stations in Angola namely: Benguela, Cabinda, Cuito, Luanda and Namibe, in order to obtain pressure and temperature which is necessary to obtain the PWV estimates. When there are no nearby meteorological stations, the potential alternative is to use values from global/regional models. Methodologies have been optimized to passive and actively access the GNSS data; the PWV estimations are computed using PPP (Precise Point Positioning), which permits the estimation of each station separately; solutions have been validated using internal values. In addition, analyses are presented to evaluate the reliability of the network. This work presents preliminary results for the variation of the ZTD data available all around the territory in Angola and how they relate to the seasonal variations in water vapour. Also, presents preliminary results for the time-series variation of PWV in the Luanda station (collocated by the SEGAL group). This study is supported by SUGGEST-AFRICA, funded by Fundação Aga Khan and FCT. It uses computational resources provided by C4G – Collaboratory for Geosciences (PINFRA/22151/2016). It is also supported by project FCT/UIDB/50019/2020 – IDL funded by FCT.Para precisão da previsão do tempo e análise de eventos extremos é fundamental uma boa estimativa do vapor da água na atmosfera. O vapor da água na atmosfera é fornecido por várias técnicas como radio sondagem que mede este parâmetro em várias alturas. No entanto, muito dessas técnicas são limitadas devido a resolução espacial e temporal ou sofrem restrições específicas de medição. Para completar estas limitações encontrado nas demais técnicas, o vapor da água precipitável (PWV) pode ser medido pelo GNSS (Sistemas de navegação global por satélite) CORS (Rede nacional de estações de referência de operação continua). PWV pode ser obtido a partir do atraso do sinal de GNSS através da troposfera, quando a temperatura e a pressão também são conhecidas derivado da localização duma estação meteorológica. No âmbito da SUGGEST-ÁFRICA, esta ser implementado um sistema de modo a calcular o PWV de uma maneira automática em Angola. Assim, nesta dissertação pretende descrever os passos necessários para desenvolver tal sistema a ser utilizado para apoiar aplicações meteorológicas e climáticas em Angola. SUGGEST-ÁFRICA também financiou a instalação de 5 estações meteorológicas, colocada com estações GNSS em Angola, nomeadamente: Benguela, Cabinda, Cuito, Luanda e Namibe, a fim de obter a pressão e a temperatura necessárias para obter as estimativas PWV. Aconselha-se o uso dos modelos globais/regionais para aquisição de valores de pressão e temperatura quando não existe dados nas estações meteorológicas adjacentes. As metodologias foram otimizadas para o acesso passivo e ativo dos dados GNSS; a estimação do vapor de água precipitável é calculada usando a técnica PPP (Posicionamento do ponto preciso), que permite a determinação de cada estação individualmente e separadamente; as soluções foram validadas usando valor interno. Além disso, são apresentadas análises para avaliar a fiabilidade da rede. Este trabalho, também apresenta resultados preliminares para a variação de todo dados do ZTD disponível em Angola e a forma como se relacionam com as variações sazonais do vapor de água. Também, apresenta variação da série temporal do PWV na estação meteorológica de Luanda (instalado pela SEGAL). Este estudo é suportado pela SUGGEST-ÁFRICA, financiado pela fundação Aga Khan e FCT. Utiliza recurso computacional fornecido pela C4G – Colaboração de Geociências (PINFRA/ 22151/2016). Também é apoiado pelo projecto FCT/UIDB/50019/2020 – IDL financiado pela FCT

    FLAMINGO – Fulfilling enhanced location accuracy in the mass-market through initial GalileO services

    Get PDF
    This paper discusses FLAMINGO, an initiative that will provide a high accuracy positioning service to be used by mass market applications. The status and future for the initiative are discussed, the required accuracies and other location parameters are described, and the target applications are identified. Finally, the currently achieved accuracies from today’s Smartphones are assessed and presented. FLAMINGO (Fulfilling enhanced Location Accuracy in the Mass-market through Initial GalileO services), part funded through the European GNSS Agency, is a collaborative venture comprising NSL (as lead organization), Telespazio France, University of Nottingham, Rokubun, Thales Alenia Space France, VVA, BQ, ECLEXYS and Blue Dot Solutions. The initiative is developing the infrastructure, solutions and services to enable the use of accurate and precise GNSS within the mass-market, thereby operating predominantly in an urban environment. Whilst mass-market receivers are yet to achieve accuracies below one metre for standard positioning, the introduction of Android raw GNSS measurements and the Broadcom dual frequency chipset (BCM47755), has presented the devices such an opportunity. FLAMINGO will enable and demonstrate the future of high accuracy positioning and navigation information on mass-market devices such as smartphones and Internet of Things (IoT) devices by producing a service delivering accuracies of 50cm (at 95%) and better, employing multi-constellation, PPP and RTK mechanisms, power consumption optimisation techniques. Whereas the Galileo High Accuracy Service targets 10cm precision within professional markets, FLAMINGO targets 30-50cm precision in the mass-market consumer markets. By targeting accuracies of a few decimetres, a range of improved and new applications in diverse market sectors are introduced. These sectors include, but are not limited to, mapping and GIS, autonomous vehicles, AR environments, mobile-location based gaming and people tracking. To obtain such high accuracies with mass market devices, FLAMINGO must overcome several challenges which are technical, operational and environmental. This includes the hardware capabilities of most mass-market devices, where components such as antennas and processors are prioritised for other purposes. We demonstrate that, despite these challenges, FLAMINGO has the potential to meet the accuracy required. Tests with the current Smartphones that provide access to multi-constellation raw measurements (the dual frequency Xiaomi Mi 8 and single frequency Samsung S8 and Huawei P10) demonstrate significant improvements to the PVT solution when processing using both RTK and PPP techniques

    Issue 9: Contributors

    Get PDF
    List of issue 9 contributors

    GIS w polskiej edukacji wyższej – dyskusja

    Get PDF
    Norvay Grants FSS/2014/HEI/W/0114/U/001

    Improved earthquake response via simulation and integrated space- and ground-based technologies: the TREMOR proposal

    Get PDF
    Earthquakes occurring around the world each year cause thousands of deaths, millions of dollars in damage to infrastructure, and incalculable human suffering. In recent years, satellite technology has been a significant boon to response efforts following an earthquake and its after-effects by providing mobile communications between response teams and remote sensing of damaged areas to disaster management organizations. In 2007, an international team of students and professionals assembled during the International Space University’s Summer Session Program in Beijing, China to examine how satellite and ground-based technology could be better integrated to provide an optimised response in the event of an earthquake. The resulting Technology Resources for Earthquake MOnitoring and Response (TREMOR) proposal describes an integrative prototype response system that will implement mobile satellite communication hubs providing telephone and data links between response teams, onsite telemedicine consultation for emergency first-responders, and satellite navigation systems that will locate and track emergency vehicles and guide search-and-rescue crews. A prototype earthquake simulation system is also proposed, integrating historical data, earthquake precursor data, and local geomatics and infrastructure information to predict the damage that could occur in the event of an earthquake. The backbone of these proposals is a comprehensive education and training program to help individuals, communities and governments prepare in advance. The TREMOR team recommends the coordination of these efforts through a centralised, non-governmental organization
    corecore