113 research outputs found

    Distributed Kalman Filter

    Get PDF
    The continuing trend toward connected sensors (“internet of things” and” ubiquitous computing”) drives a demand for powerful distributed estimation methodologies. In tracking applications, the distributed Kalman filter (DKF) provides an optimal solution under Kalman filter conditions. The optimal solution in terms of the estimation accuracy is also achieved by a centralized fusion algorithm, which receives all associated measurements. However, the centralized approach requires full communication of all measurements at each time step, whereas the DKF works at arbitrary communication rates since the calculation is fully distributed. A more recent methodology is based on ”accumulated state density” (ASD), which augments the states from multiple time instants to overcome spatial cross-correlations. This chapter explains the challenges in distributed tracking. Then, possible solutions are derived, which include the DKF and ASD approach

    Distributed Kalman filtering with reduced transmission rate

    Get PDF

    State Estimation for Distributed Systems with Stochastic and Set-membership Uncertainties

    Get PDF
    State estimation techniques for centralized, distributed, and decentralized systems are studied. An easy-to-implement state estimation concept is introduced that generalizes and combines basic principles of Kalman filter theory and ellipsoidal calculus. By means of this method, stochastic and set-membership uncertainties can be taken into consideration simultaneously. Different solutions for implementing these estimation algorithms in distributed networked systems are presented

    Distributed Estimation Using Partial Knowledge about Correlated Estimation Errors

    Get PDF
    Sensornetzwerke werden in vielen verschiedenen Anwendungen, z. B. zur Überwachung des Flugraumes oder zur Lokalisierung in Innenräumen eingesetzt. Dabei werden Sensoren häufig räumlich verteilt, um eine möglichst gute Abdeckung des zu beobachtenden Prozesses zu ermöglichen. Sowohl der Prozess als auch die Sensormessungen unterliegen stochastischem Rauschen. Daher wird oftmals eine Zustandsschätzung, z. B. durch ein Kalmanfilter durchgeführt, welcher die Unsicherheiten aus dem Prozess- und Messmodel systematisch berücksichtigt. Die Kooperation der individuellen Sensorknoten erlaubt eine verbesserte Schätzung des Systemzustandes des beobachteten Prozesses. Durch die lokale Verarbeitung der Sensordaten direkt in den Sensorknoten können Sensornetzwerke flexibel und modular entworfen werden und skalieren auch bei steigender Anzahl der Einzelkomponenten gut. Zusätzlich werden Sensornetzwerke dadurch robuster, da die Funktionsfähigkeit des Systems nicht von einem einzigen zentralen Knoten abhängt, der alle Sensordaten sammelt und verarbeitet. Ein Nachteil der verteilten Schätzung ist jedoch die Entstehung von korrelierten Schätzfehlern durch die lokale Verarbeitung in den Filtern. Diese Korrelationen müssen systematisch berücksichtigt werden, um genau und zuverlässig den Systemzustand zu schätzen. Dabei muss oftmals ein Kompromiss zwischen Schätzgenauigkeit und den begrenzt verfügbaren Ressourcen wie Bandbreite, Speicher und Energie gefunden werden. Eine zusätzliche Herausforderung sind unterschiedliche Netzwerktopologien sowie die Heterogenität lokaler Informationen und Filter, welche das Nachvollziehen der individuellen Verarbeitungsschritte innerhalb der Sensorknoten und der korrelierten Schätzfehler erschweren. Diese Dissertation beschäftigt sich mit der Fusion von Zustandsschätzungen verteilter Sensorknoten. Speziell wird betrachtet, wie korrelierte Schätzfehler entweder vollständig oder teilweise gelernt werden können, um eine präzisere und weniger unsichere fusionierte Zustandsschätzung zu erhalten. Um Wissen über korrelierte Schätzfehler zu erhalten, werden in dieser Arbeit sowohl analytische als auch simulations-basierte Ansätze verfolgt. Eine analytische Berechnung der Korrelationen zwischen Zustandsschätzungen ist möglich, wenn alle Verarbeitungsschritte und Parameter der lokalen Filter bekannt sind. Dadurch kann z. B. ein zentraler Fusionsknoten die die Korrelation zwischen den Schätzfehlern rekonstruieren. Dieses zentralisierte Vorgehen ist jedoch oft sehr aufwendig und benötigt entweder eine hohe Kommunikationsrate oder Vorwissen über die lokale Verarbeitungsschritte und Filterparameter. Daher wurden in den letzten Jahren zunehmend dezentrale Methoden zur Rekonstruktion von Korrelationen zwischen Zustandsschätzungen erforscht. In dieser Arbeit werden Methoden zur dezentralen Nachverfolgung und Rekonstruktion von korrelierten Schätzfehlern diskutiert und weiterentwickelt. Dabei basiert der erste Ansatz auf der Verwendung deterministischer Samples und der zweite auf der Wurzelzerlegung korrelierter Rauschkovarianzen. Um die Verwendbarkeit dieser Methoden zu steigern, werden mehrere wichtige Erweiterungen erarbeitet. Zum Einen schätzen verteilte Sensorknoten häufig den Zustand desselben Systems. Jedoch unterscheiden sie sich in ihrer lokalen Berechnung, indem sie unterschiedliche Zustandsraummodelle nutzen. Ein Beitrag dieser Arbeit ist daher die Verallgemeinerung dezentraler Methoden zur Nachverfolgung in unterschiedlichen (heterogenen) Zustandsräumen gleicher oder geringerer Dimension, die durch lineare Transformationen entstehen. Des Weiteren ist die Rekonstruktion begrenzt auf Systeme mit einem einzigen zentralen Fusionsknoten. Allerdings stellt die Abhängigkeit des Sensornetzwerkes von einem solchen zentralen Knoten einen Schwachpunkt dar, der im Fehlerfall zum vollständigen Ausfall des Netzes führen kann. Zudem verfügen viele Sensornetzwerke über komplexe und variierende Netzwerktopologien ohne zentralen Fusionsknoten. Daher ist eine weitere wichtige Errungenschaft dieser Dissertation die Erweiterung der Methodik auf die Rekonstruktion korrelierter Schätzfehler unabhängig von der genutzten Netzwerkstruktur. Ein Nachteil der erarbeiteten Algorithmen sind die wachsenden Anforderungen an Speicherung, Verarbeitung und Kommunikation der zusätzlichen Informationen, welche für die vollständige Rekonstruktion notwendig sind. Um diesen Mehraufwand zu begrenzen, wird ein Ansatz zur teilweisen Rekonstruktion korrelierter Schätzfehler erarbeitet. Das resultierende partielle Wissen über korrelierte Schätzfehler benötigt eine konservative Abschätzung der Unsicherheit, um genaue und zuverlässige Zustandsschätzungen zu erhalten. Es gibt jedoch Fälle, in denen keine Rekonstruktion der Korrelationen möglich ist oder es eine Menge an möglichen Korrelationen gibt. Dies ist zum Einen der Fall, wenn mehrere Systemmodelle möglich sind. Dies führt dann zu einer Menge möglicher korrelierter Schätzfehler, beispielsweise wenn die Anzahl der lokalen Verarbeitungsschritte bis zur Fusion ungewiss ist. Auf der anderen Seite ist eine Rekonstruktion auch nicht möglich, wenn die Systemparameter nicht bekannt sind oder die Rekonstruktion aufgrund von begrenzter Rechenleistung nicht ausgeführt werden kann. In diesem Fall kann ein Simulationsansatz verwendet werden, um die Korrelationen zu schätzen. In dieser Arbeit werden Ansätze zur Schätzung von Korrelationen zwischen Schätzfehlern basierend auf der Simulation des gesamten Systems erarbeitet. Des Weiteren werden Ansätze zur vollständigen und teilweisen Rekonstruktion einer Menge korrelierter Schätzfehler für mehrere mögliche Systemkonfigurationen entwickelt. Diese Mengen an Korrelationen benötigen entsprechende Berücksichtigung bei der Fusion der Zustandsschätzungen. Daher werden mehrere Ansätze zur konservativen Fusion analysiert und angewendet. Zuletzt wird ein Verfahren basierend auf Gaußmischdichten weiterentwickelt, dass die direkte Verwendung von Mengen an Korrelationen ermöglicht. Die in dieser Dissertation erforschten Methoden bieten sowohl Nutzern als auch Herstellern von verteilten Schätzsystemen einen Baukasten an möglichen Lösungen zur systematischen Behandlung von korrelierten Schätzfehlern. Abhängig von der Art und den Umfang des Wissens über Korrelationen, der Kommunikationsbandbreite sowie der gewünschten Qualität der fusionierten Schätzung kann eine Methode passgenau aus den beschriebenen Methoden zusammengesetzt und angewendet werden. Die somit geschlossene Lücke in der Literatur eröffnet neue Möglichkeiten für verteilte Sensorsysteme in verschiedenen Anwendungsgebieten

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed

    Nonlinear State Estimation Using Optimal Gaussian Sampling with Applications to Tracking

    Get PDF
    This thesis is concerned with the ubiquitous problem of estimating the hidden state of a discrete-time stochastic nonlinear dynamic system. The focus is on the derivation of new Gaussian state estimators and the improvement of existing approaches. Also the challenging task of distributed state estimation is addressed by proposing a sample-based fusion of local state estimates. The proposed estimation techniques are applied to extended object tracking

    Reliable Inference from Unreliable Agents

    Get PDF
    Distributed inference using multiple sensors has been an active area of research since the emergence of wireless sensor networks (WSNs). Several researchers have addressed the design issues to ensure optimal inference performance in such networks. The central goal of this thesis is to analyze distributed inference systems with potentially unreliable components and design strategies to ensure reliable inference in such systems. The inference process can be that of detection or estimation or classification, and the components/agents in the system can be sensors and/or humans. The system components can be unreliable due to a variety of reasons: faulty sensors, security attacks causing sensors to send falsified information, or unskilled human workers sending imperfect information. This thesis first quantifies the effect of such unreliable agents on the inference performance of the network and then designs schemes that ensure a reliable overall inference. In the first part of this thesis, we study the case when only sensors are present in the system, referred to as sensor networks. For sensor networks, the presence of malicious sensors, referred to as Byzantines, are considered. Byzantines are sensors that inject false information into the system. In such systems, the effect of Byzantines on the overall inference performance is characterized in terms of the optimal attack strategies. Game-theoretic formulations are explored to analyze two-player interactions. Next, Byzantine mitigation schemes are designed that address the problem from the system\u27s perspective. These mitigation schemes are of two kinds: Byzantine identification schemes and Byzantine tolerant schemes. Using learning based techniques, Byzantine identification schemes are designed that learn the identity of Byzantines in the network and use this information to improve system performance. When such schemes are not possible, Byzantine tolerant schemes using error-correcting codes are developed that tolerate the effect of Byzantines and maintain good performance in the network. Error-correcting codes help in correcting the erroneous information from these Byzantines and thereby counter their attack. The second line of research in this thesis considers humans-only networks, referred to as human networks. A similar research strategy is adopted for human networks where, the effect of unskilled humans sharing beliefs with a central observer called \emph{CEO} is analyzed, and the loss in performance due to the presence of such unskilled humans is characterized. This problem falls under the family of problems in information theory literature referred to as the \emph{CEO Problem}, but for belief sharing. The asymptotic behavior of the minimum achievable mean squared error distortion at the CEO is studied in the limit when the number of agents LL and the sum rate RR tend to infinity. An intermediate regime of performance between the exponential behavior in discrete CEO problems and the 1/R1/R behavior in Gaussian CEO problems is established. This result can be summarized as the fact that sharing beliefs (uniform) is fundamentally easier in terms of convergence rate than sharing measurements (Gaussian), but sharing decisions is even easier (discrete). Besides theoretical analysis, experimental results are reported for experiments designed in collaboration with cognitive psychologists to understand the behavior of humans in the network. The act of fusing decisions from multiple agents is observed for humans and the behavior is statistically modeled using hierarchical Bayesian models. The implications of such modeling on the design of large human-machine systems is discussed. Furthermore, an error-correcting codes based scheme is proposed to improve system performance in the presence of unreliable humans in the inference process. For a crowdsourcing system consisting of unskilled human workers providing unreliable responses, the scheme helps in designing easy-to-perform tasks and also mitigates the effect of erroneous data. The benefits of using the proposed approach in comparison to the majority voting based approach are highlighted using simulated and real datasets. In the final part of the thesis, a human-machine inference framework is developed where humans and machines interact to perform complex tasks in a faster and more efficient manner. A mathematical framework is built to understand the benefits of human-machine collaboration. Such a study is extremely important for current scenarios where humans and machines are constantly interacting with each other to perform even the simplest of tasks. While machines perform best in some tasks, humans still give better results in tasks such as identifying new patterns. By using humans and machines together, one can extract complete information about a phenomenon of interest. Such an architecture, referred to as Human-Machine Inference Networks (HuMaINs), provides promising results for the two cases of human-machine collaboration: \emph{machine as a coach} and \emph{machine as a colleague}. For simple systems, we demonstrate tangible performance gains by such a collaboration which provides design modules for larger, and more complex human-machine systems. However, the details of such larger systems needs to be further explored

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • …
    corecore