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x Scalar (lowercase)
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∼ Random quantity x ∼ D has probability distribution D
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EEE Random set

A⊕ B Minkowski sum of sets
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A ∪ B Union of sets

VII



Notation

xk Quantity at time step k
x0:k Sequence/set of quantities {x0, . . . , xk}
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Notation

û, û Scalar/vector-valued control input of process model
Cu,Xu Covariance/shape matrix of stochastic/set-membership error

affecting process model
ẑ, ẑ Scalar/vector-valued sensor measurement

Cz,Xz Covariance/shape matrix of stochastic/set-membership error
affecting measurement

Functions and Operators
N (x̂,C) Normal or Gaussian distribution with mean x̂ and

covariance matrix C
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δ Dirac delta distribution

E[x] Expected value of x

Cov(x) Variance or covariance matrix of x

trace(A) Trace of matrix A
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LMMSE Linear minimum mean squared error
RMSE Root mean squared error
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EMD Exponential mixture density
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Zusammenfassung

Eine in vielen Anwendungen zu lösende Aufgabe ist die Bestimmung eines
Schätzwertes bzw. –vektors für den unbekannten Zustand eines dynamischen
Prozesses. Da in der Regel weder das Systemverhalten umfassend modelliert
werden kann, noch äußere Störeinflüsse genau identifiziert werden können,
sind sowohl die zeitliche Entwicklung des Systemzustands als auch der
Zusammenhang zwischen Zustand und den zur Verfügung stehenden Mess-
größen mit Unsicherheiten behaftet. Auch bei Verwendung hochpräziser
Messsysteme können die auftretenden Unsicherheiten im Allgemeinen nicht
vernachlässigt werden, sondern müssen systematisch in die Berechnung des
Schätzwertes einbezogen werden. Die Forschungen im Bereich der Zustands-
schätzung lassen sich im Wesentlichen in zwei Richtungen unterteilen: Am
weitesten verbreitet ist die Betrachtung stochastischer Schätzverfahren,
bei denen Fehlergrößen bekannten Wahrscheinlichkeitsverteilungen folgen.
Daneben finden vor allem mengenbasierte Schätzverfahren Anwendung,
welche dazu geeignet sind, unbekannte, aber amplitudenbegrenzte Fehler
zu berücksichtigen.

Der Schwerpunkt dieser Arbeit liegt auf der umfassenden Untersuchung
von Schätzverfahren in monolithischen, verteilten sowie dezentralen Syste-
men. Auftretende Unsicherheiten werden dabei systematisch einbezogen.

Simultane stochastische und mengenbasierte Zustandsschätzung:
Im Rahmen dieser Arbeit werden Schätzverfahren untersucht und hergelei-
tet, die eine simultane Berücksichtigung stochastischer und mengenbasierter
Störgrößen ermöglichen und auf diese Weise die Vorteile beider Betrach-
tungsweisen vereinen können. Vor allem erlauben diese Schätzverfahren dem
Anwender eine sehr flexible Modellierung verschiedenartiger Fehlerquellen.
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Eine unsichere Größe, die sowohl von einem zufälligen als auch von ei-
nem unbekannten, aber amplitudenbegrenzten Fehler beeinflusst wird, kann
durch eine Menge von Wahrscheinlichkeitsdichten charakterisiert werden.
Im einfachsten Fall handelt es sich hierbei um die Dichte einer Normal-
verteilung mit einem unbekannten, aber durch eine Menge beschriebenen
Mittelwert. Im Rahmen dieser Arbeit wird zunächst der Kalman-Filter-
Algorithmus verallgemeinert, um beide Arten von Unsicherheiten simultan
zu verarbeiten. Das entwickelte Schätzverfahren wird mit bekannten Ansät-
zen verglichen und auf lineare und nichtlineare Schätzprobleme angewendet.
Darauf aufbauend werden weitere Schätzalgorithmen hergeleitet, die entwe-
der die gesamte mittlere quadratische Abweichung minimieren oder es dem
Anwender sogar erlauben, anhand eines kontinuierlichen Parameters die
Minimierung der Varianz bzw. die der mengenbasierten Unsicherheit zu
bevorzugen.

Verteilte und dezentrale Kalman-Filterung:
Neben den genannten Störeinflüssen, die direkt auf das System und die Sen-
soren einwirken, können sich auch aus der Informationsverarbeitung selbst
zusätzliche Unsicherheiten ergeben. Insbesondere bei der Implementierung
von Schätzalgorithmen in verteilten Rechnersystemen muss beachtet wer-
den, dass Abhängigkeiten zwischen den auf verschiedenen Rechnereinheiten
modellierten Fehlergrößen bestehen können. Ein zentrales Beispiel hierfür
stellt ein Sensornetzwerk dar, dessen Knoten dasselbe Phänomen vermessen
und jeweils lokal einen Schätzwert vorhalten. In diesem Fall sind die Schätz-
werte dadurch miteinander korreliert, dass die zeitliche Entwicklung des
Systemzustands in jedem Knoten durch dasselbe Prozessmodell beschrieben
wird. Um die lokalen Schätzwerte zusammenzuführen, dabei jedoch ein
verzerrtes Fusionsergebnis zu vermeiden, müssen die zugrundeliegenden
Korrelationsmatrizen entweder fortlaufend mitberechnet oder konservativ
abgeschätzt werden.

Der zentrale Ansatz besteht in der Herleitung eines mengenbasierten
Informationsfilters, welches eine sehr effiziente Verarbeitung einer hohen
Anzahl an Sensordaten erlaubt. Durch eine einfache Erweiterung der Fusi-
onsmethode wird dieser Algorithmus zudem robust gegenüber unbekannten
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Korrelationen. Ein interessantes Ergebnis ist, dass Abhängigkeiten zwischen
mengenbasierten Fehlermodellen keinen Einfluss auf das Fusionsergebnis
haben, aber dass das konservative Abschätzen der unbekannten stochasti-
schen Abhängigkeiten in der Regel mit Hilfe mengenbasierter Methoden
erfolgt.

Nichtlineare verteilte Filterung unter nichtlinearen Abhängigkeiten:
In vielen Anwendungen lassen sich System- und Messmodelle nur durch
nichtlineare Funktionen beschreiben. Demzufolge können die Abhängig-
keiten zwischen verteilt berechneten Schätzwerten dann nicht mehr linear
durch Korrelationsmatrizen charakterisiert werden. Für die Behandlung
und Charakterisierung nichtlinearer Abhängigkeiten lassen sich bisher nur
wenige Ansätze benennen. Das in dieser Arbeit entwickelte Verfahren be-
ruht daher auf der Idee, den Systemzustand in einen höherdimensionalen
Raum zu transformieren, in dem die System- und Messzusammenhänge
wieder linear beschrieben werden können. Nach einer solchen Transforma-
tion des Zustandsraums lassen sich die stochastischen Unsicherheiten als
normalverteilt mit Hilfe sogenannter Pseudo-Gaußdichten charakterisieren
und die Abhängigkeiten eindeutig durch Korrelationsmatrizen darstellen.
Die Erkenntnisse aus der linearen Schätztheorie lassen sich so unmittelbar
auf verteilte nichtlineare Schätzprobleme übertragen. Für weitere wesentli-
che Konzepte aus der linearen Schätztheorie können Verallgemeinerungen
herleitet werden, die es in nichtlinearen Schätzproblemen erlauben, effizi-
ent eine große Anzahl an Sensordaten zu verarbeiten und Teilwissen über
Abhängigkeiten auszunutzen.
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Abstract

Many research directions and applications share the common objective
of computing an estimate for the unknown state of a dynamic system.
In general, the system’s state can only be attributed to imprecise sys-
tem and sensor models and external disturbances affecting control and
sensor devices have to be reckoned with. Therefore, estimates on the
time evolution of the state and the incorporation of sensor observations
are subject to different sources of uncertainties. Even the deployment
of highly precise sensor technology does not invalidate the necessity to
systematically take uncertainties into consideration. In the field of state
estimation theory, two directions have primarily been pursued in order to
model uncertainties: Stochastic state estimation techniques are most widely
used, where uncertain quantities are assumed to follow certain probability
distributions. Besides stochastic methods, set-membership state estimation
systems are employed that are most appropriate to model unknown but
bounded disturbances.

This thesis lays its focus on an intensive and extensive study of state
estimation in centralized, distributed, and decentralized systems with
uncertainties being modeled and incorporated in a systematic fashion.

Simultaneous stochastic and set-membership state estimation:
As the first principal objective, state estimation techniques are derived
that enable us to simultaneously consider stochastic and set-membership
uncertainties. The derived concept allows to flexibly model different sources
of estimation uncertainty, to profit from the individual advantages of
stochastic and set-membership models, and to increase the reliability of
the estimation results.
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In the first instance, an uncertain quantity that is affected by both a
random noise and an unknown but bounded error can be characterized by
a set of probability densities, i.e., imprecise probabilities, instead of a single
density function. In its simplest case, such a set of densities can be repre-
sented by the density of a normal distribution with an imprecise mean that
is only defined by its membership to a bounded set. This thesis proposes a
generalization of the standard Kalman filtering scheme that simultaneously
processes stochastic and set-membership error characteristics by employing
sets of Gaussian densities. An alternative version of a combined Kalman
filter is attained when the gain is directly derived by minimizing the total
mean squared error instead of considering the underlying densities. An
additional weighting parameter enables the user to decide whether the
stochastic or set-membership uncertainty shall primarily be minimized.
The proposed concepts are compared with existing approaches and are
applied to linear and nonlinear estimation problems.

Distributed and decentralized Kalman filtering:
Alongside with the aforementioned disturbances that directly affect the
system and sensor devices, additional uncertainties may emerge from infor-
mation processing itself. In particular, implementing estimation algorithms
within networked systems entails the difficulty that dependencies among
locally computed estimates may arise. As a leading example, a sensor
network is considered that consists of a possibly massive amount of sensor
nodes, each of which observes the same phenomenon and processes a local
estimate of its state. Local estimates are, in general, correlated with each
other, because the same state transition model is employed in each sensor
node for the prediction of its local estimate. In order to prevent biased
estimation results when local estimates are fused, the underlying cross-
covariance matrices either have to be kept track of continually or have to
be bounded conservatively.

As a key tool in distributed and decentralized estimation problems,
the information filter can efficiently process large numbers of sensor mea-
surements, and it can also be generalized to the simultaneous incorporation
of stochastic and set-membership uncertainties. The conservative fusion of
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local estimates, in case of unknown correlations, becomes a simple convex
combination in the information form. It is an interesting result that, for
the purpose of treating unknown correlations, conservative fusion rules are
closely linked with set-membership estimation techniques.

Nonlinear filtering under nonlinear dependencies:
In many situations, state transition and sensor models can only be defined
in terms of nonlinear functions. Cross-covariance matrices are then no
longer sufficient to characterize dependencies between locally computed
estimates in distributed systems. Solutions towards a systematic treatment
and parameterization of nonlinear dependencies are scarce. For this reason,
this thesis considers state space transformations to higher-dimensional
spaces where system and sensor models become linear mappings. Uncertain
quantities are represented by pseudo Gaussian densities in the transformed
state space, and hence dependencies can again uniquely be paremeterized
by means of cross-covariance matrices. Linear fusion methodologies and
the notion of covariance consistency can then directly be employed in
distributed nonlinear estimation problems. In general, linear concepts like
information filtering or federated Kalman filtering, where only the process
noise is conservatively bounded, have counterparts in nonlinear estimation
theory.
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CHAPTER
1

Introduction

Overview of Chapter 1

1.1 Modeling Model and Estimation Uncertainty . . . . . . . . . . . . . 2
1.2 New Challenges in Sensor Networks . . . . . . . . . . . . . . . . . . 4
1.3 Distributed and Decentralized Information Processing . . . . . . . . 5
1.4 Outline and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The problem of determining an estimate of an uncertain quantity is en-
countered in many research directions including but not limited to the
field of engineering and control. Lack of precision is an ever-present dan-
ger to countless technical and non-technical fields of application. It is
an unfortunate fact that an increasing amount of accessible information
does not innately enhance precision and significance—a fact that everyone
recognizes in increasingly information-driven daily life. However, intercon-
nected information sources can bring great benefits if exploited properly.
Accordingly, the principal challenge addressed by this thesis is to extract
meaningful information without being negligent of involved uncertainties.

Imprecise information justifies by no means precise conclusions, which
must be borne in mind whenever an estimate of an uncertain quantity
is to be computed. In general, an estimate is fed to decision-making or
controlling systems, and, of course, an enactment of decisions under severe
uncertainties faces considerable risks. Appropriate models of uncertainty
can significantly contribute to ensuring reliability of estimation results and
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to preventing overconfident and unjustified conclusions. The design of a
state estimation algorithm generally requires mathematical models of the
real system, its internal state, and deployed sensor devices. In conjunction
with an uncertainty model, estimation techniques can be derived that are
capable of providing informative and uncertainty-aware estimates at once.
As the first major focus, this thesis particularly aims at developing an
estimation concept that enables us to account for a variety of different
sources of uncertainty.

The aforementioned interconnectivity of information sources imposes
additional challenges to the development and deployment of state estimation
algorithms. For instance, information reported by two different sources
may still stem from the same origin, which is possibly unknown to the
state estimation system. In general, information can be interdependent for
numerous reasons. To be more specific, networks of sensors and actuators
have moved to the center of interest in various domains of research. Here,
an estimate on an uncertain state is not necessarily computed on a single
instance anymore but multiple times on autonomously operating systems.
Even so, an independent computation of estimates does by no means imply
that they are independent. An estimator that combines the information
provided by other estimators must hence be aware of possible underlying
dependencies. Essentially, it is the estimation errors that are interdependent:
Each estimator may employ an uncertainty model for the same occurring
errors, and for fusing their estimation results it must be taken into account
that the models do not characterize different independent errors. Hidden
dependencies among estimation results can also be viewed as a source of
uncertainty, for which again a model can be derived. The treatment of
dependent information in networked systems constitutes the second major
focus of this thesis.

1.1 Modeling Model and Estimation
Uncertainty

Uncertainties do not merely have their source in external disturbances
affecting the system’s state; they require attention from the very beginning
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when a model for the system is to be identified. In general, model pa-
rameters cannot be specified with precision, and sometimes there are even
several models to choose from. These endogenous sources of uncertainty
have influence on the entire state estimation process and cannot be left
out of consideration. Multiple possibilities can be named to characterize
endogenous and exogenous uncertainties, but they differ from each other in
their ability to account for different types and sources of estimation errors.
The variety ranges from generalizations to alternatives of classical proba-
bility theory. However, they generally have in common that uncertainty is
interpreted in terms of likeliness and ignorance [107,162].

In the field of control and engineering, essentially stochastic and set-
membership error descriptions are the methods of choice [103,111,154,161].

(a) Gaussian density.

(b) Bounding interval.

Figure 1.1: Examples of most-
used uncertainty models in state es-
timation.

Stochastic errors are generally charac-
terized by means of probability den-
sity functions, as illustrated in Fig-
ure 1.1(a). Possibly unbounded errors
and especially outliers can easily be cap-
tured by stochastic formulations pro-
vided that precise probability densities
can be stated. The error behavior must
be identifiable in terms of probabilities,
as otherwise the lack of precise probabil-
ities superimposes a second type of un-
certainty on the stochastic uncertainty
model. More precisely, imprecise proba-
bilities cannot yield a precise probability
density for the state estimate. In con-
trast, set-membership error models, as indicated in Figure 1.1(b), offer the
advantage that no specific error behavior needs to be pinpointed, except
for boundedness. In particular, it is irrelevant whether the set represents
an unknown systematic error, a bounded random error, or a combination
of both. Owing to the requirement of boundedness, set-membership models
do not envisage possible outliers.
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Characterizing possible errors by either or both likeliness and bounded-
ness appears to be intuitive. Unfortunately, common estimation techniques
compel the user to choose either one or the other uncertainty model. This
thesis demonstrates that a simultaneous incorporation of stochastic and
set-membership uncertainties is not more challenging than the treatment
of purely stochastic or purely set-membership uncertainties. In essence,
two directions can be named. The first one is a generalization of classical
probability theory that enables us to characterize uncertain quantities by
means of imprecise probabilities, i.e., sets of probability densities. Hence,
a new, combined error model is defined. The second approach is to simply
compute a point estimate by minimizing a measure that is aware of both
possibly present stochastic and set-membership errors. The estimate is
provided together with stochastic and set-membership error characteristics,
and both types of error remain distinguishable throughout the entire state
estimation process.

1.2 New Challenges in Sensor Networks
The rapid advances in sensor and communication technology entail an
increasing demand for implementing estimation algorithms in distributed
networked systems. Networks of sensors and actuators can monitor and
control large-scale physical phenomena. Instead of the deployment of
highly-accurate, high-resolution, but cost-intensive sensor technology, the
advancements in the field of sensor networks reveal a clear tendency towards
low-cost, energy-conserving technology that allows the usage of an immense
number of sensor nodes. Sensor networks enable a wide range of applications
including, inter alia, indoor localization [211], car-2-X communication [56],
or forecasting of hazards [104], such as fire detection [124] and monitoring of
volcanic eruptions [176]. The most ambitious goal is maybe smart dust [144]
with nodes of a few cubic millimeters in size. However, the outstanding
spatial resolution of a sensor network is, in general, paid with less accurate,
fail-prone sensor data.

State estimation methods provide the means to extract meaningful
information from the received sensor data, even in the presence of severe
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uncertainties. Not only the low accuracy of individual sensors poses a chal-
lenge to estimation algorithms, but also constraints on power consumption
and communication require attention. Battery-driven nodes compromise
their lifetime when continually transmitting sensor data, and autonomous
mobile nodes can provide no warranty for reliable communication links. In
order to reduce the data volume to be transferred, sensor measurements
can be quantized or discretized. In consequence, the state estimator is
fed with additional set-membership uncertainties, i.e., quantization and
discretization errors. The communication rate can be reduced by only
transmitting data when a predefined event occurs, for instance, when the
value under observation varies significantly. An event-based state estimator
is only aware of a certain interval, which the sensor data belongs to, as long
as no new measurement arrives. These examples elucidate that efficient
data processing mechanisms in networked systems may be accompanied by
additional sources of uncertainties that must be incorporated in the state
estimation algorithms.

In many applications, the nodes of a sensor network employ their own
state estimation systems in order to be capable of operating independently.
A local computation of an estimate often proves to be the best strategy as
it also significantly alleviates the need to store and transmit long sequences
of sensor data. Managing local estimates in distributed or decentralized
systems involves additional challenges, as discussed in the following.

1.3 Distributed and Decentralized
Information Processing

Distributing an estimation algorithm over a networked system potentially
introduces an additional source of uncertainty. Especially if no central unit
is present that can keep track of the information being shared by different
nodes, it turns out to be a difficult task to amalgamate information from
several nodes and simultaneously avoid biased or overconfident estimates.
Without information fusion, a single local estimate is often hardly informa-
tive since, for instance, each sensor node can only cover a small area of the
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monitored phenomenon, as indicated in Figure 1.2. Unfortunately, depen-
dencies that are unknown inflict a systematic error to the fusion problem
and require careful consideration. For distributed network architectures,
specific fusion methods can be derived that can treat dependencies among
adjacent nodes in an optimal manner [71,119]. In the situation of frequently
changing network topologies and especially for fully decentralized networks,
bookkeeping of dependencies is by far too expensive in terms of required
storage and processing power. Conservative strategies [99] then remain
the only possibility to prevent fusion results from being overconfident, i.e.,
from underestimating the underlying uncertainty.

Figure 1.2: Each node observes only a part of the phenomenon, but as a
sensor network they achieve a high spatial resolution.

In linear estimation problems, where state transition as well as sensor
models are assumed to be linear and disturbances follow Gaussian distribu-
tions, a clear and intuitive notion of conservativeness and consistency is
attainable. Dependencies do not pose a problem for every type of employed
uncertainty model. The treatment of set-membership uncertainties, in par-
ticular, remains unaffected by possible dependencies, whereas, for stochastic
errors, dependencies must be taken into consideration. However, they can
be parameterized in terms of correlations coefficients and can be bounded
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conservatively. Nonlinear estimation problems, in contrast, neither allow
finite-dimensional parameterizations of dependencies nor reveal an intuitive
notion of conservativeness.

1.4 Outline and Overview
The aforementioned challenges are addressed by three chapters. The major
focus is laid on simultaneous stochastic and set-membership state estima-
tion. With stochastic quantities, knowledge about possible realizations of
errors can be incorporated and it can be assessed how likely they are to
occur. Set-membership descriptions are most appropriate to take unknown
but bounded errors into account. In combination with each other, both
directions of describing uncertainties enable a flexible and comprehensive
modeling of different sources of estimation uncertainty. A special source of
uncertainty is related to possible underlying dependencies between local
estimates in distributed or decentralized estimation problems. In this case,
the design of estimation algorithms need to be adapted, which is first
studied against the background of linear system and sensor models. Subse-
quently, the insights gained are transferred to nonlinear estimation problem,
where a lack of finite parameterizations of dependencies exacerbates the
challenges faced by distributed and decentralized state estimation systems.

Chapter 2—Simultaneous Stochastic and Set-membership State Esti-
mation commences with a study of different models for characterizing
uncertainties in a systematic fashion. Accordingly, several possibilities are
revealed to incorporate these uncertainty models into state estimation sys-
tems. Stochastic and set-membership models are most commonly used. In
general, they are considered alone but not in combination with each other.
Research towards combined stochastic and set-membership estimation has
been conducted into different directions, which range from generalizations
of classical probability theory that clearly distinguish between stochastic
and set-membership uncertainties to concepts that subsume both types
of uncertainty under an alternative description, such as constraints. In
general, it is clearly preferable that a combined estimation concept reduces
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to a stochastic estimator in the absence of set-membership errors and vice
versa. As already pointed out in Section 1.1, Chapter 2 systematically
generalizes the Kalman filtering scheme and ends up with an estimator that
reduces the overall MSE in the presence of both types of uncertainties. Fur-
thermore, a weighting parameter allows us to favor either the minimization
of the stochastic uncertainty or the minimization of the set-membership
uncertainty. It is also discussed how to employ the proposed approach in
nonlinear estimation problems and in specific applications.

Chapter 3—Distributed and Decentralized Kalman Filtering: Chal-
lenges and Solutions addresses the implementation of estimation algo-
rithms in a distributed or decentralized fashion. Especially, information
processing in sensor networks lies in the focus of this chapter. Even in
distributed systems, where often a central unit is still available, standard
formulations of state estimation algorithms may be not applicable. In the
first place, reformulations of the Kalman filter are considered that allow an
efficient processing of multisensor data being affecting by stochastic and set-
membership errors. In the second place, the computation of local estimates
on sensor nodes is examined. Since, in general, it is the same state that is
observed, fusion of local estimates can eventually cause double-counting
of information and may lead to overconfident results. If no knowledge
about the underlying dependencies can be exploited—as it is usually the
case in fully decentralized networks—only suboptimal fusion strategies
can be pursued. In order to reduce conservatism, several possibilities are
discussed to incorporate dependencies that can at least be identified to a
certain extent. It is an interesting fact that, for the treatment of unknown
dependencies, set-membership techniques are the method of choice.

Chapter 4—Nonlinear State Estimation under Nonlinear Dependencies
is dedicated to the fact that distributed and decentralized state estimation
requires particular attention when nonlinearities are involved. Nonlinear
state estimation is in itself challenging but becomes even more intricate
if possible dependencies between local estimates need to be taken into
account. Unfortunately, nonlinear dependencies do not allow for simple
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parameterizations, and hence bookkeeping of dependencies is, in general,
not an option. Accordingly, a notion of conservativeness in case of unknown
dependencies is difficult to define. In some estimation problems, the state
space can be transformed to a higher-dimensional state space, where the
system and sensor models can be represented by linear mappings. By
means of so-called pseudo Gaussian densities, dependencies then become
also linear and can be parameterized in terms of correlation coefficients.
Also, the definition of consistency and conservativeness can be borrowed
from linear estimation theory. However, state space transformations do
not simplify the estimation problem in every case. This chapter therefore
discusses a general notion of conservativeness and an according fusion rule is
studied that is a direct generalization of a conservative linear fusion rule. It
can be shown that this rule counteracts typical sources of dependencies, i.e.,
common sensor data and common process noise. Fortunately, techniques
can be defined to exploit partially known dependencies and hence to reduce
conservatism.
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State estimation refers to the task of computing an estimate for the un-
known state of a dynamic system. In general, neither a precise description
of the underlying system dynamics is attainable nor any sensor observation
is accurate. Therefore, the derivation of specific estimates from noisy mea-
surements is of little value if the involved uncertainties are not considered
appropriately. That means that imprecise information prevents precise
estimation results and conclusions. Thus, a central challenge in state esti-
mation theory is to define suitable models to express the lack of precise
information. Employing uncertainty models can significantly contribute
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to ensuring robustness and reliability in decision and control applications,
but for this purpose it is necessary to propagate and update uncertainty
characterizations throughout the entire state estimation process. In a dy-
namic state estimation system, the uncertainty associated with the initial
position of an object to be tracked, for example, also affects the position
estimate at any later time and therefore needs to be propagated through
the motion model.

Devoting attention to uncertainties is necessary from the early begin-
ning when a model for the time evolution of the system’s state is to be
identified. For the same system, different analytic formulations with differ-
ent properties may exist, and it can prove difficult to choose one among
them. In this work, we investigate state space models whose parameters
have generally to be inferred on the basis of observed data from the system.
In the prediction phase of an estimation algorithm, a process noise term
is commonly utilized to express the uncertainty concerning the identified
model as well as to account for any external disturbances affecting the
system. Accordingly, in the update phase of an estimator, both uncertain
model and sensor properties as well as external influences on the sensor
system are characterized in terms of a measurement noise.

In state estimation theory, uncertainty in most instances refers to
a probabilistic description like the mean squared error. But it must be
recognized that a probabilistic approach requires the selection of precise
probability distributions and therefore can considerably restrict the possi-
bilities of representing incomplete knowledge. Especially from the field of
economics, it is known that a pure probabilistic description may not suffice
for drawing robust conclusions. As an example, the Ellsberg paradox [55]
or a similar version [105] are often cited, where balls are drawn from urns
and a payout is received based on the color. Only the number of red balls
is known, but except for the total number, the composition of blue and
green balls remains unknown.

Example 2.1: Ellsberg’s three-color urn experiment
An urn contains 90 balls. 30 balls are red and the remaining 60 balls are blue
and green in an unspecified proportion. One can choose between the two
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gambles A1 and A2 and receives a payout according to the drawn color:

Gamble A1 £10 £0 £0

Gamble A2 £0 £10 £0

Most persons have shown a clear preference for Gamble A1 since there is no
ambiguity involved. After this bet, a second one with different gambles is
offered:

Gamble B1 £10 £0 £10

Gamble B2 £0 £10 £10

In this situation, Gamble B2 is most often preferred, although the preference in
the first bet implicitly means that P ({green}) < P ({blue}) is assumed. This
inequality in turn implies for the second bet that Gamble B1 should be the
better choice. Hence, decisions made in this experiment cannot be justified on
the basis of purely stochastic assertions.

In the example, only a probability P for drawing a red ball can be
stated; the probability for drawing a certain other color lies between 0
and 1 − P . The latter case, for which no probability can be stated in
advance, is often referred to as Knightian uncertainty [107], ambiguity [55],
or imprecision [169]. In this and many other situations [15,23], it can be
argued that the principle of indifference, i.e., assigning equal probabilities for
drawing a blue or green ball, is not applicable and can even be misleading.
In the considered example, the assumption of a balanced ratio of blue
and green balls can apparently be very inappropriate to compute the
expected payback and to bet for an outcome if the actual urn contains an
unfavorable proportion. It is up to the decision maker to assume a certain
ratio in order to, for instance, reduce the risk of high loss. A decision
maker should therefore not only be provided with purely probabilistic
descriptions of uncertainty but also with a model that describes void
information. Accordingly, the development of state estimation methods
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should not become an end in itself but shall rather focus on the task
to provide controllers and decision makers with a sound insight into the
involved uncertainties.

Errors affecting technical systems are in general categorized as being
either random or systematic [70,164]. Unfortunately, common estimation
techniques have difficulty dealing with both types of errors simultaneously.
Systematic errors are related to flaws in the measurement equipment and,
in contrast to random errors, cannot simply be identified by repeating mea-
surements since each observation is possibly falsified by the same error, e.g.,
a bias. Calibration methods are intended to counteract systematic errors,
but in general they can only narrow them down to certain intervals. Hence,
systematic errors are predestined to be represented by their memberships to
bounding sets. The combined stochastic and set-membership error model
derived in this chapter therefore appears particularly useful to account for
the superposition of random and systematic measurement errors. However,
at this point, it is important to emphasize that the set-membership error
model is not restricted to unknown systematic errors. A bounded random
error can likewise be represented as an unknown but bounded error. It is
the advantage of set-membership descriptions that no knowledge about the
error behavior within the bounds is required.

This chapter commences in Section 2.1 with the description of stochas-
tic and set-membership estimation principles, which evolved almost indepen-
dently of each other. As indicated above, Bayesian estimation techniques,
which characterize uncertain quantities by means of random variables, are
most frequently used. In particular, the Kalman filter is studied as it
embodies an optimal solution to the state estimation problem when both
system dynamics and measurement models are linear and perturbations are
normally distributed. Besides the Bayesian branch, set-membership con-
cepts are investigated that are most appropriate to model an unknown error
behavior within certain bounds, i.e., an unknown but bounded error. Thus,
these models are useful to mimic the void information we have discussed
earlier. In order to profit from the individual advantages of stochastic
and set-membership error representations, a combined representation is
aspired, which lies in the focus of Section 2.2. In Section 2.3, the generic
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Bayesian estimation scheme for sets of probability densities, i.e., imprecise
probabilities, is presented that becomes a tractable generalized Kalman
filter algorithm (see Section 2.4) in the case of linear system and observa-
tion models. The key result is a minimum mean squared error (MMSE)
estimator under stochastic and set-membership uncertainties derived in
Section 2.5. In Section 2.6 and Section 2.7, an extension to nonlinear
estimation problems and a discussion of applications will conclude this
chapter.

2.1 Models of Uncertainty and Related
Principles of State Estimation

In state estimation theory, two directions have essentially been pursued in
order to model disturbances and errors: Either uncertainties are modeled
as stochastic quantities or they are characterized by their membership to
a set. Both concepts have distinct advantages and disadvantages making
each one inherently better suited to model different sources of estimation
uncertainty. This section separately explains the principles of stochastic
and set-membership estimation while particularly focusing on tractable
solutions, namely the Kalman filter for the Bayesian estimation framework
and ellipsoidal calculus for the set-membership estimation methodology,
respectively.

2.1.1 Stochastic Models, Estimators, and in particular
Kalman Filtering

In Bayesian estimation theory, uncertain quantities are regarded as stochas-
tic variables. The unknown state of a system is either considered to be
random itself or the incomplete knowledge about the potentially deter-
ministic state is modeled probabilistically. In both cases, the state is
represented by a random variable or vector x and compiles the smallest
set of parameters with the help of which the system’s behavior can com-
pletely be characterized. The dynamic behavior of a system is a stochastic
process that essentially describes a transformation of random variables
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or vectors [141, 161]. In this work, we confine ourselves to discrete-time
continuous-state stochastic models, which specify how the real-valued
state vector xk ∈ Rnx evolves from a time step k ∈ N to the subsequent
step k + 1. This state vector xk is related to xk+1 according to the state
transition model

xk+1 = ak(xk, ûk,wk) , (2.1)

where ak : Rnx × Rnu × Rnw → Rnx is a possibly nonlinear and time-
variant function, ûk ∈ Rnu denotes a control-input vector, and wk is an
nw-dimensional process noise.

A second possibly time-variant model hk : Rnx ×Rnv → Rnz charac-
terizes the relationship of an obtained observation ẑk ∈ Rnz to the state xk.
The measurement ẑk is a realization of

zk = hk(xk,vk) , (2.2)

where vk denotes an nv-dimensional measurement noise, which embraces
any uncertainties associated to the sensor device. In many modern applica-
tions, multiple possibly heterogeneous sensor systems are employed that
require the derivation of individual measurement models (2.2).

Throughout this work, {wk}k∈N and {vk}k∈N represent white noise
terms [141], i.e., wk is independent1 from wl, and vk is independent from
vl for every k and l 6= k. Furthermore, wk and vl are assumed to be
independent from each other for every k and l.

A Bayesian State Estimation

The key challenge to be tackled by a Bayesian estimator is to recursively
estimate the probability density of xk conditioned on inputs and received
measurements [87]. At a time step k, all input quantities are stacked
together into a single vector ûk, but instead of a single measurement vector,
different measurements are collected in a set Zk = {ẑ1

k, . . . , ẑ
N
k } in order

1Two random variables a and b are independent, iff f(a, b) = f(a) · f(b) holds for
the joint density.
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Figure 2.1: Bayesian estimation scheme consisting of prediction and filter-
ing steps.

to emphasize that they may belong to different sensor devices. A current
estimate on the state is expressed in terms of the conditional density

f e(xk) := f(xk | Z0:k, û0:k−1)
= f(xk | Z0, . . . ,Zk, û0, . . . , ûk−1) ,

(2.3)

which can then be predicted and updated with further input and measure-
ment information. Beginning from prior information on the initial state x0
represented by a probability density function fp(x0) = f(x0), the estimator
recursively computes the density (2.3), where predicted or prior densities
are marked by the superscript p and posterior filtered densities by the
superscript e. Figure 2.1 displays an overview of the Bayesian estimation
scheme for conditional probability densities.

Prediction For the prediction of the current state estimate, a transition
density has to be derived from the state transition model (2.1). For fixed xk
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and wk, the outcome of xk+1 in (2.1) is deterministic and can be expressed
by

f(xk+1 |xk, ûk, wk) = δ
(
xk+1 − ak(xk, ûk, wk)

)
,

where δ denotes the nx-dimensional Dirac delta function. The transition
density is obtained by marginalizing2 out wk, which yields

f(xk+1 |xk, ûk) =
∫

Rnw

f(xk+1, wk |xk, ûk) dwk

=
∫

Rnw

δ
(
xk+1 − ak(xk, ûk, wk)

)
· fw(wk) dwk .

(2.4)

The predicted density fp of the state is finally obtained by the Chapman-
Kolmogorov integral

fp(xk+1) := f(xk+1 | Z0:k, û0:k)

=
∫

Rnx

f(xk+1 |xk, ûk) · f e(xk) dxk ,
(2.5)

where xk is marginalized out of the joint density fp(xk+1, xk).

Filtering Incoming measurement information is incorporated into the
density fp by means of Bayes’ theorem for probability densities

f e(xk) = f(Zk |xk) · fp(xk)∫
Rnx

f(Zk |xk) · fp(xk) dxk
, (2.6)

where the denominator is a normalization constant. The likelihood f(Zk |xk)
is to be derived from the model (2.2) of the sensor system. It is generally
assumed that the measurement noise across multiple sensors is independent,
and therefore the measurements conditioned on the current state are also
independent, i.e., we obtain a product

f(Zk |xk) = f(ẑ1
k, . . . , ẑ

N
k |xk)

= f(ẑ1
k |xk) · . . . · f(ẑNk |xk)

(2.7)

2We assume that all integrals exist, and, where necessary, the delta distribution is
applicable.
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of likelihoods. Hence, the fusion rule (2.6) can sequentially be applied
to each measurement in Zk and it suffices to consider the single-sensor
case Zk = {ẑk} in the following. The particular challenges of multisensor
estimation problems lie in the focus of chapters 3 and 4. The measurement
equation (2.2) can be expressed in terms of the Dirac delta function by

f(ẑk |xk, vk) = δ
(
ẑk − hk(xk, vk)

)
.

Analogously to (2.4), the likelihood for ẑk is hence given by

f(ẑk |xk) =
∫

Rnv

f(ẑk |xk, vk) · fv(vk) dvk

=
∫

Rnv

δ
(
ẑk − hk(xk, vk)

)
· fv(vk) dvk ,

(2.8)

which can then be deployed to update the prior density fp by means
of (2.6).

Additive Noise Models In many technical applications, the random noise
terms in (2.1) and (2.2) represent the sum of many individual and indepen-
dent disturbances, which externally affect the nonlinearities ak and hk. In
consequence, the noise terms are, in general, modeled to be, first, additive
and, second, normally distributed. As stated in the central limit theo-
rem [161], the latter property owes to the fact that the sum of independent
random noise terms tends towards a normal random vector regardless of
the probability densities of the individual noise terms. On the basis of the
first considerations, the models are simplified to

xk+1 = ak(xk, ûk) + wk

and
zk = hk(xk) + vk , (2.9)

where wk and vk are additive zero-mean white noise terms with probability
densities fw and fv, respectively. With additive noise, the sifting property
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of the Dirac delta function can be exploited, i.e., the transition density (2.4)
then becomes

f(xk+1 |xk, ûk) =
∫

Rnw

δ
(
xk+1 − ak(xk, ûk)− wk

)
·fw(wk) dwk

= fw(xk+1 − ak(xk, ûk))
(2.10)

and the likelihood (2.8) reads

f(ẑk |xk) =
∫

Rnv

δ
(
ẑk − hk(xk)− vk

)
· fv(vk) dvk

= fv(ẑk − hk(xk)) .
(2.11)

The second aforementioned assumption that wk and vk are normally
distributed further simplifies (2.10) and (2.11), but, despite these simpli-
fications, the generic Bayesian inference scheme, i.e., (2.5) for prediction
and (2.6) for filtering, generally suffers from a lack of practical applicability
due to the nonlinearities ak and hk. For instance, the integral (2.5) has
to evaluated at every point xk+1 and complicated densities need to be
approximated and parameterized. This, of course, indicates a strong need
for a closed-form solution.

B The Kalman Filter

The generic Bayesian inference scheme operates on the underlying proba-
bility densities and features the ability of providing an optimal solution to
the estimation problem. Unfortunately, this scheme is only of conceptual
value since, in general, the absence of finite parameterizations prevents
efficient and closed-form calculations of the densities. However, the most
notable exception is given by the Kalman filter formulas [101,103] in the
case of linear system dynamics

xk+1 = Ak xk + Bk(ûk + wk) (2.12)

and linear sensor models

zk = Hk xk + vk , (2.13)
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where wk ∼ N (0,Cu
k) and vk ∼ N (0,Cz

k) are zero-mean white Gaussian
perturbations. By N (x̂,C), the normal distribution with mean x̂ and
covariance matrix C is denoted, and it has the probability density function

N (x; x̂,C) := 1
(2π) nx

2 det(C) 1
2

exp
(
−1

2(x− x̂)TC−1(x− x̂)
)
. (2.14)

If the prior density fp(x0) = N (x0; x̂p
0 ,C

p
0) is Gaussian, the predicted and

posterior densities (2.5) and (2.6) remain Gaussian as well. Conditional
mean x̂e

k and covariance matrix Ce
k, which uniquely characterize the poste-

rior Gaussian density, can then be calculated in closed form, which yields
the Kalman filter formulas.

However, in most derivations of the Kalman filtering scheme, mean x̂e
k

and covariance matrix Ce
k are less regarded as the parameters of a Gaussian

density but rather characterize a point estimate and its corresponding mean
squared error (MSE) matrix [116]. Given the observations ẑ0:k, the objective
in this case is to compute an estimate x̂e

k = x̂(ẑ0:k) that minimizes the MSE

E[(x̂e
k − xk)T(x̂e

k − xk) | ẑ0:k]

=
∫

Rnx

(x̂e
k − xk)T(x̂e

k − xk) · f(x | ẑ0:k) dxk ,
(2.15)

which is more precisely the a posteriori MSE. By setting x̂e
k − xk =

x̂e
k − c+ c− xk, this conditional MSE becomes

E[(x̂e
k − xk)T(x̂e

k − xk) | ẑ0:k]
= (x̂e

k − c)T(x̂e
k − c)+(x̂e

k − c)T(c− E[xk | ẑ0:k])
+ (c− E[xk | ẑ0:k])T(x̂e

k − c) + E[(c− xk)T(c− xk) | ẑ0:k]

which reduces to
E[(x̂e

k − xk)T(x̂e
k − xk) | ẑ0:k] = (x̂e

k − c)T(x̂e
k − c)

+ E[(c− xk)T(c− xk) | ẑ0:k]

for c := E[xk | ẑ0:k]. We can now easily accept that (2.15) becomes minimal
for the conditional mean

x̂e
k := c = E[xk | ẑ0:k] .
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Because of
E[x̂e

k] = E
[

E[xk | z0:k]
]

= E[xk] , (2.16)
the estimator x̂e

k = E[xk | · ] is unbiased and minimizes (2.15) for each
particular value z0:k. This means it minimizes the unconditional MSE

MSE(x̂e
k) = E[(x̂e

k − xk)T(x̂e
k − xk)] (2.17)

due to equation

E[(x̂e
k − xk)T(x̂e

k − xk)] = E
[

E[(x̂e
k − xk)T(x̂e

k − xk) | z0:k]
]

=
∫

Rnz

· · ·
∫

Rnz

E[(x̂e
k − xk)T(x̂e

k − xk) | z0:k] f(z0:k) dz0:k

and nonnegativity of f(z0:k). It is important to notice that, in the consid-
ered linear and Gaussian case, the conditional MSE (2.15) is the same for
all possible realizations ẑ0, . . . , ẑk. As a significant result, the conditional
MSE (2.15) is then equal to the unconditional MSE (2.17).

Alongside the estimate x̂e
k, the Kalman filter algorithm recursively

computes the MSE matrix3

Ce
k := E[(x̂e

k − xk)(x̂e
k − xk)T] ∈ Rnx×nx , (2.18)

whose trace exactly yields the MSE (2.17). Because of the unbiased-
ness (2.16), i.e., E[x̂e

k − x] = 0, the matrix (2.18) also represents the
covariance matrix Cov

(
x̂e
k − xk

)
for the error (x̂e

k − xk) and has therefore
been denoted by Ce

k. Although it can also be expressed in terms of a
single equation, the Kalman filter algorithm is composed of a time update
(prediction) and a measurement update (filtering) phase, as shown in the
schematic overview provided by Figure 2.2.

Prediction The prediction step employs the system model (2.12) in order
to compute the predicted state estimate

x̂p
k+1 := E[xk+1 | ẑ0:k]

= E[Ak xk + Bk(ûk + wk) | ẑ0:k]
=Ak x̂

e
k + Bk ûk

(2.19)

3This simple definition can only be used for the linear and Gaussian case. For the
general (e.g., non-Gaussian) case, it has to be Ce

k := E[(x̂e
k − xk)(x̂e

k − xk)T | z0:k].
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Prediction

Filtering
Kkẑk

+

I − KkHk

x̂p
k

Unit
Delay + Ak

Bkûk

x̂e
k

Figure 2.2: The Kalman filter is a recursive estimation scheme consisting
of prediction and filtering steps.

and its corresponding MSE matrix

Cp
k+1 = E[(x̂p

k+1 − xk+1)(x̂p
k+1 − xk+1)T]

= E[(Ak(x̂e
k − xk) + Bk wk)(Ak(x̂e

k − xk) + Bk wk)T]
= AkCe

kAT
k + BkCu

kBT
k ,

(2.20)

where the independence of wk from the estimation error (x̂e
k − xk) at time

step k has been exploited.

Filtering In the filtering step, the prior or predicted estimate x̂p
k and

a received measurement ẑk are linearly combined in order to obtain an
updated estimate

x̂e
k = K1 x̂

p
k + K2 ẑk .

In the first place, we figure out that we, of course, have to require the linear
estimator to be unbiased: As for the derivation of (2.16), a filtering result
that introduces a bias ∆xe

k, i.e.,

x̄e
k = x̂e

k + ∆xe
k ,
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leads to the MSE

E[(x̄e
k − xk)T(x̄e

k − xk)] = E[(x̂e
k − xk)T(x̂e

k − xk)] + (∆xe
k)T(∆xe

k)

where (∆xe
k)T(∆xe

k) is a positive constant. Hence, a biased estimator
cannot provide a lower MSE than an unbiased estimator. The unbiasedness

0 = E
[
x̂e
k − E[xk | ẑ0:k]

]

= E[K1 x̂
p
k + K2 ẑk − xk]

= E[K1(x̂p
k − xk) + K1 xk + K2(Hk xk + vk)− xk]

= E[K1 xk + K2 Hk xk − xk]
= (K1 + K2Hk − I) E[xk] ,

then implies that K1 = I−K2Hk. Let Kk := K2 in the following. In the
second place, the trace of the MSE matrix

Ce
k = E[(x̂e

k − xk)(x̂e
k − xk)T]

= E
[(

(I−KkHk)x̂p
k + Kkẑk − xk

)(
. . .
)T]

= E
[(

(I−KkHk)x̂p
k + Kk(Hk xk + vk)− xk

)(
. . .
)T]

= E
[(

(I−KkHk)(x̂p
k − xk) + Kk vk)

)(
. . .
)T]

= (I−KkHk)Cp
k(I−KkHk)T + KkCz

kKT
k

(2.21)

is to be minimized, where the measurement noise vk is independent of the
prediction error (x̂p

k − xk). In order to compute the optimal gain Kk, the
derivative of the trace of Ce

k is considered. More precisely, by applying the
derivative rules [143]

∂

∂Kk
trace

(
KkA

)
= AT ,

∂

∂Kk
trace

(
AKT

k

)
= A (2.22)

and
∂

∂Kk
trace

(
KkAKT

k

)
= Kk(AT + A) (2.23)

for the trace to (2.21) and setting the derivative to zero, the optimal
Kalman gain can finally be derived as

Kk = Cp
kHT

k (Cz
k + HkCp

kHT
k )−1 . (2.24)
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The second derivative is a positive definite Hessian matrix, and hence the
MSE attains a local minimum. The final filtering result consists of the
estimate

x̂e
k = x̂p

k + Kk(ẑk −Hkx̂
p
k)

= (I−KkHk)x̂p
k + Kk ẑk

(2.25)

and error covariance matrix

Ce
k = (I−KkHk)Cp

k(I−KkHk)T + KkCz
kKT

k

= Cp
k −KkHkCp

k .
(2.26)

The first part of the latter formula is often referred to as Joseph form of
the updated covariance matrix, and the second part is a simplification,
which only holds for the particular Kalman gain (2.24) and shows that
the covariance matrix decreases in the sense that Cp

k − Ce
k is positive

semidefinite.
In the considered problem setup, the Kalman filter represents a mini-

mum mean squared error (MMSE) estimator, but also, in case of arbitrary
noise densities, the Kalman filter can still be applied, if mean and covariance
matrix of the noise are known, and encompasses the best linear unbiased
estimator (BLUE), also referred to as linear minimum mean squared error
(LMMSE) estimator. The scheme of the Kalman filter summarized in
Figure 2.2 constitutes the basis for the considerations in the following
sections.

2.1.2 Set-membership Models, Estimators, and in particular
Ellipsoidal Calculus

Besides stochastic approaches, set-membership uncertainty models have
been intensely investigated, which are most appropriate to cope with
unknown but bounded perturbations [44, 125]. This involves the major
advantage that no knowledge about the error behavior within the bounds
is required. A set-membership error characterization can be utilized for
uncertainties that are difficult to identify in terms of a probability distri-
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bution or that even do not reveal any probabilistic nature4. In particular,
unknown systematic errors are well-suited to be represented through their
membership to sets.

Compared to a stochastic system modeling (2.1), set-membership
systems are similar in structure. The quantities in the state transition
model

xk+1 = ak(xk, ûk, dk) (2.27)

are specified by their membership to sets xk ∈ X e
k and dk ∈ X uk instead

of probability densities. The superscript u in X uk indicates that dk can be
considered as a set of additional unknown inputs. Applying the mapping ak
to these sets then defines the predicted set X p

k+1 that encloses the true
but unknown state xk+1. Beginning from an initial set x0 ∈ X p

0 , such
set-valued models can be deployed to explore which values can be attained
by the state in future. These so-called reachable sets are, for instance, a
useful tool in many control applications [4, 39,111].

Sensor devices are commonly affected by several set-membership un-
certainties, which include, inter alia, calibration errors, biases, defects, and
symptoms of fatigue. A measurement is thus perturbed by a set-membership
quantity ek ∈ X zk according to

zk = hk(xk, ek) . (2.28)

A set-membership state estimator provides the means to draw conclusions
from a set-membership observation about the underlying state. The filtering
step of an estimator involves the computation of the set of all possible
values of the system state that are consistent with the prior set and the
sensor data, i.e., the computation of intersections. The derived estimation
results constitute sets to which the actual system state is considered to
certainly belong.

4It is a controversial discussion whether every kind of error follows a probability
distribution or can at least be modeled as such. However, the true distribution may not
be identifiable and therefore may remain unknown forever.
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A Set-membership State Estimation

Except for a bounding set, a set-membership estimator does not rely on
the definition of certain error statistics or certain probability distributions.
Essentially, set-membership estimators differ in the way the bounding sets
are represented. The most well-known implementations of set-membership
estimation algorithms employ interval-based and polytopic bounds [65,85]
or ellipsoidal sets [24, 40, 111, 154]. Both representations enable efficient
computations of, for instance, linear transformations, Minkowski sums, and
intersections. For the selected representation of set-membership uncertainty,
the challenge of predicting information resides in finding a tight outer
approximation

X p
k+1 ⊇ ak(X e

k ,ûk,X uk )
=
{
xk+1 = ak(xk, ûk, dk) |xk ∈ X e

k , dk ∈ X uk
} (2.29)

that has the same representation as X e
k and X uk . In order to update a set

with a received measurement, the intersection of the prior set and the set
of all values that are compatible to the measurement has to be computed.
More precisely, a tight outer approximation

X e
k ⊇ X p

k ∩ {xk | ∃ek ∈ X zk : ẑk = hk(xk, ek)} (2.30)

is to be determined. Often, also inner approximations are computed in
order to keep track of approximation errors.

Set-membership estimation can also prove to be very challenging. For
example, the use of rigid bounds prevents a simple treatment of outliers
and, in contrast to the Kalman filter, a high number of measurements does
not necessarily imply better filtering results. Analogously to stochastic
estimation problems, closed-form solutions are generally not available in
case of nonlinear system and sensor models, but again, for linear models,
efficient estimation algorithms exist.

B Ellipsoidal Estimation

It is not without reason that ellipsoidal representations of set-membership
uncertainties are widely used [40, 111, 151, 154]—for they pose several
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advantages such as simple parameterizations and good algebraic properties.
In this work, an ellipsoid

E(x̂,X) =
{
x
∣∣ (x̂− x)TX−1(x̂− x) ≤ 1

}
(2.31)

is defined by a midpoint x̂ ∈ Rnx and a nonnegative definite shape matrix
X ∈ Rnx×nx . Apparently, these parameters allow for an interpretation
similar to mean and covariance matrix of a Gaussian density (2.14), where
n-sigma bounds are often graphically illustrated by covariance ellipsoids.

For linear system models

xk+1 = Ak xk + Bk (ûk + dk) (2.32)

and linear sensor models

ẑ = Hk xk + ek , (2.33)

where the perturbations dk and ek are characterized by their membership
to E(0,Xu

k) and E(0,Xz
k), an efficient estimation algorithm can be stated.

As explained in the following, it consists of a prediction and a filtering
phase.

Prediction For the time update of a current state estimate given by an
ellipsoid X e

k = E(x̂e
k,Xe

k), the system model (2.32) has to be applied to each
element of the sets, which can then be expressed in terms of the Minkowski
sum

X p
k+1 = Ak E(x̂e

k,Xe
k)⊕Bk

(
ûk + E(0,Xu

k)
)
, (2.34)

i.e., the elementwise sum of the sets, which is denoted by ⊕. Affine
transformations x 7→ Ax+ b can easily be computed by the corresponding
transformations of the parameters, i.e,.

AE(x̂,X) + b = E(A x̂+ b,AXAT) . (2.35)

The elementwise sum of two ellipsoids does in general not yield an ellipsoid
anymore, but it can be enclosed by a bounding ellipsoid

E(x̂1,X1)⊕ E(x̂2,X2) ⊆ E(x̂1 + x̂2,X(p)) (2.36)

28



2.1. Models of Uncertainty and Related Principles of State Estimation

with shape matrix

X(p) = (1 + p−1)X1 + (1 + p)X2 . (2.37)

The inclusion (2.36) holds for every p > 0 [111]. In order to select an
ellipsoid out of the parametric family (2.36), the parameter p is often
determined to minimize the determinant of (2.37), which yields the enclosing
ellipsoid with minimum volume. In this work, we choose p to minimize
the trace of (2.37), which corresponds to the sum of the squared lengths of
semiaxes. The inequality of arithmetic and geometric means can be applied
in order to obtain

trace
(
X(p)

)
= trace

(
X1
)

+ trace
(
X2
)

+ p−1 trace
(
X1
)

+ p trace
(
X1
)

≥ trace
(
X1
)

+ trace
(
X1
)

+ 2
√

trace
(
X1
)

trace
(
X2
)

=
(√

trace
(
X1
)

+
√

trace
(
X2
))2

.

(2.38)
Hence, the trace is minimal when equality holds, i.e.,

popt = trace(X1) 1
2 · trace(X2)− 1

2 . (2.39)

Choosing the trace as optimality criterion is reasonable since selfsame
criterion is used to determine the Kalman gain in (2.21). With (2.35)
and (2.36), the prediction step (2.34) can now be computed.

Filtering For updating the currently estimated ellipsoid, the intersection
of a prior ellipsoid and a measured ellipsoid has to be computed. The mea-
surement ẑk and the associated set-membership uncertainty ek ∈ E(0,Xz

k)
in (2.33) allow for a combined interpretation as an ellipsoid E(ẑ,Xz

k) =
ẑ − E(0,Xz

k) of possible measurements, where the symmetry of ellipsoids
has been exploited. For the intersection, an outer ellipsoidal approximation
E(x̂e

k,Xe
k) has to be computed, which is again related to a parameterized

family of outer approximations

E(x̂e
k(w),Xe

k(w)) ⊇ E(x̂p
k,X

p
k) ∩ {x |Hk x ∈ E(ẑ,Xz

k)}
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with midpoint

x̂e
k = X̃e

k

(
(1− ω)(Xp

k)−1x̂e
k + ωHT

k (Xz
k)−1ẑk

)

and shape matrix
Xe
k = λ· X̃e

k ,

where X̃e
k and λ are given by

X̃e
k =

(
(1− ω)(Xp

k)−1 + ωHT
k (Xz

k)−1Hk

)−1 (2.40)

and

λ = 1−
(

(1− ω)(x̂p
k)T(Xp

k)−1x̂p
k + ωẑT

k (Xz
k)−1ẑk − (x̂e

k)T(X̃e
k)−1x̂e

k

)
,

(2.41)
respectively. The parameter ω ∈ [0, 1] can, for instance, be determined to
minimize the determinant or trace of Xe

k. In both case, this is only possible
numerically. The ellipsoid E(x̂e

k,Xe
k) is an outer conservative approximation

of the intersection but never contains any additional point not included
either in the prior set or in the measured set [151].

Example 2.2: Set-membership filtering
The results of two different filtering steps are depicted in Figure 2.3. In both
cases, the prior ellipsoid is drawn in green and the measurement is associated to
the red ellipsoid. In Figure 2.3(a), a two-dimensional measurement is received
and the intersection is enclosed by the blue ellipsoid, which represents the outer
approximation with minimum determinant. In Figure 2.3(b), the interval [−1, 1]
for component x1 is measured, which corresponds to ẑ = 0, Xz = 1, and
H = [1, 0]. The corresponding ellipsoid in the considered two-dimensional
state space is degenerate.

Set-membership estimators often encounter difficulties in treating out-
liers that may even lead to non-intersecting sets. Thus, the set-membership
uncertainty description should be large enough in order to account for
outliers, but also small enough such that still new insights are gained.
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(a) Intersection of two nondegenerate el-
lipsoids.
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(b) Intersection with a degenerate ellip-
soid.

Figure 2.3: The blue ellipsoids are outer approximations of the intersections
of the green and red ellipsoids. In Fig. 2.3(a), the intersection of two
nondegenerate ellipsoids is approximated. In Fig. 2.3(b), the red degenerate
ellipsoid corresponds to a one-dimensional measurement of component x1
and intersects with the green ellipsoid.

2.2 Combined Models of Stochastic and
Set-membership Uncertainties

Imperfect information can take various forms and has to be taken into
account properly by a state estimation system in order to provide a com-
plete and correct picture of the imperfect knowledge about the real world.
In literature, imperfect information is often subdivided into the terms
uncertainty and imprecision [162]. This definition relates uncertainty to
the incapability of deciding how certain a statement is and essentially
corresponds to stochastic uncertainty. Imprecision refers to the lack of
knowledge to decide between two or more items that are compatible with
the available information and can therefore be regarded as set-membership
uncertainty. In general, a survey of literature does not reveal a unified
notion of different types of uncertainty.
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The previous section has illustrated that stochastic and set-member-
ship uncertainty models have distinct advantages and disadvantages. A
simultaneous consideration of stochastic and set-membership uncertainties
therefore appears promising in order to allow to flexibly model different
sources of estimation uncertainty, to profit from the individual advantages,
and to increase the reliability of the estimation results. Research towards
combined stochastic and set-membership estimation has been conducted
into different directions, which range from generalizations of classical proba-
bility theory that clearly distinguish between stochastic and set-membership
uncertainties to concepts that subsume both types of uncertainty under an
alternative notion of uncertainty.

Especially, random sets [66,121,135] have received significant attention
in multitarget tracking estimation problems, where the number of targets
encompasses the unknown component. By means of random sets, addi-
tional set-membership uncertainties can be incorporated into a generalized
likelihood function [122,149]. The idea behind general Bayes filtering is sim-
ilar and rests upon the use of quantization cells, which the measurements
belong to [52,122]. Another approach models the combination of stochastic
and set-membership uncertainties by means of sets of probability density
functions, so-called imprecise probabilities [19,126,169]. The random set
and the imprecise probability approach encompass the most widely used
concepts for state estimation under stochastic and set-membership uncer-
tainties in continuous state spaces and lie in the focus of this section. The
examined approaches are discussed based on the example of computing a
likelihood for an erroneous measurement affected by both uncertainties.

2.2.1 Random Set Perspective
As the name already suggests, random sets, i.e., set-valued random variables,
embody a combination of stochastic and set-membership uncertainties [121,
135]. Analogously to (2.9), we consider a measurement model

zk = hk(xk) + vk (2.42)

with additive stochastic noise vk, but in contrast to (2.9) an observation ẑk
is not known with complete precision but by its membership to a closed
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subset Eẑk
, so, instead of hk(xk) + vk, a closed set EEEhk(xk)+vk

is randomly
observed [122,149]. More specifically, the identity hk(xk) = ẑk − vk does
not hold anymore, but the relation

hk(xk) ∈ EEE ẑk−vk
= {zk − vk | zk ∈ Eẑk

} (2.43)

has to be considered. The generalized likelihood is defined by

f(Eẑk
|xk) = P (ẑk ∈ EEEzk

|xk) = P (hk(xk) ∈ EEE ẑk−vk
|xk)

= P (vk ∈ EEE ẑk−hk(xk) |xk) = P (vk ∈ Eẑk−hk(xk))

=
∫

Eẑk−hk(xk)

fv(vk) dvk .
(2.44)

Apparently, the considered measurement model is a stochastic model that
incorporates set-membership uncertainties in terms of imprecise observa-
tions, i.e., ẑk cannot be associated to a precise value. The generalized
likelihood (2.44) can also be viewed as a fuzzy membership function for
the membership of hk(x) to the observed set Eẑk

[66, 149]. It is important
to emphasize that (2.44) generally does not allow for a simple parameteri-
zation, even if (2.42) is linear and vk is normally distributed. Due to the
integral (2.44), a linear relationship anyway turns out to be a nonlinear
estimation problem, as further discussed in Subsection 2.2.2.

Fusing Random Set Estimates

An interesting special case arises when two or more random sets are
measured. In the simplest case, two estimates

x̂1 = x + x̃1 and x̂2 = x + x̃2

are given with probabilistic errors x̃1 and x̃2. Both estimates x̂1 and x̂1
are only imprecisely characterized by their memberships to Ex̂1

and Ex̂2
,
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respectively. The joint likelihood is then obtained by

f(Ex̂1
, Ex̂2

|x) = P (x̂1 ∈ EEEx+x̃1
, x̂2 ∈ EEEx+x̃2

|x)
= P (x ∈ EEE x̂1−x̃1

,x ∈ EEE x̂2−x̃2
|x)

= P (x ∈ EEE x̂1−x̃1
∩EEE x̂2−x̃2

|x)
= P (x ∈ EEE x̂1−x̃1

∩EEE x̂2−x̃2
) .

Evidently, if the state x is associated to two or more random set estimates,
an intersection of these random sets has to be computed. This fusion
methodology is widely utilized to establish estimators for mixed stochastic
and set-membership uncertainties, for instance, by the statistical and set-
theoretic information (SSI) filter [76–78]. Again, these methods encounter
the practical difficulty that even, in the case of linear models and Gaussian
noise, complicated densities have to be dealt with and a nonlinear estimation
problem turns up that requires approximate solutions.

2.2.2 General Bayes Filtering (of Quantized Measurements)
An imprecise observation originating from (2.42) can also be viewed as a
quantized measurement of the state [46, 51, 52, 122]. The idea relies on the
measure-theoretic identity

E
[
g(xk) | z ∈ Qẑk

]
= E

[
E[g(xk) | z]

∣∣ z ∈ Qẑk

]
(2.45)

for any quantization cell Qẑk
of the measurement space and test func-

tion g [46, 48]. In [122], it has been shown that the expectation (2.45)
yields

E
[

E[g(xk) | z]
∣∣ z ∈ Qẑk

]
=
∫

Rnx

E[g(xk) | z] · f(z | z ∈ Qẑk
) dz

=
∫

Rnx

g(xk) ·
f(Qẑk

|xk)fp(xk)
f(Qẑk

) dxk
(2.46)

with
f(Qẑk

|xk) =
∫

Qẑk

f(zk |xk) dzk (2.47)
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and
f(Qẑk

) =
∫

Rnx

f(Qẑk
|xk) · fp(xk) dxk . (2.48)

For linear system and sensor models, the Kalman filter equations can be
generalized to quantized measurements [46,52]. The filtering (2.25) step
then alters to the computation of the conditional mean5

x̂quant
k = E

[
xk | z ∈ Qẑk

]
= x̂p

k + Kk

(
E
[
z | z ∈ Qẑk

]
−Hk x̂

p
k

)

and MSE matrix

Cquant
k = E

[
(x̂e
k − xk)(x̂e

k − xk)T | z ∈ Qẑk

]

= Ce
k + Kk E

[
zzT | z ∈ Qẑk

]
KT
k

= Ce
k + Kk Cov

[
z | z ∈ Qẑk

]
KT
k ,

where the matrix Kk is the standard Kalman gain (2.24) and Ce
k is the

standard Kalman MSE matrix (2.21). The mean E
[
z | z ∈ Qẑk

]
and

covariance matrix Cov
[
z | z ∈ Qẑk

]
can be computed by means of (2.46).

At this point, the algorithm emerges as a nonlinear estimation problem
since the densities (2.47) and (2.48) are, in general, non-Gaussian and their
computation is a difficult issue in the multi-dimensional case.

The quantization of measurement information can also be viewed as
an additional nonlinear many-to-few mapping z∗k = Q(z), z ∈ Qẑk

that is
applied after the measurement is generated and that yields the quantization
cell or an identifier z∗k of it, for example, the center of the cell. This also
states the reason why the concept of quantized measurements completely
resides in the Bayesian estimation framework, and the fusion result is given
by a single probability density. Although the explained idea has also been
generalized to arbitrary set-membership measurements [53], it relies on the
definition of a certain quantization mapping. Irrespective of the actual
unknown but bounded error, the corrupted measurement is reduced to
the quantization cell z∗k. The following Subsection 2.2.3 will accord more
attention to this issue.

5For a shorter notation, we write E
[
xk | z ∈ Qẑk

]
conditioned only on the current

observation.
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Relation to Random Sets

The filtering of quantized measurements directly corresponds to the gen-
eralized likelihood for random sets in Subsection 2.2.1. Let the randomly
observed set Eẑk

represent the quantization cell Qẑk
. Then, the generalized

likelihood

f(Eẑk
|xk)(2.44)= P (vk ∈ Eẑk−hk(xk))

=
∫

Eẑk−hk(xk)

fv(vk) dvk =
∫

Eẑk

fv(z̃k − hk(xk)) dz̃k

(2.11)=
∫

Eẑk

f(zk |x) dzk ,

is identical to (2.47) and the posterior density yields

f(x | Eẑk
) =

f(Qẑk
|x) · fp(xk)
f(Qẑk

) .

Inserting this density in (2.46) directly leads to the equality

E
[
hk(xk) | z ∈ Qẑk

]
= E

[
hk(xk) | Eẑk

]
. (2.49)

In conclusion, the filtering of quantized measurement can be regarded as
an instance of the generalized likelihood approach for random sets.

2.2.3 Sets as Additional Unknown But Bounded Error Terms
and Imprecise Probabilities

In the previous subsections, the set-membership uncertainty refers to
the incapability to associate an observation with a certain value. An
alternative way is to consider a set-membership uncertainty as an additional
error [198–201] that affects the observed quantity ẑk in the same fashion
as the stochastic noise, i.e., ẑk is related to the state via

zk = hk(xk) + vk + ek , (2.50)
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where ek ∈ X zk denotes the unknown but bounded error. As mentioned
at the beginning of this chapter, we do not make any assumption about
the error behavior within the bounds. However, the error might also be
random with unknown probability density fe and the total measurement
error is then given by

z̃k = zk − hk(xk) = vk + ek .

The density of the measurement noise z̃k is obtained by the convolution

f z̃(z̃k) = fv+e(z̃k) =
∫

Rnv

fv(z̃k − ek) · fe(ek) dek .

Note that fe has compact support supp(fe) ⊆ X zk . Analogously to (2.11),
the corresponding likelihood yields

f(ẑk |xk) = f z̃(ẑk − hk(xk)

=
∫

Rnv

fv(ẑk − hk(xk)− ek) · fe(ek) dek .
(2.51)

Since fe is unknown except for its support, a set of possible densities
has to be taken into consideration for ek. The likelihood (2.51) can also
be regarded as a compound or mixture density with unknown weights
ω(i) = fe(i) and an infinite number of components fvi (ẑk − hk(xk) − i).
Therefore, the true but unknown likelihood lies in the convex closure

f( · |xk) ∈ conv
{
fv( · − hk(xk)− ν)

∣∣ ν ∈ X zk
}

=: FFFL (2.52)

of {fv( · − hk(xk)− ν)
∣∣ ν ∈ X zk }, which apparently is a set of translated

versions of fv due to the additive model (2.50). The entire set FFFL must be
taken into account by an estimator in order to provide reliable results, as
elucidated in detail in Section 2.3.
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A Comparison to Random Sets

Interestingly, by setting fe := 1Xz
k
, the imprecise likelihood (2.51) becomes

precisely the generalized likelihood (2.44), i.e.,

f(ẑk |xk) =
∫

Rnv

fv(ẑk − hk(xk)− ek) · 1Xz
k

(ek) dek

=
∫

Xz
k

fv(ẑk − hk(xk)− ek) dek

=
∫

Eẑk

fv(zk − hk(xk)) dzk

(2.53)

with Eẑk
= {ẑk − ek | ek ∈ X zk }. Contrary to the deliberations in subsec-

tions 2.2.1 and 2.2.2, the focus is now laid on an explicit source ek of
set-membership uncertainty. This case can also be expressed in terms of a
random set by means of

hk(xk) + ek ∈ EEE ẑk−vk
= {zk − vk | zk ∈ Eẑk

} ,

which replaces relation (2.43) in Subsection 2.2.1. For a moment, we
suppose that ek is random with probability density fe. The generalized
likelihood then results in

f(Eẑk
|xk) = P (z ∈ EEE ẑk

|xk)
= P (hk(xk) + ek ∈ EEE ẑk−vk

|xk)
= P (vk + ek ∈ Eẑk−hk(xk))

=
∫

Eẑk−hk(xk)

fv+e(vk) dvk

=
∫

Eẑk−hk(xk)

∫

Xz
k

fv(vk − ek)fe(ek) dek dvk .

However, since the true fe is unknown, it is not a precise generalized
likelihood that is an eligible probabilistic representation of the observation
model (2.50). In terms of fuzzy sets (see Subsection 2.2.1), this imprecise
generalized likelihood can be seen as a vague fuzzy membership function
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and only an interval for the membership to Eẑk
can be stated, and similarly

the expectation (2.49) is now imprecise lying between a lower and upper
expectation. The reason for the imprecise likelihood is that, instead of
an uncertain association of the measurement to a precise value, the set-
membership uncertainty is here considered as an additional error term that
may induce some unknown additional error behavior to the estimation
problem.

In [23], two different interpretations of the set-membership uncertainty
associated to a random set are discussed. More specifically, the authors
describe two ways to derive probability distributions compatible with a
random set: On the one hand, the principle of indifference can be applied
and a uniform distribution is associated with the set. This then results into
the precise generalized likelihood (2.53). On the other hand, the entire set
of compatible distributions, called measurable selection or selectors, can
be considered, which then yields the set (2.52) of likelihoods. In this work,
we strongly prefer the second viewpoint since ignorance expressed by a set
implies that every outcome is possible and might even contradict the current
observations. The random set perspective from Subsection 2.2.1 indicates
to trust or distrust incoming observations proportionally to the extend
of the set-membership uncertainty, but excludes the case that unknown
information may strongly contradict currently available information. So,
the approach to use sets of likelihoods proves to be more conservative and
cautious and resides in the theory of imprecise probabilities.

B Imprecise Probabilities as a Comprehensive Concept

Although Bayesian state estimation techniques have evolved into a key tool
in many research directions, numerous situations and applications point out
that estimation results are questionable if precise probability distributions
for the involved uncertainties cannot unambiguously be identified. In
particular, the choice of appropriate prior probabilities is a major challenge
and is often difficult to justify.

Early investigations have started to scrutinize the impact of varying
input distributions on the answer of a Bayesian estimator, which is a central
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topic of robust Bayesian analysis [20, 21, 83]. For the purpose of testing
the sensitivity of an estimator, several possibilities have been presented.
By the ε-contamination model, the family of all convex combinations of
a known nominal distribution with any arbitrary distribution is denoted
and the resulting set of posterior distributions is analyzed [22]. In [10, 11],
distribution bands are employed as lower and upper bounds for the set
of reasonable distributions and, in [57, 58], p-boxes are constructed that
enclose the cumulative distribution function. In [112], density-bounded
neighborhoods, i.e., sets of densities bounded by lower and upper functions,
are considered. Similarly, intervals of measures are used in [47], which are
investigated further in [45], where imprecise prior probability measures
as well as imprecise likelihoods are modeled by convex sets of probability
measures. A result of these studies surely is that an estimator often cannot
provide valid and reliable conclusions if only one probability density is
chosen among many equally reasonable densities. These examinations
evidently support the view to apply an estimator to all possible probability
densities.

All the mentioned considerations are strongly related to the concept
of imprecise probabilities [169] since, in each case, uncertain quantities
are not modeled by means of precise probability densities but by means
of sets of probability densities. In general, these sets are continuous and
connected. The probability of a certain outcome A thus yields an interval
probability [P (A), P (A)] ⊆ [0, 1] [173–175], i.e., lies between the lower
and upper probabilities P (A) and P (A) [19, 126, 169]. More generally,
imprecise probabilities can be defined by means of coherent lower and upper
previsions [18, 19, 126, 169], which can be regarded as lower and upper
expectation functionals

E[hk] = inf
f∈FFF

∫
hk(xk)f(xk) dxk

and
E[hk] = sup

f∈FFF

∫
hk(xk)f(xk) dxk ,

where FFF denotes the set of possible candidates for the unknown density.
With the relationship E[hk] = −E[−hk], it suffices to consider the lower
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prevision, i.e., the lower envelope of all expectations. In general, as in (2.52),
FFF is assumed to be a closed convex set since any arbitrary set and its
convex closure yields the same lower prevision. A closed convex set of
probability densities is often referred to as credal set [117,130,131].

As mentioned earlier, also random set theory is linked to imprecise
probabilities through measurable selections, which induce the set of proba-
bility distributions that are compatible to the random set. This relation is
intensely studied in [127,128]. In conclusion, the concept of imprecise prob-
abilities renders a comprehensive theory for incorporating set-membership
uncertainty into probabilistic uncertainty descriptions.

2.2.4 Is That All?

Apparently, the previous considerations are not an all-encompassing survey
of combined stochastic and set-membership uncertainty representations.
Many approaches exist that focus on discrete domains and propose alter-
native representations of uncertainty. Well-known is the Dempster-Shafer
theory [155] that models the degree of belief for a particular proposition in-
stead of using a probability distribution. The degree of belief is represented
by an interval. More precisely, belief denotes the lower bound that directly
supports a proposition. Plausibility is the upper bound on the possibility
the proposition can be true—up to that amount of evidence that does
not contradict the proposition. Dempster’s rule of combining evidences is
often criticized to contradict the results of a Bayesian fusion [17,179] if a
probabilistic interpretation is imposed on the degree of belief.

Uncertain and incomplete knowledge in logical reasoning can be cov-
ered by means subjective logic [88,89]. The opinion about the truth of a
proposition is here defined by belief, disbelief, uncertainty, and a base rate,
where the latter two parameters represent ignorance and prior belief, re-
spectively. Subjective logic is a powerful tool to derive a logical formulation
from verbal descriptions that are in general imprecise.

An already mentioned concept is fuzzy set theory [178], where the
membership of an element to a set is modeled to be potentially imprecise.
Although the generalized likelihood in Subsection 2.2.1 can be interpreted
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as a fuzzy membership function, fuzzy set theory is rather suitable to
represent vagueness than uncertainty and ignorance.

The approaches in info-gap decision theory [14, 15] seek the same
objective as the considered concepts, but focus on decision making under
severe uncertainty and are detached from probabilistic or probability-like
uncertainty descriptions. In this theory, a family of nested subsets around
point estimates serves as an uncertainty model and a parameter, the horizon
of uncertainty, measures the error between the estimate and the universe
of all possible true values.

Although providing convincing results, alternatives to particularly
probabilistic methods are often criticized by showing that they contradict
probability theory or reside in it. The objective pursued by this thesis
therefore is to consequently and consistently develop a combined estimation
method that does not contradict the classical stochastic and set-membership
methodologies, but that includes them as special cases.

2.3 Bayesian State Estimation with Sets of
Probability Densities

As figured out in Section 2.2.3, the purpose of a cautious and conservative
incorporation of stochastic and set-membership uncertainty supports the
idea of imprecise probabilities and points to an elementwise processing
of the underlying densities within the Bayesian estimation framework, as
outlined in [198, 200, 201]. This and the following sections pursue the
objective to provide a unified framework of stochastic and set-membership
state estimation, each of which has been discussed in sections 2.1.1 and 2.1.2,
respectively.

Instead of focusing on additive perturbation terms as in (2.50), we
start our studies with the more general discrete-time nonlinear dynamic
state transition model

xk+1 = ak(xk, ûk,wk, dk) , (2.54)

which can be recognized as a combination of the stochastic model (2.1)
and the set-valued model (2.27). The transition from xk to xk+1 is cor-
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rupted by a probabilistic process noise wk with probability density fw

and an unknown but bounded error dk ∈ X uk ⊂ Rnd . The outcome of a
measurement ẑk is related to a possibly nonlinear sensor model

zk = hk(xk,vk, ek) (2.55)

with respect to the state xk, a stochastic measurement noise vk with
density fv, and an unknown but bounded error ek ∈ X zk ⊂ Rne . Again,
the model (2.55) unites the stochastic observation model (2.2) and the set-
membership model (2.28). In the following, we assume that x0, w1, . . . ,w0,
v0, . . . ,vk are mutually independent and that their outcomes are also
independent from the unknown but bounded errors d0, . . . , dk, e0, . . . , ek.

2.3.1 Generic Prediction and Filtering of Sets of Probability
Densities

In order to derive an estimation algorithm, we follow the line of thought
discussed in Section 2.2.3. In the presence of both stochastic and set-
membership uncertainties, only imprecise probability densities can be stated.
The task is thus to recursively compute a set of estimated conditional
densities for the state, i.e., a credal set. The following considerations are
based on [198].

Prediction If we first assume dk to be known, the time update or predic-
tion step can be expressed, analogously to (2.4) and (2.5), as the Chapman-
Kolmogorov integral

fp(xk+1) =
∫

Rnx

f (xk+1 |xk, ûk, dk) · f e(xk) dxk , (2.56)

where

f (xk+1 |xk, ûk, dk) =
∫

Rnw

δ
(
xk+1 − ak(xk, ûk, wk, dk)

)
· fw(wk) dwk

(2.57)
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is the transition density deduced from the system model (2.54). However,
since dk is unknown, we have to consider the entire set of eligible transition
densities

FFFT
k =

{
fT(xk+1 |xk) = f(xk+1 |xk, ûk, dk)

∣∣∣ dk ∈ X uk
}
,

each of which is a seriously potential candidate for the true state transition
density. Consequently, the integral (2.56) is applied elementwise to the
entire set in order to obtain the set

FFFp
k+1 =

{
fp(xk+1) =

∫

Rnx

fT(xk+1 |xk)·f e(xk) dxk
∣∣∣ f e ∈ FFFe

k, f
T ∈ FFFT

k

}

(2.58)
of predicted densities, where also the current estimated density f e might
only be defined imprecisely through its membership to FFFe

k.

Filtering For fixed ek, the prior density fp can be updated in the filtering
step according to Bayes’ rule (2.6), i.e.,

f e(xk) = f(ẑk |xk, ek) · fp(xk)∫
Rnx

f(ẑk |xk, ek) · fp(xk) dxk
,

where f(ẑk |xk, ek) denotes the likelihood

f(ẑk |xk, ek) =
∫

Rn

δ
(
ẑk − hk(xk, vk, ek)

)
· fv(vk) dvk (2.59)

being derived from model (2.55) similarly to the computation of (2.8).
Again, this function cannot be identified uniquely since we only know
ek ∈ X zk , and hence the filtering step is carried out elementwise for every
likelihood in

FFFL
k =

{
fL(ẑk |xk) = f(ẑk |xk, ek)

∣∣∣ ek ∈ X zk
}

and, if fp is not precise either, also for every fp ∈ FFFp
k. The filtering step

yields the set

FFFe
k =

{
f e(xk) = fL(ẑk |xk) · fp(xk)∫

Rnx
fL(ẑk |xk) · fp(xk) dxk

∣∣∣∣ fp ∈ FFFp
k, f

L ∈ FFFL
k

}

(2.60)
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stochastic model set-membership model

combined stochastic and set-membership model

Figure 2.4: Stochastic and set-membership uncertainties can be considered
simultaneously by means of sets of probability densities. For instance, an
additive combination of a normally distributed and an interval-based error
characterization becomes a set of translated Gaussian densities.

of estimated densities, which can then be further processed elementwise
with the set of transition densities or likelihoods in subsequent prediction
or filtering steps, respectively.

Additive Noise Models In the majority of estimation problems, the noise
is assumed to additively affect the system and measurement model so
that (2.54) and (2.55) are changed to

xk+1 = ak(xk, ûk) + wk + dk (2.61)

and
zk = hk(xk) + vk + ek , (2.62)

respectively. The sifting property of the delta distribution can now be
employed to simplify the imprecise transition density (2.57) and likeli-
hood (2.59) to

fT(xk+1 |xk, ûk, dk) = fw(xk+1 − ak(xk, ûk)− dk)

and
fL(xk | ẑk, ek) = fv(ẑk − hk(xk)− ek) ,
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respectively. Accordingly, we obtain the set

FFFT
k =

{
fw(xk+1 − ak(xk, ûk)− dk)

∣∣ dk ∈ X uk
}

(2.63)

of transition densities and the set

FFFL
k =

{
fv(ẑk − hk(xk)− ek)

∣∣ ek ∈ X zk
}

(2.64)

of likelihoods. Each set contains translated versions of a density, where
the set-membership vectors dk and ek represent the corresponding shift
parameters. This way of combining probabilistic and set-membership
uncertainty is depicted in Figure 2.4. A set likeFFFT

k orFFFL
k can be interpreted

as a density (or likelihood) with imprecisely known mean and can therefore
be parameterized by the according set X uk or X zk of possible means.

2.3.2 Special Cases, Consistency, and Convexity
Up to now, we have achieved that classical probabilistic methods are a
special case of the proposed estimation concept, which occurs when each
set collapses to a single density. The opposite direction is more intricate
and unintuitive as the examinations in [193] have shown. The special
case of vanishing stochastic uncertainty implies that all involved densities
reduce to Dirac delta functions. Since the product of delta functions is
not defined, the filtered set (2.60) cannot be computed. From a simplistic
view point, which is far from mathematically sound, we may constitute
that the multiplication of delta distributions at the same positions is
defined to yield again the same delta function. As a result, the set (2.60)
represents an intersection of sets of delta functions, which corresponds
to the set-membership filtering step (2.30). The predicted set (2.58) may
be computed if the sifting property is generalized to the product of delta
distributions and is then comparable to the set-membership prediction
step (2.29). However, the linear estimation algorithm derived later in
Section 2.5 will effectively include set-membership estimation as a special
case, while we can achieve this special case only artificially for the presented
generic estimation framework.
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In general, Bayes’ rule can only be applied if the involved densities
have intersecting supports, i.e., prior and measurement information are
compatible. Of course, it is in any case reasonable to assume that sensor
observations are supported by prior information, which means that the
product of the prior density and the likelihood is a nonzero function.
For imprecise probabilities, the application of Bayes’ theorem and the
definition—or generalization—of independence is more sophisticated as
stated in [19, 126,129,169] or [190], and further prerequisites must be met
in order to circumvent inconsistencies. Thus, we require that each density
in (2.58) and (2.60) can be computed, which is definitely fulfilled for additive
models (2.61) and (2.62) with Gaussian noise. In the following sections,
where generalizations of the Kalman filtering scheme are considered, we
therefore do not need to make any explicit assumption.

In Section 2.2.3, it has been stated that the set of densities, representing
an imprecise random variable, is commonly convex, i.e., a credal set. As
investigated in [198], the resulting sets (2.58) and (2.60) are, in general,
not convex even if the inputs are convex sets. However, each set processed
in prediction and filtering steps can be considered as a generator set: For
a certain credal set, every set whose convex hull yields this credal set is
called a generator set. As depicted schematically in Figure 2.5, it suffices
to process the generator sets, and the resulting set is still a generator set
of the actual estimation result, i.e., the convex closure of the resulting set
encloses the actual estimation result [198]. Consequently, we can confine
ourselves to the processing of the set of extremal densities or any other
generator set, which generally allow for simpler representations, and we
are still able to obtain the estimated credal set.

2.4 Linear State Estimation under Stochastic
and Set-membership Uncertainties

Linear estimation problems have been studied most intensively, and the
Kalman filtering scheme can be viewed as the most well-established estima-
tion algorithm. Although being optimal for linear systems and Gaussian
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}eFF{Fconv

eFFF

pFFF
LFFF

j
Lfi

pf

i,j
ef

Figure 2.5: The set FFFp of prior densities and the set FFFL of likelihoods are
each the convex hull of a finite number of densities, i.e., a convex polytope.
It suffices to process the extremal densities fp

i and fL
j elementwise [198].

The set FFFe of filtered densities (2.60) is not convex anymore but lies in the
convex hull of the extremal densities fe

i,j .

noise characteristics, the Kalman filter may severely diverge under influ-
ences of nonlinearities, non-Gaussian perturbations, and systematic errors.
In Section 2.2, we have discussed extensions to the standard models in order
to be capable of encompassing these additional influences. Of course, many
approaches can be named that aspire a robust Kalman filter design. For
example, uncertainties can be described by means of sum quadratic [102]
or relative entropy constraints [142], irrespective of their actual error char-
acteristics. A robust filter is here obtained by solving a nonlinear optimal
control problem or finding approximate solutions to it. These constraints
can generally be regarded to be defined on a distance measure between
a nominal distribution and an unknown contaminating distribution, and
these approaches are thereby also related to imprecise probabilities. In [61]
and [156], the system matrix is perturbed by an unknown but norm-bounded
block, and linear matrix inequalities [28] are employed to derive a robust
filter. The method in [80] explicitly distinguishes between stochastic and

48



2.4. Linear State Estimation under Stochastic and Set-membership Uncertainties

set-membership uncertainties, and the gain is computed by minimizing a
cost function that depends on both types of errors. The minimization is
also done under linear matrix inequality conditions.

Our considerations in the preceding section provide the spadework
for a straightforward generalization of the Kalman filtering scheme to a
conservative and reliable linear estimator. This generalization is inferred
from the elementwise processing of sets of Gaussian densities in case of linear
models. This idea has been published in [199], and this section investigates
also a second derivation of a Kalman filter algorithm for the simultaneous
treatment of stochastic and set-membership uncertainties. It essentially
represents an MMSE estimator in the presence of additional set-membership
deviations [205]. Both approaches can be regarded as combinations of the
standard Kalman filter from Section 2.1.1 and ellipsoidal calculus from
Section 2.1.2.

The linear stochastic and set-membership models (2.12) and (2.32) of
Section 2.2 are merged into the linear system dynamics

xk+1 = Ak xk + Bk (û+ wk + dk) (2.65)

of the nx-dimensional state vector xk with system matrix Ak ∈ Rnx×nx

and control-input matrix Bk ∈ Rnx×nu . The input vector ûk ∈ Rnu is
affected by the white zero-mean noise wk ∼ N (0,Cu

k) with covariance
matrix Cu

k ∈ Rnu×nu and the unknown but bounded perturbation dk ∈
E(0,Xu

k) with shape matrix Xu
k ∈ Rnu×nu . W.l.o.g., the set-membership

errors are assumed to be centered at 0. Otherwise, we consider a shifted
version û′k = ûk + ĉk of the input quantity when dk ∈ E(ĉk,Xu

k).
A measurement ẑk is related to the state xk according to a linear

sensor model
zk = Hk xk + vk + ek , (2.66)

with the measurement matrix Hk ∈ Rnz×nx . It combines the stochastic
linear model (2.13) and the set-membership model (2.33) and is hence
affected by both a white zero-mean noise vk ∼ N (0,Cz

k) with covari-
ance matrix Cz

k ∈ Rnx×nx and an unknown error ek bounded by the
ellipsoid E(0,Xz

k) with shape matrix Xz
k ∈ Rnx×nx . In the following,

49



Chapter 2. Simultaneous Stochastic and Set-membership State Estimation

x0,w0, . . . ,wk,v0, . . . ,vk are mutually independent and, furthermore, do
not depend on the values of d0, . . . dk, e0, . . . , ek.

2.4.1 Kalman Filtering with Sets of Gaussian Densities
The generic Bayesian estimation framework for sets of probability densities
proposed in Section 2.3 becomes a tractable estimation algorithm in case of
linear models and Gaussian noise characteristics. In earlier studies [131,132],
the first assumption that has been relaxed is that a precise prior estimate
must exist for the Kalman filter. The prior has been characterized by an
ellipsoidal set of means and a single covariance matrix, i.e., by a set of
translated versions a Gaussian density. The further developments in [199–
201] allow to also model transition densities and likelihoods to be imprecise,
which is necessary to incorporate the set-membership uncertainties in (2.65)
and (2.66). The objective is then to recursively predict and update the set

FFFe
k =

{
f e(xk) = N (xk; c,Ce

k)
∣∣ c ∈ E(x̂e

k,Xe
k)
}

(2.67)

of conditional estimated densities, which can uniquely be parameterized
by the mean or midpoint x̂e

k, the shape matrix Xe
k, and the covariance

matrix Ce
k.

Prediction The input vector ûk being additively affected by the unknown
but bounded error dk ∈ E(0,Xu

k) can be regarded as a set

Uk :=
{
ûk + dk | dk ∈ E(0,Xu

k)
}

= E(ûk,Xu
k)

of imprecise input quantities6. With the Gaussian process noise density
fw = N ( · ; 0,Cu

k), the set (2.63) of transition densities is simplified to

FFFT
k =

{
f(xk+1|xk)

= N
(
xk+1 −

(
Ak xk + Bk uk

)
; 0,Cu

k

) ∣∣∣ uk ∈ E(ûk,Xu
k)
}
,

6This interpretation states the reason why we denote set-membership uncertainties
affecting the prediction step with the superscript u from the early beginning of this
chapter. Analogously, the superscript z is used for measurement uncertainties.
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which has to be processed elementwise with the set (2.67) of estimated
densities according to the prediction step (2.58). Obviously, the prediction
result FFFp

k+1 then solely contains Gaussian densities. From the predicted
covariance matrix (2.20) of the standard Kalman filter (see Section 2.1.1),
we recognize that its computation is independent of the mean. This
implies that every Gaussian density in the predicted set FFFp

k+1 has the same
covariance matrix

Cp
k+1

(2.20)= AkCe
kAT

k + BkCu
kBT

k . (2.68)

The mean of each density in FFFp
k+1 can be calculated by means of the

standard Kalman filter formula (2.19), i.e., (2.19) has to be applied to
every possible combination of an estimate xe

k ∈ E(x̂e
k,Xe

k) and imprecise
input uk ∈ E(ûk,Xu

k). Thus, the set X p
k+1 of possible predicted means is

obtained by

X p
k+1

(2.19)= Ak E(x̂e
k,Xe

k)⊕BkE(ûk,Xu
k)

(2.35)= E(Ak x̂
e
k,AkXe

kAT
k )⊕ E(Bk ûk,BkXu

kBT
k )

(2.36)
⊆ E(x̂p

k+1,X
p
k+1) ,

(2.69)

where the latter ellipsoid is an outer approximation of the Minkowski sum.
Evidently, the computation of the set of means corresponds exactly to
the ellipsoidal precition step (2.34) in Section 2.1.2, where the midpoint is
given by

x̂p
k+1

(2.36)= Ak x̂
p
k+1 + Bk ûk ,

and Xp
k+1 is chosen out of the family of possible shape matrices

Xp
k+1(p) (2.37)= (1 + p−1) AkXe

kAT
k + (1 + p) BkXu

kBT
k

by minimizing the trace with

popt (2.39)= trace(AkXe
kAT

k ) 1
2 · trace(BkXu

kBT
k )− 1

2 . (2.70)
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The result of the prediction step is finally parameterized by the mid-
point x̂p

k+1, the shape matrix Xp
k+1, and the covariance matrix Cp

k+1,
which define the set

FFFp
k+1 =

{
fp(xk+1) = N (xk+1; c,Cp

k+1)
∣∣ c ∈ E(x̂p

k+1,X
p
k+1)

}
(2.71)

of predicted Gaussian densities.

Filtering In order to follow the same line of reasoning as in the prediction
step, the measurement equation (2.66) is rewritten to

zk − ek = Hk xk + vk

so that a concrete measurement ẑk together with the unknown but bounded
error ek ∈ E(0,Xz

k) can be considered as a set

Zk :=
{
ẑk − ek | ek ∈ E(0,Xz

k)
}

= E(ẑk,Xz
k)

of possible measurements. The last part of the equation is due to the sym-
metry of the ellipsoid, so it is irrelevant whether ek is added or subtracted.
The set (2.64) of translated likelihoods then becomes

FFFL
k =

{
f(zk |xk) = N

(
zk −Hk xk; 0,Cz

k

) ∣∣∣ zk ∈ E(ẑk,Xz
k)
}

with fv = N ( · ; 0,Cz
k) being the density of the measurement noise vk.

In order to compute the set (2.60) of filtered densities, the set (2.71) of
prior or predicted densities has to be updated elementwise with FFFL

k . Again,
the computation of the filtered covariance matrix is independent from the
computation of the mean, as can be seen from (2.26). Since every density
in FFFp

k and every density in FFFL
k has the same covariance matrix, every

filtered density in the set FFFe
k therefore has also the same covariance matrix

Ce
k

(2.26)= Cp
k −KkHkCp

k , (2.72)

which also implies that in each case the same Kalman gain (2.24) has
been used. Consequently, the same Kalman gain is also employed to

52



2.4. Linear State Estimation under Stochastic and Set-membership Uncertainties

combine every prior mean xp
k ∈ E(x̂p

k,X
p
k) with every possible measurement

zk ∈ E(ẑk,Xz
k). This combination can again be written as a Minkowski

sum

X e
k

(2.25)= (I−KkHk) E(x̂p
k,X

p
k)⊕Kk E(ẑk,Xz

k)
(2.35)= E

(
(I−KkHk) x̂p

k, (I−KkHk)Xp
k(I−KkHk)T)

⊕ E(ẑk,KkXz
kKT

k )
(2.36)
⊆ E(x̂e

k,Xe
k) ,

(2.73)

where the latter ellipsoid denotes an outer approximation with the midpoint

x̂e
k

(2.36)= (I−KkHk)x̂p
k + Kk ẑk

and the shape matrix

Xe
k

(2.37)= (1+p−1) (I−KkHk)Xp
k(I−KkHk)T +(1+p) KkXz

kKT
k . (2.74)

An enclosing ellipsoid with minimal trace of Xe
k can be calculated by

employing

popt (2.39)= trace((I−KkHk)Xp
k(I−KkHk)T) 1

2 · trace(KkXz
kKT

k )− 1
2 .

(2.75)
It is particularly important to note that the estimated set of means is not,
as one might expect, an intersection of ellipsoids but again a weighted
Minkowski sum. An intersection can only be attained by adapting the
gain Kk, which is done in the following Subsection 2.4.2.

The generic Bayesian estimation framework for sets of densities dis-
cussed in Section 2.3 generally does not allow to explicitly distinguish
between stochastic and set-membership uncertainties as it can be impossi-
ble to discern how the set-membership error description is incorporated
in an arbitrary set of densities, especially when no parameterization is
known. Contrary to nonlinear models and arbitrary densities, stochastic
and set-membership error characteristics remain distinguishable from one
another in the presented generalization of the Kalman filter: The former is

53



Chapter 2. Simultaneous Stochastic and Set-membership State Estimation

Prediction

Filtering

K k
+

I − K kH k

Unit
Delay

+

A k

B k

kU

kZ

keX

kpX

Estimated Set of Means
X e

k

(2.73)=
(
I−KkHk

)X p
k⊕Kk Zk

Estimated Covariance Matrix
Ce

k

(2.72)= Cp
k −KkHkCp

k

Predicted Set of Means
X p

k+1
(2.69)= Ak X e

k ⊕Bk Uk

Predicted Covariance Matrix
Cp

k+1
(2.68)= AkCe

kAT
k + BkCw

k BT
k

Figure 2.6: Uncertain quantities are characterized by sets of translated
Gaussian densities. Each set can be parameterized by a set of means and a
single covariance matrix. In comparison to the standard Kalman filter, only
the computation of the means needs to be generalized to the Minkowski
sums (2.69) and (2.73).

represented by the covariance matrix Ce
k and the latter is characterized by

the shape matrix Xe
k of the ellipsoidal bound. Figure 2.6 summarizes the

generalized Kalman filtering scheme and, compared to the purely stochastic
scheme in Section 2.1.1, only the calculations of the means are replaced by
Minkowski sums.

2.4.2 Linear Minimum Mean Squared Error Estimator
In the previous subsection, the Kalman filter has been generalized to set-
membership uncertainties by considering the underlying sets of Gaussian
probability densities. As stated earlier in Section 2.1.1, it is a misconception
to assume that the Kalman filter strictly relies on Bayes’ rule applied to
underlying Gaussian densities. The derivation of the purely stochastic
Kalman filter does not require the exploitation of specific probabilistic
information other than mean and covariance matrix. Analogously, we can
also derive a linear minimum mean squared error (LMMSE) estimator in
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the simultaneous presence of set-membership uncertainties. This concept
is based on the results published in [205] and is studied more closely in the
following. A different derivation of the optimal gain is provided, and the
discussion of special and limiting cases is expanded.

According to (2.16) and (2.17), the optimal estimate x̂e
k has the prop-

erty that the random deviation

x̃stoc
k = x̂e

k − xk

from the uncertain state xk has zero mean and the corresponding MSE
is given by E[(x̃stoc

k )T(x̃stoc
k )]. By following the considerations in [184]

and [205], we aspire to derive a Kalman filtering scheme for estimation
problems where also an unknown but bounded deviation may affect the
state estimate and the total deviation yields

x̃stoc
k + x̃set

k = x̂e
k − xk . (2.76)

The stochastic part x̃stoc
k has zero mean and the error covariance matrix

Ce
k = Cov(x̃stoc

k ), and the set-membership x̃set
k deviation is bounded by

the ellipsoid E(0,Xe
k). As a result, the unbiasedness (2.16) does not hold

anymore due to

E[x̂e
k]− E[xk] = E[x̂e

k − xk] = E[x̃set] ∈ E(0,Xe
k) . (2.77)

The MSE matrix in this case becomes
E
[
(x̂e
k − xk)(x̂e

k − xk)T] = E
[
(x̃stoc
k + x̃set

k )(x̃stoc
k + x̃set

k )T]

= E
[
(x̃stoc
k )(x̃stoc

k )T]+ E
[
(x̃set
k )(x̃set

k )T]

= Ce
k + E

[
(x̃set
k )(x̃set

k )T]

= Ce
k + (x̃set

k )(x̃set
k )T ,

(2.78)

where the latter equality holds when x̃set
k is non-stochastic7, e.g., a system-

atic error. The trace of this matrix then yields the MSE
E
[
(x̂e
k − xk)T(x̂e

k − xk)
]

= E
[
(x̃stoc
k )T(x̃stoc

k )
]

︸ ︷︷ ︸
= trace(Ce)

+ (x̃set
k )T(x̃set

k )︸ ︷︷ ︸
≤ trace(Xe)

≤ trace(Ce
k + Xe

k) .
(2.79)

7In the following, we assume x̃set
k to be non-stochastic in order to simplify matters.

Otherwise, we define x̃set
k := E[x̃set

k ] ∈ E(0,Xe
k), and the conclusions remain the same.
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The latter inequality holds because the Euclidean distance of any element ek
in an ellipsoid E(ĉ,X) to the center ĉ is related to the trace of X via the
inequality

‖ĉ− e‖2 = trace
(
(ĉ− e)(ĉ− e)T)

= (ĉ− e)T(ĉ− e)
≤ trace

(
X
)
,

(2.80)

as stated in [111]. Thus, the relation (x̃set
k )T(x̃set

k ) = ‖x̃set
k ‖2 ≤ trace(Xe

k)
immediately justifies the use of ellipsoidal error bounds since the Euclidean
length of the error is directly bounded by the sum of the squared lengths
of the semiaxes, i.e., the trace of Xe

k. Consequently, the trace of the
covariance matrix characterizes the mean squared error of the stochastic
term and the trace of the shape matrix bounds the maximum squared error
of the set-membership term. Before we derive the Kalman filter algorithm
for the considered situation, we extend the notion of unbiasedness to
set-membership uncertainties.

A On the Unbiased Condition

As explained in [205], set-membership perturbations may directly affect
the mean of a linear estimator, according to

E
[
K′x̂e

1 + Kx̂e
2
]

= K′(E[x] + x̃set
1 ) + K(E[x] + x̃set

2 )
= (K′ + K) E[x] + K′x̃set

1 + Kx̃set
2 ,

where K′ and K are the gains that are used to fuse the two estimates x̂e
1

and x̂e
2. For known deviations x̃set

1 and x̃set
2 , the gains can be determined

to eliminate the bias and to minimize (2.79), i.e.,

(K′ + K) E[x] = E[x]−K′x̃set
1 −Kx̃set

2 .

Since the deviations are unknown and are bounded by ellipsoids centered
at the origin, even −x̃set

1 and −x̃set
2 are possible. The mean would then

yield
E
[
K′x̂e

1 + Kx̂e
2
]

= (K′ + K) E[x]− 2K′x̃set
1 − 2Kx̃set

2 ,
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which could significantly increase the actual MSE. Therefore, K′ = I−K
minimizes the risk of a high error, which otherwise must be bounded
and results into a larger non-optimal bound for the total MSE. A second
argument is that the set-membership error bound also includes zero-mean
stochastic perturbations, for which we expect an unbiased estimation result.

B Recursive LMMSE Estimation

In order to compute an estimate that minimizes the MSE (2.79), the
formulas for the prediction and filtering step need to be adapted appropri-
ately. While it turns out that the prediction steps remains the same as in
Section 2.4.1, the main challenge is to derive the Kalman gain.

Prediction In order to compute a predicted estimate for the evolved
state xk+1, we consider the conditional mean

x̂p
k+1

(2.65)= E[Ak xk + Bk(ûk + wk + dk) | ẑ0:k]
= Ak(x̂e

k + x̃set
k ) + Bk(ûk + dk)

= Ak x̂
e
k + Bk ûk + Ak x̃

set
k + Bk dk ,

which is in compliance with the standard Kalman prediction step (2.19)
in Section 2.1.1-B. It is affected by the set-membership error8 x̃set

k of the
previous estimate x̂e

k and the unknown input error dk. At the moment,
we therefore cannot state a specific value for x̂p

k+1. For the following
considerations, we choose the midpoint

x̂p
k+1 = Ak x̂

e
k + Bk ûk (2.81)

of this set of possible estimates and compute the MSE matrix of the error

x̂p
k+1 − xk+1 = Ak(x̂e

k − xe
k) + Bk(wk + dk)

(2.76)= Ak(x̃stoc
k + x̃set

k ) + Bk(wk + dk) ,
8Note that, according to (2.77), it should say −x̃set

k , but the set of possible errors is
modeled to be symmetric around origin.
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i.e.,

E[(x̂p
k+1 − xk+1)(x̂p

k+1 − xk+1)T]

= E
[(

Ak(x̂e
k − xk) + Bk(wk + dk)

)(
Ak(x̂e

k − xk) + Bk(wk + dk)
)T]

= AkCe
kAT

k + BkCu
kBT

k + (Ak x̃
set
k + Bk dk)(Ak x̃

set
k + Bk dk)T .

(2.82)
By comparing the result with (2.78), we realize that the predicted stochastic
uncertainty is, as expected, represented by

Cp
k+1 = AkCe

kAT
k + BkCu

kBT
k , (2.83)

and the set-membership deviations are characterized by a Minkowski sum
according to

Ak x̃
set
k + Bk dk ∈ Ak E(0,Xe

k)⊕Bk E(0,Xz
k) ⊆ E(0,Xp

k+1) ,

for which the latter ellipsoid is an external approximation with the shape
matrix

Xp
k+1(p) (2.37)= (1 + p−1) AkXe

kAT
k + (1 + p) BkXu

kBT
k . (2.84)

In compliance with (2.79), the MSE is related to the inequality

E
[
(x̂e
k − xk)T(x̂e

k − xk)
]
≤ trace(Cp

k+1 + Xp
k+1(p))

= trace(Cp
k+1) + trace(Xp

k+1(p)) .
(2.85)

The matrix Xp
k+1 = Xp

k+1(popt) must have minimal trace by setting popt

to (2.70) so as to minimize the bound (2.85).
The error matrices Cp

k+1 and Xp
k+1 have been derived for the chosen

predicted estimate (2.81). The reason for this choice is the same as in Para-
graph 2.4.2-A. For any other point estimate x̂p

k+1 = Ak x̂
e
k+Bk ûk+bk, the

actual MSE matrix (2.82) might become Cp
k+1 + 2 · bkb

T
k . Hence, in order

to avoid the risk of a high MSE, we have to choose (2.81). Apparently,
we have derived the same predicted parameters x̂p

k+1, Cp
k+1, and Xp

k+1 as
for the prediction step in the previous Subsection 2.4.1. Now, the shape
matrix Xp

k+1 does not characterize a set of possible means but rather the
set-membership uncertainty associated to the point estimate x̂p

k+1.
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Filtering Based upon the measurement data and system dynamics up to
a time instance k, we are looking for the Kalman gain Kk that combines
the prior state estimate x̂p

k with the measurement information ẑk according
to

x̂e
k = (I−KkHk)x̂p

k + Kkẑk = x̂p
k + Kk

(
ẑk −Hk x̂

p
k

)
, (2.86)

and concurrently minimizes the trace of (2.78), i.e., the MSE (2.79). As
discussed in Paragraph 2.4.2-A, we require the estimator to be unbiased.
With x̃stoc

k + x̃set
k denoting the errors perturbing the prior estimate x̂p

k, the
MSE matrix yields

E
[
(x̂e
k − xk)(x̂e

k − xk)T]

= E
[(
x̂p
k + Kk(ẑk −Hk x̂

p
k)− xk

)(
x̂p
k + Kk(ẑk −Hk x̂

p
k)− xk

)T]

= E
[(

x̃stoc
k + x̃set

k + Kk(Hk xk + vk + ek −Hk x̂
p
k)
)(
. . .
)T]

= E
[(

(I−KkHk)(x̃stoc
k + x̃set

k ) + Kk(vk + ek)
)(
. . .
)T]

= (I−KkHk) E[(x̃stoc
k )(x̃stoc

k )T](I−KkHk)T + Kk E[(vk)(vk)T]KT
k

+ E
[(

(I−KkHk)x̃set
k + Kkek)(. . .)T]

= (I−KkHk)Cp
k(I−KkHk)T + KkCz

kKT
k

+
(
(I−KkHk)x̃set

k + Kkek
)(

(I−KkHk)x̃set
k + Kkek

)T
.

(2.87)
Compared to (2.78), this sum is again a combination of the estimated error
covariance matrix

Ce
k = (I−KkHk)Cp

k(I−KkHk)T + KkCz
kKT

k (2.88)

and the estimated set-membership error matrix, which is computed with
the help of a bounding ellipsoid. Due to the set-membership of x̃set

k and ek,
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the latter sum is related to a Minkowki sum according to

(I−KkHk) x̃set
k + Kk ek ∈ (I−KkHk)E(0,Xp

k)⊕KkE(0,Xz
k)

(2.35)= E(0, (I−KkHk)Xp
k(I−KkHk)T)

⊕ E(0,KkXz
kKT

k )
(2.36)
⊆ E(0,Xe

k(p)) ,

where

Xe
k(p) (2.37)= (1 + p−1) (I−KkHk)Xp

k(I−KkHk)T

+ (1 + p) KkXz
kKT

k

(2.89)

denotes the shape matrix of the bounding ellipsoid. For this matrix, we
have

trace
((

(I−KkHk)x̃set
k + Kk ek

)(
(I−KkHk)x̃set

k + Kk ek
)T)

≤ trace
(
Xe
k(p)

)

for all p > 0, due to inequality (2.80). The actual MSE can now be bounded
from above by

E
[
(x̂e
k − xk)T(x̂e

k − xk)
]

= trace
(

E
[
(x̂e
k − xk)(x̂e

k − xk)T])

(2.87)= trace
(
Ce
k

)
+ trace

((
(I−KkHk)x̃set

k + Kkek
)(
. . .
)T)

(2.80)
≤ trace

(
Ce
k

)
+ trace

(
Xe
k(p)

)

= trace
(
(I−KkHk)Cp

k(I−KkHk)T)+ trace
(
KkCz

kKT
k

)

+ (1 + p−1) trace
(
(I−KkHk)Xp

k(I−KkHk)T)

+ (1 + p) trace
(
KkXz

kKT
k

)

=: E
[
(x̂e
k − xk)T(x̂e

k − xk)
]
.

(2.90)

The optimal parameter p that minimizes the upper bound E
[
(x̂e
k − xk)T

(x̂e
k − xk)

]
is given by (2.39), i.e.,

p =

√
trace

(
(I−KkHk)Xp

k(I−KkHk)T
)

√
trace

(
KkXz

kKT
k

) ,
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and, analogously to (2.38), the right-hand side of (2.90) then reads

E
[
(x̂e
k − xk)T(x̂e

k − xk)
]

= trace
(
(I−KkHk)Cp

k(I−KkHk)T)+ trace
(
KkCz

kKT
k

)

+
(√

trace
(
(I−KkHk)Xp

k(I−KkHk)T
)

︸ ︷︷ ︸
=:A

+
√

trace
(
KkXz

kKT
k

)
︸ ︷︷ ︸

=:B

)2
.

The derivative rules (2.22) and (2.23) for the trace can be utilized to
compute

∂

∂Kk
E
[
(x̂e
k − xk)T(x̂e

k − xk)
]

= − 2Cp
kHT

k + 2KkHkCp
kHT

k + 2KkCz
k

+
(
−Xp

kHT
k + KkHkXp

kHT
k

)
· 1
A

· 2(A+B)

+ 2KkXz
k · 1

B
· (A+B)

= − 2Cp
kHT

k + 2KkHkCp
kHT

k + 2KkCz
k

+ 2
(

1 + B

A

)(
−Xp

kHT
k + KkHkXp

kHT
k

)

+ 2
(

1 + A

B

)
KkXz

k

Substituting p := A
B , setting the above derivative to zero, and rearranging

the equation yield the gain

Kk(p) =
(

(1 + p−1)Xp
kHT

k + Cp
kHT

k

)
·

(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k + HkCp
kHT + Cz

k

)−1 (2.91)

According to this result, the minimization of (2.90) only depends on the
scalar parameter p > 0. Hence, the nx2-dimensional optimization problem
of finding the optimal gain Kk has been reduced to a one-dimensional one.
Unfortunately, a convex optimization is needed to find that value popt which
minimizes the MSE (2.90). However, the need for such an optimization is a
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usual issue of ellipsoidal approximations. With Kk = Kk(popt), the point
estimate x̂e

k is obtained by (2.86). The updated covariance matrix for the
stochastic estimation error and the updated shape matrix for the unknown
but bounded error can be computed by (2.88) and (2.89), respectively.
These parameters, Ce

k and Xe
k, then characterize the uncertainty associated

to the point estimate x̂e
k.

Remark 1 For the derived gain (2.91), the MSE matrix that corresponds
to the bound (2.90) can be rewritten to

E
[
(x̂e
k − xk)(x̂e

k − xk)T]

=
((

Cp
k + (1 + p−1)Xp

k

)−1 + HT(Cz
k + (1 + p)Xz

k

)−1H
)−1

.

Remark 2 The scalar factors (1 + p−1) and (1 + p) can be replaced
according to

(1 + p) = 1
ω

and (1 + p−1) = 1
1− ω

with ω ∈ (0, 1). In doing so, a bisection method can be employed to find
the optimal parameter in the interval (0, 1).

C Special Cases

In Figure 2.7, different estimates to be fused are depicted, i.e., H = I and
the measurement can itself be seen as a state estimate (see Chapter 3). In
special cases [205], the proposed combined estimator reduces to the purely
stochastic and purely set-membership estimation principles from Section 2.2,
namely, in the situation of vanishing set-membership or vanishing stochastic
uncertainty, respectively.

Standard Kalman Filter The Kalman filter appears in its standard for-
mulation of Section 2.1.1-B, if Xp

k = Xz
k = 0. The gain (2.91) simply

becomes
Kk = Cp

kHT
k

(
HkCp

kHT + Cz
k

)−1
,
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which is identical to (2.24). This is an expected result since we have strictly
followed and generalized the derivation of the standard Kalman gain. The
fusion result is depicted in Figure 2.7(b) by the dashed blue ellipsoid.

Centered Intersection More surprising is the special case of a centered
intersection of ellipsoids, if Cp

k = Cz
k = 0. The gain (2.91) then reduces to

Kk(p) = (1 + p−1)Xp
kHT

k

(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k

)−1
.

With this gain, formula (2.89) for the shape matrix of the bounding ellipsoid
can be simplified9 to

Xe
k(p) = (1 + p−1)Xp

k −Kk(p)Hk

(
(1 + p−1)Xp

k

)

= (1 + p−1)Xp
k−
(
(1 + p−1)Xp

k

)
HT
k ·

(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k

)−1
Hk

(
(1 + p−1)Xp

k

)

=
( 1

1 + p−1 (Xp
k)−1 + 1

1 + p
HT
k (Xz

k)−1Hk

)−1
,

where, for the last equation, the Woodbury matrix identity [177] has been
applied. As in Remark 2, the formula can be rewritten to

Xe
k(ω) =

(
(1− ω)(Xp

k)−1 + ωHT
k (Xz

k)−1Hk

)−1 (2.92)

with ω = 1
1+p ∈ [0, 1] and is identical to the shape matrix (2.40) for the

ellipsoidal bound of an intersection. By letting Hk = I in order to simplify
matters, this matrix characterizes the centered intersection

E(0,Xp
k) ∩ E(0,Xz

k) ⊂ E(0,Xe
k(ω)) ,

which is analogous to the results of covariance intersection [99] (see Sec-
tion 3.5.3). The obtained bounding ellipsoid is shown in Figure 2.7(c)
and is compared to a tight bound for the intersection. The difference to
Section 2.1.2-B is that the parameter (2.41) which scales the shape matrix

9In the same way, the Joseph form (2.26) is simplified.
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(a) Fusion of two estimates with both
stochastic and set-membership error
characteristics.
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(b) Fusion of the same estimates with
zero set-membership uncertainty. Re-
sult is the same result as for the stan-
dard Kalman filter.
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(c) Fusion of the same estimates with
zero stochastic uncertainty. Result is
a bound for the centered intersection.
The magenta ellipsoid is a tight trace-
optimal bound for the intersection.
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(d) Centralized Intersection: If the esti-
mates are identical, then the blue error
bound in Fig. (c) is a tight approxima-
tion of the intersection and coincides
with the magenta bound.

Figure 2.7: The blue ellipsoids are the uncertainty characteristics for the
fused red and green estimates. The set-membership bounds are bold and
the covariance ellipsoids are drawn in dashed lines.
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down is omitted. Thus, the maximum possible intersection is bounded,
which occurs when the estimates to be fused are identical, as illustrated in
Figure 2.7(d).

Finally, a generalization of the well-known Kalman filtering scheme
is attained that reduces to the standard Kalman filter in the absence of
set-membership uncertainty and that otherwise becomes the intersection
of sets in case of vanishing stochastic uncertainty.

2.5 Advanced Simultaneous Stochastic and
Set-membership Estimation

This section constitutes the main result of this chapter, although not much
work is left to be done with keeping in mind the previous results. We provide
a generalization of the estimation concept proposed in Section 2.4.2 in
order to enable the user to decide whether the stochastic or set-membership
uncertainty shall primarily be minimized. The idea behind it rests upon
the fact that for the standard Kalman gain the same result is attained
when instead of trace(Ce

k) a scaled version

trace
(
S· Ce

k

)
= trace

(
(I−KkHk)(S· Cp

k)(I−KkHk)T

+ Kk(S· Cz
k)KT

k

) (2.93)

with S > 0 is considered, which corresponds to a scaled covariance ellipsoid
around the current state estimate x̂e

k.
The basic idea behind the scaling parameter is that, in contrast to

enclosing ellipsoids for set-membership errors, covariance ellipsoids do
not represent rigid bounds. In a one-dimensional state space, a 95.4%
confidence level around a point estimate, for instance, corresponds to the
2-sigma ellipsoid (i.e., interval), and setting S = 3 even yields a 99.7%
confidence level. With increasing scaling parameter, the bounds can be
considered to be more rigid and more similar to a set-membership error
description. To express it in a simple way, both types of errors become
more comparable with larger values of S. If for ensuing decision making or
control tasks a certain confidence level is known in advance, it is particularly
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desirable to choose a Kalman gain that ensures a minimum confidence set.
The proposed concept, which is based on [205], therefore allows to flexibly
balance between the minimization of the stochastic uncertainty and the
minimization of the set-membership uncertainty.

As in the previous considerations, we consider the combined linear
models (2.65) and (2.66). It is easy to recognize from the predicted MSE
matrix (2.82) in Section 2.4.2-B that the estimate x̂p

k+1, the predicted
covariance matrix Cp

k+1, and shape matrix Xp
k+1, i.e., equations (2.81),

(2.83), and (2.84), are not altered by the scaling parameter S. In the
following, we examine its effect to the filtering step.

2.5.1 Adjustable Gains
Instead of minimizing the MSE (2.90) in Section 2.4.2, we determine the
gain to be optimal for the sum of the modified trace (2.93) and the trace
of the ellipsoidal shape matrix , i.e.,

Kk(p) = arg min
{

trace
(
S· Ce

k

)
+ trace

(
Xe
k(p)

)}
.

for p > 0. By following the derivation of the filtering step in Section 2.4.2-B,
we obtain the Kalman gain

Kk(p) =
(

(1 + p−1)Xp
kHT

k + SCp
kHT

k

)
·

(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k + SHkCp
kHT + SCz

k

)−1
,

where simply the covariance matrices are replaced by scaled versions. An
alternative way to define the problem is to consider a convex combination
of the traces, and thus we are striving for

Kk(p) = arg min
{

(1− α) trace
(
Ce
k

)
+ α trace

(
Xe
k(p)

)}

with α ∈ [0, 1]. The result is then given by the gain

Kk(p) =
(
α
(
1 + p−1)Xp

kHT
k + (1− α)Cp

kHT
k

)
·

(
α
(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k

)
+ (1− α)

(
HkCp

kHT + Cz
k

))−1
.

(2.94)
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In the following, we prefer the latter definition of the Kalman gain due to
the boundedness of the parameter α.

The derived Kalman gains can then be applied within the formu-
las (2.86), (2.88), and (2.89) in order to compute the estimate x̂e

k, the
covariance matrix Ce

k, and the shape matrix Xe
k, respectively. Note that

also the covariance matrix Ce
k depends on p due to Kk(p), which is employed

to combine the error characteristics Cp
k and Cz

k. As in Section 2.4.2-B, the
optimal popt is determined to minimize the trace, i.e.,

popt = arg min
{

(1− α) trace
(
Ce
k(p)

)
+ α trace

(
Xe
k(p)

)}
,

which is a one-dimensional convex optimization problem.
The formulas for the prediction step remain for each instance exactly

the same, be it the Kalman filter for sets of densities from Section 2.4.1,
the LMMSE estimator from Section 2.4.2, or the advanced scheme in this
section. However, the filtering step has successively been generalized and
the results of this section embrace the previous instances of the filtering
step. We do not repeat here the formulas for the prediction and filtering
steps but summarize them in Figure 2.8 and Figure 2.9.

2.5.2 Limiting Cases
The approach derived in Section 2.4.2 is directly related to the parameters
α = 0.5 or S = 1, respectively, which necessarily leads to the Kalman
gain (2.91). Accordingly, the results depicted in Figure 2.10(a) are the
same as in Figure 2.7(a).

From Section 2.4.2-C, we can easily recognize that, for α = 0 or, respec-
tively, S →∞, the gain (2.94) becomes the standard Kalman gain (2.24).
Therefore, the blue dashed ellipse in Figure 2.10(b) corresponds to the
fusion result in Figure 2.7(b). Furthermore, we have obtained the Kalman
filter for sets of Gaussian densities, as it has been derived in Section 2.4.1.
It is important to note that p and Kk are determined independently from
each other. However, the advantage that p can, in this case, be computed
analytically by means of (2.75) comes at the expense of possibly large
set-membership error bounds, which are rather computed as a byproduct.
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Prediction

Filtering
Kkẑk

+

I − KkHk

x̂p
k

Unit
Delay + Ak

Bkûk

x̂e
k

x̂p
k+1

Filtering

Input:

• prior or predicted estimate x̂p
k with error covariance matrix Cp

k and shape matrix Xp
k

• linear measurement model (2.66)

• observation ẑk, sensor noise with stochastic and set-membership error statistics Cz
k and Xz

k

• weighting parameter α in order to adjust the ratio between both error characteristics

Computation of updated estimate and error characteristics

• For given weighting parameter α, the gain Kk(p) is

Kk(p) (2.94)=
(
α
(
1 + p−1)Xp

kHT
k + (1− α)Cp

kHT
k

)
·

(
α
(
(1 + p−1)HkXp

kHT
k + (1 + p)Xz

k

)
+ (1− α)

(
HkCp

kHT + Cz
k

))−1 (2.95)

• Computation of updated estimate x̂e
k by means of

x̂e
k

(2.86)= (I−Kk(p) Hk)x̂p
k + Kk(p) ẑk (2.96)

• Computation of updated error covariance matrix Ce
k according to

Ce
k(p) (2.88)=

(
I−Kk(p) Hk

)
Cp
k

(
I−Kk(p) Hk

)T + Kk(p) Cz
k Kk(p)T (2.97)

• The updated shape matrix Xe
k for the set-membership error is given by

Xe
k(p) (2.89)= (1 + p−1)

(
I−Kk(p) Hk

)
Xp
k

(
I−Kk(p) Hk

)T + (1 + p) Kk(p) Xz
k Kk(p)T (2.98)

• The optimal parameter popt is determined by minimizing

popt = arg min
{

(1− α) trace(Ce
k(p)) + α trace(Xe

k(p))
}

The updated point estimate x̂e
k = x̂e

k(popt) is characterized by the stochastic error characteristics
Ce
k = Ce

k(popt) and set-membership error description Xe
k = Xe

k(popt).

Figure 2.8: Summary of the filtering step.
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Prediction

Filtering
Kkẑk

+

I − KkHk

x̂p
k

Unit
Delay + Ak

Bkûk

x̂e
k

x̂p
k+1

Prediction

Input:

• point estimate x̂e
k with estimated covariance matrix Ce

k and shape matrix Xe
k

• linear system model (2.65)

• control input ûk, process noise with stochastic and set-membership error statistics Cu
k and Xu

k

Computation of predicted estimate and error characteristics

• Computation of predicted estimate x̂p
k+1 by means of

x̂p
k+1

(2.81)= Ak x̂
e
k + Bk ûk (2.99)

• Computation of error covariance matrix Cp
k+1 according to

Cp
k+1

(2.83)= AkCe
kAT

k + BkCu
kBT

k (2.100)

• The family of possible shape matrices Xp
k+1(p) with p > 0 is given by

Xp
k+1(p) (2.84)= (1 + p−1) AkXe

kAT
k + (1 + p) BkXu

kBT
k (2.101)

• In order to minimize the MSE (2.85), the parameter popt is chosen according to

popt (2.70)= trace(AkXe
kAT

k ) 1
2 · trace(BkXu

kBT
k )− 1

2 (2.102)

The predicted point estimate x̂p
k+1 is characterized by the stochastic error characteristic Cp

k+1
and the set-membership error description Xp

k+1.

Figure 2.9: Summary of the prediction step.
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For α = 1 or, respectively, S = 0, we obtain the formulas of the
centralized intersection (2.92). In this case, we encounter a possibly non-
decreasing stochastic uncertainty, as illustrated in Figure 2.10(c). The blue
dashed covariance ellipsoid is still similar to the green dashed ellipsoid and
is in some directions larger than the red one. The gain does not incorporate
the covariance matrices.

In Figure 2.10(d), the interesting special case of fusing a purely stochas-
tic and a purely set-membership state estimate is depicted, and it im-
pressively demonstrates how stochastic and set-membership estimation
principles are melt together to a unifying concept. As indicated by the
gray ellipsoid, for small α, we insist to minimize the stochastic error and
therefore tend to primarily trust the set-membership estimate that reports
no stochastic error. For α = 0, the stochastic estimate is even rejected.
Analogously, the opposite applies for large α.

In conclusion, the proposed concept includes the purely stochastic and
purely set-membership estimation principles by distrusting one of both error
characteristics. The adjustable Kalman gain allows for a smooth transition
between stochastic and set-membership estimators, and the generalizations
of the standard Kalman filter presented in Section 2.4.1 and Section 2.4.2
are encompassed as special cases.

2.6 Treatment of Nonlinearities in
Approximate Kalman Filtering

Although Kalman filtering techniques may severely suffer from the influences
of nonlinearities, they are also widely applied to provide estimates on
system states that evolve according to nonlinear system dynamics and
are observed through nonlinear sensor systems. The simple processing
of estimates states the reason why the Kalman filter has also become a
well-accepted approach when nonlinearities are encountered. In this case,
the process and measurement models are linearized either by a Taylor series
expansion, as it is done for the extended Kalman filter (EKF) [163], or by
a linear regression analysis, for which the unscented Kalman filter [95,97]
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(a) Fusion of two estimates with α = 0.5.
The result is the same as for the LMMSE
estimator in Section 2.4.2.
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(b) Fusion of same estimates with
α = 0. Ce

k is minimized and the
same as for the standard Kalman fil-
ter. The set-membership bound in-
creases. The dashed ellipsoids corre-
spond to Fig. 2.7(b).
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(c) Fusion of same estimates with α = 1
gives the centered intersection for the
set-membership bound, but the covari-
ance ellipsoid increases. The solid ellip-
soids correspond to Fig. 2.7(c).
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(d) Fusion of a purely stochastic esti-
mate with a purely set-membership es-
timate. The result for α = 0.5 is blue,
the result for α = 0.1 is gray.

Figure 2.10: The blue ellipsoids are the uncertainty characteristics for
the fused red and green estimates. In contrast to Fig. 2.7, both types of
uncertainty are present in each case, but different weighting parameters for
the gain (2.94) are chosen. For each estimate, set-membership error bounds
are bold and the stochastic error characteristics are drawn in dashed lines.
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is a well-known candidate. Especially, the former approach suffers from
inconsistent estimates [26]. The regression-based filters implicitly calculate
an additional linearization noise and are better able to preserve consistency
at the cost of less informative10 estimation results [114,115]. In order to
enhance the reliability of approximate Kalman filters, the derived estimation
methods from the previous sections prove to be a useful tool for the effective
treatment of nonlinearities in approximate Kalman filtering. The estimation
principles employed in this section have been studied in [183] and [202] and
their applicability has been demonstrated against the background of beating
heart surgery systems [191] (see Section 2.7.3), where an estimate on the
heart surface displacement is to be computed. The approach presented in
the following has been published in [202]. We extend this work by a deeper
analysis, combine it with the advanced filtering scheme, and discuss an
additional way of approximating the nonlinear mappings.

The trouble with nonlinear system and measurement functions is
that Gaussian random quantities will not be Gaussian anymore. For
instance, quadratic measurement models can result in multi-modal densities
whose support is not primarily allocated around the mean. In general,
the resulting density can be an arbitrary function for which no finite-
dimensional parameterization is obtainable. So, the reason to convert the
true density back to a Gaussian one is given by its simple parameterization
and processing. For any nonlinear transformation

y = g(x) = gLin(x) + gNonlin(x) (2.103)

of an uncertain quantity x, this involves that the nonlinear part gNonlin(x)
is omitted such that y remains normally distributed. This is done implicitly
whenever Kalman filter techniques are used.

As illustrated in Figure 2.11, the key idea of this section consists in
replacing gNonlin(x) by a set that is an appropriate bound of the nonlinear
part. The unknown but bounded error description, i.e., the set, is hence
intended to account for the typically neglected nonlinearities. Of course,
linearization errors cannot, in general, be bounded over the entire domain.
By employing the available knowledge about the state xk, we consider

10An estimate is informative if it is related to a low MSE.
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Set-membershipStochastic

)x(Nonling) +x(Ling

) =x(g

Figure 2.11: Kalman filter methods only consider linear parts of nonlin-
ear system and observation models. The idea here is to incorporate the
nonlinearities by means of set-membership characterizations.

these errors only over the most probable region, to which we refer to as
uncertainty region around the estimate x̂e

k. More precisely, we calculate
bounds on the linearization errors over a confidence set in which the true
state lies with a predefined probability level P . At this point, it is necessary
to stress that we essentially refer to the Bayesian viewpoint of confidence
sets [86], also called credible sets or Bayesian confidence sets. The level P
then states the probability to which the confidence set covers the true
state. For an nx-dimensional Gaussian random vector x ∼ N (x̂,C), the
confidence set to a certain probability level P is given by an ellipsoid

E(x̂, s·C) =
{
x ∈ Rn | (x− x̂)TC−1(x− x̂) ≤ s

}

with the mean as midpoint and the scaled covariance matrix as shape matrix
according to definition (2.31). The parameter s can be determined by means
of the distribution of the squared Mahalanobis distance, which is that of a
chi-squared variate with nx degrees of freedom [154]. Thus, the scalar s
depends on the chosen probability level P and the dimensionality nx. The
confidence set E(x̂, s·C) represents certain sigma bounds on the uncertainty
affecting x̂ and is given by a scaled covariance ellipsoid. Figure 2.12(a)
depicts a confidence set for a one-dimensional estimate. Over this set,
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x̂
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(a) Sigma bound for estimate with stochas-
tic uncertainty.

︸︷︷︸

︸ ︷︷ ︸
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x̂

)X,(0E

(b) Upper sigma bound for estimate af-
fected by stochastic and set-membership
errors.

Figure 2.12: Confidence sets for an estimate x̂. The error covariance matrix
is represented by a Gaussian density. In the presence of set-membership
uncertainty, the confidence set is combined with the bounding set.

linearization errors can be bounded by a set L according to

gNonlin(E(x̂, s·C)
)
⊆ L .

This set L can then be conceived as an unknown but bounded perturbation
acting upon the transformation, so that (2.103) becomes the uncertain
quantity

y ≈ gLin(x) + l ,

with l ∈ L, which implies that y can be modeled by a set of Gaussian
densities, as it is done in sections 2.3 and 2.4.1. In line with Section 2.4.2 and
as an extension of the work in [202], we can also consider y as an uncertain
quantity with stochastic and set-membership uncertainty characteristics. In
compliance with the preceding sections, we will employ ellipsoidal bounds
L = E(0,Xy) for the linearization errors. With E = E(x̂, s·Cx) being a
confidence set to a chosen probability level P , the corresponding confidence
set of the nonlinearly transformed state estimate (2.103) is then bounded
according to

gLin(E)⊕ gNonlin(E) ⊆ gLin(E)⊕ E(0,Xy) .
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The latter enclosing set is the Minkowski sum of the covariance ellipsoid
E(ŷ, s·Cy) and the error bound E(0,Xy), where ŷ and Cy are the new
mean and covariance matrix after applying the linear mapping gLin to x.
With l ∈ E(0,Xy), the set-membership parameter Xy models the possible
impact of the neglected nonlinearities. After the nonlinear transformation,
the quantity y is hence characterized by the parameters ŷ, Cy, and Xy.
For the one-dimensional case, Figure 2.12(b) shows the overall set bounding
the maximum error on the state estimate with the probability P . The
computation of the bound and the transformation result are illustrated in
Example 2.3. The subsequent subsection provides a more detailed guidance
for bounding linearization errors in the prediction and filtering phase of a
Kalman filter.

Example 2.3: Bounded linearization errors
We consider a random variable x that is normally distributed with mean 4.5 and
standard deviation 0.5. It is transformed by means of the nonlinear mapping

g(x) = 0.05·(x− 1)(x− 3)(x− 4)(x− 5)(x− 8) + 2 ,

which corresponds to the black curves in Figure 2.13. Figure 2.13(a) shows
the resulting density, which is far from being Gaussian and can even become
multimodal. In Figure 2.13(b), the nonlinear mapping is linearized, and
the 2-sigma bound around the mean is used to compute the set of possible
linearization errors. More precisely, these errors take values between the
minimum and maximum possible distance between the linear and nonlinear
mapping (green area between nonlinear and linearized mapping). The obtained
bound is then interpreted as a set of possible means for the set of resulting
Gaussian densities.

2.6.1 Bounding Linearization Errors
In the following, we will show that the bounds on linearization errors can be
propagated through the Kalman prediction and filtering steps and that we
are capable of sustaining a certain probability level, to which the maximum
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(a) Result of nonlinear transformation is
a non-Gaussian density.
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(b) Result is represented by a set of Gaus-
sian densities.

Figure 2.13: Transformations of a Gaussian random variable. The nonlin-
ear result is drawn red in Plot (a). In Plot (b), the nonlinear mapping is
linearized and the error is bounded over 2-sigma bounds. The result is a set
of Gaussian densities.

linearization error lies within these bounds. In each processing time step,
the a priori defined probability level P is used to determine the region
over which the linearization errors are to be bounded. For the prediction
step, the desired approximations are detailed in Paragraph 2.6.1-A. The
derivation of error bounds for the observation model lies in the focus of
Paragraph 2.6.1-B.

A Linearized System Models

Given that the current estimate x̂e
k and its error characteristics Ce

k and Xe
k

have been computed with respect to a certain probability level P , we aspire
to maintain this level when approximating the state transition model

xk+1 = ak(xk,uk)

linearly and calculating a predicted state estimate x̂p
k+1. The shape ma-

trix Xe
k accounts for the linearization errors made so far and further

involved set-membership uncertainties, and the covariance matrix Ce
k char-
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acterizes the linearly processed stochastic uncertainty. The uncertainty
region around x̂e

k is then represented by the Minkowski sum

Ck = x̂e
k + E(0,Xe

k)⊕ E(0, s·Ce
k)

= E(x̂e
k,Xe

k)⊕ E(0, s·Ce
k) ,

where E(0, s·Ce
k) is the P confidence region for the stochastic uncertainty.

In order to simplify matters, we assume that process noise directly affects
the control input according to

uk = ûk + wk + dk

with wk ∼ N (0,Cu
k) and dk ∈ E(0,Xu

k) and that the perturbations can be
bounded with respect to the same probability level P by the set

Uk = ûk + E(0,Xu
k)⊕ E(0, s̃·Cu

k)
= E(ûk,Xu

k)⊕ E(0, s̃·Cu
k)

The linearization errors of an approximation

ak(xk, uk) ≈ Akxk + Bkuk + âk

over the considered regions Ck and Uk yield a set

Rerr
k =

{
ak(xk, uk)− (Akxk + Bkuk + âk)

∣∣xk ∈ Ck, uk ∈ Uk
}
,

where âk is the translation vector11 of the affine mapping. The set Rerr
k of

linearization errors can, for instance, be bounded by componentwise taking
the supremum

rsup
k = sup

r∈Rerr
k

r = sup
xk∈Ck
uk∈Uk

[
ak(xk, uk)−

(
Akxk + Bkuk + âk

)]

and the infimum rinf
k correspondingly. In doing so, we obtain an nx-dimen-

sional rectangle, which itself can be interpreted as the Minkowski sum of
nx one-dimensional ellipsoids, i.e., intervals

{
x |xi ∈ [(rinf

k )i, (rsup
k )i], xj = 0 for j 6= i

}
⊂ Rnx .

11Note that generally linear systems, as in (2.65), are considered. âk can be simply
seen as an additional input vector.
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So, an enclosing ellipsoid E(r̂err
k ,Rerr

k ) is obtained through an outer approxi-
mation (2.36). A simpler but more conservative bound is a ball E(0, rsup·I)
with scaling factor

rsup = sup
xk∈Ck
uk∈Uk

∥∥ak(xk, uk)−
(
Akxk + Bkuk + âk

)∥∥2
2 ,

where the maximum possible error is used as a bound in every direction. In
Figure 2.14, linearization errors for a two-dimensional function that maps
the components x1 and x2 of the state vector to a component y are drawn,
where a bound for the maximum error in y is an interval.

The Kalman prediction step for the set-membership uncertainties now
yields

X p
k+1 =

(
AkE(x̂e

k,Xe
k)⊕BkE(ûk,Xu

k) + âk
)
⊕ E(r̂err

k ,Rerr
k ) ,

which directly corresponds to the prediction step derived in sections 2.4.1
and 2.4.2 with the additional set-membership error E(r̂err

k ,Rerr
k ). For X p

k+1,
an ellipsoidal outer approximation with shape matrix Xp

k+1 has then to
be computed. The formulas (2.99), (2.100), and (2.101) can hence be
employed to compute the estimate x̂p

k+1, the error covariance matrix Cp
k+1,

and the set-membership error matrix Xp
k+1, respectively. The covariance

matrix characterizing the stochastic uncertainty does not depend on the
bound for the linearization errors.

B Linearized Sensor Models

In accordance with the preceding paragraph, linearization errors for the
measurement mapping will be taken into account by the error characteristics
of the filtered state estimate x̂e

k. The sensor model is approximated by a
linear mapping

ẑk = hk(xk) + vk + ek ≈ Hk xk + ĥk + vk + ek ,

with vk ∼ N (0,Cz
k) and ek ∈ E(0,Xz

k). We again aspire to model lineariza-
tion errors as an additional set-membership disturbance, and therefore we
consider a P confidence region around the observation ẑk, i.e.,

Vk = E(0, s̃·Cz
k)⊕ E(0,Xz

k) ,
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Figure 2.14: Components x1 and x2 are mapped to y, according to a
parabolic function. The ellipsoid for bounding linearization errors becomes
the black ellipse in the x1-x2-plane. The linearized mapping is depicted by
the blue plane. All linearization errors are positive and are drawn red.

so, with probability P , there exists a vector vk ∈ Vk with

ẑk = hk(xk) + vk ,

which entails the inclusion

ẑk − hk(xk) ∈ Vk . (2.104)

By X hk , we denote the set of all possible xk that fulfill this inclusion. The
maximum linearization error can then, as in the previous paragraph, be
bounded by the componentwise supremum

Rsup
k := sup

xh∈Xh
k

[
hk(xhk)−

(
Hk x

h
k + ĥk

)]

and infimum Rinf
k , respectively. Again, this rectangle can be enclosed by a

bounding ellipsoid E(r̂err
k ,Rerr

k ).
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The main difficulty lies in determining the set X hk for the inclu-
sion (2.104). A common approach, which is especially used in the context
of set-membership state estimation [40,111], consists of defining auxiliary
linear equations. Such an auxiliary mapping xk 7→ Haux

k xk + ĥaux
k fulfills

the relation
{
hk(xk) + vk | vk ∈ Vk

}
⊆ E(Haux

k xk + ĥaux
k ,L)

for every xk ∈ Rnx and a nonnegative definite matrix L ∈ Rnx×nx . In
particular for a specific measurement ẑk, we can deduce the implication

ẑk − hk(xk) ∈ Vk =⇒ ẑk − (Haux
k xk + ĥaux

k ) ∈ E(0,Lk)

and hence the inclusion
{
xk ∈ Rnx | ẑk − hk(xk) ∈ Vk

}

⊆
{
xk ∈ Rnx | ẑk − (Haux

k xk + ĥ
aux) ∈ E(0,Lk)

}
=: X hk ,

where the latter set is employed to define X hk , over which the linearization
errors are bounded.

The auxiliary function can also be utilized to compute a conservative
bound E(r̂err

k ,Rerr
k ) for the set of possible linearization errors, i.e.,

[(
Haux
k xk + ĥ

aux)−
(
Hk xk + ĥk

)]
∈ E(r̂err

k ,Rerr
k )

for all xk ∈ X hk , instead of computing a bound for the errors
[
hk(xk) −(

Hk xk + ĥk
)]
. The estimate is then specified through

x̂e
k =

(
I−KkHk

)
x̂p
k + Kk

(
ẑk − (ĥk + r̂err

k )
)

according to (2.96), where the derived error bound has the generally nonzero
midpoint r̂err

k . Formerly made linearization errors are bounded by E(0,Xp
k).

The associated set-membership error description of the updated estimate
is related to

X e
k = (I−KkHk)E(0,Xp

k)⊕Kk

(
E(0,Xz

k)⊕ E(0,Xerr
k )
)
,
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for which an ellipsoidal bound with shape matrix Xe
k is obtained analo-

gously to (2.98). For the covariance matrix, the formula (2.97) is applied.
The Kalman gain can be determined to minimize the covariance matrix by
employing (2.24), to minimize both error characteristics equally by employ-
ing (2.91), or to minimize a weighted version of the gain by using (2.95) in
its most general and flexible instance.

2.6.2 Extended and Linear Regression Kalman Filtering
This subsection provides a brief guide for the purpose of identifying lin-
earization errors and combines approaches that are used in [199] and [202].
More precisely, it is a short survey of well-known Kalman filter imple-
mentations for nonlinear estimation problems and particularly focuses on
unveiling hidden linearization errors.

A Extended Kalman Filtering

The extended Kalman filter [163] has to be considered as the most widely
used method for applying Kalman filtering techniques to nonlinear state
estimation problems. For that purpose, differentiable system and measure-
ment functions are approximated by first-order Taylor series expansions.
Such an expansion of a nonlinear mapping x 7→ g(x) is evaluated at the
current state estimate x̂k, i.e.,

g
l
(x) = g

l
(x̂) +

nx∑

i=1

(
∂g

l

∂xi

∣∣∣∣
x=x̂

)
(∆x)i

+
nx∑

i=1,j=1

(
∂g

l

∂xi∂xj

∣∣∣∣
x=x̂

)
1
2! (∆x)i(∆x)j + . . .

= g
l
(x̂) +

(
∂g

l

∂x

∣∣∣∣
x=x̂

)

︸ ︷︷ ︸
=:(Ak)l

∆x

+
nx∑

i=1,j=1

(
∂g

l

∂xi∂xj

∣∣∣∣
x=x̂

)
1
2(∆x)i(∆x)j + . . .
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with ∆xk = (x − x̂k), where Ak is the sought system or measurement
matrix and the subscript i in a vector/matrix xi denotes the ith row of x.
The linear approximation of g then yields

g(x) ≈ Ak x+ g(x̂)−Ak x̂︸ ︷︷ ︸
=:â

.

Consequently, a system or measurement mapping is approximated by its
Jacobian matrix at x̂e

k or x̂p
k, respectively, and all higher-order terms are

neglected. In order to assess the influence of the higher-order terms, the
Cauchy or Lagrange form of the remainder can, for instance, be exam-
ined. With them, the nonlinear part can be bounded over the considered
uncertainty region around the current state estimate and the input or
measurement vector. As an example, the Hessian matrices can be employed
to compute the radius

r = sup
x∈X

1
2T ‖x− x̂‖∞

of a bounding ball E(0, r2·I), where T is given by

T =
N∑

i,j=1
sup
x∈X ,l

∥∥∥∥∥
∂2g

l

∂xi∂xj
(x)
∥∥∥∥∥ .

The concept derived in Subsection 2.6.1 then enables us to take into account
the bounds for the remainder during prediction and filtering steps.

B Linearization Around Set

Especially when adopting the viewpoint of Section 2.4.1, where an estimate
is characterized by an ellipsoid of conditional means, we can easily accept
that the nonlinear mapping should not be linearized about a single operating
point, but about the entire set of possible means. In [132] and [199], an
approach for approximating a nonlinear mapping g around a set of means
has been suggested. It is explained here on the basis of the system model,
which must be linearized not only around the state variable but also around
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the input variable. The system model will be approximated by an affine
mapping, i.e.,

xk+1 = ak(xk, uk) ≈ Ak xk + Bk uk + âk . (2.105)

The idea is to choose approximation points for each ellipsoid, which are
commonly assumed to lie equidistantly on the principal axes12 of the
ellipsoids. Let xe,(1)

k , . . . , x
e,(N)
k denote the approximation points of the

ellipsoid E(x̂e
k,Xe

k) of means and u(1)
k , . . . , u

(M)
k the approximation points

of the ellipsoidal set E(ûk,Xu
k) of possible inputs. Then,

d
(i,j)
k := ak

(
x

e,(i)
k , u

(j)
k

)
−Ak x

e,(i)
k −Bk u

(j)
k − âk ,

for i = 1, . . . , N , j = 1, . . . ,M , denote the errors between the nonlinear
mapping and its linear approximation at these points. The mappings Ak,
Bk and the base point âk are computed to satisfy

{Ak,Bk, âk} = arg min
Ak,Bk,âk

N,M∑

i,j=1
ω−1
i,j

[
d

(i,j)
k

]T[
d

(i,j)
k

]
, (2.106)

with weighting factors ωi,j . The solution of this weighted least squares
problem [113] is given by




AT
k

BT
k

âT
k


 =

(
FkQ−1

k FT
k

)−1 FkQ−1
k fk ,

where Fk, fk, and Q are defined by

Fk =



x

e,(1)
k . . . x

e,(1)
k x

e,(2)
k . . . x

e,(2)
k x

e,(3)
k . . . x

e,(N)
k

u
(1)
k . . . u

(M)
k u

(1)
k . . . u

(M)
k u

(1)
k . . . u

(M)
k

1 . . . 1 1 . . . 1 1 . . . 1


 ,

fk =
[
ak
(
x

e,(1)
k , u

(1)
k

)
· · · ak

(
x

e,(N)
k , u

(M)
k

)]T
,

and Qk = diag(ω1,1, . . . , ωN,M ), respectively.
12They can be determined in the same way as for the unscented Kalman filter [97].
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The result can now be used to set up the linear approximation
in (2.105), and the procedure in the preceding Paragraph 2.6.1-A leads
to the bounding sets for the linearization errors. The same linearization
technique can be performed for nonlinear measurement models hk if set-
membership uncertainty on the prior estimate is present. Of course, it is
also reasonable to linearize around the complete uncertainty region of an
estimate, i.e., to use the set-membership error bound combined with the P
confidence region in order to determine the approximation points for the
computation of (2.105).

C Linear Regression Kalman Filtering

Well-known examples for linear regression Kalman filters [114] are the
unscented Kalman filter [95, 97, 100] or Gaussian filters like [25, 82]. These
filters determine statistical linearizations of nonlinear system and mea-
surement models by means of a certain number L of regression points
{xi}i=1,...,L, which are usually taken around the mean of the current state
estimate. Thus, this is approach is similar to the approximation technique
of the previous Paragraph 2.6.2-B. For the regression points, the function
values of the considered nonlinearity y

i
= g(xi), be it the system function

or the measurement function, are calculated in order to obtain the set
{ωi, xi, yi}i=1,...,N , where ωi are chosen weights. In general, prediction
and filtering results are directly computed on the basis of these regression
points, so that the underlying linear mapping remains hidden to the user.
As explicated in [114] and [202], this linear mapping can be determined as
the solution of

{A, â} = arg min
A,b

L∑

i=1
ωi · eT

i · ei ,

where the sum of weighted squared errors with ei = y
i
− (Axi + b) is

minimized. This least-squares problem resembles (2.106) in the previous
paragraph and has the solution

A = CT
xzC−1

xx and â = ŷ −A · x̂
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with x̂ =
∑L
i=1 ωi ·xi, ŷ =

∑L
i=1 ωi · y

i
, Cxx =

∑L
i=1 ωi · (xi−x̂) · (xi−

x̂)T, and Cxy =
∑L
i=1 ωi · (xi−x̂) · (y

i
−ŷ)T. The resulting affine mapping

x 7→ Ax + â can be used to compute a state estimate by means of the
standard Kalman filter equations. This estimate is the same as that of the
linear regression Kalman filter.

The influences of the linearization errors can statistically be examined
by means of the error covariance matrix

C∗k =
L∑

i=1
ωi · ei · eT

i .

However, instead of considering this statistical characterization of lineariza-
tion errors, which may act as an additional linearization noise but is only
based on a few sample points, one can now employ the systematic bounds
from Subsection 2.6.1.

2.7 Applied Simultaneous Stochastic and
Set-membership Estimation

As a proof of concept, we consider different applications of simultaneous
stochastic and set-membership state estimation. Of course, in several cases,
non-stochastic and systematic errors affecting the state can be estimated
by standard bias-aware Kalman filtering techniques and canceled out, e.g.,
by following the direction of [60] and subsequent approaches [50]. However,
by contenting ourselves with error bounds, we bypass the need to specify a
certain error characteristic, such as constancy. For instance, the unknown
but bounded error term can even be a second stochastic disturbance with
a compactly supported probability density and therefore may not behave
systematically. In particular, neglected nonlinearities cannot be subjected
to a systematic error behavior, but also simple calibration errors can be
difficult to characterize in terms of a random variable or bias, as revealed by
the experiments explained in Subsection 2.7.2. Similarly, for the estimation
of the heart surface displacement, the proposed approach has successfully
been applied to account for stochastic as well as systematic errors, as
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pointed out in Subsection 2.7.3. Particular attention has to be directed to
sensor networks where various sources of uncertainties can be identified that
require a methodical treatment of stochastic and set-membership errors. As
examples, quantization of sensor data and event-based state estimation are
discussed in Subsection 2.7.4. The first subsection shows how the methods
from Section 2.6 are employed to bound linearization errors.

2.7.1 In Nonlinear Systems
In this first scenario, we employ the approach proposed in Section 2.6 in or-
der to bound linearization errors when applying the extended Kalman filter.
The dynamics of an unforced van-der-Pol oscillator [183] are considered
that are governed by the second-order differential equation

d2x

dt2
− µ(1− x2)dx

dt
+ x = 0 ,

which is damped by a nonlinear coefficient when x approaches high values.
This equation can be rewritten as a system

[
ẋ(1)(t)
ẋ(2)(t)

]
=
[

x(2)(t)
µ
(
1− (x(1)(t))2)x(2)(t)− x(1)(t)

]

of first-order differential equations. The Euler method with step size ∆t
can be employed to obtain the discrete-time system model

[
x

(1)
k+1
x

(2)
k+1

]
= f(xk,∆t) =

[
x

(1)
k

x
(2)
k

]
+ ∆t

[
x

(2)
k

µ
(
1− (x(1)

k )2)x(2)
k − x

(1)
k

]
.

In the estimation algorithm, it is assumed that the nonlinear model

xk+1 = f(xk,∆t) + wk

is perturbed by the process noise wk ∼ N (0, 0.02I). The system matrix
for the linearized model is finally given by the Jacobian

Ak(x) =
[

1 ∆t
−2∆t µ x(1) x(2) − 1 1 + ∆t µ(1− (x(1))2)

]
,
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(a) Red dots: Component z1 of measure-
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(b) Red dots: Component z2 of measure-
ments.

Figure 2.15: Output signal and measurements for the simulated van der
Pol oscillator.

which is employed by the EKF to compute the predicted covariance ma-
trix (2.20). The state is directly observed according to

ẑk = xk + vk

with the measurement noise vk ∼ N (0, 0.5I).
For the simulation, we model the true signal, i.e., the ground truth, by

setting ∆ttrue = 0.001 and compute 20 000 time steps. The noisy signal and
200 obtained measurements are depicted in Figure 2.15. For the discrete-
time EKF, the step size ∆tEKF = 0.1 is chosen. Hence, 200 filtering steps
are performed. The damping coefficient is, in both cases, µ = 0.4. The
initial estimate is x̂p

0 = [2, 0]T with error covariance matrix Cp
0 = I and zero

shape matrix Xp
0 = 0, i.e., no unknown but bounded errors are assumed to

be present at the beginning. The estimated state is shown in Figure 2.16,
where the advanced filtering step from Section 2.5 has been employed. The
weighting parameter is set to α = 0.1 in order to favor a minimal covariance
matrix. The choice of different weighting parameters, i.e. the choice of
different gains, is considered more detailed in Subsection 2.7.4. Figure 2.17
shows an particularly interesting feature: The set-membership error bounds
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(b) Estimate of second component.

Figure 2.16: Estimated system state with error bounds. The set-
membership error bound is shown in green. Additional 3-sigma bounds for
the stochastic errors are drawn blue.
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Figure 2.17: Determinant and trace of the computed shape matrices.

become small when the linearization errors are small, and they increase
when the nonlinear damping factor is more dominant. This is compliant
with the property of the van der Pol oscillator that it behaves linearly near
the origin so that only small linearization errors are caused.

2.7.2 In Model Predictive Control
The proposed simultaneous stochastic and set-membership estimation prin-
ciples have been combined with model predictive control methods in [192].
An application-specific reward function is to be calculated that assesses
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the anticipated impact of future control inputs and measurements. With
stochastic and set-membership errors being present, a rigorous generaliza-
tion of deterministic reward functions has to be derived that maps random
and set-valued variables to scalar well-defined values. One can commence
with the consideration of a deterministic reward function, which becomes
both a random and a set-valued function if the arguments consists of
stochastic and unknown but bounded quantities. For instance, the expec-
tation value and infimum functionals can then be utilized to condense the
result into a certain reward value.

Experiments with a walking robot that particularly suffers from cali-
bration errors have been conducted in [192]. The controller cannot be sure
that the correct steering angles are applied. The unknown calibration error
is bounded by a set, and further process and sensor noise is assumed to
affect the system randomly. It turned out that the combined stochastic and
set-membership approach is more cautious and reliable than an extended
bias-aware Kalman filter that attempts to compute an estimate on the
calibration error.

For specific systematic errors, bias-aware Kalman filtering techniques
like [50] and [60] can provide promising estimation results, but the conducted
experiments have demonstrated that the treatment of unknown systematic
errors by stochastic methods can be by far more difficult and less reliable.
On the other hand, bounding an error by a set implies that the error
remains unknown within the bounds, so no insight to the actual error
behavior is gained, which might be desired in some applications.

2.7.3 In Beating Heart Surgery

The use of simultaneous stochastic and set-membership state estimation
techniques has particularly been investigated in robotic beating heart
surgery [191]. The general idea is to synchronize surgical instruments with
the heart surface motion so as to perform the surgery “off pump” and to
eliminate the need to artificially stop the heart. Furthermore, there is a
clear tendency towards minimally invasive heart surgery. The estimator
shall continually provide the surgeon with an impression of the quality
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and reliability of the estimated heart displacement. The state estimate
on the heart displacement is supplemented by an uncertainty region, as
illustrated in Figure 2.18, that is computed from the set-membership error
bound and a confidence region around random errors. This region can then
be employed to distinguish between safe and unsafe operating conditions
and to prevent the robot from accidentally harming healthy tissue. An
important further application is to equip the surgical system with a haptic
guidance in form of safety critical limits or soft virtual fixtures.

Figure 2.18: Experimental setup with pressure-regulated artificial heart.
Heart surface with computed uncertainty region that embraces stochastic
and set-membership errors.

The uncertainty region is derived by systematically identifying and
describing sources of stochastic and unknown but bounded errors. The
concept has been evaluated by means of a pressure-regulated artificial heart
that is observed by three camera systems. For instance, specified standard
deviations of the pressure regulator serve as a stochastic uncertainty de-
scription, and the limited resolution of the camera system is related to an
unknown but bounded error affecting each reconstructed landmark position.
A main advantage of the proposed concept is that the computed region
dynamically adapts to any changes such as occlusions. A detailed analysis
and simulation results can be found in [191].
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2.7.4 In Sensor Networks
In sensor networks, it is often inevitable to keep the volume and frequency of
data transfers as low as possible. Quantization of measurements contributes
to reducing the data volume to be transferred, and, with the help of event-
based estimation, data needs only to be transmitted at predefined instances
of time. Although system and measurement noise terms in this section are
purely stochastic, quantization and event-based data processing append
set-membership uncertainties to the estimation problem. The considered
system models are simplified versions of the discretized Euler equations
in [183]. For the first scenario, we revisit the example discussed in [205].

Quantized Data In order to downsize the data to be transmitted in a
sensor network, the measurement data can be quantized, which introduces
a set-membership error to the estimation problem. We analyze the effect
of quantization errors by means of a three-dimensional state that is related
to the discrete-time state transition model

xk+1 = A xk + wk + dk

with

A =




1 h h

−h 1 h

−0.51h −0.51h 1


 .

The step size h = ∆t determines how well this system approximates the
underlying differential equation. The ground truth is generated by setting
h = 0.0001, which is depicted as the black dashed lines in Figure 2.19. In
the implementation of the estimator, h = 0.1 is used, and zero-mean process
noises wk and dk with stochastic and set-membership error characteristics
Cw
k = diag([0.2, 0.15, 0.1]) and Xd

k = diag([0.1, 0.1, 0.1]) are assumed. At
each time step k, 10 measurements are received that are each related to
the state by the sensor model

zk = xk + vk ,
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(a) Simulated measurements. The lowest
and highest value after discretization are
shown in purple.

x
1 k

time step k

0 20 40 60 80

−2

0

2

(b) Results of the filtering algorithm that
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(d) Results of the filtering algorithm with
equilibrium weighting, i.e., α = 0.5.

Figure 2.19: Estimation results in case of quantized measurements. Only
the first component of the state vector is shown. The thick blue line is the
estimation result. The green area bounds the set-membership error. The
light blue 3-sigma bounds of the stochastic error characteristics are added
to the green bound.

which is altered by the measurement noise vk ∼ N (0,Cv
k) with Cv

k =
diag([0.25, 0.5, 0.75]). Set-membership errors during the filtering step come
into play due to the quantization

q(z(i)
k ) = 2

⌊
z

(i)
k

2

⌋
+ 0.25

for each component z(i), i = 1, 2, 3, of ẑk. Hence, the measurement space
is subdivided into [0.5)3-cubes. Each cube can be bounded by a ball with
shape matrix Xz

k = 3
16I, which characterizes the unknown but bounded

quantization error. Figure 2.19(a) illustrates the measurement process. The
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filtering results are depicted in figures 2.19(b)–(d) for different choices of α
for the gain (2.95). Figure 2.19(b) shows the result where the stochastic
uncertainty is minimized and corresponds to the approach from Section 2.4.1.
In Figure 2.19(c), the set-membership uncertainty is minimal by setting
α = 1. With α = 0.5, the result in Figure 2.19(d) is attained. The
estimated signal in Figure 2.19(c) is not smooth and apparently suffers
from the stochastic noise. This implies, with a gain being optimized for
set-membership errors, the high-frequency measurement noise cannot be
filtered out properly. The signal in Figure 2.19(b) appears to be very
smooth while the result Figure 2.19(d) has the tightest error bounds.

Event-Based Communication We consider a setup that is similar to the
preceding example. The state transition model

xk+1 = A xk + wk + dk

has the different system matrix

A =




1 2h 2h
−2h 1 2h
−0.51h −0.51h 1


 .

The ground truth is again generated with h = 0.0001 depicted as the black
dashed lines in figures 2.20(a)–(d). For the state estimator, we consider the
step size h = 0.1. The zero-mean noise terms wk and dk have the covariance
and shape matrices Cw

k = diag([0.2, 0.15, 0.1]) and Xd
k = diag([0.1, 0.1, 0.1]),

respectively. The state is again directly observed according to

zk = xk + vk

with vk ∼ N (0,Cv
k) with Cv

k = diag([0.25, 0.5, 0.75]). Hence, the sensor
itself is only affected by a random noise. In contrast to the previous
example, the sensor data is only communicated to the estimator when the
difference of the current measurement to the last reported measurement is
larger than 0.7, i.e., when

‖ẑlast − ẑk‖ > 0.7 .
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(a) Simulated measurements. Time steps
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The solid purple line represents the mea-
surements used by the estimator.
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(c) Results of the filtering algorithm that
is optimized for Xe

k, i.e., α = 1.
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(d) Results of the filtering algorithm with
equilibrium weighting, i.e., α = 0.5.

Figure 2.20: Estimation results in case of event-based filtering. Only the
first component of the state vector is shown. The thick blue line is the
estimation result. The green area bounds the set-membership error. The
light blue 3-sigma bounds of the stochastic error characteristics are added
to the green bound.

At each time step, only one measurement is observed. The events of
communication are marked by dashed purple lines in Figure 2.20(a). The
purple stairs function represents the measurements that are employed by
the estimator as long as no change is reported by the sensor. Until a
new measurement arrives, the estimator assumes that the observations are
contained in a ball with radius r = 0.7 around the last measurement ẑlast.
Hence, this ball represents a set-membership measurement noise. When
a new measurement arrives, this measurement ẑk is used to update the
state estimate. Also, ẑlast is set to ẑk until the next event is reported. Of
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course, for a new arriving measurement, no set-membership error is present.
This states the reason why the green bound in Figure 2.20(c), where the
set-membership uncertainty is minimized, vanishes at the purple time steps.
The worst result is shown in Figure 2.20(b), where the set-membership
error bound is only a byproduct, and the stochastic error is minimized.
Here, the estimate is less informative due to large error bounds and suffers
from a lag, which is caused by placing too much trust in the inter-event
measurements ẑlast. Again, Figure 2.20(d) shows the minimum total error
bound, although the difference to Figure 2.20(c) is not significant. By
employing this event-based filtering scheme, only 41 instead of 100 data
transfers from the sensor to the estimator are required.

2.8 Conclusions from Chapter 2
In many situations, it can be a tough decision to commit oneself to a
certain uncertainty model. Although either purely stochastic or purely set-
membership models are most widely employed in state estimation systems,
they only allow for an incomplete picture of the imperfect knowledge
about the real system: A set can hardly account for outliers of a normally
distributed error, and characterizing an unknown error behavior by a
specific probability density is false and misdirecting. A combined stochastic
and set-membership uncertainty model is possibly able to encompass almost
every type of errors that are encountered in state estimation theory. Set-
membership descriptions are most appropriate to account for ignorance.
Of course, this type of uncertainty must be bounded since the presence
of a completely unknown and unbounded error would not allow drawing
any conclusions. With stochastic quantities, knowledge about possible
realizations can be incorporated, and it can be assessed how likely they are
to occur.

The major objective pursued by this chapter has been to derive an esti-
mation concept that is a generalization of purely stochastic and purely set-
membership estimation principles but includes them as special cases. Sets of
translated Gaussian densities are a direct consequence of the Bayesian per-
spective on the Kalman filter algorithm. The presence of additive unknown
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but bounded errors only affects the means of the underlying Gaussian
densities, and the computation of the Kalman gain only involves the corre-
sponding covariance matrices. Here, the estimated set-membership error
bounds can be considered rather as a byproduct, since the stochastic error
is minimized while the extent of set-membership error bounds is ignored.
Therefore, we consider the total mean squared error (MSE) that comprises
the variance of the stochastic errors as well as a bound on the maximum
bias. In doing so, a Kalman gain is derived that minimizes the MSE
in the presence of both stochastic and additional unknown but bounded
uncertainties, which are represented by Gaussian random variables and
ellipsoidal sets, respectively. As a result, a generalization of the well-known
Kalman filtering scheme is attained that reduces to the standard Kalman
filter in the absence of set-membership uncertainty and that otherwise
becomes the intersection of sets in case of vanishing stochastic uncertainty.
Considering the total MSE is related to the underlying conception that
a covariance ellipsoid and a rigid ellipsoidal bound are interpreted in the
same manner by the Kalman gain. Of course, covariance ellipsoids are far
from being interpretable as rigid bounds. Therefore, we have proposed an
extension to the derived Kalman gain that leaves it to the user to favor
either the minimization of the stochastic uncertainty or the minimization
of the set-membership uncertainty. The gain is adjusted by a simple scalar
parameter. The extreme cases consists of a standard Kalman filter that
computes consistent shape matrices for unknown but bounded errors as
a sideline and a set-membership estimator that produces consistent error
covariance matrices as a byproduct. As a consequence, a simple estimation
concept has been derived whose implementation is not more complicated
than for a standard Kalman filter or an ellipsoidal estimator. This result
proves that a simultaneous incorporation of stochastic and set-membership
errors does entail neither elaborate algorithms nor diffuse approximations.

Even if only stochastic errors are present, the proposed concept can
be employed to significantly increase the reliability of extended or linear
regression Kalman filters. Furthermore, several scenarios have been studied
where an explicit distinction between stochastic and set-membership errors
appears promising. The results of this chapter lays the spadework for the
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following chapter that studies how to implement these estimation concepts
in a distributed or decentralized fashion.
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State estimation techniques like the concepts studied in the previous chapter
provide the means to gain insight to an uncertain state from noisy measure-
ments and input signals. The rapid advances in sensor and communication
technology entail an increasing demand for implementing these estimation
algorithms in distributed networked systems [71,118,119]. The general idea
is that data is collected and processed locally on different sensor nodes, with
the aim of monitoring large-scale phenomena, distributing computational
resources, and increasing robustness to failures. With a wide scope of ap-
plications such as, inter alia, monitoring volcanic eruptions [176], detection
and forecasting of hazards [104], indoor person localization [211], or cooper-
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ative multi-platform estimation problems [81], sensor network designs have
to address a vast variety of different requirements and limitations. The ad-
vancements in sensor network technologies are accompanied by a paradigm
shift towards a large number of miniaturized, low power-consuming sensor
devices instead of few powerful, high-resolution systems. As a consequence
of this trend, a single node can in general provide neither informative nor
precise data, but the entire network can in return cover large areas and
increase the spatial resolution considerably. A sensor network inherently
displays an outstanding potential to solve problems in a cooperative fashion
and is hence, in many settings, superior to a single high-performance central
processing unit.

Even if a central node is present, the requirements regarding communi-
cation bandwidth and processing power would be extensive in a large-scale
network without a local preprocessing of sensor data. Due to local pro-
cessing of accruing data, assumptions made in standard formulations of
information processing and state estimation algorithms may not apply
anymore. In particular, the estimation principles studied in Chapter 2
essentially necessitate a central component that handles the required pro-
cessing steps. In contrast, this chapter is devoted to the task of distributing
the estimation techniques from Chapter 2 within a network of sensor nodes.
It commences, in Section 3.1, with a general discussion of the challenges
related to network-centric systems and introduces the three general types
of estimation architectures. Besides stochastic and unknown but bounded
process and measurement noise, the approach of a local data processing
and subsequent fusion poses an additional source of uncertainty: Depen-
dencies among local data sets are either too expensive to keep track of
or simply remain hidden to the fusion nodes. Hence, they can be viewed
as another uncertainty affecting the state estimation process. Section 3.2
discusses the causes of interdependencies. The most evident solution is
to maintain a central instance within the network but also to intelligently
preprocess sensor data along any communication path in order to assure a
scalable processing of information. Section 3.3 gives special attention to
such centralized schemes, where the information form of estimates reveals
itself to be especially well suited. The simultaneous treatment of stochastic
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and set-membership uncertainties inside the information filter is considered
in Section 3.4. In a fully decentralized network, each node is capable of
operating autonomously. Dependencies therefore cannot be tracked down
and have to be bounded conservatively. Section 3.5 introduces basic ap-
proaches, which are further developed in Section 3.6 in order to bound
unknown dependencies more tightly.

3.1 State Estimation in Networked Systems
Networks of sensors and actuators conceptually provide the means to coop-
eratively manage vast amounts of data, to monitor large-scale phenomena
from different perspectives, and to be adaptable to rapidly and unpre-
dictably changing environments. Along with these aspects, a networked
system entails numerous advantages but also imposes many additional
challenges on an information processing system. Critical limitations in
communication and computational resources have to be taken into account
in order to properly adapt existing and design new estimation algorithms.
This section introduces the general types of estimation architectures and
states the challenges of networked state estimation more precisely.

3.1.1 Centralized, Distributed, and Decentralized State
Estimation Architectures

The terms for the three general types of estimation architectures—cen-
tralized, distributed, and decentralized—are often used in an ambiguous
fashion. In a centralized system, as indicated by Figure 3.1, a single
computer system is charged with acquiring sensor data from the devices,
computing an estimate of the state, and making decisions. So, all measure-
ment data must be send to the central node, which has sole responsibility for
computing an informative estimate. A distributed estimation architecture
refers to a collection of cooperatively operating devices that, viewed from
the outside, still appears as a single system. The observed data can be
processed on different nodes, but for computing a final estimate, a central
system may be required. An example is a hierarchical structure, as illus-
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trated in Figure 3.2, where local estimates are computed on intermediate
nodes that undertake some tasks of the central unit. In Section 3.3.3, an
optimally distributed Kalman filtering scheme is considered, where each
node performs prediction and filtering steps locally. However, the local
quantities taken alone have no meaning but, in conjunction with each other,
a globally optimal estimate can be computed. This scheme even completely
fails when only a single node drops out of the network, unlike a decentralized
estimation architecture, as depicted in Figure 3.3. Here, the estimation
problem is solved locally on each node using local data. The nodes are
intended to operate independently and can share their information with
each other for the purpose of solving the higher-level estimation problem.
In general, a decentralized sensor network cannot achieve the estimation
quality of a centralized system but is inherently more flexible and robust
to failures. From the perspective of applications, a decentralized structure
therefore often has clear advantages.

Within a fully centralized architecture, the estimation algorithms from
Chapter 2 can directly be employed. For distributing the workload to
the sensor nodes, at least an efficient acquisition and (pre-)processing of
multisensor data is necessary. Centralized Kalman filters can generally
exploit the conditional independence1 of received measurements, whereas a
distributed and decentralized estimation scheme encounters the additional
challenge that even independently processed estimates are not necessarily
independent. The reasons for dependencies between locally processed data
are manifold: The nodes may share common prior information, the same
process noise is exploited by different local state transition models, sensor
noises may be correlated, etc. The central problem is, in general, that
communication of locally processed estimate can cause “data incest” [59]—
double-counting of information. The challenges concerning state estimation
in sensor networks are summarized in the following subsection.

1The Kalman filter can also be extended to correlated and colored process and
measurement noise [161].
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3.1.2 Challenges

The aforementioned advantages of a networked system are opposed to
certain limitations and constraints that must be considered during the
development of state estimation algorithms. The design of state estimation
concepts therefore cannot be detached from the technical aspects but can
be abstracted from concrete technical realizations of a network. For the
purpose of observing a spatially distributed phenomenon, for instance,
volcanic activity [176] and tsunami waves [36], a network of sensor systems
is often inevitable, but it can still be efficient to send the measurements to
a data sink or gateway node such that a state estimate can be computed
on a single high-performance computer system. A centralized network
architecture, as depicted in Figure 3.1 inherits the advantage that standard
estimation algorithms can basically be employed. Of course, an intelligent
preprocessing of sensor data can significantly contribute to reducing the
communication load and to relieving workload of the center node. However,
the necessity of continuously transmitting data to a central system can
also be very unfavorable when sensor nodes are designed to operate au-
tonomously, communication bandwidth and processing power are limited,
and a continual connectivity cannot be guaranteed. For instance, wireless
mobile ad-hoc networks like car-2-X networks [56] consist of numerous
independent nodes and communication links may change frequently. In
contrast to a centralized processing, each node needs to store and process
a local copy of the state estimate or at least parts of it, as illustrated in
Figure 3.3. A certain downside of such a decentralized fusion architec-
tures is the difficulty to extract meaningful information from interchanged
estimates without endangering reliability and running the risk of being
overconfident. Hierarchical networks, shown in Figure 3.2, fall in between
centralized and decentralized structures and can in some cases ease the
information processing.

This chapter is devoted to the processing of sensor data in a dis-
tributed fashion, while general requirements on a state estimation system
and solutions have been discussed in Chapter 2. However, it is worth to em-
phasize that, for a sensor network, a systematic and mathematically sound
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treatment of noisy data becomes even more relevant than in single-sensor
systems. Although modern highly precise sensor technology alleviates the
need for elaborated estimation algorithms and enhances the confidence in
the observed data, the scientific endeavor with respect to sensor networks,
however, points in the reverse direction. The technological advancements
towards miniaturized sensor systems allows considering the usage of a mas-
sive amount of low-cost sensor nodes, for instance, for person localization
systems [211], and ultimately up to smart dust [144,172] consisting of nodes
with a volume of about one cubic millimeter. Low-powered and fault-prone
systems again place tremendous demands on the implemented estimation
methods. Simultaneous stochastic and set-membership state estimation
here becomes particularly useful: Quantization of estimates and measure-
ments can contribute to downsizing the data volume and event-based state
estimation to reducing the data rate.

3.2 An Additional Source of Uncertainty:
Unknown Dependencies

Fusion of estimates might appear to be an easy task—at first sight. At
a certain time step k, two estimates x̂A and x̂B on the same state can be
viewed as observations of selfsame state according to

[
x̂A
x̂B

]
= H x =

[
I
I

]
x .

The Kalman filtering step can then be exploited to derive a fused estimate,
which embodies, more precisely, a maximum likelihood fusion since no prior
is available. The estimates can also directly be fused by

x̂fus = KA x̂A + KB x̂B

and determining appropriate gains KA and KB . The fusion of estimates is
discussed more detailed in Section 3.5.1. However, we can only attribute a
meaning to x̂fus if we are in the position to also compute corresponding
error matrices Cfus and Xfus that do not understate the true errors. At
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this point, fusion of estimates becomes a rather complicated task, and we
aspire to identify the reasons for this in the following.

The previous section singles out dependencies between estimates as
a major challenge for state estimation in networked systems. In simple
terms, the same errors are modeled on different sensor nodes, but especially
autonomously operating nodes are unable to assess the information they
share in common with each other. For stochastic uncertainty models, this
issue is directly related to stochastic dependencies: Two random variables
x and y are dependent if the inequation f(x, y) 6= f(x) · f(y) holds for the
corresponding probability densities. Since this chapter is dedicated to state
estimation for linear models and Gaussian noise variables, dependencies are
unambiguously characterized by cross-correlations. Hence, the dependencies
between two estimates x̂A and x̂A are defined by the cross-covariance matrix
CAB = E[(x̂A −x)(x̂B −x)T] of the estimation errors. As aforementioned,
it can prove difficult to keep track of dependencies, but when ignoring
them, we possibly have to reckon with biased fusion results and severely
underestimated errors.

The good news is that interdependencies along set-membership errors
do not require any attention, since employing rigid error bounds bypasses
the need to consider a certain error behavior within these bounds. For
instance, if two sets enclose exactly the same unknown but bounded error,
their intersection is still a valid bound. Hence, this chapter is dedicated to
the task of tackling the effects of cross-correlations, especially when they
are unknown. The reasons for interdependencies between estimation errors
can essentially be subdivided into two types, as explained below.

3.2.1 Common Prior and Sensor Information

The most apparent reason for dependencies between local estimates is
that data is simply double-counted. Two sensor nodes A and B that are
initialized with the same prior estimate x̂p

k on the state, i.e., x̂A := x̂p
k and

x̂B := x̂p
k, have fully correlated errors, i.e., E[(x̂A − x)(x̂B − x)T] = CA =

CB = Cp
k. State estimation becomes in particular difficult when common

data cannot be backtracked to its source. Data are, in general, further
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processed along any communication path and cycles in the network topology
can then, for instance, prevent common sensor data to be separated from
the independent information. Such a situation is a transitive data exchange:
A prior node P transmits its local estimate to two nodes A and B. After a
while, nodes A and B send their local data to a node E, which must be
aware of the information of source P in order to prevent double-counting.
This situation is studied in the following example, which also conveys an
impression of the effect on the fusion results.

A

B

P

E

Figure 3.4: The final fusion node E is not aware of common information
that is shared by the two transmitting nodes A and B. These have before
received data from the same node P .

Example 3.1: Effect of common sensor data
In the simplified situation that measurements are directly related to the state,
i.e., by the unit matrix, we can fuse these measurements according to the
Kalman filtering step in Section 2.1.1-B by considering one measurement as
the prior estimate for the other2. A first sensor node P reports a prior estimate
with variance Cp

P = 8, which is send to two sensor nodes A and B with
2The combination of local estimates is rather a maximum likelihood fusion than a

Bayesian filtering step (see Section 3.5.1).
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measurement noise variances CzA = 8 and CzB = 4. The corresponding Kalman
gains are

KA = Cp
P (Cp

P + CzA) = 1
2 and KB = Cp

P (Cp
P + CzB) = 2

3 ,

and thus the local fusion results have the covariances

Ce
A = Cp

P −KAC
p
P = 4 and Ce

B = Cp
P −KBC

p
P = 22

3 .

Both local estimates are now send to a further node E that combines them
according to

Cfus = Ce
A − Ce

A(Ce
A + Ce

B)−1Ce
A

= 4− 16
4 + 2 2

3
= 13

5 .

The communication path is depicted in Figure 3.4. Apparently, the information
provided by the first node is double-counted, since the optimal solution is to
fuse the estimate of sensor A only with the measurement of sensor B and not
with its local estimate. Then, the error variance is

Copt
fus = Ce

A − Ce
A(Ce

A + CzB)−1Ce
A

= 4− 16
4 + 4 = 2 ,

where CzB instead of Ce
B has been used. By fusing the local estimates without

taking common information into account, an error variance is reported that
spuriously underestimates the true variance since only Copt

fus is attainable at
best.

The overall problem is that two estimates x̂A = E[x | ZA] and x̂B =
E[x | ZB ] are compiled from two measurement sequences ZA and ZB that
possibly share common data ZA ∩ ZB 6= ∅. The measurements in the
intersection and specifically the according measurement errors are double-
counted when the estimates are naively fused, and we have to reckon with
a biased estimation result.

A general strategy to prevent biased fusion results consists of storing
common information separately and removing it from the fusion result.
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Each node can, for instance, be equipped with a channel filter [27, 71, 123]
that stores the information that is shared with neighboring nodes. In a
hierarchical networks, this task can be passed to higher-level fusion nodes.
In the absence of process noise—the second source of dependencies—even
the estimation quality of a centralized estimation scheme can be achieved.
The channel filter can be established by means of the information form of
the Kalman filter, as explained in Section 3.5.2.

3.2.2 Common Process Noise
The second reason of dependencies can be discovered in the parallel predic-
tion steps among the sensor nodes. In each local state transition model, the
same process noise is employed. So the same error is incorporated multiple
times and cannot be filtered out. The example below illustrates the effect
of dependent errors due to common process noise.

Example 3.2: Effect of common process noise
We consider the situation of two nodes equipped with equal sensors. Both nodes
compute local estimates and are each initialized with the first measurement.
Let the sensor noises have the variances CA = 4 and CB = 4. First, we
consider an optimal processing: The observation in sensor A serves as an prior
and is fused according to the Kalman filtering step with the observation of
sensor B. The error variance associated with the fused estimate is then

Ce
fus = CA + CA(CA + CB)−1CA = 2 ,

where the measurement mapping H is the identity. The estimate is predicted
according to the simple process model

xk+1 = xk + wk

with wk ∼ N (0, 1). The predicted error variance is then Cp
fus = 3.

Now, we consider the case that the initial estimates are both predicted
locally with the same process model. The predicted local variances yield
Cp
A = Cp

B = 5. After that, we fuse the local estimates again by means of a
Kalman filtering step and obtain the variance

Cp
fus = Cp

A + Cp
A(Cp

A + Cp
B)−1Cp

A = 5 + 25/10 = 2.5
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that apparently differs from the optimal result. More precisely, the actual
variance is noticeably underestimated, and a naive fusion after prediction yields
a overconfident estimate.

The effect of common process noise has essentially been studied against
the background of target tracking applications [8,9]. In track-to-track fusion
problems, local estimates of the same object’s state, particularly its position,
are computed on different nodes and are to be fused. In the absence of any
other dependencies, it is possible to also keep track of the cross-covariance
matrices of the errors, which can then be employed for a consistent fusion of
the tracks. The corresponding fusion algorithm is discussed in Section 3.5.1.

3.3 Multisensor Kalman Filtering
In this section, we discuss how to extend the standard Kalman filtering
scheme from Section 2.1.1-B in order to efficiently process multiple sensor
data. This means that still a central processing node is required that
computes the state estimates, as illustrated in figures 3.1 and 3.2. However,
by means of the methods explained in subsections 3.3.2 and 3.3.3, sensor
data can be preprocessed locally so that the communication load as well as
the communication rate can be reduced. This section begins by describing
how multiple measurements can be processed within the standard Kalman
filter. In each subsection, the linear system model

xk+1 = Ak xk + Bk(ûk + wk) (3.1)

is considered, with control input ûk being affected by wk ∼ N (0,Cu
k). The

linear measurement model of sensor node i ∈ {1, . . . , N} is defined by

zik = Hi
k xk + vik , (3.2)

where vik ∼ N (0,Cz,i
k ) denotes the measurement noise. Hence, this sec-

tion only considers stochastic uncertainties, since dependencies between
set-membership errors have no effect. The treatment of set-membership
uncertainties withing the information filter lies then in the focus of Sec-
tion 3.4.
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ẑ1

ẑ2
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Figure 3.5: Sequential and blockwise processing of multiple measurements.

3.3.1 Sequential or Blockwise State Estimation

For the implementation of the Kalman filtering step for multiple measure-
ment data, principally two possibilities can be named—sequential3 and
blockwise filtering [9]. Both are related to the right- and left-hand side of
equation (2.7). For the first possibility, the conditional independence of the
observations given the current state can be exploited such that a sequential
incorporation of measurement data can be established. The multisensor
measurement data Zk = {ẑ1

k, . . . , ẑ
N
k } related to the models (3.2) can be

processed through the Kalman filtering step (2.25) element-by-element,
which corresponds to applying Bayes’ rule to each likelihood (2.7). The

3This notation is commonly used for the special case of multiple scalar measurements
with (fully) diagonal joint covariance matrix. A single matrix inversion can thereby be
replaced by multiple scalar divisions [161].
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posterior estimate yields

x̂e
k = (I−KN

k HN
k ) ·

(
. . .
(

(I−K2
kH2

k)

=x̂e,1
k︷ ︸︸ ︷(

(I−K1
kH1

k)x̂p
k + K1

k ẑ
1
k

)
+K2

k ẑ
2
k

)

︸ ︷︷ ︸
=x̂e,2

k

+ . . .

)
+ KN

k ẑ
N
k

(3.3)

after N sequential Kalman filtering steps. The second possibility is to
perform the filtering step en bloc and to collect all measurements in a single
vector of dimension (N ·nz). Therefore, only a single update

x̂e
k = (I−Ktotal

k Htotal
k ) x̂p

k + Ktotal
k



ẑ1
k
...
ẑNk




is required. Figure 3.5 provides a diagram of both schemes. In compliance
with the estimate, the posterior covariance matrix can also be computed
either sequentially or blockwise.

In general, either way of multisensor data processing renders any other
fusion architecture than a centralized one impractical. For a blockwise
processing, it is easy to admit that all data must be available at the
center node and, for instance by referring back to Figure 3.2, the (green)
intermediate nodes have to pass the data received from the subjacent nodes
on to their superordinated parent nodes. Also, a sequential processing
does not allow for an intelligent preprocessing of sensor data in order to
reduce the communication load. Before a sequential incorporation of sensor
data is possible, each single measurement together with the corresponding
error matrix must be accessible by the center node so that it is capable of
computing the required Kalman gains for (3.3). These limitations can be
overcome by employing algebraical reformulations of the Kalman filter that
will be discussed in the following two subsections.
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3.3.2 Information Filtering: An Inverse Covariance Matrix
Formulation

The previous subsection unveiled that the standard Kalman filtering step,
i.e., equations (2.25) and (2.26), cannot easily be extended to a distributable
treatment of multiple observations Zk = {ẑ1

k, . . . , ẑ
N
k }, as it would be useful

in most multisensor data fusion problems. More specifically, the fusion step
cannot simply be expressed in terms of the individual Kalman gains Ki

k

and innovations (ẑik −Hi
k x̂

p
k), i.e.,

x̂e
k 6= x̂p

k +
N∑

i=1
Ki
k

(
ẑik −Hi

k x̂
p
k

)
, (3.4)

since the individual innovations are affected by a common process noise,
which causes them to be correlated with each other. The sequential
processing (3.3) consists of nested filtering steps and the required gains
therefore cannot be computed at once.

A distributable form of the Kalman filtering step is constituted by
the information filter that essentially embodies an algebraic reformulation
of the Kalman filter formulas and provides estimates on the information
about an uncertain state rather than on the state itself [133]. Instead of
an immediate estimate on the state, the information vector

ŷ
k

:= C−1
k x̂k (3.5)

and the information matrix

Yk := C−1
k (3.6)

are considered, which are the quantities to be processed and updated in the
prediction and filtering step, respectively. It can be shown [133] that the
information filter is a log-likelihood representation of the Bayesian state
estimation concept in Section 2.1.1, which is further studied in Section 4.4.
The inverse covariance matrix (3.6) is equal to the Fisher information matrix
(for a non-random state). Hence, minimum mean squared error estimation
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is related to maximizing the Fisher information about the state. Both
processing steps of the Kalman filter algorithm have to be reformulated for
the parameters (3.5) and (3.6).

Prediction The prediction of the information parameters ŷe
k
and Ye

k turns
out to be more elaborate than the prediction step of the standard Kalman
filter. We define the mapping

Lk+1 = Ak(Ye
k)−1

that first transforms the information vector back into state space and then
applies the state transition model (3.1). The predicted information matrix
thus becomes

Yp
k+1 = (Cp

k+1)−1

(2.20)=
(
Ak(Ye

k)−1AT
k + BkCu

kBT
k

)−1

=
(
Lk+1Ye

kLT
k+1 + BkCu

kBT
k

)−1
,

(3.7)

and the predicted information vector is given by

ŷp
k+1 = Yp

k+1
(
Lk+1 ŷ

e
k

+ Bk ûk
)

︸ ︷︷ ︸
(2.19)= x̂p

k+1

. (3.8)

In contrast to the Kalman filter, the computation of both parameters hence
requires matrix inversions.

Filtering During the derivation of the Kalman gain (2.24), a rearrange-
ment of the considered equations leads to the equivalent representations

Kk =
(
(Cp

k)−1 + HT
k (Cz

k)−1Hk

)−1 HT
k (Cz

k)−1 (3.9)
and

I−KkHk =
(
(Cp

k)−1 + HT
k (Cz

k)−1Hk

)−1 (Cp
k)−1 . (3.10)

By applying these gains to (2.26), the updated covariance matrix can
immediately be simplified to

Ce
k =

(
(Cp

k)−1 + HT
k (Cz

k)−1Hk

)−1
,
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which can alternatively be derived by means of the Woodbury matrix
identity. Consequently, the corresponding information matrix yields

Ye
k = (Cp

k)−1 + HT
k (Cz

k)−1Hk

= Yp
k + HT

k (Cz
k)−1Hk ,

and the information vector is updated according to

ŷe
k

= Ye
k x̂

e
k

= Ye
k

(
(I−KkHk)x̂p

k + Kk ẑk

)

= Ye
k

(
(Cp

k)−1 + HT
k (Cz

k)−1Hk

)−1
(

(Cp
k)−1x̂p

k + HT
k (Cz

k)−1 ẑk

)

= ŷp
k

+ HT
k (Cz

k)−1ẑk .

Apparently, the filtering step becomes the simple sum of information vectors
and matrices.

Unlike (3.4), the processing of multiple measurements related to the
sensor models (3.2) can now efficiently be carried out by means of the sums

ŷe
k

= ŷp
k

+
N∑

i=1
iik

= ŷp
k

+
N∑

i=1
(Hi

k)T(Cz,i
k )−1ẑik

(3.11)

and

Ye
k = Yp

k +
N∑

i=1
Iik

= Yp
k +

N∑

i=1
(Hi

k)T(Cz,i
k )−1Hi

k

(3.12)

with the sensor nodes contributing the innovation vectors

iik = (Hi
k)T(Cz,i

k )−1ẑik (3.13)
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Figure 3.6: Multisensor information filtering. The innovation parameters
can be preprocessed along any communication path.

and matrices

Iik = (Hi
k)T(Cz,i

k )−1Hi
k . (3.14)

Parts of these calculations can now easily be distributed. More precisely,
the measurement data along any communication path can be collected
and already be condensed into a single information vector, which has the
dimension of the system state, so that, in large networks, the overall com-
munication load can significantly be reduced, as illustrated by Figure 3.6.

A further useful property of the information form is that common infor-
mation can also easily be removed, simply by subtracting the corresponding
information vector and matrix. The removal of common information—even
if it is unknown to the fusion node—is discussed in Section 3.5.2. Although
the data can be efficiently processed on each communication path, still
the received sensor data of each time step need to be transmitted. A local
prediction step, so that data can be communicated at arbitrary instants of
time, cannot be established without losing optimality or even consistency.
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For this, further rearrangements of the formulas are necessary, as explained
in the following subsection.

3.3.3 An Optimally Distributed Kalman Filter
A fully distributed formulation of the Kalman filter has been presented
in [68, 69, 108, 109], where communication to the center node may take
place at arbitrary instants of time. This concept rests upon the insight
that specific sensor observations do not enter into the equation (2.26) for
the posterior covariance matrix. The formulas for initialization, prediction,
and filtering have been derived by decomposing Gaussian densities into
different products of Gaussian densities. The fusion of a number of N
independent estimates (x̂ik,Ci

k) can be viewed as a product of N Gaussian
densities that has the resulting parameters

x̂k = Ck

N∑

i=1
(Ci

k)−1x̂ik (3.15)

and

(Ck)−1 =
N∑

i=1
(Ci

k)−1 (3.16)

for mean and covariance matrix, respectively. It can be noticed that this
product is related to a standard Kalman filtering step, where one Gaussian
density serves as a prior. In [108], a special product decomposition is
employed that yields N globalized estimates, i.e., each factor Gaussian
density has the parameters (x̄ik, C̄k) with

x̄ik := C̄k(Ci
k)−1x̂k (3.17)

and

(C̄k)−1 := 1
N

N∑

i=1
(Ci

k)−1 . (3.18)

The term globalization refers to the fact that each Gaussian density
N ( · ; x̄ik, C̄k) has the same shape due to identical covariance parame-
ters C̄k, and their product—or fusion—again yields (3.15) and (3.16).
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These parameters are distributed among the sensor nodes in order to ini-
tialize their local prediction and filtering steps. For a single global estimate
(x̂k,Ck), an initialization complying with (3.17) and (3.18) can be achieved
by setting the local parameters to

(x̄e,i
k , C̄

e
k) := (x̂k, N · Ck) . (3.19)

It is easy to recognize but important to note that the local parameters
(x̄e,i
k , C̄e

k) do not necessarily represent valid estimates. Especially after
filtering, this is generally the case and these parameters must therefore be
regarded rather as synthetic variables carrying no information. A valid
estimate is obtained by fusing the local data according to (3.15) and (3.16).

Prediction The local prediction steps for the globalized estimates must
warrant that the process noise is not overrated, as discussed in Section 3.2.2.
The basic idea is to inflate the noise covariance matrix such that fusion
does not result into an underestimated error. In place of (3.1), we consider
the simplified system model4

xk+1 = Ak xk + wk (3.20)

with wk ∼ N (0,Cw
k ). Each local parameter set (x̄e,i

k , C̄e
k) is predicted

according to

x̄p,i
k+1 = Ak x̄

e,i
k

and
C̄p
k+1 = AkC̄e

kAk +NCw
k , (3.21)

where the N -fold of the process noise is employed. Hence, instead of (3.20),
the predicted parameters correspond to the model

xk+1 = Ak xk + w̃k (3.22)

with w̃ ∼ N (0, NCw
k ), which is called the relaxed system model. The local

prediction steps can be performed without requiring any communication
4The treatment of different local inputs would again demand for a continual commu-

nication.
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and automatically guarantee that the local parameters remain globalized,
i.e., the predicted covariance parameter (3.21) is the same on each sensor
site. The fusion result of the local parameters (x̄p,i

k+1, C̄
p
k+1) equals the

results of a centralized prediction step and is thus optimal.

Filtering The filtering step for the globalized parameters appears, at first
sight, to be similar to the standard Kalman filter. The local parameter x̄p,i

k

is updated according to

x̄e,i
k = C̄e

k

(
(C̄p

k)−1 x̄p,i
k + (Hi

k)T(Cz,i
k )−1 ẑik

)
, (3.23)

where the inverse-covariance Kalman gains (3.9) and (3.10) are employed.
The difference consists in the updated globalized matrix

C̄e
k =

(
(C̄p

k)−1 + (C̄z
k)−1

)−1
(3.24)

where the globalized measurement covariance matrix

(C̄z
k)−1 = 1

N

N∑

j=1
(Hj

k)T(Cz,j
k )−1Hj

k (3.25)

instead of only (Hi
k)T(Cz,i

k )−1Hi
k enters into the update equation. The

Gaussian function that corresponds to (Hi
k)T(Cz,i

k )−1 ẑik and C̄z
k is called

globalized likelihood. Evidently, all local parameter sets (x̄e,i
k , C̄e

k) feature the
same globalized covariance matrix C̄e

k. However, the globalized parameters
(x̄e,i
k , C̄e

k) generally do not represent valid state estimates, but fusing them
according to (3.15) and (3.16) yields the optimal Kalman-type estimation
results. For the covariance matrix (3.16), this is

(Ce
k)−1 (3.16)=

N∑

i=1
(C̄e

k)−1

= N(C̄p
k)−1 +N(C̄z

k)−1

= (Cp
k)−1 +

N∑

j=1
(Hj

k)T(Cz,j
k )−1Hj

k ,
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where the latter sum exactly corresponds to the updated covariance ma-
trix (3.12) in its information form. This relation clarifies why the globalized
error covariance matrix (3.25) is required. The update

(Ce
k)−1 x̂e

k

(3.15)=
N∑

i=1
(C̄e

k)−1x̄e,i
k

=
N∑

i=1
(C̄p

k)−1 x̄p,i
k +

N∑

i=1
(Hi

k)T(Cz,i
k )−1 ẑik

= (Cp
k)−1x̂p

k +
N∑

i=1
(Hi

k)T(Cz,i
k )−1 ẑik

again is analogous to the information state update (3.11). A different way
to perform the update step is to apply the standard Kalman filtering step
to the parameters (x̄p,i

k+1, C̄
p
k+1) and to globalize the obtained results by

means of (3.17) and (3.18) just before the next prediction step takes place.
In this case, the optimal distributed Kalman filter consists of three steps
(besides initialization)—prediction, filtering, and globalization.

Discussion: Distributed But Not Decentralized

The considered concept overcomes the problem of common process noise
among local state predictions, which has been discussed in Section 3.2.2, by
employing the relaxed system model (3.22). The fact that this relaxation
alone does not guarantee minimum MSE estimates states the reason for
the globalization during or after the filtering step and will also later be
discussed in Section 3.6.3. Yet the need for globalization shows clearly
that this approach may suffer from strict requirements regarding the local
availability of knowledge about utilized models. Each sensor node must
be in the position to compute the globalized likelihood with covariance
matrix (3.25) and therefore must be aware of the other nodes’ sensor
models, i.e., of the measurement matrices Hi

k and noise matrices Cz,i
k . This

problem is further compounded by the fact that the local parameters do not
represent valid estimates and must be available in their entirety at the fusion
center so as to obtain a valid state estimate. Hence, the failure of a single
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component brings down the entire state estimation system. The effects of
node failures and incomplete knowledge about the participating nodes have
been studied in [209], where slightly differing assumptions effect drastic
deviations of the estimates. This concept depending on global knowledge
about sensor models and providing noninformative local estimates is an
excellent example of a distributed estimation system, which only provides
in its entirety meaningful estimates.

The distributed Kalman filter has been further developed in [67]
and [209,210] in order to relax the strict requirements on global knowledge.
The general idea in [209,210] is to simultaneously keep track of a correc-
tion matrix that allows computing an unbiased estimate out of the local
parameters. Also, parts of the local estimates can be fused and the result
can then be transformed into an unbiased estimate. Hence, the correction
matrix can be employed if the assumptions on the network are not met and
an incorrect globalized matrix (3.25) is computed. With this correcting
matrix, the distributed Kalman filter is improved to degrade gracefully
depending on how well the assumptions on the global network are met, i.e.,
to which extent nodes are aware of each other. A second research direction
is to employ the distributed Kalman filter for suboptimal decentralized
control [208].

3.4 Stochastic and Set-membership
Information Filtering

The previous section has unveiled that an efficient processing of multisensor
data is significantly facilitated by focusing on inverse covariance matrices.
The filtering steps of both the information filter from Section 3.3.2 and
the distributed Kalman filter from Section 3.3.3 employ information state
vectors and matrices, i.e., equations (3.11) and (3.12) for the information
filter and equations (3.23) and (3.24) for the distributed Kalman filter.
In this section, we aspire to extent the information filter in order to
simultaneously treat stochastic and set-membership uncertainties. The
derived stochastic and set-membership information filter is based on [184]
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and [204]. In particular, the results of [204] are presented in an extended
fashion and are studied in more detail.

In the presence of additional set-membership uncertainties, a state
estimate x̂k, which is now characterized by both an error covariance ma-
trix Ck and an ellipsoidal error shape matrix Xk, must be represented in
its information form. At first sight, deriving an information form of the set-
membership error bound that preserves the distributable formulation of the
filtering step appears to be complicated. However, Chapter 2 has proposed
different interpretations of set-membership uncertainties. The Bayesian
viewpoint discussed in Section 2.4.1 allows regarding the estimate x̂k and
the shape matrix Xk as an ellipsoidal set E(x̂k,Xk) of means, i.e., the state
estimate is characterized by a set of Gaussian densities, which share the
same covariance matrix Ck. The transformation C−1

k into the information
form is thus the same for every possible mean. Hence, the transformed set
of means yields

Yk = C−1
k E(x̂k,Xk)

(2.35)= E(C−1
k x̂k,C−1

k XkC−T
k )

(3.26)

and is an ellipsoid of information vectors that are all related to the same
information matrix Yk = C−1

k . For shorter notation, we set

Qk := C−1
k XkC−T

k

in the following. This representation still entails an easily distributable
formulation of the filtering step, as illustrated in the following subsections.

3.4.1 Processing Steps of the Stochastic and Set-membership
Information Filter

As for the standard information filter in Section 3.3.2, the advantages in
the filtering step again come at the expense of more elaborate formulas for
the prediction step.
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Prediction in Information Form As for the predicted covariance matrix
of the standard Kalman filter, the predicted information matrix is again
obtained independently from the set of information vectors by means of

Yp
k+1

(3.7)=
(
Ak(Ye

k)−1AT
k + BkCu

kBT
k

)−1
,

where system mapping and input error covariance matrix are related to
the model (3.1). Each element of the information ellipsoid E(ŷe

k
,Ye

k) has
to be processed through (3.8). In particular, the midpoints ŷp

k+1 and ûk
are predicted according to

ŷp
k+1

(3.8)= Yp
k+1

(
Lk+1 ŷ

e
k

+ Bk ûk

)

with
Lk+1 = Ak(Ye

k)−1 .

It remains to compute the shape matrix Qp
k+1 for the outer approximation

of the Minkowski sum

Yp
k+1 = Yp

k+1Lk+1E(ŷe
k
,Qe

k)⊕Yp
k+1BkE(ûk,Xu

k)
⊆ E(ŷp

k+1,Q
p
k+1) ,

where Xu
k defines the set-membership uncertainty associated to the input.

From the family of possible predicted shape matrices

Qp
k+1

(2.101)= (1 + p−1)(Yp
k+1Lk+1)Qe

k(Yp
k+1Lk+1)T

+ (1 + p)(Yp
k+1Bk)Xu

k(Yp
k+1Bk)T ,

we propose to choose the element that is optimal in the sense of the trace,
i.e., the sum of the squared semiaxes lengths, i.e., setting p to (2.102).

Apparently, the prediction step only requires the outer approximation
of a Minkowski sum of two ellipsoids. The principal difficulty in simulta-
neous stochastic and set-membership information filtering consists of an
efficient and distributable approximation of the filtering step for multiple
measurements that are affected by both types of uncertainty, which lies in
the focus of the following paragraph.
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Information Filtering of Multiple Measurements In contrast to (3.2), a
measurement ẑik received on a sensor node i is affected by both a random
error vik ∼ N (0,Cz,i

k ) and an unknown but bounded error eik enclosed by
the ellipsoid E(0,Xz,i

k ). It is hence an outcome of

zik = Hi
k xk + vik + eik .

By adapting the Bayesian interpretation of Section 2.4.1 and bringing eik
to the left side, we consider the measurement and the error bound as set of
possible measurements Zik = E(ẑik,X

z,i
k ), where the symmetry of ellipsoids

has been exploited. In compliance with Section 3.3.2, the corresponding
information form has to be computed. The innovation matrix

Iik
(3.14)=

(
Hi
k

)T(Cz,i
k

)−1Hi
k

is again independent of specific measurements and the set-membership
uncertainty. For the ellipsoidal set Zik of observations, we obtain the
ellipsoid

Iik =
(
Hi
k

)T(Cz,i
k

)−1Zik
=
(
Hi
k

)T(Cz,i
k

)−1E
(
ẑik,X

z,i
k

)

= E
((

Hi
k

)T(Cz,i
k

)−1
ẑik,
(
Hi
k

)T(Cz,i
k

)−1Xz,i
k

(
Cz,i
k

)−THi
k

) (3.27)

of innovation vectors (3.13). As a result, the filtering equation (3.11)
becomes the Minkowski sum

Ye
k = Yp

k ⊕ I1
k ⊕ . . .⊕ INk (3.28)

with Yp
k = E(ŷp

k
,Yp

k) denoting the ellipsoid of prior information vectors.
An outer ellipsoidal approximation of this Minkowski sum can be computed
for every part of the sum by means of (2.36), and thus it can also be
implemented in a distributed fashion, but this procedure may finally result
into a very conservative approximation of the total sum. The distributed
computation of an ellipsoid that encloses the total sum and is optimal
with respect to the trace of the shape matrix is subject of the subsequent
subsection.
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3.4.2 Distributed Fusion of Information Ellipsoids
Deriving a trace-optimal approximation of the total sum (3.28) may at first
sight conflict with the idea to distribute its computation over the sensor
network. This section therefore presents an efficient and distributable
method for an outer trace-optimal approximation of the sum of more than
two ellipsoids. At first, we can achieve the optimality with regard to the
ellipsoid (3.26) of information vectors. An optimal approximation in the
information space does not necessarily imply that the same optimality
criterion is fulfilled in the state space. Therefore, we explain how to ensure
that the back-transformed ellipsoid in the state space is trace-optimal.

A Distributed Approximation of Minkowski Sums

In order to enclose the Minkowski sum (3.28) by an ellipsoid that is optimal
with respect to some criterion, we have to compute an outer approximation
of the entire Minkowski sum

E(ĉ1,X1)⊕ E(ĉ2,X2)⊕ . . .⊕ E(ĉN ,XN ) ⊆ E(ĉsum,Xsum)

of N ellipsoidal sets. The parameters of the aspired enclosing ellipsoid
E(ĉsum,Xsum) are given by

ĉsum =
N∑

i=1
ĉi

and

Xsum =
(

N∑

i=1
pi

)
·

N∑

i=1
p−1
i Xi (3.29)

with arbitrary pi > 0 [111], where E(ĉsum,Xsum) is in general not a tight
bound for the sum. The set of parameters {p1, . . . , pN} has to be determined
such that the chosen optimality criterion is fulfilled. Fortunately, deploying
the trace as criterion, as it is done throughout this work due to its relation
to the MSE, simplifies matters significantly. In [40], it has been proven
that

pi =
√

trace(Xi) , ∀i = 1, . . . , N (3.30)
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minimizes the trace5 of (3.29). By employing the parameters (3.30), the
sum (3.29) provides the particularly useful property that it is associative
in the following sense: For the sum of three ellipsoids with shape matrices
Xi, Xj and Xk, first

Xj,k = (pj + pk) ·
(
p−1
j Xj + p−1

k Xk

)

can be computed, and the final sum then yields
Xi,j,k = (pi + pj,k) ·

(
p−1
i Xi + p−1

j,kXj,k

)

= (pi + pj,k) ·
(
p−1
i Xi + p−1

j,k · (pj + pk) · (p−1
j Xj + p−1

k Xk)
)

= (pi + pj + pk) ·
(
p−1
i Xi + p−1

j Xj + p−1
k Xk

)
,

where the equality

pj,k =
√

trace(Xj.k) =
√

trace
(

(pj + pk) ·
(
p−1
j Xj + p−1

k Xk

))

=
√

(pj + pk) ·
(
p−1
j trace(Xj) + p−1

k trace(Xk)
)

=
√

(pj + pk) · (pj + pk)

= pj + pk

has been exploited. Thus, the matrix (3.29) does not need to be computed at
once but can be computed step-by-step, which is indispensable to preprocess
data along any communication path, as illustrated in Figure 3.7.

These results immediately imply that each sensor node i can au-
tonomously compute the parameter

pi =
√

trace
((

Hi
k

)T(Cz,i
k

)−1Xz,i
k

(
Cz,i
k

)−THi
k

)

that corresponds to its contribution (3.27). In order to simplify the notation
of (3.27), we set Iik = E(iik,Zik) with

iik :=
(
Hi
k

)T(Cz,i
k

)−1
ẑik ,

Zik :=
(
Hi
k

)T(Cz,i
k

)−1Xz,i
k

(
Cz,i
k

)−THi
k

5Note that this solution is identical to the trace-minimal outer approximation of (2.36)
for N = 2.
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Figure 3.7: Parts of the filtering step can be performed locally on the
sensor nodes, where data can be collected and already be condensed.

in the following. A node j that receives innovation parameters from node i
updates its parameters according to

ii,jk = iik + ijk , (3.31)
Ii,jk = Iik + Ijk , (3.32)
Zi,jk = (pi + pj)

(
p−1
i Zik + p−1

j Zik
)

(3.33)

before transmitting them to the next node on the communication path.
The first two parameters correspond to (3.13) and (3.14) of the standard
information filter, whereas the latter parameter is required for the ellipsoidal
bound. In the data sink, these parameters are employed to update the
predicted information parameters by means of

ŷe
k

= ŷp
k

+ i1,...,Nk , (3.34)
Ye
k = Yp

k + I1,...,N
k , (3.35)

Qe
k =

(
pp + p1,...,N

)(
(pp)−1Qp

k + p−1
1,...,N Z1,...,N

k

)
(3.36)
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with pp =
√

trace(Qp
k). The computation of the shape matrix Qe

k evidently
conforms to (3.29) and is optimal with respect to the trace. This compu-
tation is the only additional effort compared to the standard information
filter. However, the calculated shape matrix is only trace-optimal in the
information form.

B Optimality in State Space

The procedure proposed in the preceding subsection only provides a trace-
optimal ellipsoid in the information space. More specifically, due to the
inequality

trace(X) 6= trace(AXAT) , (3.37)
a trace-optimal Qe

k does not imply that the trace of

Xe
k = (Ye

k)−1Qe
k(Ye

k)−T

is optimal. Hence, the ellipsoid

E(x̂e
k,Xe

k) = (Ye
k)−1E(ŷe

k
,Qe

k)
= E

(
(Ye

k)−1ŷe
k
, (Ye

k)−1Qe
k(Ye

k)−T)

converted back to the state space does in general not represent an optimal
outer approximation.

For the purpose of minimizing the trace of (Ye
k)−1Qe

k(Ye
k)−T instead

of Qe
k, we can recognize from (3.36), and the back-transformed version

(Ye
k)−1Qe

k(Ye
k)−T =

(
pp + p1,...,N

)
·
(

(pp)−1(Ye
k)−1Qp

k(Ye
k)−T

+ p−1
1,...,N (Ye

k)−1Z1,...,N
k (Ye

k)−T
)

that the parameters pp, p1, . . . , pN simply have to be replaced by

pp =
√

trace
(
(Ye

k)−1Qp
k(Ye

k)−T
)
,

pi =
√

trace
(
(Ye

k)−1Zik(Ye
k)−T

)
, i ∈ {1, . . . , N} .

(3.38)

Apparently, each node i must be aware of the estimated information
matrix Ye

k before it is in the position compute its parameter pi. This can
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be achieved by first transmitting the innovation matrices Iik to the data sink,
where Ye

k can be determined, and thereafter broadcasting the information
matrix Ye

k back to the fusion nodes so that the parameters (3.38) can be
computed locally. With these parameters, the shape matrices Zik can then
be communicated to other nodes, preprocessed along any communication
path, and finally be fused with Qp

k according to (3.36). In summary, the
procedure is

1. first to transmit the information matrices Iik to the data sink. At
each intermediate node, the matrix is updated according to (3.32),
as illustrated in Figure 3.8(a).

2. At the data sink, Ye
k can then be computed by means of (3.35). The

determined information matrix Ye
k is communicated back to each

fusing sensor node that needs to know Ye
k in order to determine the

parameters (3.38), as shown by Figure 3.8(b).

3. The parameters pi can then locally be calculated according to (3.38),
and the matrices Zik are transmitted to the data sink according
to (3.33). The data sink computes Qe

k by means of (3.36), as depicted
in Figure 3.8(c).

4. In state space, the fused estimate is given by the midpoint x̂e
k =

(Ye
k)−1ŷe

k
, the covariance matrix Ce

k = (Ye
k)−1, and the shape matrix

Xe
k = (Ye

k)−1Qe
k(Ye

k)−T, which is summarized in Figure 3.8(d).

For this communication strategy, an additional communication load con-
sisting of the transmission of Ye

k is required. The communication and
computation of ŷe

k
can be done either in step 1 or step 3 by means of (3.31)

and (3.34).
In spite of the additional transmission of Ye

k, this procedure is more
favorable than to directly employ the multisensor Kalman filter formulas
from Section 3.3.1. Multisensor Kalman filtering even poses a further
difficulty in the presence of set-membership uncertainties. In the case of
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(a) Transmission of innovation matrices Ii
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to the data sink.
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(b) Computation of final information ma-
trix Ye

k and broadcasting it back to the
sensor nodes.

Center

S0

S4

S8

S1

S5

S9

S2

S6

S10

S3

S7

S11

Zi
k Zj

k

Zl
k

(c) Being aware of Ye
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can be determined for optimal processing
of shape matrices Zi
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(d) Back-transformation of fused informa-
tion parameters.

Figure 3.8: Data transmission strategy for stochastic and set-membership
information filtering. The green nodes preprocess obtained data according
to (3.31), (3.32), and (3.33).

130



3.4. Stochastic and Set-membership Information Filtering

two measurement devices and a sequential processing scheme according
to (3.3), an enclosing ellipsoid for

(I−K2
kH2

k)
(

(I−K1
kH1

k)E(x̂p
k,X

p
k)⊕K1

kE(ẑ1
k,X

z,1
k )
)

⊕ K2
kE(ẑ2

k,X
z,2
k ) ⊆ E(x̂e

k,Xe
k)

has to be calculated. Approximating first the inner sum optimally and
afterwards the outer sum would not provide a trace-optimal result because
of inequality (3.37). It becomes apparent that each shape matrix requires
a different linear transformation before a trace-optimal fusion result can
be determined. In the above scenario, this is (I−K2

kH2
k)(I−K1

kH1
k) for

the first ellipsoid, (I−K2
kH2

k)K1
k for the second ellipsoid, and K2

k for the
third ellipsoid. This stands in contrast to the information filter where each
fusing node only needs to receive the same Ye

k to compute the optimal
parameter according to (3.38). These issues are further discussed in the
subsequent simulated scenario.

3.4.3 Discussion and Simulation
The proposed concept is evaluated in a hierarchical network with one
intermediate layer consisting of 9 nodes. The situation is similar to the
scenario in [204], but in the here considered setup a total of 99 nodes and
arbitrary noise matrices is employed. The nodes strive for the common
goal to track a mobile object, which is related to the true system model

xk+1 = xk +
[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]

︸ ︷︷ ︸
=Bk

ûk

where the control inputs are determined according to û0 = [0.05, 0]T and
uk = x̂k − x̂k−1 for k > 0. The angle is set to γ = π

15 for k < 20 and
to γ = 3π

40 afterwards. To the estimator, a differing model is known with
γ = π

10 and the control input is determined by ûk = x̂e
k−x̂e

k−1. The observed
area is subdivided into 9 segments, each of which is monitored by 10 nodes.
One node in each segment serves as an intermediate node to the data sink.
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(a) The true trajectory is drawn blue. El-
lipses are the set-membership error bounds
of the estimates. Green: Trace-optimal re-
sult. Red: Result of naive information
filtering.
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(b) Blue: Covariance ellipses of stochas-
tic measurement noise. Red: Bounding
ellipses for unknown but bounded mea-
surement errors.

Figure 3.9: A network of 99 sensor nodes observes an object to be tracked.
The 9 filled black nodes can communicate to the data sink; the other nodes
have to send their data to these intermediate nodes first.

The state is directly observed by each sensor node, i.e., the matrix Hi
k

is the identity. The sensor noise covariance and shape matrices are both
randomly determined at each time step, as illustrated in Figure 3.9(b).
A trace-optimal fusion result at each time step can be achieved either
by sequential or blockwise Kalman filtering or by the information filter
employing the aforementioned communication strategy from Section 3.4.2-B.
The green ellipses in Figure 3.9(a) are the estimated trace-optimal bounds
for set-membership errors. The Kalman filter formulation requires the
awareness of every covariance and shape matrix, which must first be
transmitted to the intermediate nodes ( ) and then passed on to the center
node together with the data of each intermediate node ( ). This must be
done in each segment ( ) and for each of both types of error matrices ( ).
Hence, a total of

( 10 + 11 ) · 9 · 2 = 378
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matrix transmissions is required at each time step. In this regard, the
proposed information filtering scheme reveals a definite advantage: The
intermediate nodes can comprise the obtained matrices into a single one
before sending them to the center node. In order to minimize the trace
of the final shape matrix Qe

k, the center node has to send the fused
information matrix Ye

k back to the intermediate nodes ( ) so that the
required parameters (3.38) can be determined prior to the transmission
of Qi

k. The amount of matrices to be transmitted can significantly be
reduced to

( 10 + 1 ) · 9 · 2 + 9 = 207 .

A naive information filtering scheme that only provides optimality in the
information space only saves the 9 matrix transfers back to the intermediate
node and requires

( 10 + 1 ) · 9 · 2 = 198

transmissions but the set-membership errors bounds become continually
more conservative as shown in Figure 3.9(a) by the red ellipses. The traces

tr
ac

e(
X

e k
)

k

0 10 20 30 40
0

0.1

0.2

Figure 3.10: The trace of the shape matrix obtained by means of the
communication strategy from Section 3.4.2-B is, at each time step, lower than
the trace that corresponds to naive information filtering. They correspond
to the ellipsoidal error bounds in Figure 3.9(a).

of the red and green ellipses are compared in Figure 3.10. Of course, the
amount of additional data transfers for the optimal strategy depends on
the network topology. As a rule of thumb, flat hierarchies, where nodes on
intermediate levels can collect and condense much data, are particularly
suited.
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3.5 Towards Decentralized Estimation
Large-scale networks may render it difficult or even impossible to sustain a
certain communication strategy and network topology. As a consequence,
each node or a group of nodes should be capable of operating autonomously
without being reliant on a central processing unit. In this regard, a fully
decentralized processing is evidently the best solution so that each node is in
the position to determine a valid state estimate on its own. By exchanging
and fusing local estimates, they become more informative when possible
dependencies are taken into account correctly. This section commences with
an optimal fusion method of local estimates, which relies on the complete
knowledge of the entire joint covariance matrix. Unfortunately, this is only
applicable in rare and exceptional cases. Therefore, conservative algorithms
are presented that are robust to dependency effects on the state estimate.
However, in some cases, they can be very conservative.

3.5.1 Processing and Fusion of Local Estimates
Processing information in a network of sensor nodes without involving
a central computer system offers clear advantages but also poses many
additional challenges. Each node should be able to operate independently
and to remain unaffected by unreliable communication links, varying net-
work topologies, or failures of other nodes. As studied in Section 3.2, an
independent information processing does by no means imply that the local
estimation results are independent. Even in the early initialization phase,
the sensor nodes may share the same prior information in order to be in the
position to compute informative estimates locally. In a simple two-node
situation, the prior information can be distributed to the nodes according
to [

x̂p
A

x̂p
B

]
=
[
I
I

]
x̂p

0 , (3.39)

which entails the joint error covariance matrix

E
[([

x̂A
x̂B

]
−
[
I
I

]
x

)([
x̂A
x̂B

]
−
[
I
I

]
x

)T]
=
[
Cp

0 Cp
0

Cp
0 Cp

0

]
. (3.40)
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Hence, the local estimates x̂A and x̂B are fully correlated with cross-
covariance matrix CAB = Cp

0 . Another possibility is to initialize each
estimator with the very first measurement that is received. However, the
estimates become correlated through the prediction phase at the latest.
The state transition model (3.1) is to be applied on each local “copy” of
the state, i.e.,

[
xk+1
xk+1

]
=
[
Ak 0
0 Ak

] [
xk
xk

]
+
[
I
I

]
wk , (3.41)

where we disregard possible control inputs in order to simplify matters. In
each local prediction model, it is the same process noise wk that affects
the state. The predicted local estimates are then given by

[
x̂p
A

x̂p
B

]
=
[
Ak x̂

e
A

Ak x̂
e
B

]
, (3.42)

and the predicted joint covariance matrix yields

[
Cp
A Cp

AB

Cp
BA Cp

B

]
=
[
Ak 0
0 Ak

] [
Ce
A Ce

AB

Ce
BA Ce

B

] [
Ak 0
0 Ak

]T

+
[
Cw
k Cw

k

Cw
k Cw

k

]
.

(3.43)
The added noise covariance matrix is exactly the common process noise we
discussed in Section 3.2.2. The cross-covariance matrices Cp

AB = (Cp
BA)T

have to be adjusted in the prediction step, but the predicted estimates (3.42)
can be computed locally, unlike the filtering step, where the incorporation
of local measurements also updates the local estimates of the other nodes
and hence requires a communication: A local measurement ẑA received at
sensor node A is related to the model

zA =
[
HA 0

] [xk
xk

]
+ vA
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with local measurement noise vA ∼ N (0,Cz
A). The Kalman gain for the

joint state estimate is given by

K =
[

Cp
A Cp

AB

Cp
BA Cp

B

] [
HT
A

0

]
·
(

Cz +
[
HA 0

] [ Cp
A Cp

AB

Cp
BA Cp

B

] [
HT
A

0

])−1

=
[

Cp
AHT

A

(
Cz + HACp

AHT
A

)−1

Cp
BAHT

A

(
Cz + HACp

AHT
A

)−1

]
=:
[
KA

KB

]
,

(3.44)
in compliance with (2.24). The local prior or predicted estimates x̂p

A and x̂p
B

are then updated by means of
[
x̂e
A

x̂e
B

]
(2.26)=

[
x̂p
A

x̂p
B

]
+
[
KA

KB

](
ẑA −

[
HA 0

] [x̂p
A

x̂p
B

])

=
[
x̂p
A + KA(ẑA −HA x̂A)
x̂p
B + KB(ẑA −HA x̂A)

]
.

(3.45)

Due to nonzero cross-covariance matrix Cp
BA = (Cp

AB)T and hence nonzero
matrix KB , both estimates x̂p

A and x̂p
B are updated, although only sensor A

observes the state.
If we initialize the local estimators with (3.39) and (3.40), then

Cp
BA = Cp

A and hence KB = KA holds. Eventually, each estimate is
affected by the incoming measurement in the same way and each sensor
node is again equipped with the same estimate, i.e., x̂e

A = x̂e
B , that is equal

to a centralized estimation result, where all measurements are processed
by a single computer system. In this particular case, the cross-correlations
effectuate a redundant processing of the globally optimal state estimate,
i.e., each node has a copy of the globally optimal state estimate.

Of course, maintaining a constant communication link between all
nodes is least favorable as the network would provide no substantial advan-
tages anymore compared to gathering all measurements at a data sink. In
order to avoid interchanging sensor data, the Kalman gain (3.44) is only
computed for the local estimate, i.e., KA, and only the first row of the
vector transformation (3.45) is carried out. Although x̂p

B and Cp
B do not
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undergo the filtering step, still the cross-covariance matrices have to be
updated and need to be revised to

Ce
AB = E

[
(x̂e
A − xk)(x̂p

B − xk)T]

= E
[(

(I−KAHA)(x̂p
A − xk) + KA vA

)
(x̂p
B − xk)T]

= E
[
(I−KAHA)(x̂p

A − xk)(x̂p
B − xk)T]

= (I−KAHA)Cp
AB .

(3.46)

Against the background of target tracking applications, the treatment and
combination of locally computed estimates is referred to as the track-to-
track fusion problem [7–9]. In order to fuse the information provided by
different sensor nodes, the cross-correlations need to be taken into account
properly. Assuming independence can be hazardous and misleading, since
full correlation, for instance, imply that the estimates have to be considered
to be the same, as discussed before. The following paragraph is dedicated
to the question of how to exploit known cross-covariance matrices (3.46)
when estimates are to be fused.

A Bar-Shalom/Campo Formulas

For the fusion of locally processed estimates, the required Kalman gains
can be derived pursuant to the filtering step in Section 2.1.1-B. So, the aim
is to derive the gain that combines two estimates x̂A and x̂B according to

x̂fus = (I−K) x̂A + K x̂B .

Unlike Kalman filtering of conditionally independent measurements, the
cross-correlations between the estimates to be fused must be addressed
properly. In contrast to the Kalman filter covariance matrix (2.26), the
fused covariance matrix yields

Cfus = E
[
(x̂fus − xk)(x̂fus − xk)T]

= (I−K)CA(I−K)T + (I−K)CABKT

+ KCBA(I−K)T + KCBKT .

(3.47)

Minimizing its trace results into the gain

K = (CA −CAB) · (CA + CB −CAB −CBA)−1 ,
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and we obtain the Bar-Shalom/Campo formulas [8]

x̂fus = (CB −CBA)(CA + CB −CAB −CBA)−1 x̂A

+ (CA −CAB)(CA + CB −CAB −CBA)−1 x̂B
(3.48)

and

Cfus = CA−(CA−CAB)(CA+CB−CAB−CBA)−1(CA−CAB)T (3.49)

for the fusion of correlated tracks. This fusion of two estimates can be
interpreted as a Kalman filtering step with correlated sensor noise, where
ẑ = x̂B is the observation, the measurement matrix H is the identity,
and the error covariance matrix CB characterizes the sensor noise. The
estimate (x̂A,CA) serves as prior knowledge. However, this interpretation
as Bayes’ rule can be delusive, and it is a common misconception to
believe that storing and updating of cross-correlations with a subsequent
Bar-Shalom/Campo fusion renders an optimal strategy, as the following
example illustrates.

Example 3.3: Bar-Shalom/Campo formulas
In order to demonstrate the performance degradation with respect to a central-
ized processing, we compute the fused covariance matrix of two one-dimensional
estimates each of which incorporates an observation locally. The prior joint
covariance is set to [

Cp
A Cp

AB

Cp
BA Cp

B

]
=
[
6 6
6 6

]
,

i.e., the corresponding global estimate x̂p has variance 6 (cf. equations (3.39)
and (3.40)). Sensor A receives a measurement with error variance CzA = 3,
and, at sensor node B, the state is observed with error variance CzB = 6. For
both sensors, the measurement mapping is the identity. The local Kalman
gain for the former node yields

KA = Cp
A(Cp

A + CzA)−1 = 6(6 + 3)−1 = 2
3

such that the updated variance is

Ce
A = Cp

A −KAC
p
A = 6− 2

36 = 2 .
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For sensor node B, the variance is updated with the gain

KB = Cp
B(Cp

B + CzB)−1 = 6(6 + 6)−1 = 1
2

and results into
Ce
B = Cp

B −KBC
p
B = 6− 1

26 = 3 .

In order to be capable of applying the Bar-Shalom/Campo formulas, the
cross-correlations need to be adapted according to (3.46), which yields

Ce
AB = E

[(
(1−KA)(x̂p

A−x)
)(

(1−KB)(x̂p
B−x)

)T] = 1
3 ·Cp

AB · 1
2 = 1 .

With this cross-covariance, the Bar-Shalom/Campo formula (3.49) can be
applied to obtain the fusion result

Cfus = Ce
A −

(Ce
A − Ce

AB)2

Ce
A + Ce

B − Ce
AB − Ce

AB

= 2− (2− 1)2

2 + 3− 1− 1 = 12
3 .

We compare the fused variance with a centralized processing of the estimate
and measurements. The order in which the measurements are processed is, of
course, irrelevant. So, first we update the estimate with the measurement of
sensor A and obtain the error variance

Ce
1 = Cp −KAC

p = 6− 2
36 = 2 .

For the update with the second measurement, the gain K = Ce
1(Ce

1 +CzB)−1 =
2

2+6 has to be used and the final fused error variance is

Ce
2 = Ce

1 −KCe
1 = 2− 2

82 = 11
2 .

Evidently, a global processing of the measurements reports an estimate with
lower error variance than a distributed processing with correctly updated
cross-correlations and subsequent Bar-Shalom/Campo fusion.
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This discrepancy has first been studied in [150] and can be traced back
to the fact that the Bar-Shalom/Campo formulas rather characterize an
estimate that is optimal in the maximum likelihood sense [37]. They should
not be considered to be optimal in the Bayesian sense that the fused estimate
optimally incorporates the measurement history. The globally optimal
strategy is hence to persevere in a centralized fusion of measurements, as
described in Section 3.3. In spite of that, the Bar-Shalom/Campo fusion
algorithm still embodies the best strategy for combining two tracks, i.e.,
estimates, with known cross-correlations.

By means of Millman’s formulas [2,157], the Bar-Shalom/Campo fusion
rule can be generalized to the instantaneous combination of multiple esti-
mates, which of course requires to employ the entire joint cross-covariance
matrix. In general, attaining and sustaining valid cross-covariance matrices
is a central issue, which makes this approach unattractive. For a vast num-
ber of sensor nodes, large matrices must be stored and processed, which
clearly overshadows any benefits a decentralized processing may provide.
In many networks such as mobile ad-hoc networks, it will not even be
possible to obtain the actual cross-correlations, in particular, if a node is
not aware of its neighborhood.

B Extension to Set-membership Uncertainties

An incorporation of set-membership error characteristics into the Bar-
Shalom/Campo formulas can be achieving by following the derivations in
Section 2.4.2. In order to minimize the bound for the total MSE associated
with the fused estimate, the trace of

E
[
(x̂fus − xk)(x̂fus − xk)T] = (I−K)CA(I−K)T + (I−K)CABKT

+ KCBA(I−K)T + KCBKT

+ (1 + p−1)(I−K)XA(I−K)T

+ (1 + p)KXBKT

needs to be considered instead of (3.47), where XA and XB are the corre-
sponding shape matrices. Analogously to (2.91), the gain can be derived
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to the expression

K(p) =
(

(1 + p−1)XA + CA −CAB

)
·

(
(1 + p−1)XA + (1 + p)XB + CA + CB −CAB −CBA

)−1
.

(3.50)
A further extension to an adjustable gain according to Section 2.5 is straight-
forward. As mentioned earlier, dependencies between set-membership error
characteristics do not require any attention.

C Feasibility in Large-scale Sensor Networks

The aforementioned difficulty to compute a cross-covariance matrix for
the entirety of participating sensor nodes constitutes the reason why the
Bar-Shalom/Campo formulas can scarcely be applied to large-scale net-
works. In its original formulation, a communication between nodes, local
fusion of state vectors, and a corresponding update of the cross-covariance
matrix have not been considered, and the question arises where to store
and to keep track of the correlations. In particular, often changing neigh-
borhoods and network topology render it almost impossible to keep the
joint cross-covariance matrix up-to-date. For these reasons, a state vector
fusion architecture that maintains cross-correlations does not comprise any
clear advantages with respect to centralized architectures, where data is
transmitted to and managed by a single processing system.

3.5.2 Removal of Common Information and
Ellipsoidal Intersection

As stated above, in a network that is subject to often changes in sensor
configuration and topology, it can be hardly possible to maintain the
knowledge that is required to fuse estimates optimally, i.e., the cross-
covariance matrices. Dependencies between locally computed estimates
cannot simply be ignored without underestimating the actual MSE. In the
presence of possible unknown correlations, only suboptimal information
processing strategies are realizable. This subsection is devoted to the
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treatment of unknown data that is shared by two local estimates to be
fused.

Cycles in communication paths of a network can cause double-counting
of sensor data, as discussed in Section 3.2.1. For the information form
from Section 3.3.2, this implies that the locally computed information
parameters

ŷe
A

= ŷp
A

+
NA∑

i=1
iiA and Ye

A = Yp
A +

NA∑

i=1
IiA

for sensor A and

ŷe
B

= ŷp
B

+
NB∑

i=1
iiB and Ye

B = Yp
B +

NB∑

i=1
IiB

for sensor B have, w.l.o.g., the information vector and matrix

ŷ
A∩B =

M∑

i=1
ii and YA∩B =

M∑

i=1
Ii (3.51)

in common. If the latter parameters are known to the fusion node and the
prior estimates ŷp

A
and ŷp

B
are independent, they can simply be subtracted

from the fusion result, i.e.,

ŷfus = ŷe
A

+ ŷe
B
− ŷ

A∩B (3.52)

and

Yfus = Ye
A + Ye

B −YA∩B , (3.53)

so that they are only incorporated once. In networks that are acyclic,
for instance, tree-connected without loops, the channel filter [27,71,123]
stores the information parameters (3.51) that are shared by neighboring
nodes and removes them from the fusion results. If the shared information
parameters are unknown, only suboptimal fusion results are attainable, as
discussed in the next paragraph.
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A Unknown Common Information

In the situation that the common parameters (3.51) are unknown and there
is no other source of dependent information existent, a conservative fusion
result can be achieved by means of the ellipsoidal intersection algorithm
that has been derived in [158, 160] and evaluated in [159]. The idea is
to remove the “maximum” possible common information from the fusion
results, given by the information vector ȳ and matrix Ȳ. Hence, each local
estimate

ŷe
A

= ŷI
A

+ ȳ and Ye
A = YI

A + Ȳ (3.54)
and

ŷe
B

= ŷI
B

+ ȳ and Ye
B = YI

B + Ȳ (3.55)
is composed of an independent information vector denoted by the super-
script I and the common information vector ȳ. In order to prevent an
overconfident estimate, the removal of the information vector ȳ to be
determined cannot provide a better fusion result than for any true but
unknown ŷ

A∩B, which implies that, for the error covariance matrix and
the true but unknown YA∩B ,

Cfus = (Ye
A + Ye

B −YA∩B)−1 ≤ (Ye
A + Ye

B − Ȳ)−1 (3.56)

must hold, where the inequality denotes the Löwner partial order [13]

C1 ≤ C2 ⇐⇒ zTC1z ≤ zTC2z

for every nonzero z such that zTz = 1, i.e., C2 −C1 is positive semidefi-
nite. This means we aspire to compute a conservative estimate x̂fus with
covariance matrix Cfus that preserves covariance consistency

Cfus ≥ C̃fus , (3.57)

where C̃fus is the actual MSE matrix E[(x̂fus−x)(x̂fus−x)T]. From (3.56),
we can deduce the inequality

Ye
A + Ye

B −YA∩B ≥ Ye
A + Ye

B − Ȳ
⇐⇒ −YA∩B ≥ −Ȳ
⇐⇒ YA∩B ≤ Ȳ . (3.58)
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Since Ye
A and Ye

B also comprise independent information, we additionally
have

Ye
A ≥ Ȳ and Ye

B ≥ Ȳ . (3.59)

In the state space, the common information corresponds to a state estimate
x̄ = C̄ ȳ with covariance matrix C̄ = Ȳ−1. Relations (3.58) and (3.59)
then imply

Ce
A ≤ C̄, Ce

B ≤ C̄, and CA∩B ≥ C̄

for the covariance matrices. By considering the corresponding covariance
ellipsoids, C̄ can now be determined as the shape matrix of the Löwner-
John ellipsoid E(0, C̄) that is the smallest ellipsoid containing E(0,Ce

A)
and E(0,Ce

B). The required formulas for the Löwner-John ellipsoid are
explained in [158, Sec. 4.4].

With the derived “maximum” common information, the Bar-Shalom/
Campo formulas can be employed: In state space, the local estimates are
given by

x̂e
A = CA

(
(CI

A)−1x̂I
A + C̄−1x̄

)
with Ce

A =
(
(CI

A)−1 + C̄−1)−1

and

x̂e
B = CB

(
(CI

B)−1x̂I
B + C̄−1x̄

)
with Ce

B =
(
(CI

B)−1 + C̄−1)−1
,

for which the cross-covariance matrix yields

CAB = E
[
(x̂A − x)(x̂B − x)T]

= E
[
CA(C̄−1x̄− C̄−1x)(C̄−1x̄− C̄−1x)TCT

B

]

= CAC̄−1CB .

(3.60)

With this matrix, the Bar-Shalom/Campo formulas (3.48) and (3.49) can
be utilized to fuse the local estimates x̂e

A and x̂e
B. In particular, (3.49)

gives the right-hand side of inequality (3.56). The advantage of this state
space fusion is that x̄, x̂I

A, and x̂I
B do not need to be explicitly computed.

It is important to note that the ellipsoidal intersection algorithm is prone
to numerical instabilities [158], which have to be taken care of by slightly
modified formulas.
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The previous considerations have shown that the ellipsoidal intersection
algorithm can account for common information, but it remains an open
question how to fuse estimates when the sources of possible dependencies are
unknown and also common process noise must be taken into consideration.

B Incorporation of Additional Unknown But Bounded Errors

In case of the channel filter, the fusion formulas (3.52) and (3.53) have to
be generalized for the purpose of incorporating additional set-membership
errors. More specifically, (3.52) becomes a Minkowski sum of ellipsoidal
sets of information vectors according to

E(ŷfus,Qfus) = E(ŷ
A
,QA)⊕ E(ŷ

B
,QB)⊕ E(−ŷ

A∩B ,QA∩B) ,

where the formulas for outer approximations of multiple ellipsoids in Sec-
tion 3.4 can be employed.

In case of unknown common information (and no other dependent
information), the fusion can be conducted by means of the gain (3.50),
which has been derived for the Bar-Shalom/Campo rule in the presence of
set-membership uncertainties. The required cross-covariance matrix CAB is
given by (3.60). In doing so, we implicitly assume that no set-membership
uncertainties are associated to the common information because it has
no effect on the fusion result whether the unknown but bounded errors
belong to the independent or dependent parts of the local estimates (3.54)
and (3.55).

3.5.3 Covariance Intersection and Bounds
The most popular strategy guaranteeing consistent and conservative fusion
results is discussed in this subsection. Irrespective of the sources of de-
pendencies, reliable estimation results are provided, and hence no specific
knowledge about the underlying network topology is required. However,
these advantages are payed with less informative estimates.

Let x̂A and x̂B denote two local estimates on a state xk with error
covariance matrices CA and CB, and we assume that no further set-
membership uncertainties are present. In the situation that the cross-
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covariance matrix CAB = E[(x̂A − xk)(x̂B − xk)T] is unknown and the
Bar-Shalom/Campo formulas (3.48) and (3.49) cannot be deployed, the
covariance intersection (CI) algorithm [96,99,167] enables us to compute a
conservative estimate x̂CI with covariance matrix CCI that preserves the
inequality (3.57) with

CCI ≥ C̃CI

and C̃CI being the true MSE matrix E[(x̂CI − x)(x̂CI − x)T]. Interestingly,
we are already familiar with the combination rule exploited by the CI
algorithm, which yields the estimate

x̂CI = CCI
(
ωC−1

A x̂A + (1− ω)C−1
B x̂B

)
(3.61)

and error covariance matrix

CCI =
(
ωC−1

A + (1− ω)C−1
B

)−1 (3.62)

with weighting factor ω ∈ [0, 1]. More precisely, this formula matches the
centered intersection (2.92) for sets. The CI algorithm yields covariance
consistent estimates, i.e.,

CCI ≥ E
[
(x̂CI − xk)(x̂CI − xk)T ] , (3.63)

irrespective of the actual cross-covariance matrix CAB and choice of ω,
provided that (x̂A,CA) and (x̂B ,CB) are consistent estimates. Figure 3.11
illustrates the CI fusion result of two estimates depicted by their corre-
sponding covariance ellipsoids, with ω being determined to minimize the
determinant of (3.62) and thus to minimize the volume of the CI covari-
ance ellipsoid. Also, some results of the Bar-Shalom/Campo formulas
are depicted, where the cross-covariance matrices CAB have been chosen
arbitrarily.

In the considered situation of unknown correlations, it is also possible to
directly derive a Kalman gain that provides a conservative fusion result and
concurrently minimizes the bound (3.63) on the MSE matrix [38]. Similarly
to (2.91), determining such a gain K ∈ Rnx×nx is an (nx)2-dimensional
optimization problem that fortunately can be reduced to a one-dimensional
one. More precisely, it is equivalent to minimizing the trace of (3.62). Hence,
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(a) Covariance intersection is applied to
the red and blue estimate. The green el-
lipsoid represents a conservative estimate.
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(b) Every ellipsoid has been shifted to the
origin. The gray fusion results for arbitrar-
ily chosen cross-covariance matrices lie in
the intersection that is bounded by the CI
result.

Figure 3.11: In Fig. (a), covariance intersection applied to the red and
blue estimate yields the green ellipsoid, where the determinant has been
minimized. The gray ellipsoids represent Bar-Shalom/Campo fusion results
for some arbitrarily chosen cross-covariance matrices CAB . In Fig. (b), all
covariance ellipsoids are centered around origin.

the trace-optimal covariance matrix in the set of all possible conservative
fusion results lies in the set of CI fusion results.

A Covariance Bounds

The CI algorithm can alternatively be formulated in terms of the joint error
covariance matrix: Before fusing two estimates x̂A and x̂B , the covariance
bounds (CB) algorithm [74, 75]—also called covariance inflation [148]—
computes an upper bound for the joint covariance matrix, i.e.,

[ 1
ωCA 0

0 1
1−ωCB

]
≥
[

CA CAB

CBA CB

]
(3.64)

with ω ∈ (0, 1). This bound holds for every possible cross-covariance
matrix CAB. Apparently, by employing the bound as the current joint
MSE matrix, the estimates can be considered to be uncorrelated, and the

147



Chapter 3. Distributed and Decentralized Kalman Filtering: Challenges and Solutions

fusion rule for uncorrelated estimates, which corresponds to the Kalman
filter formula (2.26), can be utilized to calculate the estimated covariance
matrix

CCB = 1
ωCA −

( 1
ωCA

)( 1
ωCA + 1

1−ωCB

)−1( 1
ωCB

)

=
(
ωC−1

A + (1− ω)C−1
B

)−1
,

where the last equation is a result of the Woodbury matrix identity [177].
Accordingly, the estimate x̂CB is identical to (3.61). The joint state space
of estimates encompasses a very useful representation to identify and
conservatively bound unknown correlations.

B Comments and Analogies

The CI algorithm has extensively been studied and further developed by
analyzing the effect of the weighting parameter, formulating it in terms of
the joint state space, or extending it to the instantaneous fusion of multiple
estimates. As already implied by its name, a particularly interesting aspect
is also its relation to set-membership state estimation.

Relation to Set-membership Estimation We have already become ac-
quainted with equations (3.61) and (3.62) in Section 2.4.2-C, which occur
in case of vanishing stochastic uncertainties and represent the centralized
intersection of the set-membership uncertainty descriptions. Evidently,
it is the set-membership fusion methodology that is employed by the CI
algorithm and gives its name to it. The intuition behind this connection is
that cross-correlations introduce a systematic behavior to the estimation
error. In case of independence, the MSE is reduced into every direction,
but, in case of strong correlations, high errors of one estimate may be
interconnected with high errors of the other estimate, and the MSE cannot
be reduced in some directions. In Figure 3.11(b), some gray ellipsoids
therefore touch the boundaries of the intersection. This becomes most
conspicuous when the errors even have the same covariance matrices and
are fully correlated, i.e., CA = CB = CAB. Then, no update takes place,
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which corresponds to the same result as a set-membership estimator would
provide for identical sets. Due to full correlation, one estimate conditioned
on the other is purely deterministic, and no random zero-mean behavior
can be exploited to reduce the estimation error. So, a lack of independence
implies an unknown systematic behavior that is to be bounded, preferably
by means of set-membership methods.

Fusion of Multiple Estimates The CI algorithm was designed to fuse
two estimates but can easily be extended to the combination of multiple
estimates at once. For N local estimates (x̂1,C1), . . . , (x̂N ,CN ) to be
fused, the convex combinations

x̂CI = CCI
(
ω1C−1

1 x̂1 + . . .+ ωNC−1
N x̂N

)

for the mean and

C−1
CI = ω1C−1

1 + . . .+ ωNC−1
N

for the conservative error covariance matrix can be employed with ω1 +
. . . + ωN = 1 and ωi ≥ 0. Interestingly, CI is a convex combination of
information vectors and information matrices. Minimizing the trace or
determinant of CCI requires to solve an (N − 1)-dimensional optimization
problem but can yield a less conservative fusion result than fusing the
estimates sequentially by means of (3.61) and (3.62).

Optimal Weighting Parameter Criteria for determining ω have gained
considerable attention. In general, ω is determined in such way that the
determinant or trace of CCI becomes minimal. As stated earlier, the trace
is a reasonable choice due to its relation to the MSE [38], but it requires
a numerical optimization. Therefore, approximate closed-form solutions
have been proposed that also consider the traces or determinants of the
matrices [59, 136] or employ an information-theoretic measure like the
Kullback-Leibler distance [170].

Especially when using the trace or determinant, one of the estimates
to be fused will be rejected if CA −CB or vice versa is positive definite,
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i.e., if the covariance ellipsoid E(0,CA) contains E(0,CB). This means,
more precisely, that the fusion of (x̂A,CA) and (x̂B ,CB) yields the esti-
mate with the smaller covariance matrix. In one-dimensional setups, this
happens at every fusion step, which is, of course, undesirable, because
a node would place greater trust in a single possible outlier with small
variance than in many sources that report estimates with high variances.
In this regard, information-theoretic [84, 170] and set-theoretic [41, 171]
optimization criteria for ω have been proposed, where the choice of ω not
only depends on the error covariance matrices but also on the means x̂A
and x̂B . The concept proposed in [206] follows the pattern of Section 2.3,
and the unknown correlation coefficient is regarded to parameterize a set
of Gaussian densities. Each of these densities can be considered to be
conditioned on the correlation parameter. By modeling the correlation
coefficient to be uniformly distributed, it can be marginalized out, and a
single density remains. The result is then employed as an optimization
criterion for the CI algorithm, providing a closed-form solution for ω. Also,
an extension to multidimensional state spaces has been proposed in [206].

C Covariance Intersection in the Presence of Unknown But Bounded
Perturbations

In Chapter 2, we have pointed out several possibilities to incorporate
set-membership error descriptions. Two estimates x̂A and x̂B with un-
known cross-covariance matrix CAB can be fused by means of the CI
formulas (3.61) and (3.62), and, in the additional presence of unknown but
bounded errors being characterized by the shape matrices XA and XB , the
simplest way is to use the gain that is related to the CI algorithm, namely

KCI = 1
ω

CAC−1
CI and I−KCI = 1

1− ωCBC−1
CI ,

in order to compute the updated shape matrix (2.74). These gains can
easily be derived6 from the bounding covariance matrix (3.64). With them,
it can be ensured that the actual MSE is not underestimated in order to

6Often, the inverse covariance forms KCI = ωCCIC−1
A and I−KCI = (1−ω)CBC−1

CI
are considered.
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take possible cross-correlations between the local (stochastic) errors into
account, and an additional set-membership error is properly bounded.

However, as it is done in Section 2.4.1, the gain KCI plainly ignores
the impact of the set-membership errors when minimizing the MSE. So, in
order to compute a gain that also incorporates the shape matrices similarly
to Section 2.4.2, the overall MSE needs to be considered. The investigations
in [38] have revealed that for any pair of gains KA and KB , not necessarily
fulfilling the unbiased constraint, a conservative bound on the covariance
matrix can be achieved by setting

Cfus = (1 + γ−1)KACAKT
A + (1 + γ)KBCBKT

B (3.65)

with γ > 0. According to inequality (2.90) and with (3.65), the total MSE
can be bounded from above by virtue of

E
[
(x̂e
k − x)(x̂e

k − x)
]

= (1 + γ−1) trace
(
KACAKT

A

)

+ (1 + γ) trace
(
KBCBKT

B

)

+ (1 + p−1) trace
(
KAXAKT

A

)

+ (1 + p) trace
(
KBXBKT

B

)
.

By requiring unbiasedness and setting γ = p, the gain

K =
(
(1+p−1)(XA+CA)

)(
(1+p−1)(XA+CA)+(1+p)(XB +CB)

)−1

can be derived, which is a straightforward generalization of the Kalman
gain (2.91). The simplification γ = p traces back to Theorem 2 in [38],
where the calculation of a trace-optimal Kalman gain is reduced to a one-
dimensional optimization problem. As expected, this result clearly confirms
that CI treats the covariance matrix like a set-membership error matrix.

3.6 Decentralized Estimation with Additional
Knowledge

Fully decentralized state estimation techniques are of particular interest in
the field of sensor networks, simultaneous localization and mapping (SLAM),
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and cooperative multi-robot systems. If not taken into account properly,
complex dependency structures between local estimates can cause incon-
sistent estimation results. Covariance intersection and bounds always
maintain consistency by providing conservative fusion results, with the
consequence of possibly much less informative estimates. On this account,
this section names techniques that allow us to explicitly identify and exploit
independencies in order to achieve estimates with tighter bounds on the
errors. According to previous considerations, set-membership uncertainties
do not need to be considered. Their incorporation into the presented meth-
ods can be accomplished by means of the results of Chapter 2, Section 3.4,
and the previous section.

3.6.1 Automatic Exploitation of Independencies

The concept proposed in [196] is designed to exploit the conditional inde-
pendence of measurements, especially against the background of SLAM
applications, where the total state vector

xk =
[
(x1
k)T , . . . , (xNk )T

]T

consists of a large number of substates xik that represent the position and
attributes of landmarks or mobile robots. Of course, each substate can also
be a representative of a single state that is observed by N different nodes.
The techniques from [196] are predestined for estimation tasks, where two
substates xik and xjk are related to each other by a measurement ẑk that is
a realization of

zk =
[
Hi
k Hj

k

] [xik
xjk

]
+ vk .

This is, for instance, the case whenever distances between nodes have to be
measured or when the state can only be observed in a cooperative fashion.
Since vk is independent from xk, only the correlations of the substates
need to be bounded. For this purpose, we employ the covariance bounds

152



3.6. Decentralized Estimation with Additional Knowledge

algorithm from Section 3.5.3-A and replace Cp
k by the upper bound (3.64).

The filtering step is then carried out by means of

[
x̂e,i
k

x̂e,j
k

]
=
[
x̂p,i
k

x̂p,j
k

]
+
[

1
ωCp,i

k 0
0 1

1−ωCp,j
k

]

(
Hi
k

)T
(

Hj
k

)T


 ·
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(
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(
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−1

·
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for the estimate and
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k

]
=
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k 0
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(
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−1

·
[
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]

for the joint error covariance matrix, where the obtained cross-covariance
matrices Ce,i,j

k = (Ce,j,i
k )T are usually discarded. The local estimate of

substate xi is then given by

x̂e,i
k = x̂p,i

k + 1
ω

Cp,i
k

(
Hi
k

)T ·
(

Cv
k + Hi

k

(
1
ω

Cp,i
k

)(
Hi
k

)T +

Hj
k

(
1

1− ωCp,j
k

)(
Hj
k

)T )−1 (
ẑk −Hi

kx̂
p,i
k −Hj

kx̂
p,j
k

)
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with error covariance matrix

Ce,i
k = 1

ω
Cp,i
k −

1
ω

Cp,i
k

(
Hi
k

)T ·
(

Cv
k + Hi

k

(
1
ω

Cp,i
k

)(
Hi
k

)T + Hj
k

(
1

1− ωCp,j
k

)(
Hj
k

)T)−1
Hi
k

1
ω

Cp,i
k ,

and x̂e,j
k and Ce,j

k are computed analogously. These formulas can be
also employed to directly fuse two estimates and to exploit additional
independent measurement knowledge. The following concluding example
illustrates the benefits from exploiting independent information.

Example 3.4: Localization by exploiting independent measurement data
We consider the example from [196], where a robot computes an estimate on
its own position and the positions of four landmarks, which are the corners
of a wall. We consider a simplified measurement model that is a linearization
of the Euclidean distances around the true values, which are, of course, in
practical applications unknown. With the idealized model, we intend to
avoid additional effects from linearization errors. The robot performs several
measurements and can achieve the optimal, centralized result depicted in
Figure 3.12(a), when cross-correlation are known. Ignoring dependencies, as
shown in Figure 3.12(b), results into biased estimates, which can especially
be seen by the green and the right magenta ellipse. Covariance intersection
astonishingly does not provide any improvements in Figure 3.12(c) because
only measurements between substates take place, and CI provides also a bound
for the worst case, i.e., full correlation, which does not permit new insights
to be gained. By exploiting the knowledge that the measurement errors are
independent, the result in Figure 3.12(d) is obtained, which is impressively
close to the centralized solution.

3.6.2 Split Covariance Intersection
While in the previous subsection covariance bounds provide the means to
exploit independent information, the covariance intersection algorithm can
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(d) Exploiting independence of mea-
surement noise.

Figure 3.12: The stationary robot in the north measures distances to the
corners of a wall [196]. The state vectors is composed of the robot’s position
and the corner positions as landmarks. The initial uncertainties are drawn
gray.

similarly be generalized to split covariance intersection (split CI) [92,94,98].
In the case that the errors are known to be partially independent, a fusion
result with tighter error covariance matrix can be accomplished. We assume
that the error covariance matrices of sensors A and B can be written as

CA = CI
A + CD

A

and
CB = CI

B + CD
B ,

where the superscript I, in each case, labels the independent part. In order
to apply split CI, it is not necessary to also split the according estimates
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x̂A and x̂B into interdependent and independent parts. To simplify the
presentation, we consider the information form of split CI, which yields the
mean

C−1
sCI x̂sCI = ω

(
ωCI

A + CD
A

)−1
x̂A + (1− ω)

(
(1− ω)CI

B + CD
B

)−1
x̂B

and error covariance matrix

C−1
sCI = ω

(
ωCI

A + CD
A

)−1
+ (1− ω)

(
(1− ω)CI

B + CD
B

)−1

=
(

CI
A + 1

ω
CD
A

)−1

︸ ︷︷ ︸
=:(C∗A)−1

+
(

CI
B + 1

1− ωCD
B

)

︸ ︷︷ ︸
=:(C∗B)−1

,

where ω ∈ [0, 1] is chosen to fulfill a predefined optimality criterion. With
these formulas, we can also implement the approach from the previous
Subsection 3.6.1, although we here have to explicitly distinguish between
dependent and independent data.

At this point, one may be inclined to presume that again a strong
relationship between split CI and the concepts from Chapter 2 can be
spotted. Indeed, with C∗A and C∗B defined above and by setting 1+p−1 = 1

ω ,
the Kalman gain

Kk(p) = C∗A ·
(
C∗A + C∗B

)−1

=
(
CI
A + (1 + p−1)CD

A

)(
CI
A + (1 + p−1)CD

A + CI
B + (1 + p)CD

B

)−1

can be derived, which equals the gain (2.91) for Hk = I, where the in-
dependent parts still represent stochastic error characteristics, but the
dependent parts are now viewed as shape matrices for set-membership
error bounds. In conclusion, the conservative treatment of dependent and
independent information bears a strong resemblance to combined stochastic
and set-membership state estimation in Chapter 2.

3.6.3 Federated Kalman Filtering
The federated Kalman filter [33–35] can be viewed as the predecessor of the
optimal distributed Kalman filter of Section 3.3.3 and, as such, it requires
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less assumptions to be met. It moreover allows for a decentralized processing
of estimates as the locally computed parameters represent valid state
estimates. Each node must only be aware of the number of participating
nodes in order to be able to determine the inflation parameter for the relaxed
system model (3.22). Initializing each sensor node with the same prior,
as in (3.39), results into a fully occupied joint covariance matrix (3.40).
The federated Kalman filter instead employs the inflated joint covariance
matrix




1
ω1

Cp
0 0 · · · 0

0 1
ω2

Cp
0

. . . ...
... . . . . . . 0
0 · · · 0 1

ωN
Cp

0



≥




Cp
0 Cp

0 · · · Cp
0

Cp
0 Cp

0
. . . ...

... . . . . . . Cp
0

Cp
0 · · · Cp

0 Cp
0




with
∑N
i=1 ωi = 1 and ωi ≥ 0, which implies that each sensor node is

initialized with (x̂p,i
0 ,Cp,i

0 ) := (x̂p
0 ,

1
ωi

Cp
0), which is equal to the initializa-

tion (3.19) for ωi = 1
N and guarantees that the fusion of the local estimates

still yields (x̂p
0 ,C

p
0). The prime aim of federated Kalman filtering is to

eliminate the effects of common process noise. Employing a standard sys-
tem model (3.1) would implicate a fully correlated process noise according
to (3.43). For this reason, again an inflated version




1
ω1

Cw
k 0 · · · 0

0 1
ω2

Cw
k

. . . ...
... . . . . . . 0
0 · · · 0 1

ωN
Cw
k



≥




Cw
k Cw

k · · · Cw
k

Cw
k Cw

k

. . . ...
... . . . . . . Cw

k

Cw
k · · · Cw

k Cw
k




(3.66)

of the common process noise matrix is used, which is directly related to
the relaxed system model (3.22). After a prediction, the fusion still yields
the optimal centralized result due to

(
Ak x̂

p,i
0 ,AkCp,i

0 AT
k + 1

ωi
Cw
k

)
=
(
Ak x̂

p
0 ,

1
ωi

(AkCp
0AT

k + Cw
k )
)
,

i.e., we can first predict the estimate and can then perform the initialization
step. Unfortunately, local filtering steps prevent the final fusion result from
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being optimal in the MSE sense since they are carried out by means of
the standard Kalman update step and no globalization, as in Section 3.3.3,
takes place. However, the advantage is that local estimates are conservative
estimates so that nodes may also fail and still a valid estimate is attainable.
The fusion result provides a conservative estimate unless no more than N
local estimates are combined and no common sensor information is present.
Thus, for a fully decentralized processing, cycles in the network topology
have to be avoided.

3.6.4 Delayed State Filtering
Delayed state information filters are widely used in simultaneous localization
and mapping (SLAM) applications and cooperative tracking problems
[5, 31, 32, 81]. The basic property that is exploited is the conditional
independence of all measurements given the entire trajectory, i.e.,
f(Z0:k |x0:k) = f(ẑ1

k |x0:k) · . . . · f(ẑNk |x0:k) · f(ẑ1
k−1 |x0:k) ·

. . . · f(ẑ1
0 |x0:k) · . . . · f(ẑN0 |x0:k) ,

(3.67)

which requires to process and store the entire state trajectory x̂e =
[(x̂e

0)T . . . (x̂e
k)T]T and measurement sequence. Of course, this is infea-

sible, not only because the error covariance matrix of the state vector is
fully occupied; its size grows without bound. However, in some applica-
tions, parts of the history are stored, for instance, in order to deal with
delayed measurements, and fortunately the information form provides a
sparse representation of the trajectory. We consider a linear system model
like (3.20) without control inputs in order to simplify matters. A part of
the trajectory from time step l to time step k, i.e., x̂p

l:k = [(x̂p
l )T . . . (x̂p

k)T]T,
has a very simple representation7 in its information form, which is given by

ŷp
l:k =




(Cp
l )−1 x̂p

l

0
...
0


 =




ŷp
l

0
...
0


 ,

7The lower entries generally also become nonzero for affine models or linearized
models.
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where no measurements have been incorporated yet. The measurement
sequence can be stored separately in its information form

il:k =



il
...
ik


 =




(Hl)T(Cz
l )−1ẑl

...
(Hk)T(Cz

k)−1ẑk


 ,

which can be fused with the trajectory by means of a simple addition.
The corresponding matrix Il:k is simply block diagonal due to (3.67). The
information matrix Yp

l:k related to the trajectory ŷp
l:k remarkably offers

also the sparse representation

Yp
l + AT

l (Cw
l )−1Al −(Cw

l )−1Al 0

−AT
l (Cw

l )−1 (Cw
l ) + AT

l+1(Cw
l+1)−1Al+1

. . .

0 −AT
l+1(Cw

l+1)−1 . . .
...

0 · · · 0

· · ·

· · ·

· · · 0
...

−(Cw
k−1)−1Ak−1 0

(Cw
k−1)−1 + AT

k (Cw
k )−1Ak −(Cw

k )−1Ak

−AT
k (Cw

k )−1 (Cw
k )−1


.

It is important to note, that prior states must be marginalized out before the
information vector for a certain instant of time can be transformed back to
state space. The incorporation of additional set-membership uncertainties
can be accomplished by employing the approach from Section 3.4.

The information form of the delayed state vector provides several
advantages in view of a decentralized network. The innovation vectors iil:k
and matrices Iil:k from different sensor nodes i ∈ {1, . . . , N} characterize the
independent measurement information and can be fused by simple addition.
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In particular, this means that, in comparison with Subsection 3.6.1, a
longer measurement history can be exploited. The dependent information
is associated with the trajectory ŷp,i

l:k . Furthermore, the information matrices
Yp,i
l:k and Yp,j

l:k are equal except of the upper left block, i.e., Yp,i
l and Yp,j

l ,
which comprise the entire locally computed trajectories prior to time step
l and are dependent due to common process noise and possibly common
sensor data. Hence, a convex combination (3.62) for a conservative fusion,
as it is done by the CI algorithm in Section 3.5.3, only manipulates the
upper left block with YCI

l = ωYp,i
l +(1−ω)Yp,j

l . The sensor nodes therefore
only need to interchange this part for fusing the trajectories. By means
of the explained splitting into dependent and independent information,
the split CI algorithm from Subsection 3.6.2 can be employed for fusion.
Of course, delayed state estimation comes at the expense of higher data
transfer volume and storage requirements. However, both aspects only
dependent linearly on the length of the considered horizon l : k if the
information form is utilized.

3.7 Conclusions from Chapter 3
This chapter has elucidated several additional difficulties that networked
systems impose to the estimation problem. In particular, we singled
out dependencies among locally processed data as the major issue to be
addressed. The first named possibility is to maintain a centralized network
architecture and to focus on an efficient preprocessing of measurement data,
in order to reduce the amount of data to be communicated and to relieve
workload of the center station. In this regard, the information form of the
Kalman filter proves to be particularly valuable as the filtering step becomes
the simple addition of information vectors and matrices. The information
form is also employed to formulate an optimal distributed Kalman filter,
where each node must be aware of all employed sensor models in order to
compute a globalized likelihood. However, the local parameters have to
be altered to synthetic variables and cannot serve as estimates anymore.
If one node fails, even no valid estimate can be reconstructed. As one
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of the main contributions, this chapter focuses on the incorporation of
additional set-membership uncertainty descriptions into the information
filter. Fortunately, approximating a Minkowski sum of multiple error
bounds in a distributed fashion turned out to be an easy task. In order to
obtain a trace-optimal error bound, a certain communication strategy has
to be employed that consists of first transmitting the information matrices,
sending back the result, and computing the shape matrices with the correct
parameters.

In many applications, the presence of a center node is prohibitive or
even impossible. The necessity to continually send data to the center station
can restrict the overall lifetime of battery-powered nodes significantly and
can prevent nodes from operating and enacting decisions independently.
However, in order to enable the nodes to be capable of solving a higher-level
estimation problem, a fusion of local estimates must still provide addi-
tional insights to the state to be estimated. Possible correlations between
local estimates introduce a systematic error behavior to the estimation
problem but, unfortunately, cannot be tracked over time or traced back
to their origin in a fully decentralized network. With the covariance inter-
section/covariance bounds algorithm, a solution has been proposed that
is robust to any effects of correlated errors. This method is closely linked
to the combined concepts of Chapter 2 as the possibles correlations are
treated as unknown systematic errors that are to be bounded by means
of the set-membership methodology. The drawback is that estimates are
often highly conservative and therefore less informative. For this reason, we
have shown several possibilities to exploit additional knowledge in order to
tighten the conservative bounds. Employing the independent sensor noise
of currently received measurements appears to be most evident, which can
automatically be achieved by the covariance bounds algorithm. Split covari-
ance intersection can be applied to estimates that are explicitly divided into
dependent and independent parts. When the total amount of participating
nodes is known and cycles of communication paths can be avoided, the
federated Kalman filter can be employed that decorrelates the process noise
by inflating the joint noise covariance matrix. The last considered concept
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is delayed state filtering, where sparse representations of trajectories in the
information form can be exploited, so that the conditional independence of
measurements over a predefined time horizon is guaranteed.

The variety of named approaches in this chapter is, of course, not
all-encompassing. Internal covariance approximations [16] and consensus
Kalman filtering [138] comprise also well-known concepts. Unfortunately,
many concepts lack a guarantee that they provide covariance-consistent
estimates and are therefore not considered here.

162



CHAPTER
4

Nonlinear State Estimation
under Nonlinear Dependencies

Overview of Chapter 4

4.1 Nonlinear Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2 Exponential Mixture Densities . . . . . . . . . . . . . . . . . . . . . 171
4.3 Covariance Intersection with Pseudo Gaussian Densities . . . . . . 176
4.4 Generalized Nonlinear Information Filtering . . . . . . . . . . . . . 194
4.5 Nonlinear Federated Filtering . . . . . . . . . . . . . . . . . . . . . . 203
4.6 Conclusions from Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 213

Nonlinear state estimation is generally a challenging task. The techniques
discussed in the preceding chapters are then only applicable to a limited
extent. Of course, uncertain quantities can be characterized by their first
and second order error statistics and standard Kalman filtering techniques
can be employed. However, mean and covariance matrix often do not
suffice to take the underlying uncertainty fully into account and can even
be deceptive, in particular, when multi-modal probability densities have
to be dealt with. Since closed-form computations of the actual densities
are, in general, not possible, a lot of effort has been expended on approx-
imate solutions to nonlinear state estimation. Extended [163] and linear
regression Kalman filtering, of which the unscented Kalman filter [100]
is a well-known candidate, explicitly or implicitly linearize system and
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sensor models and therefore suffer from the aforementioned problem: Due
to the underlying Gaussian assumption, they only provide very limited
capabilities for capturing multi-modalities. Approximations of predicted
and posterior densities are far better suited to account for multi-modalities.
In the past years, the advances in state estimation theory provide us with
a wide variety of density approximation techniques, such as, inter alia,
particle representations [49], orthonormal bases representations like trun-
cated Fourier series [12,30], Gaussian mixture densities [3], and exponential
densities [63, 147]. Apparently, nonlinear estimation is in itself challenging
but becomes even more complicated in the context of distributed and
decentralized sensor networks.

In nonlinear contexts, dependencies can neither easily be parameter-
ized nor associated with a certain family of possible dependency structures.
Accordingly, they do not convey an intuitive understanding of what a
conservative fusion result has to be. For linear estimation problems, con-
servativeness can be achieved by means of the covariance intersection (CI)
algorithm. Like the Kalman filter, CI only relies on the assumption of
linearity and the first two moments of the estimates to be fused. It can
hence also be applied in nonlinear setups, but we have to reckon with
the same aforementioned difficulties that, for instance, multi-modalities
are neglected. This chapter is dedicated to distributed and decentralized
nonlinear information fusion. Section 4.1 provides a deeper analysis of
nonlinear dependencies among local estimates and describes how nonlinear
fusion is conducted when dependencies are entirely known. In contrast,
Section 4.2 considers the situation that no knowledge about dependencies
can be exploited. Conservative fusion results have then to be determined,
which requires that a proper notion of conservativeness is definable at all. In
some estimation problems, dependencies become tractable and parameteri-
zable when considered in a transformed state space. Such transformations
are employed in Section 4.3. A generalization of the information filter is
presented in Section 4.4 in order to ease efficient processing of multiple
sensor data. This formulation is rather useful in distributed networks than
in decentralized ones. If the computation of local tracks is inevitable, but a
central fusion node is present, the nonlinear federated filter in Section 4.5
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can be employed that only computes a conservative bound on the process
noise and thereby reduces conservatism.

Set-membership uncertainties are not considered in this chapter, al-
though this can be achieved by means of the concepts from Chapter 2. The
incorporation of set-membership uncertainties can be solved independently
from the question of how to cope with nonlinear dependencies. Again,
interdependencies between unknown but bounded quantities do not have
any affect on the computed bounds and are hence not in the focus of this
chapter.

4.1 Nonlinear Dependencies
In nonlinear estimation problems, estimates are characterized by condi-
tional probability densities, as explained in Section 2.1.1. Dependencies
then emerge as joint probability density functions, and local estimates
can be regarded as marginal densities. Unfortunately, as in the linear
case, this implies that a far higher-dimensional state space needs to be
considered in order to model dependencies. This section elucidates the ar-
bitrariness of joint densities in nonlinear estimation problems and analyzes
how dependencies can be exploited to fuse locally computed densities.

4.1.1 Lack of Sole Linearity
The preceding Chapter 3 has revealed a variety of approaches to cope
with unknown dependencies in linear estimation problems. Each involved
uncertain quantity—the state estimate, process noise, and sensor noise—
is characterized by means of an error covariance matrix, and dependencies
between local estimates are entirely characterized by cross-correlations
between the estimation errors. The corresponding cross-covariance matrices
are only linearly manipulated by linear system and sensor models. Hence,
linear state estimation ensures that only linear dependencies, i.e., cross-
correlations, between Gaussian estimates are present. Unfortunately, this
valuable property cannot be exploited in nonlinear estimation problems
anymore. Figure 4.1(a) shows a Gaussian density that characterizes the
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Figure 4.1: Dependencies between the red and blue local Gaussian esti-
mates are not necessarily represented by a Gaussian density.

dependencies between two Gaussian local densities, but—in nonlinear
estimation problems—also the density depicted in Figure 4.1(b) is a possible
candidate to characterize the dependency structure of the same Gaussian
marginals. While the density in Figure 4.1(a) can easily be parameterized by
means of the corresponding joint covariance matrix, approximations might
be inevitable to model dependency structures like the one in Figure 4.1(b).
Studies that are concerned with parameterizing nonlinear dependencies are
scarce. A concept that gained unfortunate notoriety with regard to the
2008 global financial crisis [152] is to employ copulas [134,145]. Although
copulas allow to characterize dependencies over a hypercube [0, 1]2nx , still
approximations are required for complex dependency structures and it has
not been studied yet how to embed copulas into the Bayesian estimation
framework from Section 2.1.1. A second possibility is to ascribe nonlinear
dependencies to correlations in a higher-dimensional state space, which will
be considered in Section 4.3.

If dependencies between estimates are anyway unknown, it is more
important to define a proper notion of consistency and conservativeness
than to determine parameterizations. The issue to be addressed is then
how to conservatively bound densities like the one plotted in Figure 4.1(b).
However, the question how to treat unknown dependencies has not been
sufficiently solved yet since a joint density may take arbitrary and unex-
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pected forms, as discussed in the following subsection. A general possibility
to obtain conservative estimates will be discussed in Section 4.2. In some
estimation problems, it is possible to limit the arbitrariness of joint densities
for given marginals, which is exploited in Section 4.3.

4.1.2 Fusion of Dependent Information
The problem of fusing dependent estimates is discussed in this subsection
by means of two sensor nodes A and B that communicate their estimates
of an uncertain system state xk at a given time instant k. Parts of the
following considerations have been published in [197]. To simplify matters,
we omit the time index in the following considerations. The sets ZA and
ZB denote the data collected at each local node. Each set consists of the
measurement sequences obtained through own sensor observations and
through communication with other nodes. The local state estimates are
represented by the conditional densities f(x | ZA) and f(x | ZB). If ZA and
ZB are conditionally independent, i.e.,

f(ZA ∪ ZB |x) = f(ZA |x) · f(ZB |x) ,

and prior information f(x) is available, the local estimates can be fused
[42,118] according to

f(x | ZA ∪ ZB) = f(ZA ∪ ZB |x) · f(x)
f(ZA ∪ ZB)

= f(ZA |x) · f(ZB |x) · f(x)
f(ZA ∪ ZB)

= f(ZA) · f(ZB)
f(ZA ∪ ZB) · f(x | ZA) · f(x | ZB)

f(x)

= c· f(x | ZA) · f(x | ZB)
f(x) ,

(4.1)

where the constant factors are collected in the term c. When no prior
information f(x) on x is available, the fusion formula reduces to

f(x | ZA ∪ ZB) = c· f(x | ZA) · f(x | ZB) , (4.2)
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which implicitly indicates that a non-informative prior is used. The condi-
tional densities f(x | ZA) and f(x | ZB) can further be considered as the
marginals of the joint density

f(xA, xB | ZA ∪ ZB) = f(xA | ZA) · f(xB | ZB) . (4.3)

It is worth to note that this joint density can also be derived similarly
to (4.1) and (4.2) when no prior densities f(xA), f(xB), and f(xA, xB) are
given. The joint density (4.3) is related to the fusion result (4.2) by

f(x | ZA ∪ ZB) = c· f(x | ZA) · f(x | ZB)

= c· f(x, x | ZA ∪ ZB) .
(4.4)

Thus, the fused density (4.2) is obtained from the joint density conditioned
on the event E = {[xA, xB ] | 0 = xA−xB} that xA and xB are equal. This
relation can also be seen from the fact that the estimates are, in general,
computed for the joint state space model

[
xA
xB

]
=
[
I
I

]
x ,

as, for instance, in (3.39) and (3.41). The density of x is then, by construc-
tion, related to the joint state space by

f(x) = c· f(x, x) ,

which corresponds to the same equality constraint. Hence, f(xA, xB) is
evaluated on its “diagonal” in order to obtain the fusion result.

In general, the sets ZA and ZB do not represent conditionally in-
dependent information. If no state transition takes place, dependen-
cies can generally be expressed in terms of the non-empty intersection
ZA ∩ ZB [91, 139, 139]. More precisely, this common information is related
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to the estimated density f(x | ZA∩ZB), which must not be double-counted
when f(x | ZA) and f(x | ZB) are fused. With

f(x | ZA ∪ ZB) = f(ZA ∪ ZB |x) · f(x)
f(ZA ∪ ZB)

= f(ZA\ZB |x) · f(ZB\ZA|x) · f(ZA ∩ ZB |x) · f(x)
f(ZA ∪ ZB)

= f(ZA\ZB |x) · f(ZA ∩ ZB |x) · f(ZB\ZA|x) · f(ZA ∩ ZB |x) · f(x)
f(ZA ∪ ZB) · f(ZA ∩ ZB |x)

= f(ZA|x) · f(ZB |x) · f(x)
f(ZA ∪ ZB) · f(ZA ∩ ZB |x)

= f(ZA) · f(ZB)
f(ZA ∪ ZB) · f(x | ZA) · f(x | ZB)

f(x | ZA ∩ ZB)

= c· f(x | ZA) · f(x | ZB)
f(x | ZA ∩ ZB) ,

(4.5)
the common information is only incorporated once. Consequently, by
dividing by f(x | ZA ∩ ZB), common information is removed from the
fusion result (4.4) so as to avoid double-counting. It is important to note
that this fusion methodology is employed by the channel filter [71, 140],
which corresponds to the subtraction of common information vectors and
matrices, i.e., equations (3.52) and (3.53), in the linear case.

However, especially when local tracks are computed within a decen-
tralized network, local estimates may become fully dependent. In line
with (4.1), the fused estimated probability density is then given by

f(x|ZA ∪ ZB) = f(ZA ∪ ZB\ZA|x) · f(x)
f(ZA ∪ ZB)

= f(ZA) · f(ZB\ZA)
f(ZA ∪ ZB) · f(x|ZA) · f(x|ZB\ZA)

f(x) ,

and, according to (4.3), the joint density is

f(xA, xB | ZA ∪ ZB) := f(xA | ZA) · f(xB | ZB\ZA) . (4.6)
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Figure 4.2: The red and blue bimodal densities that are identical can be
fused when their dependency structure is known. The fusion result (green)
lies on the “diagonal”. (Example based on [197].)

Essentially, the conditional independence of ZA and ZB\ZA only holds for
static or deterministic systems. For dynamic stochastic systems, we can
draw the same conclusions by replacing ZB\ZA with an artificially intro-
duced set Z̃B that encompasses the conditionally independent information.
Again the fusion result lies on the “diagonal”

f(x | ZA ∪ ZB) = c· f(x | ZA) · f(x | ZB\ZA)
= c· f(x, x | ZA ∪ ZB)

of the joint density (4.6). An example is depicted in Figure 4.2(a), where
the fusion of two bimodal and even equal densities f(x | ZA) and f(x | ZB)
unexpectedly yields a unimodal density. The corresponding fusion result is
plotted in Figure 4.3(a). Hence, the local information may differ severely
from the global estimate. Especially in a fully decentralized network, only
the marginals f(x | ZA) and f(x | ZB) are known, i.e., the dependency struc-
ture between local estimates remains hidden, as indicated in Figure 4.2(b).
The joint density or respectively the conditional density f(x|ZB\ZA) there-
fore cannot be reconstructed uniquely, and assuming independence, as it is
done for Figure 4.3(b), can be hazardous and misleading. In other words,
finding the joint density for given marginals is an ill-posed inverse problem.
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(a) Optimal fusion result.
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(b) Naive fusion result.

Figure 4.3: Fusion results for the dependency structure depicted in Fig-
ure 4.2. In Fig. (a), the unexpected green density is obtained. In Fig. (b), the
red and blue density are fused (magenta, dashed) by assuming independence,
and no information is preserved between the modes. (Left example based
on [197].)

Even for local Gaussian estimates, the fusion result can be far from being
Gaussian anymore [153]. In the following section, a general conservative
fusion technique for nonlinear estimation problems is discussed.

4.2 Exponential Mixture Densities
The results of the previous section indicate that the development of con-
servative fusion strategies for nonlinear estimation problems is an arduous
task. Even simple Gaussian densities may possess cumbersome dependency
structures [153] that appear to be too arbitrary to be utilizable. This
issue stands in stark contrast to linear estimation problems, where the
family of possible dependencies can easily be parameterized. Even so, it is
fortunately possible to derive conservative fusion results in the presence
of unknown nonlinear dependencies. This section states a fusion rule that
is a generalization of the covariance intersection (CI) algorithm and en-
ables us to take into account dependencies that arise from common sensor
information as well as common process noise.

4.2.1 Generalization of Covariance Intersection
In linear estimation problems, unknown dependencies can conservatively
be bounded with the aid of the CI algorithm described in Section 3.5.3.
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Especially from the analogous covariance bound formulation (3.64), we can
see that the CI fusion result is related to the joint Gaussian density

N (x; x̂CI,CCI)
(4.4)= c· f(x, x | ZA ∪ ZB)

= c·N
([
x

x

]
;
[
x̂A
x̂B

]
,

[ 1
ωCA 0

0 1
1−ωCB

])

= c·N (x; x̂A, 1
ωCA) ·N (x; x̂B , 1

1−ωCB)
= c·N (x; x̂A,CA)ω ·N (x; x̂B ,CB)1−ω ,

which has been simplified to an exponential mixture of Gaussian densities
with ω ∈ [0, 1]. The latter product gives exactly the CI fusion result (3.61)
and (3.62) for mean and covariance matrix, respectively. Based on this
realization, [84] and [120] have independently proposed to generalize the
CI fusion rule to the exponential mixture density (EMD)

fEMD(x | ZA ∪ ZB) = fω(x | ZA) · f (1−ω)(x | ZB)∫
RN fω(x | ZA) · f (1−ω)(x | ZB) dx (4.7)

for arbitrary, locally estimated densities f(x | ZA) and f(x | ZB). In [6],
this fusion rule is also named the normalized weighted geometric mean.
Promising results of the EMD fusion rule have been presented with regard
to Gaussian mixtures [90], exponentials of polynomials [165], and multi-
object densities [43]. Nevertheless, it still remains an open question what
is to be considered as a conservative estimate in nonlinear state estimation,
which is discussed in the following subsection.

4.2.2 Conservativeness for Non-Gaussian Densities
For given local estimates, an optimal Bayesian fusion result is only attain-
able by accessing the underlying joint dependency structure. However,
bookkeeping of the joint density is in general not an option since this task
requires tremendous effort to compute, store, and communicate the depen-
dencies. A fully decentralized network generally offers no other alternative
than to discard at least some information about underlying dependencies.
Only suboptimal fusion strategies can then be employed, and the primary
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aim is to still gain insight without becoming overconfident. In this section,
we study in which way the EMD (4.7) can be considered to be a conservative
fusion rule. The use of EMDs in decentralized state estimation has first
been considered in [93] and, in [6], the following notion of conservativeness
for arbitrary probability densities has been introduced that requires two
properties to be satisfied: fc is a conservative approximation of a probability
density f if

1. for the differential entropy, the inequality H(f(x)) ≤ H(fc(x)) holds,

2. and the ordering

fc(xi) ≤ fc(xj)⇐⇒ f(xi) ≤ f(xj)

holds for all xi ∈ Rnx and xj ∈ Rnx .

For given local estimates, it is desirable that a conservative fusion rule
provides results that fulfills these two properties with respect to any possible
true Bayesian fusion result. [6] presents the following two conditions on a
conservative fusion rule: A fusion rule is conservative if and only if it

1. does not double-count common information and

2. replaces each component of independent information with a conserva-
tive approximation.

The EMD fusion rule (4.7) proves to be a conservative fusion rule, and
the basic idea behind these conditions is clarified by considering common
sensor information and common process noise.

Conservativeness for Common Sensor Information Common informa-
tion ZA ∩ ZB represented by the conditional density f(x | ZA ∩ ZB) can
be prevented from being double-counted by means of (4.5). If the common
information is unknown, the EMD fusion rule can be employed [91], which
yields

fEMD(x | ZA ∪ ZB) = c· fω(x | ZA) · f (1−ω)(x | ZB)
= c̃· fω(ZA |x) · fω(x) · f (1−ω)(ZB |x) · f (1−ω)(x)
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= c̃·
(
f(ZA\ZB |x)f(ZA ∩ ZB |x)

)ω

·
(
f(ZB\ZA |x)f(ZA ∩ ZB |x)

)(1−ω)·f(x)
= c̃· fω(ZA\ZB |x) · f (1−ω)(ZB\Za |x)

· f(ZA ∩ ZB |x) · f(x) ,

where ZA has been split into the conditionally independent subsets ZA\ZB
and ZA ∩ ZB and the same has been done with ZB. As can be seen in
the last row of the equation, the common part f(x | ZA ∩ ZB) is only
incorporated once such that condition 1 is satisfied. The independent
parts f(ZA\ZB |x) and f(ZB\ZA |x) are raised to the powers ω and
1− ω, respectively. According to [6], raising a probability density to the
power ω ∈ (0, 1] yields a conservative approximation in terms of the above
definition. Condition 2 is hence also fulfilled.

Conservativeness for Common Process Noise The prediction of local
estimates and a subsequent fusion also conceals the risk of being overconfi-
dent due to common process noise. In nonlinear estimation problems, this
means that transition densities are erroneously assumed to be independent
and are incorporated multiple times into the fusion result. By employing
the EMD fusion rule (4.7), the following relation

fp
EMD(xk+1 | ZA ∪ ZB) = c·

(
fp(xk+1 | ZA)

)ω ·
(
fp(xk+1 | ZB)

)1−ω

= c·
(∫

Rnx

f(xk+1 |xk)f e(xk | ZA) dxk
)ω

·
(∫

Rnx

f(xk+1 |xk)f e(xk | ZB) dxk
)1−ω

≥ c·
∫

Rnx

(
f(xk+1 |xk)f e(xk | ZA)

)ω

(
f(xk+1 |xk)f e(xk | ZB)

)1−ω dxk

= c·
∫

Rnx

f(xk+1 |xk)
(
f e(xk | ZA)

)ω (
f e(xk | ZB)

)1−ω dxk
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holds, which is derived with the aid of Hölder’s inequality by setting
p = 1

ω and q = 1
1−ω . Hence, the EMD fusion of predicted densities

preserves probability mass where the global prediction of the product(
f e(xk | ZA)

)ω (
f e(xk | ZB)

)1−ω is also nonzero. The transition density
enters the lower bound only once, and f e(xk | ZA) and f e(xk | ZB) are
replaced by conservative approximations. Furthermore, the normalization
constant has always the property c ≥ 0 and is a convex function of ω [6].
From this, it can also be concluded that the EMD result is bounded from
below according to

fp
EMD(xk+1 | ZA ∪ ZB) ≥ min

{∫

Rnx

f(xk+1 |xk)f e(xk | ZA) dxk,
∫

Rnx

f(xk+1 |xk)f e(xk | ZB) dxk
}

= min
{
fp(xk+1 | ZA), fp(xk+1 | ZB)

}
,

i.e., the lower bound is related to the locally predicted densities. This
important property demonstrates that EMDs do not report overconfident
results in a point-wise sense, which might be the case if dependencies
between the transition densities were not taken into account.

The EMD formula definitely shows the potential to encompass a general
conservative fusion rule. However, for the situation depicted in figures 4.2
and 4.3, it remains unanswered how a conservative fusion result has to
look like. Maybe, this discrepancy can be regarded as an indication that
dependencies are not as arbitrary as they might appear at first sight, and
that EMDs can tackle all kind of dependencies that may arise in state
estimation problems. We will further focus on this question in Section 4.3.

4.2.3 On the Optimal Selection of the Weighting Parameter
The parameter ω has been determined in Section 3.5.3 by considering the
covariance matrices in order to reduce the error that is associated to the
point estimate. In case of arbitrary densities, the second moment does not
appear to be an appropriate criterion anymore. For instance, [120] proposed
to maximize the “peakiness”, i.e., supremum, of the EMD fusion result.
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In [84, 90], the Chernoff information is considered instead such that the
entire domain is taken into account. Against the background of multitarget
tracking, a comparison of different information measures has been carried
out [168]. The results have suggested that also the simple choice ω = 0.5
guarantees a good performance. If, for later decision-making purposes,
a specific information measure is employed, it is sensible to utilize the
same measure as an optimization criterion for ω. In general, the decision
for a certain criterion depends on the intended further processing of the
estimated densities.

4.3 Covariance Intersection with Pseudo
Gaussian Densities

Although the EMD fusion rule provides promising results, it remains
an open question whether EMDs can tackle the arbitrariness of possible
dependencies. For example, applying the EMD formula (4.7) to fuse
the blue and red density in Figure 4.3 yields again the same bimodal
density, which hardly captures the mode of the green true fusion result.
As primarily discussed in Chapter 3, there are manifold reasons for a lack
of independence. However, as already stated in the previous section, the
good news is that dependencies are not always as arbitrary as they might
appear at first sight: Our knowledge about the system, sensors, and fusion
models can be utilized to significantly limit the arbitrariness, and we know
from Section 3.5.3 how to systematically deal with unknown correlations
in linear estimation problems. Hence, the idea behind this section is to
employ the insights from linear estimation theory by transforming the
state space into a different space, where the models become linear and
only linear dependencies between estimates, i.e., correlations, can arise.
The problem of consistently fusing nonlinearly dependent estimates boils
down to fusion under unknown correlations. Accordingly, the probability
densities being considered in the transformed state space become normally
distributed. These pseudo Gaussian densities then allow the notion of
covariance consistency to be used in decentralized nonlinear state estimation.
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4.3. Covariance Intersection with Pseudo Gaussian Densities

The concept derived here has been published in [197] and is explicated in
more detail in the following.

4.3.1 State-space Transformations
The general idea behind this section is to regard the true density to be
estimated as a (pseudo) Gaussian density in a different state space [73].
Against the background of set-membership state estimation, this approach
has been employed to represent complicated sets as so-called pseudo el-
lipsoids [72]. In particular, this concept is strongly related to Carleman
(bi-)linearizations [110], which are also the basis for the similar polynomial
extended Kalman filter [62–64]. In [115], this technique is referred to as
non-minimal state Kalman filtering since, in general, a higher-dimensional
state space is required to represent the state estimation problem by a linear
one.

The underlying mechanism rests upon finding a proper transformation
T : S → S∗ with S ⊆ RN , S∗ ⊆ RM , and

x∗ = T (x) = [T1(x), . . . , TM (x)]T (4.8)

so that the estimated probability density becomes normally distributed in S∗
with mean x̂∗ and covariance matrix C∗. The fundamental prerequisite is
that the fusion of two estimates as well as the measurement update turn
into linear operations. The former requirement is ensured if dependencies
between the estimated pseudo Gaussian densities are solely linear. This in
turn is fulfilled if the models are linear and hence, also the latter condition
is met, i.e., it must be possible to rewrite a nonlinear sensor model

zk = hk(xk) + vk (4.9)

into a linear update equation

z∗k = H∗ x∗k + v∗k (4.10)

in the transformed state space S∗, where vk is an additive noise term that
becomes a normally distributed perturbation v∗k ∼ N (v̂∗k,C

∗,z
k ). Due to

the transformation, the noise is not assumed to be necessarily zero-mean.

177



Chapter 4. Nonlinear State Estimation under Nonlinear Dependencies

A Static Systems

For static systems, where observations are only perturbed by additive Gaus-
sian noise, an appropriate transformation (4.8) can easily be determined.
Let hi with i ∈ {1, . . . , L} denote the L different observation models for
the sensors that are used in a given network. Then, the estimation process
becomes linear by considering the transformed state

x∗ = T (x) := [h1(x), . . . , hL(x)]T , (4.11)

where a single node with sensor model hi(x) directly observes the ith
component of x∗. More precisely, the local sensor model becomes

zi = hi(x) + vi = H∗ x∗ + vi ,

where H∗ = [0, . . . , I, . . . ,0] picks out the ith component of x∗. Mea-
surement and noise are not altered by the transformation (4.11). Such a
transformation ensures that an exchange of estimates can only cause linear
dependencies between fusion results. If the sensor models are similar, a
transformation of dimension less than L can be derived as shown in the
following simple example.

Example 4.1: Simple sensor network—Transformed state space
A one-dimensional setup with four closely positioned sensor nodes at P 1 = −1,
P 2 = −1.2, P 3 = −0.5, and P 3 = 0.5 is considered. At each time step k,
they measure the distances

zik = (x− P i)2 + vi , i ∈ {1, 2, 3, 4} ,

where vi are zero-mean Gaussian noise terms with high variances Cz,1 = 10,
Cz,2 = 9, Cz,3 = 7, and Cz,4 = 20. The true state is located at 1. The
measurement equation can be transformed to the affine sensor model

z∗,ik = H∗,i x∗k + (P i)2 + vi

with the linear mapping
H∗,i = [−2P i, 1] (4.12)
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and the transformed state

x∗k =
[
x∗1
x∗2

]
=
[
xk
x2
k

]
. (4.13)

The measurement noise v∗,i = (P i)2 +vi is still normally distributed according
to N

(
(P i)2, Cz,i

)
. In this simple scenario, the measurements z∗k in S∗ are

identical to zk in the original space S.

In general, the dimension of the transformed state space is higher than
the dimension of the original space and, of course, the choice of T is not
unique since x∗ can, for instance, be expanded by any linear combination
of partial states x∗i and x∗j . In a situation where combinations of the
state x remain unobserved, the transformed state space can even be of
lower dimension. For example, when a two-dimensional state is observed
by a single distance sensor, a transformation to a one-dimensional state is
sufficient.

B Dynamic Systems

When dealing with dynamic systems, we aspire to find a mapping T that
also transforms a nonlinear system model

xk+1 = a(xk, ûk,wk) (4.14)

to a linear state transition model

x∗k+1 = A∗ x∗k + B∗k (û∗k + w∗k) ,

where ûk and û∗k comprise possible input quantities in the original and
the transformed state space, respectively. The system noise wk becomes
a normally distributed disturbance term w∗k ∼ N (ŵk,C

∗,u
k ) after the

transformation. On the assumption that a mapping T exists that can
simultaneously linearize the system and sensor equations, exclusively linear
dependencies between the local estimates can arise in the transformed state
space. Hence, the CI algorithm from Section 3.5.3 can be employed for
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suboptimal decentralized fusion of pseudo Gaussian densities, which is
considered more closely in Paragraph 4.3.2-B of the following subsection.
Unfortunately, such a transformation T to a finite-dimensional space, where
both the system dynamics and the sensor models are linear, cannot be
constructed in general. Therefore, linear approximations of systems through
state transformations are discussed in Paragraph 4.3.2-C. All told, even if
no optimal transformation to a linear form of the system model is obtained,
the measurement update and fusion are now linear.

C Transformation Back to Original State Space

The original nonlinearities come into play whenever an estimate in the
original state space S is to be computed. Of course, the reverse trans-
formation may involve complicated nonlinear estimation techniques, but
the required calculations can be performed independently from the state
estimation process, which solely relies on the pseudo Gaussian densities and
the transformed models. Hence, the back transformation is only required at
time steps when a certain estimate in the original state space is requested,
for instance, for decision making. With regard to sensor networks, this
further implies that every node can process the pseudo Gaussian estimates
locally and linearly. In the data sink, where in general higher computational
power is available, the true density and the desired parameters can be
computed from the pseudo Gaussian estimates.

The original density f(xk) is related to the estimate (x̂∗k,C∗k) by

f(xk) = c·N (T (xk), x̂∗,C∗)

= c̃· exp
(
−1

2
(
T (xk)− x̂∗k

)T(C∗k)−1(T (xk)− x̂∗k
)) (4.15)

with c and c̃ denoting the corresponding normalization factors. This
calculation can be regarded as a measurement update with x̂∗k = T (xk)
where no prior is available, and therefore standard nonlinear filtering
methods can be applied to obtain the original density.
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4.3.2 Nonlinear Decentralized State Estimation with
Pseudo-Gaussian Densities

By employing a linearizing transformation (4.8), distributed information
processing can be eased significantly. The advantages of linear models come
at the expense of generally higher-dimensional state spaces. In particular,
linear dependencies are an unsurpassable advantage when estimates have to
be fused and only possible correlations need to be taken into account. The
preceding considerations have shown that, for filtering and fusion, according
state-space transformations can easily identified. The prediction step, in
general, does not allow for a linear, higher-dimensional representation and
unfortunately requires approximations. Similarly, the representation of a
prior Gaussian estimate is commonly not Gaussian anymore after applying
the state-space transformation and has to be reapproximated, for instance,
by computing the first two moments. The subsequent paragraphs focus on
the measurement update and fusion of pseudo Gaussian estimates, but also
provides an an approximate solution to the prediction of pseudo Gaussian
estimates

A Filtering with Pseudo Gaussian Likelihoods

Since the nonlinear sensor model (4.9) is represented by the linear one (4.10),
the corresponding likelihood for the transformed parameters has the Gaus-
sian representation

f
(
ẑ∗k |T (xk)

)
= f(ẑ∗k |x∗k)

(2.11)= fv
∗
(ẑ∗k −H∗k x∗k)

= c·N
(
ẑ∗k −H∗k x∗k; v̂∗k, C∗,zk

)
.

If the prior estimate on xk has the conditional probability density function
fp(xk) = N

(
T (xk); x̂p,∗

k , Cp,∗
k

)
, the filtering step becomes the product of

Gaussian densities, as in Section 2.1.1-B, and can be carried out by means
of Kalman filter formulas, i.e.,

x̂e,∗
k

(2.25)= (I−K∗kH∗k)x̂p,∗
k + K∗k (ẑ∗k − v̂∗k)
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for the mean and
Ce,∗
k

(2.26)= Cp,∗
k −K∗kH∗kCp,∗

k

for the covariance matrix with the Kalman gain

K∗k = Cp,∗
k (H∗k)T(C∗,zk + H∗kCp,∗

k (H∗k)T)−1
.

Hence, the filtering step can completely be formulated in terms of the
transformed parameters and the estimated density in the original state
space exactly yields f e(xk) = c·N

(
T (xk); x̂e,∗

k , Ce,∗
k

)
.

B Covariance Intersection for Pseudo Gaussian Densities

At a fixed time step k, two local estimates f e
A(x) = f(x | ZA) and f e

B(x) =
f(x | ZB) conditioned on different measurement histories ZA and ZB
can be fused by considering the corresponding pseudo Gaussian densi-
ties N (T (x); x̂∗A,C∗A) and N (T (x); x̂∗B ,C∗B). In the rather unlikely case
that the correlations are known, the Bar-Shalom/Campo formulas (3.48)
and (3.49) can be deployed. If the dependencies are unknown, we can apply
the CI equations (3.61) and (3.62) to the parameters of the pseudo Gaus-
sian densities. By virtue of the preceding considerations, the dependencies
are linear and CI provides a covariance consistent suboptimal fusion result
(x̂∗CI,C∗CI) in the transformed state space. The following example gives an
impression of the presented concept.

Example 4.2: Simple sensor network—Fusion of estimates
We continue the considerations in Example 4.1, which is similar to the ex-
ample in [197]. Each sensor platform now performs 5 measurement steps
by employing (4.12) and exchanges its results with the other nodes at every
time step. The prior estimate at every node is set to x̂i0 = −2 with error
variance Ci

0 = 5, and the fusion of estimates is carried out by means of the CI
algorithm. Figure 4.4(a) shows the final bivariate pseudo Gaussian estimate
(x̂∗,15 ,C∗,15 ) of sensor node 1. The density of the estimate in the original state
space lies on the manifold, which is depicted explicitly in Figure 4.4(b) and
corresponds to the green density in Figure 4.5. There, different fusion results
are compared. The blue density represents the optimal Bayesian fusion result,
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(a) Pseudo Gaussian density of sensor
node 1. The original state space corre-
sponds to the green manifold.
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(b) True estimated density lies on the
green manifold, which corresponds to Fig-
ure 4.5.

Figure 4.4: The transformation (4.13) yields the green manifold. Sensor 1
computes the density in Fig. (a), where estimates are fused by means of
CI. In Fig. (b), the estimated density on the manifold is plotted, which
corresponds to the green density in Fig. 4.5. The sensor’s positions in the
transformed state space are depicted by dashed black lines.

where all measurements are fused in a central instance with the prior. It
captures the true state well, in contrast to the red density, where dependencies
have been ignored for fusion. Evidently, the CI algorithm still provides a good
fusion result.

The example elucidates how CI applied in the transformed space S∗
flattens the modes of the density in the original state space S, where
the parameter ω for the fusion formulas (3.61) and (3.62) is chosen to
minimize det(C∗CI). In terms of the underlying densities f(x | ZA) =
N
(
T (x); x̂∗A,C∗A

)
and f(x | ZB) = N

(
T (x); x̂∗B ,C∗B

)
, the CI algorithm

in S∗ can be expressed as

fCI(x | ZA ∪ ZB) = c·N (T (x); x̂∗A, 1
ωC∗A) ·N (T (x); x̂∗B , 1

(1−ω)C∗B)

= ĉ·
(
N (T (x); x̂∗A,C∗A)︸ ︷︷ ︸

=c−1
A f(x | ZA)

)ω ·
(
N (T (x); x̂∗B ,C∗B)︸ ︷︷ ︸

=c−1
B f(x | ZB)

)(1−ω)

= c̃· fω(x | ZA) · f (1−ω)(x | ZB) ,
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Figure 4.5: The positions of the four sensor nodes are depicted by the
dashed black lines. The true state corresponds to the solid black line.
By ignoring dependencies and naively fusing estimates at each time step,
Sensor 1 computed the red estimated density. It preserves less probability
mass around the true state. The optimal fusion result is drawn blue, and
the green density is computed by employing CI in the transformed state
space, which is also shown in Figure 4.4.

which is exactly the EMD update rule (4.7) being directly applied to the
densities to be fused. In this regard, EMDs actually provide consistent
estimates in the sense of covariance consistency in S∗, i.e., relation (3.63),
which confirms the considerations in [6, 93]. Hence, the concept of state-
space transformations that entirely linearize the state estimation process
also points to a direction to define consistency in nonlinear estimation
problems. Another valuable feature of the space S∗ is that it enables us
to parameterize the set of possible dependencies between two estimates
(x̂∗A,C∗A) and (x̂∗B ,C∗B) by means of the cross-covariance matrix C∗AB.
Possible dependencies are illustrated in the following example, which shall
conclude this paragraph.

Example 4.3: Parameterization of possible fusion results
The same transformation x∗k = [x∗1,x∗2]T = [xk,x2

k]T as in the previous
Example 4.2 is considered. In the transformed state space S∗, the local
estimates are

(x̂∗A,C∗A) =
([

3
15

]
, 3 ·

[
8 −1
−1 3

])
(4.16)

and

(x̂∗B ,C∗B) =
([−3

5

]
, 2 ·

[
10 7
7 8

])
, (4.17)
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(a) Covariance ellipsoids in transformed
state space S∗. The green ellipsoid is the
CI result for the red and blue ellipsoid.
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Figure 4.6: The blue and red estimates are fused. Fig. (a) shows the
transformed state space, where several possible Bar-Shalom/Campo fusion
results (gray) and the CI fusion result (green) are plotted. The black
parabola represents the same manifold as in Figure 4.4, seen from above.
Fig. (b) shows the corresponding densities of the original state space.

which are plotted in Figure 4.6 as the red and the blue covariance ellipsoids,
respectively. 400 possible cross-covariance matrices C∗AB have been determined
randomly. For these, the Bar-Shalom/Campo rule, i.e., (3.48) and (3.49), has
been applied to fuse (4.16) and (4.17). In Figure 4.6, the according results are
drawn in gray. With CI, the green ellipsoid in Figure 4.6(a) has been computed,
which correspond to the green EMD in Figure 4.6(b). It can be recognized
that it preserves probability mass at the modes of the gray densities.

C Prediction of Pseudo Gaussian Densities

For static systems, we have shown in Paragraph 4.3.1-A that a proper
transformation T can easily be obtained by (4.11). Simultaneously to
the sensor models, many deterministic systems can also be linearized
through a state space transformation. Unfortunately, as mentioned before,
a simultaneous linearization of stochastic system dynamics and stochastic
sensor models is not possible in general, and even worse, linear system
dynamics may become nonlinear through T while the sensor models turn
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into linear mappings. However, in many applications, a local prediction
step for the state estimate is required at each node in a sensor network.

In order to obtain an approximate prediction of the transformed
state x∗k, either the density (4.15) or the system (4.14) can be considered.
In the former case, [165, 166] have shown how to predict exponentials of
polynomials, which imply that (4.9) and (4.14) are polynomial mappings
or polynomial approximations of them. In the latter case, feedback and
Carleman linearizations [62,64,110] can be applied. Carleman linearization
techniques turn systems into bilinear systems, where the product of two
Gaussian random vectors can easily be reapproximated by the first two
moments.

In this work, we propose to employ a naive sample-based approximation
of the system dynamics:

1. Compute W samples {ξ∗
j
}j=1,...,W of the current estimate (x̂∗k,C∗k),

which can be drawn randomly or deterministically.

2. Project each sample back onto manifold. This can be done by applying
the inverse T−1

i to each component of each sample ξ∗
j
. If Ti is only

locally invertible on the subsets S∗1 ,S∗2 , . . ., then T−1
i is applied on

each of these subsets. E.g., for a transformation like Ti(x) = x2 = x∗i ,
we obtain the two samples T−1

i (ξ∗
i
) = ±

√
ξ∗
i
.

3. The projected samples can the be predicted through the nonlinear
system model (4.14).

4. The predicted samples are transformed to S∗ by means of T . Sam-
ple mean and covariance matrix yield the predicted parameters
(x̂p,∗
k+1,C

p,∗
k+1).

A second possibility is to express the system mapping in terms of the
transformed state x∗k. The transformed system model can then be linearized
by any standard technique for the purpose of computing the first two
moments of the predicted state estimate.

Of course, an approximation of the system model entails the risk that
nonlinear dependencies between estimates are neglected that lead to a
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situation as depicted in Figure 4.1(b). However, in order to counteract
this issue and at the expense of higher computational demands, one can
choose transformations to higher-order systems where nonlinearities become
almost negligible.

4.3.3 Simulations
In order to evaluate the proposed concept, we will consider two scenarios.
In the first scenario, a complicated measurement model is employed to
transform a one-dimensional state space. In the second simulation, an
object is tracked by means of three nodes equipped with quadratic distance
sensors. The considered scenarios are extended versions of similar examples
in [197].

A Complicated Measurement Model

At first, we confine ourselves to a static state x = 3. It is observed by five
nodes each of which uses the same sensor with the nonlinear measurement
model

z =
[
10 · cos(x + 1) + x− 5

x2

]
+ v

where v is a zero-mean noise term with covariance matrix

Cz = 3 ·
[
3 1
1 4

]
.

The state is transformed according to

T (x) =
[
10 · cos(x+ 1) + x− 5

x2

]
.

Figure 4.7(a) shows the estimated pseudo Gaussian density after four mea-
surement steps in each sensor node. The local estimates are interchanged
after each local measurement and are fused by utilizing the CI algorithm
from Section 3.5.3. The density that lies on the green manifold is depicted
separately in Figure 4.7(b). In particular, it corresponds to the green EMD
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(b) Manifold cuts “true” density out of
pseudo Gaussian density.

Figure 4.7: Fig. (a) shows the Pseudo Gaussian density that is obtain by
employing the CI algorithm to fuse the estimates of the five sensors. The
green density in Fig. 4.8 corresponds to the transformed density in Fig. (b).

fusion result in Figure 4.8. The blue density represents the optimal achiev-
able result, where all measurements are processed centrally. Employing
an extended Kalman filter (EKF) leads to the red density that is strongly
biased, although a centralized architecture is used. The green result from
the transformed state space flattens the modes of the blue density and
captures the true state well.

The root mean squared error (RMSE) over 200 Monte Carlo runs,
where 10 fusion steps have been performed in each run, is depicted in
Figure 4.9(a). The results are more significant than in the similar setup
of [197]: The blue line represents the optimum achieved by a centralized
architecture. The solid green line is close to the blue one and is obtained by
applying CI to the pseudo Gaussian estimates. The dashed green line also
stems from a pseudo Gaussian density, but a naive fusion takes places, i.e.,
independence has erroneously been asserted. In Figure 4.9(b), the RMSE
is computed when also a prediction step takes place at each time step. The
dynamic evolution is modeled by means of

xk+1 = 1.1 · xk + wk
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Figure 4.8: Corresponding densities in the original state space. Black line
indicates true state. Green: CI fusion result of Figure 4.7. Blue: Optimal
fusion result (centralized). Red: EKF (centralized).
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(b) RMSE in case of dynamic system.

Figure 4.9: Blue line corresponds to the RMSE of the optimal solution.
The solid green line is obtained by employing CI in the transformed state
space. The dashed green line is obtained when ignoring dependencies.

where wk has zero mean and variance 2. The prediction is sample-based
as explained in Section 4.3.2-C. Again, the green line is closer to the blue
one than the dashed line. Here, a horizon over 15 time steps is considered,
and the plot slightly suggests that the naive fusion method may even lead
to diverging fusion results.

B Localization of Mobile Object

In the second scenario, a moving target is tracked by means of three sensor
nodes located at P 1 = [1, 8]T, P 2 = [0, 5]T, and P 3 = [4, 6]T. The sensor
models for the distance measurements are

zik = (xk − P ix)2 + (yk − P iy)2 + vk

= H∗ x∗k + (P ix)2 + (P iy)2 + vk
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with the transformed measurement mapping

H∗ = [−2P ix, 1,−2P iy, 1]

and the transformed state

x∗k = T (x) =




xk
x2
k

yk
y2
k


 . (4.18)

The zero-mean measurement noise vk has variance 16. The target moves
linearly with constant velocity, i.e.,

[
xk+1
yk+1

]
=
[
xk
yk

]
+
([ −1
−0.5

]
+ wk

)
,

where the input noise wk has the covariance matrix Cw
k = diag([0.8, 0.8]).

In this simulation, the prediction is performed by means of the second
possibility explained in Section 4.3.2-C. For instance, the second component
of (4.18), i.e.,

x∗k+1,2 = x2
k+1 =

(
a· xk + b· (ûk + wk)

)2
,

is the square of a Gaussian random variable such that the first two moments
can be computed analytically. Figure 4.10 shows the centralized solution,
where only a single estimate is computed that is fused with all measurements
at each time step. For the decentralized implementations in Figure 4.11
and Figure 4.12, only the local estimates at node P 1 are shown, which
fuses its own estimate with every other estimate at each time step. In
Figure 4.11, each node computes a local estimate, and these estimates are
fused by ignoring dependencies. Sensor node P 1 apparently looses the track
since the uncertainties are considerably underestimated. Figure 4.12 also
shows the locally estimated densities of node P 1, but CI has been applied
in order to interchange local estimates, and hence the estimation quality is
significantly improved.
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Figure 4.10: Probability density contours at different time instants. All
measurements are fused in a center station, and the optimal solution is
computed. Red dot marks the target’s position.
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Figure 4.11: Probability density contours at different time instants calcu-
lated at sensor node P 1. A naive fusion takes place in S∗. Red dot marks
the target’s position.
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Figure 4.12: Probability density contours at different time instants calcu-
lated at sensor node P 1. The CI algorithm is applied in S∗ in order to fuse
the local estimates at each time step. Red dot marks the target’s position.
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4.4 Generalized Nonlinear Information
Filtering

By employing pseudo Gaussian representations, the nonlinear estimation
problem is reduced to a linear one. In the situation that state space
transformations like (4.8) do not decrease the demand for communication
and computing power, direct approximations of the underlying densities
may prove to be more efficient. By this section, a general definition of
an information space for arbitrary probability densities is provided. In
particular, the filtering step can then be performed in a distributed fashion.
The basic concepts behind this section have initially been studied in [182],
and the results with respect to multisensor estimation problems that lie
in the focus of this section have been published in [203]. In particular, we
extend these results by an information-space representation of the EMD
fusion rule.

4.4.1 Nonlinear Information Space
In [133], it has been shown that the information filter from Section 3.3.2
can be viewed as a log-likelihood formulation of Bayesian state estimation.
More specifically, the Bayesian filtering step

f e(xk) = fp(xk) · f(Zk |xk)
f(Zk)

= fp(xk) ·
∏N
i=1 f(ẑik |xk)

f(Zk) ,

(4.19)

where Zk = {ẑ1
k, . . . , ẑ

N
k } denotes the set of multiple observations at time

instant k and the conditional independence (2.7) has been exploited, has
the very useful representation as the sum

ln f e(xk) = ln fp(xk) +
N∑

i=1
ln f(ẑik |xk)− ln f(Zk) (4.20)

of log-densities. In the following, we will refer to (4.20) as the information
space formulation of the nonlinear estimation problem, while (4.19) is
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referred to as the state space formulation. This section aims at solving
nonlinear multisensor problems by means of the simple information space
representation (4.20).

The logarithm of f(Zk |xk) turns into a sum due to the conditional in-
dependence of the measurements, but the joint probability density f(Zk) of
the received measurements cannot be split up in the same way. For the same
reason, the Kalman filtering step cannot not easily be distributed, which
can particularly be observed from inequality (3.4). More specifically, the
Kalman filtering step implicitly computes the normalization constant f(Zk).
In contrast, the additive constant ln f(Zk) is, simply speaking, decoupled
and excluded from the filtering process in the information space. Instead, it
is implicitly calculated whenever the estimate is transformed back into the
state space. For Gaussian densities, the sum

∑N
i=1 ln f(ẑik |xk) in (4.20)

directly corresponds to the sums (3.11) and (3.12) of information vectors
and matrices. The information matrix is, more precisely, related to the
Fisher information, and the Fisher information is related to derivatives of
the log-likelihoods. Therefore, constant terms in (4.20) simply vanish. In
the following, the reformulation (4.20) of the filtering problem will provide
the basis for nonlinear information filtering with arbitrary densities and
nonlinear models. An important goal is that the nonlinear information
filter also remains unaffected of the constant term ln f(Zk) in order to be
distributable.

4.4.2 Information Filtering with Logarithms of Densities

For the purpose of employing the simple multisensor filtering step (4.20) in
the information space, an approximation technique and parameterization
of the participating log-densities has to be derived that render a simple
manipulation, i.e., addition and subtraction, possible. More precisely, we
aspire the same simple data processing that is provided by the linear
information filter. Apparently, only densities that are non-zero almost
everywhere can be fused this way. This severe condition can be worked
around by confining ourselves to that subset Ω of the probability space, over
which all densities to be fused are non-zero. Excluding parts containing
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“no information” does not impair the estimation quality since the fusion
result will also have zero probability mass there.

Filtering of Multiple Measurements For the purpose of approximating
the conditional log-densities in (4.20) and enabling an efficient fusion
methodology, the participating functions will be represented by means of
an orthonormal basis {ϕj}j≥0 in the Hilbert space of square-integrable
functions L2(Ω) over the domain Ω. So, by confining ourselves to an
M -dimensional subspace of L2(Ω) spanned by the subset {ϕj}Mj=1 of basis
functions, an approximation of ln fp

k is given by

ln fp(xk) ≈
M∑

j=1
αp
j ·ϕj(xk) (4.21)

with the coefficients
αp
j =

〈
ln fp, ϕj

〉
L2

=
∫

Ω
ln fp(xk) ·ϕj(xk) dxk ,

(4.22)

where 〈· , · 〉L2 denotes the inner product in L2(Ω). Analogously, the
log-likelihoods ln f(ẑi | · ) of the individual sensor nodes are approximated
by

ln f(ẑik |xk) ≈
M∑

j=1
γij ·ϕj(xk) , (4.23)

where the coefficients
γij =

〈
ln f(ẑik | · ), ϕj

〉
L2

=
∫

Ω
ln f(ẑik |xk)ϕj(xk) dxk

(4.24)

are also calculated by means of the inner product. An essential prerequisite
for representing densities this way is that their logarithms need to be
square-integrable, i.e., ln f ∈ L2(Ω). In the following, we therefore restrict
our discussion to probability densities lying in the set

P(Ω) :=
{
f ∈ L1(Ω) | supp(f) = Ω, ln f ∈ L2(Ω)

}
.
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This idea of representing probability densities in the information space
imposes the following condition on the domain Ω: Since a probability
density f is a positive and L1-integrable function, its logarithm can only be
square-integrable if Ω is bounded. At first glance, requiring boundedness
of Ω appears to be a harsh restriction, but the domain can, of course, be
chosen large enough, so that all “interesting” parts of the participating
densities are captured. For instance, we will particularly apply the presented
approach to Gaussian noise terms in the following example. All told, every
density function in the following discussions is considered to be non-zero
over Ω and the domain Ω to be bounded.

The online applicability of the presented idea strongly depends on an
efficient evaluation of the sensor log-likelihoods ln f(ẑik | · ) for given mea-
surements ẑik, i.e., on the calculation of the coefficient vectors [γi1, . . . , γiM ]T
from the inner product (4.24). We commence the discussion on efficient
log-likelihood computations with an example calculation for a nonlinear
sensor model with a Gaussian perturbation. This example is also discussed
in [203].

Example 4.4: Gaussian measurement noise
For the sake of simplicity, we consider a one-dimensional state and a scalar-
valued measurement function

ẑk = h(xk) + v ,

where v is a zero-mean normally distributed random variable with probability
density

fv(x) = 1√
2πσ exp

{−(x)2

2σ2

}

and standard deviation σ. The log-likelihood can then simplified to

ln f(ẑk |xk) (2.11)= ln fv(ẑk − h(xk))
= − 1

2σ2 (ẑk − h(xk))2 − C ,
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where C is a constant. The coefficients (4.24) are hence given by

γj = 〈ln fv(ẑk − h( · )), ϕj〉L2

=
∫

Ω
ln fv(ẑk − h(xk))ϕj(xk)dxk

= − 1
2σ2

∫

Ω
(ẑk − h(xk))2ϕj(xk)dxk − Ĉ

= 1
σ2 ẑk

∫

Ω
h(xk)ϕj(xk)dxk − 1

2σ2

∫

Ω
h2(xk)ϕj(xk)dxk − C̃ ,

where all integrals can be computed offline in advance. Constant terms are
subsumed in Ĉ and C̃. Finally, the coefficients are linearly dependent on
specific measurement values ẑk and can therefore easily be evaluated.

In order to deal with other more complex sensor models, the log-likelihoods
ln f(zik |xk) can be interpreted as nz×nx-dimensional functions in L2(Z×Ω),
where Z denotes the measurement space. Let {ψl}l≥0 be an orthonormal
basis in L2(Z). By virtue of the tensor product basis {ψl ⊗ ϕj}(l,j) =
{ψl ·ϕj}(l,j), the log-likelihood ln f( · | · ) can then be approximated by

ln f(zik |xk) ≈
L∑

l=1

M∑

j=1
βil,j ·ψl(zik) ·ϕj(xk) (4.25)

with
βil,j =

〈
ln f( · | · ), ψl ·ϕj

〉
L2

=
∫

Z

∫

Ω
ln f(zik |xk)ψl(zik)ϕj(xk) dxkdzik .

(4.26)

The coefficients βil,j can be computed numerically in advance. For an
obtained observation ẑik, the corresponding function values ψl(ẑik) have to
be inserted into (4.25). Thus, the coefficients γij for the calculation (4.23)
of ln f(ẑik | · ) are obtained by the sum

γij =
L∑

l=1
βil,j ·ψl(ẑik) ,
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Figure 4.13: Filtering step [182] in terms of coefficient vectors. fL denotes
the likelihood f( · |· ) and H is a matrix with entries (4.26).

which can also be expressed in terms of a matrix-vector multiplication. As
aforementioned at the beginning of this section, the normalizing constant
ln f(Zk) in the calculation (4.20) is decoupled from the information fil-
tering step, which provides the foundation for efficient distributed fusion
algorithms. Accordingly, we have to demand that two log-densities ln f
and ln f +C with constant offset C have the same coefficients (4.24), which
implies 〈

ln f, ϕj
〉
L2 =

〈
ln f + C,ϕj

〉
L2

=
〈

ln f, ϕj
〉
L2 +

〈
C,ϕj

〉
L2

for every j = 1, . . . ,m. This means that the subspace spanned by {ϕj}mj=1 is
orthogonal to the set of constant functions, i.e.,

〈
C,ϕj

〉
L2 = 0. In particular,

the complete basis {ϕj}j≥0 of L2(Ω) needs to contain the constant basis
element ϕ0 =

(√
vol(Ω)

)−1, so that all other basis elements are orthogonal,
i.e., 0 = 〈ϕ0, ϕi〉L2 for i 6= 0. Hence, a wide variety of truncated basis
expansions, e.g., Fourier, wavelet, and Legendre basis expansions, can be
employed to approximate the log-densities.

With this spadework, the generalized filtering step (4.20) for N sensors
can now be written in terms of the corresponding coefficient vectors (4.22)
and (4.24), i.e.,

[αe
1, . . . , α

e
M ]T = [αp

1 , . . . , α
p
M ]T +

N∑

i=1
[γi1, . . . , γiM ]T ,

which yields the parameter vector αe
k := [αe

1, . . . , α
e
M ]T of the estimated

log-density ln f e. Apparently, this complies with the same simple fusion
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structure as in the linear case, i.e., (3.5) and (3.12), as illustrated in
Figure 4.13. The two main prerequisites for the presented approach can be
summarized as follows:

1. The bounded domain Ω is chosen such that the considered probability
densities are non-zero over Ω.

2. The orthonormal basis {ϕj}Mj=1 is orthogonal to constant functions.

EMD Fusion Rule in Information Space In linear estimation theory, the
covariance intersection algorithm from Section 3.5.3 is related to a convex
combination of information vectors and information matrices. Analogously,
the EMD fusion rule (4.7) correspond to the convex combination

ln fEMD(x | ZA ∪ ZB) = ln fω(x | ZA) + ln f1−ω(x | ZA)− C
= ω ln f(x | ZA) + (1− ω) ln f(x | ZA)− C

of log-densities. Hence, the coefficient vector of ln fEMD(x | ZA ∪ ZB) is
also related to the convex combination

[α1, . . . , αM ]TEMD = ω[α1, . . . , αM ]TA + (1− ω)[α1, . . . , αM ]TB
of the corresponding coefficient vectors of ln f(x | ZA) and ln f(x | ZB).

Prediction of Log-densities As for the linear information filter in Sec-
tion 3.3.2, the benefits concerning distributed data fusion come at the
expense of a more complicated prediction step. For nonlinear systems,
the Chapman-Kolmogorov integral for predicting the conditional densities
can in general not be solved in closed form and, in the information space,
prediction becomes even more elaborate. So, either the log-densities are
transformed back to state space at each prediction step or the prediction is
expressed in information space. For deterministic or static systems, the
second solution may be the best choice, but for stochastic systems, a trans-
formation to state space can be inevitable, i.e., the Chapman-Kolmogorov
integral becomes

ln fp(xk+1) = ln
∫

Ω
f(xk+1 |xk) exp{ln fe(xk)} dxk
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for the log-densities. Each operation, i.e., the inverse transformation
exp and the transformation ln of the integral, have, in general, to be
approximated. In order to calculate the first operation, the coefficients
of ln fe can approximately be mapped to an L2-basis in state space. In
terms of the obtained coefficients, the integral can then be evaluated.
Finally, the coefficients are mapped back to the information space basis.
Simulations of the proposed concept can be found in [203]. Altogether, the
implementation of the prediction step depends on the actual system model
and a general solution cannot be stated.

While this subsection has focused on log-densities and their approx-
imations, the following subsection will consider the implications on the
probability densities themselves, i.e., the implications on the state space
formulation.

4.4.3 Hilbert Space Structure on Probability Densities

For efficient nonlinear state estimation in state space, truncated Fourier
[12, 29, 30] or wavelet [79] series expansions have also been successfully
applied. In contrast to (4.21), densities are then directly approximated by

fp(xk) ≈
M∑

j=1
ap
j ·φj(xk) (4.27)

with ap
j = 〈fp, φj〉L2 . As expected, we face the same situation as in the

linear case: While filtering is easy in information space and prediction
is elaborate, the opposite holds for the state space approximation (4.27).
Here, a reapproximation is required for every filtering step, which is a
second issue besides the the problem of efficient multisensor data processing
in state space. Another problem of the truncated series (4.27) is that, in
general, it does not represent a valid probability density, i.e., it possibly
does not integrate to one and it can even take negative function values. At
this point, an essential advantage of the information space representation
becomes apparent. Transforming (4.21) back to state space always yields a
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valid probability density. Even a single basis function ϕj corresponds to
the probability density function

fj(xk) = exp{ϕj(xk)}∫
Ω exp{ϕj(xk)} dxk

in state space and for the series expansion (4.21), we obtain

f(xk) ≈
∏M
j=1

(
exp{ϕj(xk)}

)γj

∫
Ω
∏M
j=1

(
exp{ϕj(xk)}

)γj
dxk

.

This implies that the addition ”+“ and the multiplication ”· “ with a
scalar α ∈ R in information space correspond to the operations

f ⊕ g := f( · ) · g( · )∫
Ω f(x) · g(x) dx (4.28)

and
a� f := fa( · )∫

Ω f
a(x) dx (4.29)

in state space, respectively. As a generalization of the Aitchison geome-
try [1], a Hilbert space A(Ω) on probability densities has been developed
by means of these operations [54], where

〈f, g〉A(Ω) := 1
2vol(Ω)

∫

Ω

∫

Ω
ln f(x)
f(y) ln g(x)

g(y) dx dy

=
∫

Ω
ln f(x) ln g(x) dx− 1

vol(Ω)

∫

Ω
ln f(x) dx

∫

Ω
ln g(x) dx

is the inner product in A(Ω). This product induces the vector space norm

‖f‖A(Ω) =
[ ∫

Ω

(
ln f(x)

)2
dx− 1

vol(Ω)

(∫

Ω
ln f(x) dx

)2
] 1

2

on A(Ω), which has, for example, been applied as an information measure
for sensor management in [195]. Simply speaking, the spaces A(Ω) and
L2(Ω) can be related by the isometry ln : A(Ω) → L2(Ω), with which it
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can be proven that A(Ω) is a Hilbert space. For the construction of bases
for the product space A(Ω)×A(Ψ), the tensor product employed in (4.25)
becomes

f ⊗A(Ω) g = exp{ln f · ln g}∫
Ω
∫

Ψ exp{ln f(x) · ln g(y)} dydy .

Of course, likelihoods are not probability densities and therefore not ele-
ments of A(Ω), but this does not pose a problem due to the normalization
factor in (4.28). In conclusion, the information space considered as the
function space L2 of square-integrable functions is strongly related to a
Hilbert space structure in the state space. The vector space addition and
multiplication correspond to the Bayesian update (4.28) and the power
transformation (4.29), which is essentially a weighting of information. All
approximation techniques in this space are compliant to operations on
probabilities and therefore yield valid probability densities. In other words,
complicated probability densities are approximated by sums of simpler
probability densities, which makes the information space representation
particularly attractive for stochastic state estimation.

The main downside of the proposed concept is that the information
space involves logarithms of probability densities. In particular, function
values that are close to zero can cause numerical instabilities when the log-
arithm is computed. In general, the filtering step can significantly be eased,
but the prediction step may become disproportionately more complicated.
However, the nonlinear information space constitutes a promising basis for
further insights into efficient nonlinear multisensor filtering.

4.5 Nonlinear Federated Filtering
The same sources of dependent information that have been stated in
Section 3.2 are encountered in nonlinear networked systems: Interchanging
sensor data entails the risk of double-counting information, and sensor sites
may utilize the same local process model. Common sensor information
poses a minor problem if data is collected and fused in a data sink or central
sensor node, and the network topology contains no cycles. Common process
noise, on the contrary, has to be reckoned with whenever estimates are
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computed locally and are irregularly transferred at arbitrary instants of time.
The federated Kalman filter, which has been introduced in Section 3.6.3,
embodies an easy-to-implement solution and employs an inflated joint noise
covariance matrix in order to keep the local tracks decorrelated. As a result,
the local estimates are more conservative, but their fusion can be performed
by means of a simple Kalman filtering step and yields an estimate with
tighter second moment error statistics than CI would provide.

The idea behind federated Kalman filtering also shapes up to be a
promising strategy for nonlinear estimation problems. Accordingly, we
aspire to resolve the interdependencies among local prediction models into
independence. Each node i in a sensor network computes an estimate of a
”copy“ xik of the true state, which corresponds to the joint state vector




x1
k
...

xNk


 :=




I
...
I


xk . (4.30)

A decorrelation is therefore already required in the early beginning in order
to initialize the local estimators and to distribute the prior density fp(x0)
for x0 among the sensor nodes. For this purpose, the prior density can be
split into the product

fp(x0) =
(
fp(x0)

)ω1 · . . . ·
(
fp(x0)

)ωN (4.31)

with
∑N
i=1 ωi = 1 and ωi > 0. Each sensor node can be initialized by means

of a factor of the product (4.31), which leads to the normalized local prior

fp,i(x0) :=
(
fp(x0))ωi

∫
Rnx

(
fp(x0))ωi dx0

.

The joint density for (4.30) then yields

fp(x1
0, . . . , x

N
0
)

= fp,1(x1
0) · . . . · fp,N (xN0 ) (4.32)

The local prior estimates can now be assumed to be independent and
therefore be fused according to (4.2), i.e.,

fp(x0) = c· fp(x0, . . . , x0
)

= c· fp,1(x0) · . . . · fp,N (x0) .
(4.33)
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with normalization constant c. The product form (4.31) shows a distinctive
analogy to the EMD fusion rule (4.7), where, for a conservative fusion
with (4.7), possibly dependent densities are each raised to the power ωi.
For the nonlinear federated filter, we pursue the opposite direction and split
a single density into an exponential mixture of independent densities.

In compliance with the linear federated Kalman filter, the prediction
models have to be relaxed in order to preserve the product from (4.32).
It is easy to admit that a local measurement update by means of Bayes’
rule (2.6) does not cause any dependencies. The system model ãk for the
joint state (4.30), i.e.




x1
k+1
...

xNk+1


 = ãk







x1
k
...

xNk


 ,




I
...
I


wk


 :=



ak(x1

k,wk)
...

ak(xNk ,wk)


 , (4.34)

consists of multiple versions of the same model ak, and hence the system
noise wk effects dependencies among the predicted states. The prediction
step is carried out by means of the Chapman-Kolmogorov integral (2.5),
which yields

fp(x1
k+1, . . . , x

N
k+1) =

∫

Rnx

· · ·
∫

Rnx

f(x1
k+1, . . . , x

N
k+1 |x1

k, . . . , x
N
k )

· f e(x1
k, . . . , x

N
k ) dx1

k . . . dxNk

for the joint state space. This integral can only preserve the form (4.32) if
the transition density can also be transformed into a product of densities.
The subsequent subsections show how to maintain the product form after
prediction steps.

4.5.1 Relaxed Prediction Model for Additive Gaussian Noise
At first, we confine ourselves to a Gaussian process noise wk ∼ N (0,Cw

k )
that additively affects the state transition according to

xk+1 = ak(xk) + wk . (4.35)
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For the sake of simplicity, we do not take possible inputs into consideration.
In line with (2.10), the transition density can then be written in terms of a
Gaussian density as

f(xk+1 |xk) = N
(
xk+1 − ak(xk); 0,Cw

k

)
, (4.36)

and, with the system model (4.35), equation (4.34) for the predicted joint
state can be simplified to




x1
k+1
...

xNk+1


 =



ak(x1

k)
...

ak(xNk )


+




I
...
I


wk . (4.37)

As a result, the transition density function (4.36) becomes the joint transi-
tion density

f(x1
k+1, . . . , x

N
k+1 |x1

k, . . . , x
N
k )

= N






x1
k+1
...

xNk+1


−



ak(x1

k)
...

ak(xNk )


 ;




0
...
0


 ,




Cw
k Cw

k · · · Cw
k

Cw
k Cw

k

. . . ...
... . . . . . . Cw

k

Cw
k · · · Cw

k Cw
k







for the state transition model (4.37). In Chapter 3, we have become
acquainted with several possibilities to conservatively replace correlated
Gaussian estimates with independent ones. In particular, the linear fed-
erated Kalman filter in Section 3.6.3 employs the inflated process noise
covariance matrix (3.66). In the same manner, we can decompose the joint
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Gaussian transition density into the product

f̃(x1
k+1, . . . , x

N
k+1 |x1

k, . . . , x
N
k )

= N






x1
k+1
...

xNk+1


−



ak(x1

k)
...

ak(xNk )


 ;




0
...
0


 ,




1
ω1

Cw
k 0 · · · 0

0 1
ω2

Cw
k

. . . ...
... . . . . . . 0
0 · · · 0 1

ωN
Cw
k







= N
(
x1
k+1 − ak(x1

k); 0, 1
ω1

Cw
k

)

︸ ︷︷ ︸
=:f̃(x1

k+1 | x1
k)

·. . .·N
(
xNk+1 − ak(xNk ); 0, 1

ωN
Cw
k

)

︸ ︷︷ ︸
=:f̃(xN

k+1 | xN
k )

(4.38)
by employing the conservative bound (3.66) for the noise covariance matrix.
If the density f e to be predicted is given in a product form analogous
to (4.32), also the prediction result can now be decomposed into the
product

f̃p(x1
k+1, . . . , x

N
k+1)

=
∫

Rnx

· · ·
∫

Rnx

f̃(x1
k+1 |x1

k) . . . f̃(xNk+1 |xNk )·f e(x1
k) . . . f e(xNk ) dx1

k . . . dxNk

=
(∫

Rnx

f̃(x1
k+1 |x1

k)f e(x1
k) dx1

k

)

︸ ︷︷ ︸
=fp(x1

k+1)

·. . .·
(∫

Rnx

f̃(xNk+1 |xNk )f e(xNk ) dxNk
)

︸ ︷︷ ︸
=fp(xN

k+1)

.

The integrals can be computed on the individual sensor nodes and yield
the locally predicted densities fp(xik+1) for the state estimate. In doing
so, a fusion of local estimates by means of (4.33) provides a conservative
result. This concept can be generalized to arbitrary noise densities and
models, as discussed in the following subsection.

4.5.2 Arbitrary System Models
The nonlinear federated filter is strongly related to exponentials of densities:
The decomposition (4.38) yields the factors f̃(xik+1 |xik) that can each be
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rewritten as

f̃(xik+1 |xik) = N
(
xik+1 − ak(xik); 0, 1

ωi
Cw
k

)

= ci
(
N
(
xik+1 − ak(xik); 0,Cw

k

))ωi

(4.36)= cifωi(xik+1 |xik) .

By following the same train of thought that leads to the EMD fusion
rule (4.7), any joint transition density can be conservatively represented by
an exponential mixture density

fEMD(x1
k+1, . . . , x

N
k+1 |x1

k, . . . , x
N
k )

= c1fω1(x1
k+1 |x1

k) · . . . · cNfωN (xNk+1 |xNk )

with
∑N
i=1 ωi = 1 and ωi ≥ 0. Here, the EMD representation is used to

decompose one density into several densities and not for fusing several den-
sities into one density. Each factor fωi(xik+1 |xik) can locally be computed
for any system model

xk+1 = ak(xk,wk)
by means of (2.4) and exploited in the local prediction step

fp(xik+1) =
∫

Rnx

cifωi(xik+1 |xik) · f e(xik) dxik

of sensor node i. Apparently, we employ (4.7) and the notion of consistency
discussed in Section 4.2 in order to conservatively represent the transition
density by a product of independent transition densities.

4.5.3 Simulations
The proposed nonlinear federated filter is evaluated with the help of a target
tracking scenario, which is similar to the setup considered in Section 4.3.3-B.
Five sensor nodes are positioned at P 1 = [1, 8]T, P 2 = [0, 5]T, P 3 = [4, 6]T,
P 4 = [7, 9]T, and P 5 = [3, 12]T. The two-dimensional state vector [xk,yk]
is observed by each sensor according to the nonlinear measurement models

zik = (xk − P ix)2 + (yk − P iy)2 + vk
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Figure 4.14: Probability density contours at different time instants. Cen-
tralized optimal solution. Red dot marks the target’s position.
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Figure 4.15: Probability density contours at different time instants show
naive fusion results of local estimates; dependencies are ignored. Red dot
marks the target’s position.
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Figure 4.16: Probability density contours at different time instants. Non-
linear federated filtering with relaxed prediction step; local results are fused
at each time step. Red dot marks the target’s position.
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Figure 4.17: Probability density contours at different time instants. Local
estimates are fused by means of the EMD fusion rule. Red dot marks the
target’s position.
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with vk ∼ N (0, 82). The prior density is a Gaussian density with high
variance being distributed to the sensor nodes. Each calculated density is
represented on a spatial grid of 1000× 1000 points and the trapezoidal rule
is utilized to compute the integrals. The state transition model is

[
xk+1
yk+1

]
=
[
xk
yk

]
+
([ −1
−0.5

]
+ wk

)
,

with wk having zero mean and covariance matrix Cw
k = diag([4, 4]). At

every time step, the local estimation results are send to a data sink where
they are fused, which is required to plot the estimated density. For Fig-
ure 4.14, a full-rate communication is inevitable since all measurements
have to be send to the data sink, where the estimate is computed. This is
the centralized solution, which serves as a ground truth. In Figure 4.15,
each node employs the standard prediction step and possible dependencies
are ignored. Figures 4.15(d)–(f) show that the track is lost. The nonlinear
federated filter has been employed for the results in Figure 4.16 and pre-
serves probability mass around the target’s position. Using the standard
prediction step and employing EMDs for fusion lead to the tracking result
depicted in Figure 4.17, which is very conservative compared to the solution
provided by the nonlinear federated filter. Nonlinear federated filtering
hence provides more informative fusion results since it exploits additional
knowledge about the network, i.e., the number of nodes and the absence of
cycles. It is worth pointing out that Figure 4.17 also corresponds to the
approach based on pseudo Gaussian densities studied in Section 4.3.

4.6 Conclusions from Chapter 4
Nonlinear state estimation is often in itself an arduous task, but in a
networked system it becomes even more challenging. In distributed or
decentralized systems, it is, in first place, difficult to get a clear picture of
how dependencies are shaped. Without any further knowledge, possible
fusion results of two locally estimated densities can be as arbitrary as
their possible dependencies, which can even appear for Gaussian estimates
to be haphazard. Hence, unknown dependencies among estimates have
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the unfavorable characteristic of possibly causing very unexpected fusion
results. Accordingly, we are unable to constitute a conservative bound on
the possible fusion results, unless more information about the networked
estimation system can be utilized. As explained in Chapter 3, dependencies
arise from cycles in the network topology and local state transition models
that share a common process noise term. Hence, the same error model is
incorporated multiple times when estimates are processed locally. This
particular source of dependent information probably limits the arbitrari-
ness of possible inderdependencies. Against this background, a notion of
conservative fusion can then be defined that avoids being overconfident
with regard to common sensor information and common process noise.

The exponential mixture density (EMD) fusion rule preserves the
defined notion of conservativeness and constitutes a direct generalization
of the CI algorithm to arbitrary probability densities. In many estimation
problems, EMDs are also related to a higher-dimensional state space,
where models and dependencies become linear. Estimates can there be
represented by pseudo Gaussian densities, and dependencies among them
can again be parameterized in terms of correlation coefficients, i.e., cross-
covariance matrices. Applying CI to these pseudo Gaussian estimates in the
transformed state space directly corresponds to the EMD fusion method
being applied to the underlying densities in the original state space.

Like CI, many linear estimation concepts for networked systems are
based on the information form of the Kalman filter. The information
form is related to a log-likelihood formulation of the filtering step and can
therewith also be used in nonlinear state estimation. The log-densities
can be approximated by orthonormal bases representations such that the
filtering step can be carried out as a sum of coefficient vectors. Furthermore,
an orthonormal basis in the information space induces a new vector space
structure in the original space of densities, where fusion and weighting of
information are the corresponding vector space operations.

Similar to the linear case, dependency structures are often too conser-
vatively bounded by the EMD fusion rule if no further knowledge can be
exploited. In the absence of cycles in the network topology, only process
noise causes dependent local estimates. As a generalization of the federated
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Kalman filter, the dependent local transition densities can be ”decorrelated“
by means of an exponential mixture transition density. More specifically,
each local transition density is raised to a power in order to prevent process
noise to be incorporated multiple times.
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This thesis has laid its focus on state estimation problems in the simultane-
ous presence of stochastic and set-membership uncertainties. Centralized
as well as distributed and decentralized estimation architectures have been
studied, each of which imposes different requirements and constraints on the
design of estimation algorithms. The result of an estimator is intended to
be accompanied by a proper description of the involved uncertainties—for
the presence of errors affecting the state estimation process prevents precise
estimation results, which are less reliable if no information about involved
uncertainties is available. Stochastic and set-membership uncertainties
can be treated by the proposed Kalman-filter-like concept, which can also
be implemented in networked systems. Unknown dependencies between
locally processed data require conservative estimation methods, for which
linear and nonlinear solutions have been proposed in this thesis.

5.1 Contributions in a Nutshell
The contributions of this thesis can be divided into three categories. First,
an easy-to-implement estimation framework, together with a combined

217



Chapter 5. Conclusions and Future Research

stochastic and set-membership uncertainty model, is proposed. Second,
solutions to linear distributed and decentralized estimation problems are
studied. Third, the treatment of unknown dependencies in nonlinear estima-
tion problems is elucidated. In the following, we discuss the contributions
in more detail.

5.1.1 Stochastic and Set-membership Uncertainties

The Kalman filter provides estimates with minimum mean squared error
(MMSE) among all linear filters and is hence optimal when models are
linear and the involved noise is Gaussian. Besides randomness, a common
way to characterize uncertain quantities is the membership to a bounded
set. Unknown but bounded parameters and perturbations represent a
frequent problem in numerous applications. This thesis revealed that a
combination of random and set-membership quantities can be achieved
in a number of different ways. In particular, the addition of a Gaussian
random vector and an ellipsoidal error bound can easily be expressed in
terms of a set of translated versions of a Gaussian density. With this
combination, a first generalization of the Kalman filtering scheme has
been proposed, where the estimate is given by an ellipsoidal set of means
and a covariance matrix. The shape matrix of the ellipsoid accounts for
the set-membership uncertainty, and the covariance matrix represents the
stochastic uncertainty. However, this set-valued Kalman filter still favors
the minimization of the error covariance matrix; the shape matrix is merely
a byproduct. Therefore, an alternative generalization of the Kalman filter
has been studied that derives a Kalman gain minimizing the total MSE. The
total MSE matrix is bounded by the sum of the error covariance matrix and
the shape matrix. In contrast to a set of Gaussian densities, both matrices
are considered as separate error characteristics of the point estimate. The
resulting Kalman gain reveals to be a natural extension of the standard
Kalman gain. In order to leave it free to the user to decide whether the
stochastic or set-membership uncertainty shall primarily be minimized, an
additional weighting parameter is introduced. Interestingly, for certain
choices of the weighting parameter, the aforementioned set-valued Kalman

218



5.1. Contributions in a Nutshell

filter or a purely set-membership estimator is attained, where in the latter
case the covariance matrix can be regarded as a byproduct.

In general, the need for generalizations of probabilistic methods is
controversially discussed. Some Bayesians are firmly convinced that un-
certainties can be characterized probabilistically in any case. Even if this
assertion complies with reality, it is the lack of knowledge about the un-
derlying probabilities that clearly justifies the usage of set-membership
methods. Instead of unnecessarily inflating linear estimation problems to
complicated possibly nonlinear ones, the combination with set-membership
methods simplifies the incorporation of any unknown error behavior, be it
a systematic error such as a bias or a complicated unpredictable error. An
important example for the employment of sets in purely stochastic setups
has been studied against the treatment of nonlinearities in approximate
Kalman filtering. Purely stochastic methods like extended or linear regres-
sion Kalman filters are complemented by bounds on linearization errors
that significantly enhance the reliability of the estimation results.

Other applications prove the advantages of simultaneous stochastic
and set-membership state estimation. For estimating the heart surface
displacement, a reliable safety region has been computed that embraces
any potential errors from the sensor devices. In model predictive control,
different sources of uncertainty can efficiently be incorporated into the
objective function to be optimized. In networks consisting of cheap and
miniaturized sensor nodes, set-membership methods can contribute to
reducing the required communication data rate and volume.

5.1.2 Distributed and Decentralized Estimation

In a network of sensors, data can either be collected and processed by a
central unit or locally on each node in a distributed or decentralized fash-
ion. Estimation algorithms need to be adapted to the considered network
topology in order to allow an efficient and consistent data processing. For
centralized architectures, the information form of the Kalman filter, which
is an inverse covariance formulation, appears to be most appropriate since
sensor data can efficiently be preprocessed along any communication path
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and never exceeds the dimension of the state vector. As the information
filter displays a purely stochastic formulation, the incorporation of set-
membership uncertainties has been elucidated in detail. A set of translated
versions of a Gaussian density can be parameterized by a set of information
vectors and a single information matrix. The generalized information filter
then processes ellipsoids of information vectors that can be transformed
back at the central node to an ellipsoidal error bound of the state estimate.
The evaluation of Minkowski sums of multiple information ellipsoids can
efficiently be distributed when a certain communication strategy is em-
ployed, which requires that the information matrix is computed first and
send back to the fusing nodes.

The presence of a central instance that acquires and manages all the
sensor data renders a thorough examination of possible dependencies un-
necessary. In distributed and decentralized networks, where local estimates
for the same state are processed autonomously on different nodes, the esti-
mation quality of a centralized architecture cannot be reached in general:
As the name suggests, local estimates only incorporate locally available
data; the fusion of local estimates allow a considerable improvement of the
estimation quality. However, although fusion of all local estimates implies
that all available information is incorporated, the result is often worse
than a centrally computed estimate since the conditional independence of
measurements cannot be exploited in an optimal manner anymore. Local
estimates are, in general, dependent of each other due to common process
noise affecting each local state transition model and common sensor data
that is double-counted. The fusion of estimates may yield overconfident
and unreliable results if dependencies are not properly taken into account.
If they are known, the Bar-Shalom/Campo formulas can be employed; if
they are unknown, a suboptimal fusion result is obtained by means of the
covariance intersection (CI) algorithm. An interesting fact to be empha-
sized is that set-membership methods are utilized to bound the effects of
possible dependencies on the fusion result.

Since CI may provide very conservative fusion results, techniques have
been proposed that allow to benefit from additional knowledge about the
underlying dependency structure and to obtain less suboptimal fusion re-
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sults. The conditional independence of current measurements can even be
exploited automatically to tighten the bounds on unknown dependencies.
Several further possibilities have been discussed to explicitly exploit knowl-
edge about independence, such as conditional independence over a certain
horizon of time steps or the absence of cycles in the network topology such
that data is not double-counted.

5.1.3 Nonlinear Dependencies

In nonlinear estimation problems, dependencies cannot simply be repre-
sented by cross-covariance matrices, as it is the case for linear estimation
problems. The first difficulty is to approximate and parameterize local
estimates that are represented by conditional densities. The second dif-
ficulty is to determine and parameterize possible dependencies between
these estimates. Dependencies are characterized by joint probability den-
sity functions. Even if the marginals, i.e., local estimates, are given, the
spectrum of possible joint probability densities is not definable. As a result,
a wide range of fusion results is possible, for which a conservative bound
is to be derived if the dependencies are unknown. Fortunately, in the
considered network topologies, this range can be cut down to dependencies
that arise from common process noise and common sensor data. With
exponential mixture densities (EMD), which embody a generalization of
the CI algorithm, a conservative fusion rule can be defined that accounts
for the aforementioned sources of dependencies.

The EMD fusion rule is also related to state-space transformations to
higher-dimensional spaces, where the state transition and, in particular,
the sensor models can be represented by linear models. Under certain
conditions, the estimated conditional densities become pseudo Gaussian
densities in the transformed state space. Applying the CI algorithm in
the transformed state space directly coincides with the EMD fusion rule
applied to the original densities. This relation reveals that fusion by means
of EMDs guarantees covariance consistent results in any transformed state
space, where the estimation problem becomes linear.
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A second direction consists of transformations being directly applied
to probability densities. By considering logarithms of densities, a nonlinear
information space can be defined that induces a new vector space structure
on the set of probability density function. When densities are approximated
by truncated orthogonal series expansions in the information space, the
filtering and fusion of information is carried out by means of simple additions
of coefficient vectors. The EMD fusion rule becomes a simple convex
combination in this information space. The same applies for the linear
information space and the CI algorithm.

In many networks, common process noise is the only cause of interde-
pendence. Analogously to the federated Kalman filter, the joint transition
density can be approximated by a product of local transition densities.
Each node employs one factor transition density for local prediction steps.
The nonlinear federated Kalman filter ensures that fusion results are not
overconfident but less conservative than EMD fusion results.

5.2 Directions for Future Research
“Science is always wrong. It never solves a problem without creating ten
more.” (George Bernard Shaw) We consider only three of them in this
section. The results of this thesis reveal the following, particularly promising
directions for prospective research.

5.2.1 Further Development of Stochastic and Set-membership
State Estimation

The adjustable Kalman gains from Section 2.5 offer the degree of freedom
to give priority either to the minimization of the stochastic uncertainty or
to the minimization of the set-membership uncertainty. The adjustment
can be made in each filtering step but cannot be revised at a later time
step. An idea to warrant adjustability over the entire time horizon consists
of employing two estimators in parallel, where the first one optimizes the
covariance matrix and the other one optimizes the shape matrix. With
bookkeeping of the correlations between both estimates, they can be fused
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at any time step by employing the Bar-Shalom/Campo formulas from
Section 3.5.1-B. For the fusion, again an adjustable gain allows to bal-
ance between minimum stochastic and minimum set-membership error
characteristics, and hence an adjustment is possible at any later time step.

A further direction is the stochastic and set-membership information
filter, where in Section 3.4 only the covariance matrix is minimized, i.e., the
information filter is a reformulation of the Kalman filter in Section 2.4.1,
where only the standard Kalman gain has been considered. An information
form of the advanced scheme from Section 2.5 is also desirable. First, a
reformulation in terms of inverse covariance matrices as well as inverse
shape matrices is to be found. Second, the Minkowski sum of multiple
set-membership error bounds has to be computed efficiently in a distributed
fashion, which is the more complicated part.

5.2.2 Simplification of Nonlinear Estimation Problems with
Sets of Densities

Nonlinear state estimation comprises the problem of computing conditional
densities of the state to be estimated. Unfortunately, closed-form solu-
tions are a rarity and only available for very specific problems. Often,
the complexity of the density representation increases continually with an
advancing number of prediction and filtering steps. So, for almost any ap-
plication, repeated reapproximations are inevitable, which can significantly
reduce the reliability of the estimation results. An interesting direction to
reduce the complexity has been pointed out in [106]. Densities difficult to
represent and parameterize are bounded from below and above by means
of two simple densities. Similarly, the estimation concept based on sets of
probability densities from Section 2.3 can be employed. If, in particular,
the true density lies in the convex hull of a set of Gaussian densities as
in Section 2.4.1, a simple Kalman filtering scheme can be employed to
process these densities. This idea is a generalization of the treatment of
nonlinearities in Section 2.6, where the effects of nonlinearities are bounded
by sets.
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A similar approach is to characterize a density only by its first m mo-
ments and to consider the set of all densities that are compatible with
these moments [190]. For instance, the Kalman filter can be applied if only
the first two moments are known and represents the best linear estimator.
However, the optimal strategy is to apply Bayes’ rule elementwise to all
compatible densities with the same first two moments and to derive a
simple parameterization of the set of posterior densities. In many cases,
this is the simpler approach, compared to an approximation of the true
density.

5.2.3 Copula-based Dependencies and a Notion of
Conservativeness

Chapter 4 demonstrates that the treatment of dependencies among esti-
mated probability densities is a tremendous problem. With copulas [136],
dependencies between two nx-dimensional random vectors can be repre-
sented by a function defined over a unit hypercube [0, 1]2nx . Hence, an
approximation and finite-dimensional parameterization of a copula is eas-
ier to achieve than for the corresponding joint density function, which
is defined over the entire, possibly unbounded domain. It appears to be
particularly promising to study how prediction and filtering steps affect the
underlying copula in order to be capable of keeping track of the dependency
structure. The copula can then be exploited to fuse local estimates, i.e.,
the marginals, by considering the corresponding copula densities. If the
underlying copula is unknown, a conservative fusion result can be attained
with the aid of maximum entropy copulas [146]. More precisely, the “most
uncertain” copula with respect to an appropriate information measure is
chosen for given marginals.

The minimum volume confidence set for a given probability level
corresponds to a level set of the estimated probability density [137]. This
relation can be useful to define conservativeness. For a fixed probability
level, the according level set of a conservative estimate should include
the level set of the true density. Also, the fusion of estimates might
be definable through level sets, for instance, by computing intersections
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of level sets. In consequence, such a fusion method would link nonlinear
stochastic state estimation with set-membership estimation methods, which
resembles the covariance intersection algorithm, where covariance ellipsoids
are intersected.
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