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Notation

General Conventions

x Scalar (lowercase)
x Random variable (bold, lowercase)
x Vector (underlined, lowercase)
x Random vector (bold, underlined, lowercase)
A Matrix (bold, uppercase)
(.)s Quantity of sensor s
(.)k Quantity at time step k
A Set (calligraphic, uppercase)
A > 0 Matrix A is positive definite
A ≥ 0 Matrix A is positive semidefinite
A > B Matrix (A−B) is positive definite
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Notation

Operators

(A)> Matrix transpose of A
(A)+ Moore-Penrose pseudoinverse of A
(A)−1 Inverse of A
tr {A} Trace of A
rank{A} Rank of A
vec{A} Vector operator of A
eig{A} Set of eigenvalues of A
diag (A) Vector with diagonal elements of A
blkdiag (A) Matrix-vector of block diagonals of A
δ Kronecker delta function
J {·} Optimization or cost function
p(x) Probability density func. of random variable x
Pr {x = a} Probability of event a
E{x} Expected value of x
E{x|y} Expected value of x conditioned on y
A ∪ B Union of A in B
A ∩ B Intersection of A in B
A\B Relative complement of B in A
E(C) Covariance ellipsoid of C with mean 0
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Notation

Symbols

I Identity matrix
1 Matrix with identities

(
I . . . I

)

0 Vector where all entries are zero
0 Matrix where all entries are zero

N0 Set of natural number including zero
N Set of natural number excluding zero
R Set of real number
Rn n-dimensional vector space over the real numbers
∅ Empty set
� End of proof
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Conventions for Variables

S Set of sensor indices
K Set of considered time indices
I Set of noise term indices

xk True state at time k
zk Measurement obtained by sensor at time k
wk Process noise at time k
vk Measurement noise at time k

Ak State transition matrix at time k
Hs
k Measurement matrix of sensor s at time k

Qk Process noise covariance at time k
Rs
k Measurement noise cov. of sensor s at time k

Cz Measurement capacity of sensor network
Ĉz Hypothesis about measurement capacity

K filter gain for measurement
L filter gain for predicted estimate
F Fusion gain

N (x,C) Gaussian distribution with mean x and cov. C
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MSE Mean Squared Error
MMSE Minimum Mean Squared Error
LMMSE Linear Minimum Mean Squared Error
KF Kalman Filter
DKF Distributed Kalman Filter
HKF Hypothesizing Distributed Kalman Filter
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EKF Extended Kalman Filter
UKF Unscented Kalman Filter
FKF Federated Kalman Filter
CI Covariance Intersection
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Zusammenfassung

Die Verarbeitung von Informationen aus unterschiedlichen Quellen
zum Ableiten von Schlussfolgerungen fasziniert Wissenschaftler und
Ingenieure gleichermaßen und viel spricht dafür, dass die Bedeutung
der zugehörigen Theorie in einer immer stärker vernetzten Welt zu-
künftig noch zunehmen wird. Die mathematischen Grundlagen zur
statistischen Evaluation und Interpretation solch unsicherer Infor-
mationen werden in der stochastischen Informationsverarbeitung en-
twickelt. Die Schätztheorie in Sensornetzen konstituiert einen wichti-
gen Teilbereich, der sich mit der verteilten Verarbeitung von Infor-
mationen mit beschränktem lokalem Wissen beschäftigt.
Während gemäß ursprünglicher Vorstellungen rechenschwache Mini-
atursysteme unter Berücksichtigung limitierter Batteriekapazitäten
ein Netzwerk zur Überwachung räumlich verteilter Phänomene bilden
sollten, hat sich in den letzten Jahren gezeigt, dass die Ideen und
Methoden in diversen modernen aber auch klassischen Technologien
eingesetzt werden können. Die Integration von Sensordaten in Smart-
phones und die Distribution komplexer Wettersimulationen sind da-
bei nur zwei Beispiele für mögliche Anwendungsgebiete. Bemerkens-
werterweise erfordert die steigende Komplexität selbst in traditionell
zentralen Systemen eine Dekomposition von Operationen in funk-
tionell unabhängige Teilsysteme, die ähnlichen Ansprüchen wie Kno-
ten in klassischen Sensornetzen gerecht werden müssen.
Das Ziel dieser Dissertation ist die Entwicklung verteilter Algorith-
men zur effizienten Schätzung eines Zustands, der ausschließlich über
unsichere Informationen zugänglich ist. Der bearbeitete Themenkom-
plex wird in der Literatur auch unter den Begriffen Target Track-
ing, verteilte und dezentrale Schätzung sowie Multisensor Datafusion
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Zusammenfassung

behandelt. Die zusätzlichen Probleme gegenüber der zentralen Ve-
rarbeitung manifestieren sich in der unsicheren (häufig drahtlosen)
Kommunikation, limitierten Wissen in lokalen Sensoren und der Het-
erogenität der Knoten. Folglich sollten Schätzalgorithmen robust
gegenüber Paketverzögerungen und -ausfällen sein, die lokale Ver-
arbeitung gemäß der globalen Sensornetzkapazität optimieren und
vorhandene Rechen- und Speicherkapazitäten nutzen.

In der Literatur werden grundsätzlich drei Abstufungen hinsichtlich
der Informationsverarbeitung in Sensornetzen unterschieden. In der
klassischen Schätzung werden alle Informationen an einem zentralen
Rechenknoten verarbeitet. In der verteilten Schätzung wird dieses
Konzept auf eine Vorverarbeitung von Messungen in den Sensoren
erweitert, wobei das Optimierungskriterium weiterhin die Schätzqua-
lität an einem dedizierten Fusionsknoten ist. In der allgemeinsten
Form wird ein Verbund von Knoten betrachtet, indem Schätzungen
dezentral optimiert und mit anderen Knoten im Sensornetz ausge-
tauscht und fusioniert werden. Für lineare Systeme mit zentraler Ve-
rarbeitung ermöglicht das Kalman Filter eine gemäß mehrerer Krite-
rien (Maximum-Likelihood, minimale quadratische Abweichung, etc.)
optimale Schätzung. Die Verallgemeinerung dieses Verfahrens von
zentralen auf verteilte und dezentrale Systeme mit informationsbe-
schränkten Sensoren bildet den Kern dieser Arbeit.

Die wesentlichen Herausforderungen bei der Generalisierung der lin-
earen Verarbeitung auf verteilte Systeme bestehen in der lokalen
Filterung, also der rekursiven Kombination von Messungen in den
Sensoren, und der Fusion von Schätzungen. Zur effizienten Lösung
der letztgenannten Herausforderung werden Methoden zur Quantifi-
zierung und Integration von unpräzise bekannten Abhängigkeitsstruk-
turen in Sensornetzen entwickelt. Dies ist nötig, da nur unter Berück-
sichtigung von Abhängigkeiten in der Fusion eine Unterscheidung
zwischen exklusiven und bereits verfügbaren Informationen möglich
ist. Während sich Arbeiten in der Literatur auf das konservative
Abschätzen von unbekannten Korrelationen beschränken, werden im
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Zuge der Arbeit zwei Ansätze entwickelt, die, für die betrachteten
linearen Systeme, basierend auf der Zerlegung von Fehlergrößen in
Rauschanteile die Rekonstruktion von Abhängigkeiten anhand von
lokal errechneter Variablen erlauben. Die Präzision der Rekonstruk-
tion kann in beiden Verfahren relativ zu steigendem Rechen- und
Kommunikationsaufwand skaliert werden und ermöglicht somit die
Implementierung von zugeschnittenen Lösungen für beliebige Sensor-
netze.
Trotz begrenzten Wissens über die Verarbeitung anderer Sensoren
muss die Filterung gemäß Eigenschaften des Sensornetzes optimiert
werden, um eine bestmögliche Ausbeute der Informationen in Mes-
sungen zu erreichen. Ein in der Disseration entwickelter Algorithmus
benutzt zu diesem Zweck eine Hypothese über die Messqualität des
gesamten Sensornetzes und stellt Techniken zur robusten Korrektur
von unzutreffenden Hypothesen bereit. Es wird nicht nur gezeigt,
dass bei zutreffenden Annahmen der Algorithmus trotz verteilter
Verarbeitung die gleichen (optimalen) Resultate wie ein zentrales
Kalman Filter erzielt, sondern darüber hinaus theoretisch und in Eval-
uationen nachgewiesen, dass bessere Ergebnisse als mit parallelen
Kalman Filtern und anschließender Fusion erreicht werden. Damit
empfiehlt sich die Implementierung der zugrundeliegenden Idee nicht
nur in klassischen Sensornetzwerkszenarien, sondern zum Beispiel
auch zur schritthaltenden Selbstlokalisierung, die typischerweise auf
die lokale Vorverarbeitung von Gyrometer-, Beschleunigungssensor-
und Schrittmesserdaten angewiesen ist.
Die Verknüpfung der entwickelten Techniken erlaubt die Optimierung
der stochastischen Verarbeitung in Sensornetzen in einer Vielzahl von
Anwendungsfällen. Da die hergeleiteten Methoden für Spezialfälle op-
timale Ergebnisse liefern und die Kombination der Verfahren anhand
theoretischer Einsichten möglich ist, trägt die Arbeit wichtige Erken-
ntnisse zur dezentralen Informationsverarbeitung bei. Diese Erken-
ntnisse können insbesondere zu einer effizienteren Ausnutzung von
Sensorressourcen in einer Vielzahl praktischer Probleme führen.
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Abstract

The integration of information and assumptions from different sources
that bear the potential to deduce valuable conclusions appeals to re-
searchers and engineers equally and constitutes a fascinating field of
study. There are compelling reasons to argue that the associated
theory is becoming even more and more important in an increas-
ingly interconnected world. Under the topic of stochastic information
processing, the mathematical foundation of the statistical evaluation
and interpretation of uncertain data is laid. Estimation theory in
sensor networks constitutes an important part that focuses on the
distributed processing of information subject to locally constrained
knowledge.

While, originally, sensor networks were perceived as collections of
miniature systems that jointly monitor spatially distributed phenom-
ena subject to weak computing and limited battery capacities, it has
become evident in recent years that the concept and the associated
ideas are applicable to various technologies. The incorporation of
data from different sensor devices in smartphones and the distributed
calculation of complex weather simulations constitute only two exam-
ples of application areas. The ever-increasing computational demand
and the concomitant growing complexity requires even in tradition-
ally centralized systems the decomposition of operations in function-
ally independent subsystems with requirements that correspond to
those of traditional sensor network nodes.

This thesis deals with sensor network algorithms for the stochastic
estimation of a state that is only accessible via uncertain observa-
tions. This problem is encountered in several areas in literature and
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is discussed under the terms target tracking, distributed and decen-
tralized estimation, and multisensor data fusion. The additional chal-
lenges of a typical sensor network compared to the central processing
of information manifest themselves in the uncertain (often wireless)
communication, limited information at local sensors, and the hetero-
geneity of the nodes. Thus, proper estimation algorithms must cope
with packet delays and losses, optimize the processing based on local
knowledge, and take advantage of available computing and storage
capacities.
Basically, a distinction between three schemes for the processing of
information in sensor networks is made in literature. In classical esti-
mation theory, all observations are processed at a central computing
node. Distributed estimation considers the preprocessing of measure-
ments at the sensors with the objective to optimize the estimate at
a dedicated fusion node. In the most general form, decentralized
nodes cooperatively enhance their local estimates by exchanging and
merging information with their neighborhood. For centralized linear
systems with Gaussian distributed random variables, the Kalman fil-
ter constitutes the optimal estimator subject to several criteria (max-
imum likelihood, mean squared error, etc.). This thesis now deals
with the generalization of Kalman filter ideas to distributed and de-
centralized systems with information-constrained sensors.
The main challenges arising from the generalization of the central-
ized processing are the filtering at the sensors, i.e., the recursive com-
bination of measurements, and the fusion of estimates. The latter
challenge is addressed with methods for the quantification and in-
tegration of imprecise dependency information. The exploitation of
dependencies is necessary to allow an identification of mutually ex-
clusive information in the fusion. While previous work in literature
is confined to the bounding of unknown correlations, two approaches
for the reconstruction of dependencies are developed in this thesis.
Both are based on a decomposition of error quantities into individual
noise terms and can be implemented at the sensors without knowl-
edge about remote processing. The precision of both techniques is
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adjustable subject to increasing computational and communication
effort and thus, permits deriving tailored solutions for various sensor
network setups.
In order to overcome the first challenge and to realize an efficient
filter processing at the sensors, the combination of observations is op-
timized according to a hypothesis about the measurement capacity
of the sensor network. As assumed parameters typically do not accu-
rately reflect the reality, techniques for robust correction of incorrect
hypotheses are provided. It is not only shown that this algorithm
achieves the same (optimal) results as a central Kalman filter for
suitable hypothesis but moreover, it is demonstrated in theory and
evaluations that the proposed procedure provides preciser estimates
than standard approaches that use local Kalman filters. Thus, the
implementation of approaches that operate on hypotheses is benefi-
cial in various distributed estimation scenarios such as for example
for self-localization, which typically relies on a preprocessing of ac-
celerometer, gyro, and pedometer data.
A combination of the developed techniques allows optimized stochas-
tic processing in a variety of applications. Since the proposed meth-
ods provide optimal results for special cases, e.g., distributed estima-
tion, and the combination of them on the basis of theoretical insights
is viable, the insights are directly applicable to decentralized informa-
tion processing and can contribute to a more efficient exploitation of
sensor resources in a wide range of practical problems.
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CHAPTER
1

Introduction

The perception and processing of information is ubiquitous in human
and technical reasoning. It is an inherent attribute of real world prob-
lems that desired information is rarely directly accessible but instead
the result of an implicit or explicit evaluation of observations or re-
lated facts. As a consequence, the systematic analysis of information
provides no guaranteed statements but approximations that are un-
certain by nature. Indeed, without proper assessment, information is
difficult to process and the combination of multiple uncertain sources
may even reduce its quality. In particular, a bias can be induced in
the fusion result, and the quality of combined information is simply
overestimated. Due to increasing awareness of these problems and
due to advances in different areas of research, explicit treatment of
uncertainty has found its way in various applications. Even though
stochastic inference can necessitate sophisticated modeling, the re-
sulting predictions and decisions are not only comprehensible from a
mathematical point of view but also reliable in practical use.

In an increasingly interconnected world, uncertain observations stem
from different, often heterogeneous sources. It then remains con-
cealed to the receiver, what kind of prior processing the sources
performed on the observations and whether information is a mutual
dependent copy of already available data. Smartphones serve as a
perfect example of such modern sensor networks. As a matter of
fact, these devices are conglomerations of various sensors such as
microphones, GPS modules, video cameras, etc. [105]. Already in
the devices, data from different sensors is merged to offer enhanced
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Figure 1.1: Several smartphones observe independently of each other (uncertain)
data such as honking levels, speed, or user inputs. This information
is locally preprocessed, enriched with uncertain GPS data, and sent
to a server. There, the received packages are combined to gain new
information, e.g., about traffic jams.

services such as videotelephony and augmented reality [164]. Even
more important, the interconnection of smartphones permits the cost-
efficient integration of spatiotemporally distributed information as it
is discussed in literature under the catchphrase “mobile crowd sens-
ing” [50]. Examples for such services are the detection of traffic
jams as depicted in Figure 1.1 and the systematic storage of pictures
marked with GPS data that allows monitoring temporal changes at
different spots on earth [111]. There are compelling reasons to argue
that these ideas are only the beginning, and more and more services
will rely and exploit loosely related information in the future.

The integration of information from heterogeneous sensors that oper-
ate independently of each other confronts scientists and practitioners
with new problems not encountered in classical sensor network theory,
which has been developed mainly in the context of well-controlled
sensor environments such as indoor localization [71], hazard detec-
tion [72], and alike. Modern estimation algorithms must process
information with unknown origin and dependencies. In particular,
quite often not even the number of involved sensors can be antici-

2



1.1 Problems in Sensor Network Estimation

pated. In such scenarios, a homogeneous optimization of sensors is
hardly realizable. Additionally, even if technical advances have re-
lieved some restrictions, the challenges from classical sensor network
theory have not yet outlived themselves. These include, primarily,
limited battery capacities at the sensors that manifest themselves in
a constrained operationality with respect to energy-intensive compu-
tational and communication tasks. Moreover, quite often a wireless
communication is established that is inherently linked to the risk of
packet delays and losses.

Certainly, information-processing systems must feature high degrees
of adaptability and flexibility to prove effective in such environments.
This pertains to the local processing of observations that can hardly
rely on sensor network characteristics, which are quite often unknown
at the time of sensing and certainly concealed to the sensor, but also
to the fusion of information, which should permit a consideration of
dependencies without requiring it as a condition.

1.1 Problems in Sensor Network Estimation

In order to systematically deal with the aforementioned difficulties,
information processing is embedded in a mathematical framework
where the value of interest is assumed to be an unknown state vector
and observations are stochastically distributed according to a known
relation to the state. The challenge is then to compose estimates
from observations such that the difference to the underlying state is
minimized. In this abstract analysis, primarily, two operations need
to be considered. For one thing, the combination of estimates and
measurements is examined under the topic filtering and focuses on
the integration of information that quite often pertains only to a
small part of the state. In contrast to that, the term fusion describes
the combination of two or more uncertain estimates.

3



Chapter 1. Introduction

Analysis Conception
    Network

  Online
Adaption

Estimator
  Design

Application

Figure 1.2: Different processes for the design of sensor network estimators. In
classical sensor networks, the concept is known when the estimator
is derived and only small adaptions are necessary once the network
is deployed. In the more general interpretation of sensor networks
considered in this thesis, the network structure can change com-
pletely during runtime, which necessitates a high degree of flexibility
of the estimators.

It follows not only from a mathematical analysis but also from intu-
ition that the optimal fusion depends on the quality of individual
estimates and their dependencies. As a matter of fact, dependen-
cies emerge between estimates because the same stochastic system
is observed and due to data exchanges between nodes that lead to
increasingly similar information at the sensors. As the processing
of remote sensors is barely assessable and the history of past data
exchanges hardly traceable, accurate knowledge about these depen-
dencies is often not given. Indeed, for the subsequent use of estimates
in decision-making or control systems, implementations of the fusion
operation should not only minimize the error of the estimate but also
provide a quality assessment of the fused estimate. Thus, the ques-
tions how to quantify dependencies subject to knowledge constraints
of individual sensors and how to fuse estimates subject to imprecise
quality and dependency information arise.
The preprocessing of measurements and their recursive aggregation
at the sensors are key components of every estimator and determine
to a large part the quality of estimates in sensor networks. The prob-
lem that needs to be solved in recursive filtering is to determine

4



1.2 Outline and Overview

the function by which measurements are to be combined into a local
estimate that is subsequently transmitted to other nodes. This is,
in particular, important as the optimal estimate cannot be recovered
from locally preprocessed values when the presence of the sensor net-
work is neglected in the optimization of local filters, e.g., by applying
Kalman filters at the sensors. In summary, the challenge is to find
optimized filter matrices at the nodes subject to imprecisely known
sensor network properties.

Concurrent filtering and fusion at several nodes, furthermore, leads
to interdependencies that renders sensor network estimation a dif-
ficult scientific challenge with many open problems. In particular,
the considered estimation problems exhibit many degrees of freedom
so that practical implementations and theoretical properties are only
achieved in special cases or when additional assumptions are imposed.

1.2 Outline and Overview

Hence, this thesis focuses on linear processing of uncertain infor-
mation and the mean squared error loss function. This is a well-
established framework and has been the basis for key results in sensor
network estimation. In contrast to the problem setting of classical
distributed estimation, the challenges imposed by modern sensor net-
works are also addressed by considering limited information at the
sensors. Instead of concurrently optimizing filter and fusion process-
ing of the entire sensor network prior to application, sensors are sup-
posed to operate on imprecise and incomplete information about the
sensor network and to adapt online to changes in the network struc-
ture as illustrated in Figure 1.2. Essentially, the objective is to derive
estimation algorithms that handle not only high uncertainty in the
data but also highly uncertain and unforeseeable models.
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Chapter 1. Introduction

Chapter 2: Fundamentals of Estimation Theory serves as an in-
troduction and mathematical classification of the estimation problem.
The process of extracting models from real world phenomena is de-
scribed, and fundamental results of estimation theory in the Bayesian
framework are presented. The focus is laid on challenges in sensor net-
work estimation. For this purpose, three types of sensor networks are
delineated that reflect increasingly complex problem settings. The
distribution of calculations away from a central node to the sensors
introduces sources of dependency between estimates. For example,
the evolution of the underlying state is accompanied by uncertainties
that pertain to all estimates equally. Additionally, due to the ex-
change of information in the sensor network, estimates increasingly
incorporate the same information. These dependencies interrelate
estimates and demand the concurrent optimization of filter and fu-
sion processing at distributed sensors. State-of-the-art methods are
illuminated, and their applicability to modern sensor networks with
limited sensor knowledge is discussed.

Chapter 3: Information Fusion in Sensor Networks considers the
merging of several estimates. In that chapter, two approaches are
pursued to quantify dependencies in sensor networks. An estimation
scheme based on samples is proposed that gives stochastic approxi-
mations of covariances. For an implementation in sensor networks,
optimal parameters for finite samples are derived. The other tech-
nique draws on existing conservative bounding theory. Based on a
decomposition of covariances, linear dependencies between estimates
can be reconstructed partially even if sensors operate on local data
only. Implementations of this idea are presented, and generalizations
of the bounding theory in terms of the number of considered esti-
mates and the incorporation of dependency information are derived.
Moreover, fundamental properties are obtained that apply to the un-
derlying bounding techniques and fill existing gaps in literature. The
proposed algorithms bridge the gap between well-known techniques
for the fusion under either known or unknown dependencies.
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1.2 Outline and Overview

Chapter 4: Hypothesizing Distributed Kalman Filtering is con-
cerned with the distributed optimization of filter operations in the
presence of a dedicated fusion center. A key prerequisite for an op-
timal distributed estimation scheme is to ensure a relative weighting
of local measurements that is equal to that of a centralized estima-
tion scheme. Hence, techniques are proposed that use hypotheses
to satisfy this constraint best possible for different degrees of knowl-
edge about the sensor network structure. An important insight of
the chapter is that the subsequent fusion of information demands
adapted filter processing. This notion directly transfers to sensor
network estimation without a dedicated fusion center and the pro-
cessing of out-of-sequence measurements.
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CHAPTER
2

Fundamentals of
Estimation Theory

Observing and processing uncertain information about our environ-
ment is an integral part in decision-making of humans and machines.
For example, human drivers implicitly approximate the distance to
traffic lights based on natural intuition and experiences and lean on
their estimates when they brake the car. A more explicit processing
that illuminates estimation theory is positioning the car by means of
navigation devices. A widespread concept for localization is to utilize
satellite navigation such as GPS, which aims to determine positions
from time differences in signals. Despite intensive efforts, an uncer-
tainty in the position remains induced by unpredictable delays in the
transmission and technical limitations in the signal processing [37].
Hence, it is an inherent characteristic of satellite-based localization
methods that measurements are imprecise.

In a more general perspective, an unknown state is to be deter-
mined from one or multiple observations that permit the inference
of some information about the unknown quantity. The objective of
estimation theory boils down to deriving approximations of the state
that satisfy meaningful quality properties. In literature, various re-
search directions of estimation theory are pursued that often provide
different perspectives on similar algorithms and results. In the early
stages of estimation theory, the functional relation between observa-
tions and state was assumed known and parameters were optimized
by means of deterministic analyses. In this context, residuals, i.e.,
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deviations of the observations from the estimated model are mini-
mized by means of methods such as least squares. Indeed, determin-
istic approaches accept and process residuals as outcomes of the ap-
proximation but cannot, taken in isolation, explain their emergence.
This is achieved by deriving estimates premised on the assumption
that measurements are outputs of stochastic experiments. Stochas-
tic models allow the systematic inference of measurements based on
probabilistic principles and the optimization of estimates according
to well-established quality attributes from probability theory. How-
ever, probability theory itself knows different interpretations that are
closely bound up with the question whether probability means a phys-
ical tendency that something happens or a belief that is occurs.
The first-mentioned interpretation is referred to as classical or fre-
quentist statistics. Measurements are construed as occurrences of
possible events of an experiment. The state is a fixed deterministic
parameter of the stochastic model and estimates are to maximize a
utility or to minimize a loss function. In the Bayesian perspective,
estimates are seen as conditional probabilities that express confidence
or a degree of knowledge about the state. This concept necessitates,
by definition, prior knowledge about the unknown state. Indeed,
the parameters are random variables. Consequently, the estimate is
random itself. As a matter of fact, the admissibility of different in-
terpretations of probability has fostered a debate on the correct and
best perspective, which is delineated in [13].
For the subsequent examinations, the Bayesian point of view is taken.
Let z1, . . . , zm,m ∈ N denote measurements that provide information
about the true state x. Then, probabilistic inference with Bayes’
theorem according to

p(x|z) = p(z|x)p(x)
p(z) = p(z|x)p(x)∫

x∈Rnx p(z|x)p(x)dx (2.1)

permits integrating likelihoods p(z|x) into the prior distribution p(x)
in order to obtain the posterior conditional density p(x|z1, . . . , zk)
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that reflects the knowledge about the state. In the probabilistic
model, the evolution of the state can be described by means of the
Chapman-Kolmogorov equation [83] such that the estimation pro-
cess is completely characterized by the density representation. Even
though Monte Carlo and deterministic sampling methods have
been developed to approximate the evolution of these conditional
densities, their calculation proves difficult for arbitrary densities and
transformations. More details on this topic are given in Section 2.2.

A possibility to facilitate probabilistic inference is to pose the ques-
tion what is eventually inferred from the conditional density. From
simple comparisons of densities in decision theory to the calculation
of confidence intervals, various properties can be extracted from ran-
dom variables. In this thesis, the focus is laid on the derivation of
point estimators that find application in many domains such as
target tracking and control theory.

This chapter serves as the mathematical introduction to estimation
and filter theory and provides a comprehensive overview of state-
of-the-art methods relevant for subsequent considerations concerned
with sensor network estimation. At the outset of every estimator de-
sign and of this thesis stands the question how to transform a real
world problem into a suitable mathematical model. The systematic
process and associated problems are examined in Section 2.1. As
result of these considerations, a linear model is presented that consti-
tutes a compromise between goodness of approximation quality and
mathematical simplicity.

The basics of Bayesian estimation theory are laid in Section 2.2 by
deriving the minimum mean squared error point estimator and its
computationally attractive linear counterpart. The relation between
the two estimators is examined and the Kalman filter is presented
as the optimal solution for linear models. Moreover, alternative ap-
proaches for central estimation and the treatment of nonlinear models
are examined and presented.
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An introduction to estimation with several sensors follows in Sec-
tion 2.3. Different parameters to describe the interaction between
sensors are discussed and in an attempt to unify the sensor network
theory, a classification in three types is proposed. A detailed analysis
and state-of-the-art is provided for all three types. Finally, key re-
search questions and associated challenges for estimation in modern
sensor networks are identified and motivated in Section 2.4.

2.1 Modeling Real-world Problems

At the outset of conceptualizing an estimator for a given problem,
underlying state and mathematical models have to be identified. In
general, finding these quantities is nontrivial and has been extensively
studied under the topic system identification [110]. As the focus
of this thesis is on the processing and optimization of sensor network
estimators rather than model identification, the following explana-
tion is confined to the basic concepts. For a more comprehensive
discussion of challenges and results related to system identification,
the reader is referred to [96,110,155].
The process of deriving a model from the real world is as follows [83]:
first, relevant variables that depict the process are identified and
linked according to causal and physical relations. Alternatively,
black-box models must be employed that operate exclusively on ob-
served data and aim to find the best representative from a set of can-
didates according to a specified criterion. Then, the derived model is
simulated, validated, and improved until no additional improvements
are achieved. Usually, at this point, the model is still not a perfect
reflection of the real world because the system behavior is partially
unpredictable, the instruments’ precision is limited, etc. A popular
method to cope with these challenges is to introduce stochastic noise
terms. Hence, at the end of a system identification process stands
a stochastic differential or difference equation, which, then, is
used to obtain proper estimators.
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Fortunately, (simplified) causal and physical relations of real world
variables have already been derived in various areas. Consider for
example the movement of an object with known mass that is subject
to a constant acceleration and let an observer measure the position
of the object at several time instances. Then, the mathematical rela-
tion between position, velocity, and acceleration can be exploited to
determine the force that is applied to accelerate the object by means
of Newton’s second law. If the obtained force insufficiently reflects
the reality, the uncertainty in the movement, acceleration, and obser-
vation processes can be explicitly modeled by stochastic noise terms.
A less obvious example stems from financial markets. Given the com-
plexity of price formations and the number of interacting traders with
contradictory aims, it is surprising that the price for some bets on the
future is uniquely determined by observable market variables and an
expected volatility. In fact, the value of certain derivatives of finan-
cial products is obtained by a partial differential equation, termed the
Black–Scholes PDE [18,115]. Further applications of system identifi-
cation to real world problems can be found in areas such as biology,
physics, and engineering [83].

2.1.1 State Space Models

The result of the system identification process constitutes a stochas-
tic differential equation of a pertinent state variable as well as the
functional relation between state and observations. Throughout the
thesis, let the state be a minimal set of variables that define the
system behavior according to the following two criteria [128]:

1. State Evolution Property: Initial state and inputs over the
considered time period determine the state.

2. Instantaneous Output Property: Outputs, i.e., measure-
ments, are given as a function of state and inputs.
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For the sake of simplicity, differential equations are assumed given as
first order systems. Then, random processes are Markovian. There-
fore, all information relevant for the future is entailed in the state
of the latest time step. Precise models of real world phenomena are
time-continuous, leading to stochastic differential equations (SDE)

dxt
dt

= f(xt,wt, t) , t ≥ 0 , (2.2)

with unknown random state variables xt ∈ Rnx . As it is hardly fea-
sible to derive efficient estimators for the general formulation (2.2),
special models that either precisely describe or approximate the con-
sidered system are of particular interest. Motivated by the central
limit theorem, it is reasonable to confine the attention to stochastic
systems with additive white Gaussian noise wt that is linearly trans-
formed with matrices G(xt, t), which boils down to the well-known
Langevin equation

dxt
dt

= f(xt, t) + G(xt, t)wt . (2.3)

For SDEs in the form (2.3), a comprehensive mathematical framework
has been developed. When G(t) is deterministic, the theory around
the Wiener filter [169] is applicable. More general techniques for
stochastic G(xt, t) have been devised by means of the Itô stochastic
calculus [81] and the Stratonovich integral [159]. For special cases,
such as f linear and independent of the state and for observations at
discrete time steps, the efficient estimator, i.e., the continuous time
Kalman filter [93], can even be given in closed form.

However, in modern digital systems, variables are often processed
at discrete time steps, which has led to extensive research of
the discrete-time counterparts to (2.2) and (2.3). If discrete-time
models are not constructed directly from observations, they must be
calculated from the corresponding SDEs by integration. For arbi-
trary SDEs, this process implies an approximation. For example, the
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derivation of the discrete-time motion process of a particle depends
on how the acceleration is modeled in the discretized time [106].
The general form of stochastic difference equations is given by
the following nonlinear equation

xk+1 = f(xk, uk,wk) , k ∈ N0 . (2.4)
Again, it is worthwhile to consider models with additive noise, leading
to the simpler form

xk+1 = f(xk, uk) + wk . (2.5)
Indeed, without observations about the unknown state, the random-
ness in the state model renders estimates imprecise over time. There-
fore, it is assumed that measurements are observed at discrete time
steps and are related to the true state by a known function. The
general form is given by

zk = h(xk,vk) , (2.6)
with measurements zk ∈ Rnz , where models

zk = h(xk) + vk , (2.7)
with additive noise are of particular interest. Among the models
with additive noise (2.5) and (2.7), especially the ones with linear
transition and measurement functions have attracted attention as
they permit deriving computationally efficient estimators with useful
theoretical properties.

Definition 2.1 In linear systems (with uncorrelated noise terms),
the state evolves according to the model

xk+1 = Akxk + wk with E{wk} = 0 ,E{wk(wk)>} = Qk , (2.8)
and measurements are observed according to

zk = Hkxk + vk with E{vk} = 0 ,E{vk(vk)>} = Rk . (2.9)
Different noise terms {w}k∈N0 and {v}k∈N are assumed to be uncor-
related from each other.
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Linear transformations G of zero-mean noise terms w̃k yield a noise
term wk with E{wk} = 0 and E{wk(wk)>} = GQk(G)>, and, conse-
quently, are covered in Definition 2.1. Deterministic inputs uk, which
are relevant for control applications, can be considered in the same
framework with the system model

xk = Akxk + Bkuk + wk . (2.10)
In summary, linear systems constitute a tradeoff between practical
applicability and theoretical rigor. They have become popular with
the Kalman filter [93] and are obtained from real world setups directly
or are derived by means of linearization techniques, as it will be
discussed in Section 2.2.2. Especially for Gaussian distributed noise,
the linear model has been intensively researched in estimation and
control literature and serves as the basic model for the examinations
in this thesis.
Eventually, it is worth formalizing the statement that estimates be-
come useless with passing time when no measurements are observed.
In fact, a rigorous examination reveals that the difference between
estimate and true state should not grow unboundedly.

Definition 2.2 A system with initial state x0 is said to be observ-
able, if and only if the initial state can be obtained from the system’s
outputs.

When observability is achieved for all feasible initial values, the sys-
tem is called completely observable. For time-invariant linear sys-
tems, i.e., if the matrices in (2.8) and (2.9) remain constant over time,
observability can be checked by means of the observability matrix

O =




H
HA
HA2

...
HAnx−1




. (2.11)

16



2.2 Bayesian Point Estimators

If O has rank nx, the system is observable. A slightly weaker condi-
tion with is detectability, which is satisfied when the non-observable
states go to zero asymptotically. It is worth mentioning that there
exist analogous concepts to observability and detectability in control
literature called controllability and stabilizability.

2.2 Bayesian Point Estimators

In the Bayesian framework, a belief about the state is expressed by
means of a conditional density that gives probabilities for all possible
values. However, consider for example a hunter that aims to shoot a
bird. Then, a point estimate of the bird’s position is needed that
maximizes the chance of a hit. Indeed, this common problem occurs
also in control applications where a specific input has to be chosen.
In order to extract a point estimate from the probabilistic description
of the state, the expectation of a loss or risk function ` is to be
minimized, i.e.,

arg min
x̂(z)

[
Ex,z{`(x̂(z),x)}] (2.12)

needs to be solved for norms such as `1, `2, `∞, or combinations of
them [119]. Popular in literature are the `∞ norm [153], which aims
to provide robust worst-case estimates, and the MSE loss `2

arg min
x̂(z)

[
Ex,z

{√
(x̂(z)− x)>(x̂(z)− x)

}]
(2.13)

that serves as optimization criterion in this thesis. The estimator
x̂(z) that minimizes (2.13) is called minimum MSE (MMSE) estima-
tor. The following description of the fundamental results of the MSE
theory is loosely based on [47,128,131].
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In a first step, consider a scalar state x and a vector of measurements
z. Then, a problem that is closely related to (2.13) is the minimiza-
tion of the `2 norm given a specific measurement, i.e., the derivation
of x̂(z) that minimizes

Ex|z{`2(x̂(z),x)|z = z} = Ex|z{(x̂(z)− x)2|z = z}

=
∫

x∈Rnx
(x̂(z)− x)2p(x|z)dx .

(2.14)

By equating the derivative

dEx|z{`2(x̂(z),x)|z = z}
dx̂(z) = 2 ·

∫

x∈X
(x̂(z)− x)p(x|z)dx

to zero, an extreme is found to be

x̂(z) =
∫

x∈Rnx
x · p(x|z)dx = Ex|z{x|z = z} .

The second derivative is 2. Thus, for a given measurement, the opti-
mal point estimate is the conditional expectation Ex|z{x|z = z}.
The MSE criterion (2.13) is defined based on the expected value of
the random measurement vector and not for individual measurements.
However, no constraints have been imposed on the measurement vec-
tor to derive the solution of (2.14), and so, the optimal estimator in
the MMSE sense is the rule that obtains the conditional expectation
for each measurement. Mathematically speaking, measurements are
modeled as random vector. It follows from p(x, z) = p(x|z)p(z) that

Ex,z{(x̂(z)− x)2} =
∫

z∈Rnz
Ex|z{(x̂(z)− x)2|z = z}
︸ ︷︷ ︸

minimal

p(z)︸︷︷︸
≥0

dz ,

where the inner term is optimally solved by the conditional expec-
tation Ex|z{x|z = z}. In the sequel, let the expectation E{·} be
taken over all random vectors, if not otherwise stated. As proven
in the appendix by means of the Orthogonality Principle (The-
orem A.1), the scalar MMSE estimator generalizes to multivariate
systems according to the following theorem.
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Theorem 2.1 The conditional expectation E{x|z = z} minimizes
the MSE from (2.13).

Proof. See Appendix A. �

Hence, the MMSE estimator is the expectation of the state density
conditioned on observed measurements. While it is advantageous
that the MMSE estimator is determined by a simple relation to the
measurements, it is unfortunate that the conditional density needs to
be propagated and assessed.
Popular methods to approximate the desired conditional density are
sequential Monte Carlo methods [40,74], which are referred to as par-
ticle filters in recursive estimation theory [64, 147, 152]. However,
these methods operate on stochastic sample representations of den-
sities that tend to provide a sparse and imprecise coverage for high-
dimensional state spaces, i.e., they suffer from the “curse of dimen-
sionality” [14]. This is aggravated by the fact that for nonlinear sys-
tem transformations, distributions are in general not conjugated [47],
i.e., posterior distributions are from other families than prior distribu-
tions. In particular, even if the prior is Gaussian distributed and can
be represented by mean and covariance, transformations in nonlinear
systems (2.4) and (2.6) yield distributions from different families that
can be multi-modal and can require representations with infinitely
many variables.
Apart from Monte Carlo approaches, several techniques are discussed
in literature to cope with the propagation of densities. When system
and measurement equations permit the calculation of moments of
the posterior density in closed form, the MMSE estimator can be ob-
tained directly. Otherwise, deterministic sampling methods can
be employed that allow covering the probability space more efficiently
than Monte Carlo approaches. The idea is to derive (Dirac or Gaus-
sian) mixture approximations that minimize some distance measure
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to the true density [66, 69] and to propagate the mixture densities
through the nonlinear functions. Indeed, for general densities, the
minimization of appropriate distance measures involves considerable
computational effort that either leads to long runtimes or requires to
use pre-calculated sample set approximations [70,157].

2.2.1 Linear Mean Squared Error Estimator

A computationally efficient approach is to confine the space of per-
missible estimators to linear functions of the form x̂(z) = m + Kz.
Then, the challenge is to find matrix K and vector m that satisfy

arg min
x̂(z)

E{`2(x̂(z)− x)} with x̂(z) = m + Kz , (2.15)

i.e., to derive a linear minimum mean squared error (LMMSE) esti-
mator. For the sake of a simple notation, the explicit dependency of
the estimate on the measurement process is omitted in the following.
Note that K and m do not depend on specific measurements z but
only on the random measurement vector z. Consequently, LMMSE es-
timators minimize the expected error, i.e., the average error weighted
with the probability of the occurrence of measurements. In particular,
LMMSE estimators are in general suboptimal for individual measure-
ment vectors.
In the sequel, the linear combination that minimizes the MSE ma-
trix E{(x̂− x)(x̂− x)>} in the positive definite sense is derived.
The positive definite relation establishes a partial ordering on sym-
metric matrices by claiming

C̃ ≥ C⇔ C̃−C ≥ 0 , (2.16)

where C ≥ 0, if and only if all eigenvalues of C are larger than or
equal to 0 [76]. Note that C̃ ≥ C implies that the diagonal elements
of C̃ are larger than the ones of C. Hence, the minimization of the
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MSE matrix in the positive definite sense minimizes, in particular,
the trace of the MSE matrix, which, in turn, is the MSE. In a first
step, the vector m of the LMMSE estimator is derived.

Lemma 2.2 Let x̃ denote a biased linear estimator with E{x̃} 6=
E{x}. Then, the unbiased counterpart x̂ = x̃ − E{x̃− x} has a
smaller MSE matrix, i.e., E{(x̂− x)2} ≤ E{(x̃− x)2}.

Proof. With E{(x̃− x)(E{x̃− x})>} = E{(x̃− x)}2, it holds

E{(x̂− x)2} = E{(x̃− x− E{x̃− x})2}
= E{(x̃− x)2} − 2 E{(x̃− x)}2 + E{(x̃− x)2}2

≤E{(x̃− x)2}

for positive definite E{(x̃− x)}2. �

It is worth pointing out the general validity of Lemma 2.2: linear
biased estimators are improved in terms of the MSE by removing
bias terms. Hence, the LMMSE estimator must be unbiased, i.e., the
vector m of the LMMSE estimator (2.15) must satisfy

m = E{x} −K E{z} .

It remains to optimize the matrix K. Let

Cz = E{(z− E{z})2}
denote the covariance of the random measurement vector and let

Czx = E{(z− E{z})(x− E{x})>}
denote the cross-covariance matrix between state and measurement
vectors. Then, the LMMSE estimator is given as follows.
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Lemma 2.3 The LMMSE estimator in the positive definite sense is
given by

x̂ = E{x}+ Cxz(Cz)−1(z− E{z}) , (2.17)

with

C = E{(x̂− x)2} = Cx −Cxz(Cz)−1Czx . (2.18)

Proof. Let the state covariance be denoted as

Cx = E{(x− E{x})2} .

Then, the MSE matrix of unbiased linear estimators is given by

E{(x̂(z)− x)2} = E{(E{x} − x + K(z− E{z}))2}
=Cx + KCz(K)> + KCzx + Cxz(K)>

=(K−Cxz(Cz)−1)Cz(K−Cxz(Cz)−1)>+
Cx −Cxz(Cz)−1Czx .

The second and third terms are independent of K. As C ≥ 0 ⇒
TC(T)> ≥ 0 for arbitrary matrices T, the first term is positive semi-
definite. Therefore, it is minimized when K = Cxz(Cz)−1. �

Interestingly, there is a close relation between the orthogonality of
measurements and LMMSE estimators. In fact, an equivalence be-
tween these two concepts can be proven.

Theorem 2.4 (Weak Orthogonality Principle) Let z denote a
random measurement vector. The estimator x̂ is the LMMSE estima-
tor (2.17), if and only if E{x} = E{x̂} and E{z(x̂− x)>} = 0.
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Proof. In a first step, let x̂ denote the LMMSE estimator. Then, it
has already been shown in Lemma 2.2 that the estimator is unbiased.
However, for unbiased x̂ it holds

E{E{z}(x̂− x)>} = 0 ,

and E{z(x̂− x)>} = E{(z− E{z})(x̂− x)>}. For the LMMSE esti-
mator (2.17), orthogonality follows with

E{z(x̂− x)>} = E{(z− E{z})·
(E{x} − x + Cxz(Cz)−1(z− E{z}))>}

=Czx + Cz(Cz)−1Czx = 0 .

Now, consider an estimator x̂ that is unbiased and satisfies the or-
thogonality property, and let x̃ denote the LMMSE estimator. Then,

E{(x̃− x)2} = E{(x̃− x̂ + x̂− x)2}
= E{(x̃− x̂)2}+ E{(x̂− x)2}+

E{(x̃− x̂)(x̂− x)>}+ E{(x̂− x)(x̃− x̂)>} .
As the difference between two linear estimators is a linear combina-
tion, it holds x̃ − x̂ = K̃z + m̃ for some variables K̃ and m̃. As
the LMMSE estimator is unbiased according to Lemma 2.2 and x̂ is
unbiased according to the assumptions, m̃ is a linear transformation
of the expected measurement vector, which is uncorrelated from x.
With the orthogonality of x̂, it follows

E{(K̃z + m̃)(x̂− x)>} =K̃ E{z(x̂− x)>}+ E{m̃(x̂− x)>} = 0 .

Therefore, it holds E{(x̃− x)2} = E{(x̃− x̂)2}+ E{(x̂− x)2}. With
E{(x̃− x̂)2} > 0 for x̂ 6= x̃, it follows x̃ = x̂. �

For a discussion on the processing of several measurements, the reader
is referred to [128]. Indeed, as several measurements can be lumped
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together to form an augmented measurement, Lemma 2.3 and The-
orem 2.4 apply naturally. The inverse problem, i.e., one or several
measurements belong to more than one state, is examined under the
topic track association [34] and constitutes a key component of multi-
target tracking [160].
Finally, it is worth pointing out the relation between the different
estimators. As shown in Theorem 2.1, the MMSE estimator is the
conditional mean and minimizes the MSE for all measurements. The
analogous concept in frequentist statistics is the minimum-variance
unbiased estimator (MVUE).
The LMMSE estimator is the best linear estimator of the form x̂ =
m + Kz. As the minimization holds in the positive definite sense,
derivations of the LMMSE estimator that utilize criteria such as trace,
determinant, or projections of the MSE matrix lead to the same esti-
mator. However, for specific measurements, better estimators can be
derived. The counterpart in frequentist statistics is the best linear
unbiased estimator (BLUE).
In general, the MSE of the MMSE estimator is smaller than the one
of the LMMSE estimator. For Gaussian densities, however, it has
been shown that LMMSE and MMSE estimator coincide [47, 128].
Therefore, the “optimal” estimator can also be derived by exploiting
the representation of Gaussian densities [47].

2.2.2 Dynamic State Estimation

The combination of measurements as it has been discussed so far is
referred to as static estimation. Now, states that evolve according
to the state models from Section 2.1 are considered. For this pur-
pose, let the system and measurement models satisfy the assumptions
from Definition 2.1. The objective is to obtain the LMMSE estimator
for dynamic states, i.e., to derive rules for the combination and pro-
cessing of estimates and measurements that minimize the MSE ma-
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trix. If not otherwise stated, dynamic systems are considered for an
arbitrary time period. Therefore, throughout the thesis, let K ⊆ N0
denote a potentially unbounded set of time indices and k ∈ K a time
step. For the sake of consistency and simplicity, estimators x̂ are
construed as random vectors with covariance C = E{(x̂− x)2}.
It is a direct consequence of the definition and demonstrated in the
following that in the considered linear framework the covariance of
an estimator depends only on the transformations and covariances of
noise terms. Hence, the challenge of finding the LMMSE estimator
boils down to the derivation of transformation rules that minimize
C. Then, the processing of estimates and measurements is already
uniquely determined.
The considerations are confined to the recursive processing of esti-
mates and covariances, i.e., to estimators that use previous outputs as
inputs in subsequent time steps. This is a reasonable constraint from
a practical perspective as recursive algorithms are associated with
limited computational effort, and it is justified theoretically, as the
LMMSE estimator for the considered linear system is recursive [93].
More details on the latter aspect are given at the end of this section.
For recursive estimators only four operations must be considered that
cover the challenges in ordinary estimation problems. In the follow-
ing, the processing of estimates and covariances in initialization, pre-
diction, filtering, and fusion operations are examined. For the sake
of simplicity, covariance formulas are given without considering po-
tential bias terms. Therefore, the formulas are only exact when the
estimator is unbiased.
Usually an estimate x̃0 with covariance C̃0 is provided at initial-
ization. For specific estimators, this requirement can be relaxed by
assuming an infinite uncertainty of the initial estimate, which results
in a negligence of initial information. In order to cover such cases,
initialization operations of the form

x̂0 =Tx̃0 , (2.19)
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C0 =TC̃0(T)> , (2.20)

with initial transformation matrix T ∈ Rnx×nx are considered. Then,
a transformation in the information space [116] can for example be
realized with T = (C̃)−1. With state transition matrix Ak and pro-
cess noise covariance Qk, the state prediction from (2.8) is reflected
in the estimation process by

x̂k+1 =Akx̂k , (2.21)
Ck+1 =AkCk(Ak)> + Qk . (2.22)

In fact, other transformations are conceivable as well. However, for
transformations with Ãk 6= Ak, the estimator is biased, which is sub-
optimal according to Lemma 2.2. Note that due to the uncertainty
in the evolution of the true state, the covariance of the estimate Ck

is increased by the process noise covariance in each time step. Hence,
estimators in dynamic state estimation must incorporate system out-
puts as otherwise the covariance diverges for general systems. Let
zk denote the noisy system output from (2.9). Then, the filtering
operation describes a linear combination rule for estimate and mea-
surement of the form

x̂k|k =Lkx̂k + Kkzk , (2.23)
Ck|k =LkCk(Lk)> + KkRk(Kk)> , (2.24)

with matrices Lk ∈ Rnx×nx and Kk ∈ Rnx×nz . Taking into account
Lemma 2.2, unbiased combinations are of particular interest. It is
easy to verify with basic linear algebra that the combination is unbi-
ased for Lk = (I−KkHk), which leads to the filter equation

x̂k|k = x̂k + Kk(zk −Hkx̂k) . (2.25)

Note that the filter result is denoted with the subscript k|k to indicate
that information of time step k has been comprised. The general sub-
script k (without |k) is used for either filtered or unfiltered variables.
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In sensor networks, estimates from neighbors Ss ⊆ S are received at
sensor s. For the sake of a simple notation, no distinction is made
between Ss and S, and fused estimates are denoted without a sensor
index. The challenge is to derive fusion gains F for the combination
according to

x̂ =
∑

s∈S
Fsx̂s , (2.26)

C =
∑

s,s̃∈S
FsCss̃(Fs̃)> , (2.27)

where Fs = 0 for s /∈ Ss and the combination is unbiased for∑
s∈S Fs = I. A more detailed discussion on the fusion of estimates

is given in Section 2.3. The processing of recursive linear estimators
is summarized in Algorithm 2.1.

Algorithm 2.1 Recursive Linear Estimator
1: Initialization: x̂0 = Tx̃0
2: for k = 1; k ∈ K; k = k + 1 do
3: Prediction: x̂k = Ak−1x̂k−1
4: Filtering: x̂k|k = Lkx̂k + Kkzk
5: Fusion: x̂ =

∑
s∈S Fsx̂s

6: end for

From (2.24) and (2.27), the need to calculate covariances becomes ap-
parent. Apart from serving as quality measure, for example utilized
in control applications to determine the force of control actions, co-
variances are needed to optimize gains L, K, and F. A formalization
of linear estimators for dynamic systems is given next.

Definition 2.3 A recursive linear estimator is determined by its
operations in initialization (2.19), prediction (2.21), filtering (2.23),
and fusion (2.26) steps, i.e., by the matrices Lk, Kk, and Fs

k, s ∈ S,
k ∈ K.
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Definition 2.3 covers various popular linear estimators that become
of interest later on. Distributed algorithms such as consensus fil-
ters [124–126] or diffusion filters [26, 27, 30, 78] are special versions
of Algorithm 2.1 with scalar fusion weights. The federated Kalman
filter [24,25] and the (linear) ensemble Kalman filter [1,46,77] define
schemes that can be represented by means of linear transformations.
Even covariance intersection [85,87–89] yields linear fusion gains and
can be handled in the proposed framework although a nonlinear op-
timization is necessary to calculate the transformation matrices.

2.2.2 - a The Kalman Filter

Another well-known example that satisfies Definition 2.3 is the linear
minimum mean squared error estimator for linear systems that has
originally been proposed by Kalman and Bucy for continuous-time
and discrete-time systems in [93, 94] and defines recursive rules for
the filtering and processing of measurements. The so-called Kalman
filter (KF) has been derived by means of the (weak) Orthogonality
Principle (Theorem 2.4) but is also obtained as the solution to several
other optimization criteria as discussed in Section 2.2.1.

For a derivation, let an unbiased estimate with exact covariance be
given at initialization. The unbiased prediction (2.21) is defined by
the state model. As the measurement noise is uncorrelated from the
state according to Definition 2.1, it holds

Cz = E{(Hx + v)2} = HCk(H)> + R

and
Cxz = E{x(Hx + v)>} = Ck(H)> .

Therefore, with Lemma 2.3, the LMMSE filter gain is obtained as

K = Ck(H)>(HCk(H)> + R)−1 (2.28)
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with unbiased counterpart L = (I − KH). For the LMMSE gains,
the covariance formula (2.24) can be simplified to

Ck|k = Ck −KHkCk . (2.29)

Let K and L denote the KF gains, Ck|k the covariance from (2.29),
and C̃k|k a covariance obtained with gains K̃ 6= K and L̃ 6= L. It has
already been shown in Lemma 2.3 that the LMMSE filtering yields
a covariance that is optimal in the positive semi-definite sense, i.e.,
Ck|k ≤ C̃k|k. Now, consider prediction and filter equations (2.22)
and (2.24), which are bilinear transformations and summations of in-
put covariances. From basic linear algebra, e.g., Observation 7.7.2
in [76], it is known that C ≤ C̃ ⇒ TC(T)> ≤ TC̃(T)> for arbi-
trary matrices T. Thus, the covariance after prediction and filter
operations is minimal when the input covariance is minimal. The
optimality over multiple time steps follows inductively. Hence, the
KF is the LMMSE estimator for the considered linear system.
A more detailed derivation and discussion of the KF are given in [168].
It is worth pointing out that an algebraically identical formulation1
in the information space has been derived [116] that permits the
initialization of uninformative estimates and the simple filtering of
several measurements per time step. A presentation of the KF in the
information form and a discussion of its properties are given in the
context of distributed estimation in Section 4.1.

2.2.2 - b Nonlinear Models

The KF has been derived on the premise that underlying system and
measurement models are linear. However, the LMMSE theory can
also be applied to nonlinear systems by deriving the necessary co-
variances or by linearizing the models [51, 168]. The naïve approach
1A conversion between the forms is possible by means of the Woodbury matrix inversion
lemma [171].
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is to linearize emerging nonlinearities by means of a Taylor series
around the estimated state. Depending on the number of considered
matrix terms, this method is called extended Kalman filter (EKF) or
iterated EKF [3, 153]. Indeed, the linearization necessitates the cal-
culation of derivatives and quite often leads to inconsistent and poor
results [104]. Hence, linear regression Kalman filters (LRKF) [104],
which approximate the transformation of densities with determinis-
tic sample representations, have gained importance.
Consider an arbitrary nonlinear function y = g(x) and let for L ∈ N
{xi}i=1,...,L denote a weighted sample representation of the distribu-
tion x. The concept of LRKFs is to approximate the distribution y
with samples y

i
= g(xi) according to

ŷ =
L∑

i=1
ωiyi , (2.30)

Ĉy =
L∑

i=1
ωi(yi − ŷ)(y

i
− ŷ)> . (2.31)

This allows, in particular, the application of the LMMSE estimator
from Lemma 2.3 with y = z, g ≡ h, and cross-covariance matrix

Ĉxy =
L∑

i=1
ωi(xi − x̂)(y

i
− ŷ)> , (2.32)

where x̂ =
∑L
i=1 ωixi. Optimizing choice and weighting of the samples

are the main subjects of the LRKF literature. Popular examples
are the unscented Kalman filter [43, 86, 166], the divided difference
filter [123], the central difference filter [142], and the cubature Kalman
Filter [6]. More sophisticated approaches that also allow applicants
to specify the number of samples L have been derived by means of
the Gaussian filter [16, 79] and the randomized unscented Kalman
filter [158]. An implementation that is optimized for a distributed
processing of the unscented Kalman filter has been proposed in [103].
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Indeed, linearization induces an approximation error so that proper-
ties, e.g., the optimality of the KF, do not apply to the entire problem
setting but only to the processing after the linearization. As a matter
of fact, the nonlinearity and non-Gaussianity of the problem deter-
mines whether the application of linearization techniques is meaning-
ful. In the remainder of this thesis, only the resulting linear(-ized)
systems are considered.

2.3 Estimation in Sensor Networks

With information stemming from spatially distributed sources and
the amount of information exceeding computational capabilities of
single computing devices, there comes a need for parallel comput-
ing and distributed processing architectures. Hence, over the last
decades, (wireless ad hoc) sensor networks have gained importance
in theoretical and practical works.

The idea is to consider several nodes or sensors that take local mea-
surements and exchange information in a network. Throughout the
thesis, let S = {s1, . . . , sS} denote the set of interconnected nodes
that constitute the sensor network and let s, s̃ ∈ S denote arbitrary
nodes from this set. The nodes can either be pure sensors, which
only observe and communicate measurements, “smart” processing
nodes [143, 144], or a combination of both. Depending on the sce-
nario, the objective is to optimize the estimate at one fusion center
or the estimates at several nodes.

The main difference between central and sensor network schemes is
the estimators’ access to information. Data vectors such as measure-
ments and initial estimates are instances of random variables and are
only known to the sensor that observes them. For the exchange of
local information, a transmission between sensors over the underlying
network is necessary. Typically, an abstraction of the network is used
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that enables the modeling of limited capacity, packet collisions, etc.
as stochastic or deterministic packet losses and packet delays.

In the most general form of sensor network estimation, filter and fu-
sion operations are optimized and carried out at local nodes without
information about values of remote nodes. System and remote mea-
surement models, however, might be known by the sensors. In fact,
the system model (2.8) describes the evolution of the state. Therefore,
it must be known to all processing nodes to predict local estimates.

Definition 2.4 System model knowledge is available in a sen-
sor network, if the system model (2.8) is known to all nodes s ∈ S.

Measurement models (2.9) define the relation between state and local
measurements. Depending on whether the sensor models are nonlin-
ear or state-dependent, they can be assumed known to remote nodes.

Definition 2.5 Global measurement model knowledge is de-
fined to be available, if sensors have access to the measurement mod-
els (2.9), i.e., the matrices Hs

k and Rs
k of all nodes s ∈ S for all

k ∈ K.

A more comprehensive discussion about model knowledge is given
in Section 2.4.

Other criteria for the classification of sensor networks pertain to the
communication of nodes. For example, different network topolo-
gies are distinguished. If the communication between nodes is un-
restricted, it proves difficult to maintain dependency information be-
tween estimates. Hence, special types such as linear, hierarchical, or
fully connected networks are considered in literature [107,108]. In ad-
dition, decompositions of the network into subsystems can facilitate
the estimation process [97].
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Criteria Possible Values
Node types Sensors, local (pre-)processors, fusion

center
Network characteristics Packet delays, packet losses
Communication type Deterministic, stochastic, unforesee-

able
Packet type Measurements, estimates, bundles
Model knowledge System model, local/global measure-

ment models
Network topology Fully connected, linear, tree, decompo-

sitions

Table 2.1: Criteria for the classification of sensor networks.

Even though a comprehensive characterization of sensor networks is
hardly possible, Table 2.1 gives a notion of multiple parameters of sen-
sor networks that affect the performance of estimation algorithms. A
more elaborate discussion on the distinction between different sensor
network types is given in [33].

Estimators developed in the context of sensor networks are applica-
ble to a wide range of problems that are not necessarily confined to
the composition of small sensor devices. For example, the algorithms
are prominent in surveillance and target tracking literature [11, 107],
where information from satellites, radars, airplanes, etc. must be in-
corporated. The theory is also relevant for all types of problems
that involve an unreliable network such as car-to-car communica-
tion [45]. Moreover, the combination of estimation and control with
the objective to cooperatively sense and impair the environment has
attracted considerable attention under the term sensor-actuator net-
works [65], [175].

The remainder of this section is devoted to specific sensor network
setups. While a unique nomenclature is not used in literature, a plau-
sible differentiation between the three processing schemes centralized,
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Figure 2.1: Different types of estimation schemes for sensor networks. Solid
lines depict reliable and dashed lines unreliable (often wireless)
communication links. The central fusion center is illustrated as
workstation while sensors can be equipped with communication,
computation, and storage devices.

The central scheme exhibits fixed connections between sensor devices
and the fusion center. In centralized estimation, measurements are
communicated via a network. Smart sensors that transmit prepro-
cessed estimates in a potentially hierarchical network to a fusion cen-
ter form the distributed estimation scheme. Decentralized estimation
constitutes the most general concept where nodes communicate, pro-
cess, and store data locally.
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distributed, and decentralized estimation has been proposed [62,137,
138] and is depicted in Figure 2.1.



2.3 Estimation in Sensor Networks

2.3.1 Centralized Estimation

In centralized estimation, sensors communicate locally observed mea-
surements to a dedicated fusion center that filters the data and
calculates an estimate. The sensors are assumed to be equipped with
no or low computing power and are subject to energy constrains. The
fusion center does not have such constraints and is (solely) supposed
to provide the sensor network estimate.
For the linear system from Definition 2.1, the centralized LMMSE
estimator consists of a buffer in which all measurements with the cor-
responding models are stored and a central KF [93] that computes
an estimate based on all received data. A simple extension is to
distribute the calculations of the central KF by transforming mea-
surements locally into the information space before transmitting the
data to the fusion center [42]. This technique is meaningful when the
measurement space is greater than the state space and reduces the
computational effort at the fusion center.
The LMMSE scheme works well when no packet delays or losses oc-
cur. In fact, if the communication is not delayed, the buffer is su-
perfluous and the LMMSE estimator can even be calculated recur-
sively. However, otherwise, the theoretic baseline for centralized and
distributed estimators in linear systems is only achieved by transmit-
ting the history of all locally observed measurements together with
the corresponding models in every communication cycle. Obviously,
this scheme requires infinitely growing computational and communi-
cation effort.
Analyzing the stochastic properties of the communication allows the
derivation of criteria for the stability of the centralized estimator sub-
ject to the packet loss probability [154]. Moreover, the expected co-
variance can be bounded. A generalization of the results to partial ob-
servation losses, i.e., measurements are only partially lost due to the
communication, has been presented in [109]. Further results pertain-
ing to stochastic packet delays have been achieved in [141, 143, 144]
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by deriving optimal constant gain estimators and providing stability
criteria and expected covariance formulas.

Depending on the considered maximum packet delay and the num-
ber of sensors, computational effort and required storage of the naïve
centralized KF scheme can be considerable. Hence, out-of-sequence
measurement (OOSM) techniques have been proposed that permit
the inclusion of delayed measurements into recursively obtained esti-
mates of the latest time step [8]. Extensions to multi-step lags [10]
and augmented measurement vectors [22] have been proposed to im-
prove the results. Optimal OOSM estimators can be achieved, e.g.,
by means of accumulated state densities [57,58].

Although the centralized processing scheme captivates with simplicity
and theoretical results on stability, the computational effort is bun-
dled at one node and the performance suffers from packet losses, as
information is irrevocably lost when a measurement does not arrive at
the fusion center. Even if the performance degradation can be cush-
ioned by employing acknowledgement protocols such as TCP [133],
such remedies induce additional delays and increase the systems’ com-
plexity so that a local preprocessing of measurements as discussed in
the following is often advantageous.

2.3.2 Distributed Estimation

In distributed estimation, sensors are equipped with computational
power and generate tracks from locally observed measurements. The
tracks are communicated to a dedicated fusion center and are com-
bined there to obtain an estimate of the state. For the generation of
tracks, sensors employ a preprocessing consisting of the filtering and
prediction of measurements that allows compressing information in
small packets, e.g., in recursively obtained estimates. Then, if the fu-
sion center requests sensor information, only one vector per node that
contains the information of all locally observed measurements must
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be communicated to the fusion center. In particular, packet losses are
compensated since subsequent transmissions contain potentially lost
information. In order to minimize the estimation error at the fusion
center, the processing and fusion of these tracks must be optimized,
i.e., the track-to-track fusion (T2TF) problem must be solved. In-
deed, as already mentioned, the generation of local estimates requires
system knowledge from Definition 2.4 to be available at the sensors.

For uncorrelated data, it is sufficient to optimize the processing sep-
arately at each node and to combine the estimates with a convex
combination to minimize the error [34]. Having said this, in dynamic
state estimation, correlations emerge between estimates. This phe-
nomenon, referred to as common process noise [7, 9], describes
dependencies between estimates due to a common uncertainty in the
evolution of the state that affects all estimates.

In order to illustrate the implications, consider the centralized KF
from Section 2.3.1 that is obtained by transmitting measurements
via a reliable communication to the fusion center. This estimator
is not subject to common process noise and calculates the LMMSE
estimate. Now, consider a simple scheme where two sensors process
measurements with local KFs and their estimates are fused after sev-
eral time steps at the fusion center. Although (or actually because)
the processing is locally optimal and even if the LMMSE combina-
tion [9] is used to combine the estimates at the fusion center, the
fused estimate is – in general – different from the one of the (opti-
mal) centralized KF [28]. A numerical illustration of this problem
will be provided in Example 4.1.

In fact, LMMSE estimation for sensor networks with local prepro-
cessing involves the concurrent optimization of the filter processing
of all nodes. Various techniques such as equivalent measurements [34]
or the tracklet processing [41] have been proposed that permit the
generation of local tracks and yield only slightly suboptimal results
at the fusion center.
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Still, filter gains in the aforementioned approaches are optimized ac-
cording to local covariances. A fundamentally different approach is to
optimize the processing at sensor nodes premised on the assumption
that the estimates are combined at the fusion center subsequently.
This concept has been established with the federated Kalman fil-
ter [24,25] that achieved globally optimized filter gains by means
of artificially inflated covariances.

More precisely, covariances of local estimates are obtained from def-
inition but with process noise covariances that are inflated by scalar
factors. As a result, covariances and filter gains at the sensors resem-
ble the ones of a centralized KF, and the covariance of the estimate
at the fusion center can be easily bounded. An extension of this idea
to nonlinear systems has been proposed in [176].

If distributed filters are exclusively optimized according to the fu-
sion center, decompositions of the centralized KF are obtained.
While parallelized architectures that provide LMMSE estimates when
a communication between sensors and fusion center is established in
every time step have been proposed in [73,137,170], a formulation that
allows combining measurements from several time steps and that is
algebraically identical to the centralized KF has been derived in [100].
Generalizations of the exact T2TF [100] to the distributed Kalman
filter that permits the inclusion of estimates from arbitrary many sen-
sors and provides simple formulas for arbitrary densities have been
proposed in [56,59,60].

Moreover, distributed estimation with intermittent transmissions has
attracted attention. In [75, 172], system and measurement models
were assumed time-invariant and packet delays were neglected. Based
on these assumptions, stability criteria for Poisson distributed packet
losses could be derived. In [63], optimality and stability theorems
have been obtained for (specific) simple estimation networks that
employ local Kalman filters. In the consensus framework with scalar
fusion weights, distributed estimation has been examined in [23].
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2.3.3 Decentralized Estimation

The concurrent state estimation at several nodes is referred to as de-
centralized estimation. It encompasses the local filtering of measure-
ments and the fusion of exchanged estimates. Information is spread
through the network in a hop-to-hop communication. In literature,
estimators for such scenarios are also termed gossip algorithms [39].
Note that distributed estimation is a special case, namely when the
estimate is evaluated at only one node. Therefore, the challenges
from distributed estimation, i.e., in particular, the common process
noise, directly transfer to decentralized estimation.

When nodes repeatedly exchange estimates or when common informa-
tion is spread through different communication paths, dependencies
arise between the estimates in the network. This phenomenon is
referred to as common prior information [36] and is illustrated
in Figure 2.2. A popular technique to cope with those dependencies
is the explicit bookkeeping of data transfers. For specific communi-
cation topologies, e.g., for trees, an information graph can be main-
tained that enables the “decorrelation” of tracks [34, 107]. For an
arbitrary communication, the Channel filter [44,112,113] has been de-
rived to facilitate the bookkeeping of past data exchanges. However,
the effort of applying the Channel filter is considerable, as variables
for one-to-one relations have to be stored between all nodes in the
sensor network. Alternative approaches that bypass the explicit re-
construction of dependency information by bounding the covariance
of the fused estimate are discussed in Section 3.2.

Deriving the LMMSE estimator for decentralized systems requires
an optimization criterion that involves the estimates at several nodes.
The natural extension of the LMMSE criterion is the optimization of
the average of local MSEs. However, the minimization of the average
or sum of local MSEs proves difficult. As a matter of fact, it has been
shown that for the corresponding control problem even in a simple
setup with two nodes the separation principle does not hold [32] and
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Figure 2.2: An illustration of the emergence of common prior information in
decentralized estimation. Due to ambiguous communication paths,
the same (green) information is aggregated in several estimates.

the optimization of feedback gains for the general decentralized con-
trol problem is NP hard [19]. Therefore, popular approaches focus
on static estimation, scalar fusion weights, or certain types of filter
and fusion gains.
Decentralized estimation of a deterministic parameter that does not
evolve according to a dynamic model provides the basis for the con-
sensus, incremental subgradient, and diffusion approaches discussed
below. An overview over recent results on this field with the focus
on convergence speed and quantization is given in [39]. For example,
the distributed calculation of the centralized maximum likelihood es-
timator and the best linear unbiased estimator subject to noisy com-
munication links is examined in [145].
Consensus approaches [124–126] synchronize the estimates at the
nodes, e.g., by calculating the mean of the initial values. Thus, the fo-
cus of consensus protocols is on convergence speed and the derivation
of permissible protocols to achieve a consensus rather than the min-
imization of the MSE. Still, the consensus KF [125] optimizes filter
gains by means of the measurement models of the nodes’ neighbor-
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hood; therefore, it implements ideas of efficient distributed estimation.
An examination of the interplay between dynamic state estimation
and consensus is provided in [23]. The concurrent optimization of
distributed estimation and motion control of mobile sensor devices in
the consensus framework has been examined in [127].

A fundamentally different approach is to construct a communication
path that contains all nodes. Then, an estimate is communicated
along this path and is adjusted at the nodes according to local infor-
mation. When the overall cost function is the sum of convex local
functions, this can be construed as an instance of an incremental
subgradient algorithm [98,117]. Although the adaptions to the es-
timate are calculated according to local cost functions, criteria for the
convergence speed, i.e., the number of necessary cycles depending on
the step size can be given. The optimization of quantized estimates
in this framework has been studied in [136]. Indeed, a unique path
through the network is not only difficult to find in sensor networks
but is also prone to node failures or packet losses.

Therefore, the concurrent communication of all nodes is considered in
diffusion approaches [26,27,30,78]. The idea is to fix the filter pro-
cessing and to optimize the convex combination of estimates by means
of a diffusion matrix. Properties for scalar fusion weights, in particu-
lar, concerning the steady state performance are derived in [26]. An
extension of the results to smoothing is given in [27]. Other works are
concerned with the learning of diffusion matrices [30] or the guarantee
of stable estimates [78]. As, in the considered diffusion framework,
estimates are not imposed to converge to a consensus, the MSE of
diffusion approaches is in general smaller than the one of consensus
approaches [26].

Still, research in decentralized estimation is far away from being re-
garded as complete. In particular, the presented algorithms do not
even provide the LMMSE estimates for dynamic state estimation
when they are applied to the special case of distributed estimation.
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2.3.4 Joint Space Covariance Representation

The challenges of LMMSE estimation in distributed and decentral-
ized estimation are illustrated by an augmentation of sensor estimates.
The joint space is a comprehensive representation for the processing
of multiple estimates in sensor networks. For a depiction consider an
omniscient observer that has access to the measurements, estimates,
and processing matrices of all sensors. Then, an augmentation of all
estimates in the sensor network into one joint vector permits the uni-
fied representation of local covariances and cross-covariance matrices
in form of the joint covariance matrix

C̄k =




Cs1
k . . . Cs1sS

k
... . . . ...

CsSs1
k . . . CsS

k


 = E











x̂s1
k
...

x̂sSk


−




xk
...

xk







2


. (2.33)

The local operations of linear estimators, which are specified in Al-
gorithm 2.1, are given by block diagonal transformations in the joint
space. As the process noise reflects an uncertainty in the evolution
of the state that is common to all estimates, the predicted joint co-
variance matrix is obtained with

C̄k+1 =




Ak . . . 0
... . . . ...
0 . . . Ak


 C̄k




(Ak)>. . . 0
... . . . ...
0 . . .(Ak)>


+




Qk . . . Qk
... . . . ...

Qk . . . Qk


 .

(2.34)

For independent measurement noise terms and with local filter gains
Lsk and Ks

k, the transformation matrices as well as the joint measure-
ment noise matrix are block-diagonal. Hence, the joint covariance
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matrix of the filtered estimates is obtained according to

C̄k|k =




Ls1
k . . . 0
... . . . ...
0 . . . LsSk


 C̄k




(Ls1
k )> . . . 0
... . . . ...
0 . . . (LsSk )>


+




Ks1
k . . . 0
... . . . ...
0 . . . KsS

k







Cs1
k . . . 0
... . . . ...
0 . . . CsS

k







(Ks1
k )>. . . 0
... . . . ...
0 . . . (KsS

k )>


 .

(2.35)
As it becomes apparent from (2.35), filter operations are block diag-
onal transformations of joint covariance matrices. However, the mul-
tiplication of the joint covariance matrix with block diagonal trans-
formation matrices does not involve the summation of matrix blocks
Css̃
k , as it would be the case for fully occupied transformation matri-

ces. In fact, matrices Ks
k and Lsk transform only the s-th (block) row

and column. Therefore, when the sum of the MSEs of the estimates,
i.e., the trace of C̄, is taken as the optimization criterion, the optimal
gains are the ones that minimize the local covariances Cs

k. Indeed,
as discussed in Section 2.2.2 - a, these gains are obtained by means
of local KFs.
The exchange and linear fusion of estimates can be represented in
the joint space as well. To this end, let Fs

s̃ denote the fusion gain by
which the estimate from sensor s is fused into the estimate at sensor
s̃, i.e., x̂s̃ =

∑
s∈S Fs

s̃x̂s. Then, the fused joint covariance matrix is
obtained according to

C̄ =




Fs1
s1 . . . FsS

s1... . . . ...
Fs1
sS . . . FsS

sS


 C̄




(Fs1
s1)> . . . (Fs1

sS )>
... . . . ...

(FsS
s1 )> . . . (FsS

sS )>


 , (2.36)

where Fs
s̃ = 0, if the estimate s is not received by node s̃ and∑

s∈S Fs
s̃ = I for unbiased combinations of estimates. Again, fusion

gains Fs
s̃ of node s̃ only transform the s̃-th row and column of the
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joint covariance matrix. However, in contrast to prediction and filter
operations, the cross-covariance matrices Css̃

k from the off-diagonal
blocks affect the fused covariances. For a given joint covariance ma-
trix C̄, the LMMSE fusion gains at node s̃ have been derived for
two [9] and arbitrary many [2,148,161,173] estimates.

Theorem 2.5 Consider estimates x̂s, s ∈ S with joint covariance
matrix C̄ from (2.33). The optimal linear fusion gains for unbiased
estimates x̂s are given by

F =
(
Fs1 . . . FsS

)
= C(1)>(C̄)+ , (2.37)

where C =
(
(1)>(C̄)+1

)+ denotes the covariance of the fused esti-
mate x̂ =

∑
s∈S Fsx̂s and 1 :=

(
I · · · I

)>.

Proof. The derivation for two estimates is provided in [9] and for
an arbitrary number of estimates in [161, 173]. A simple proof that
constitutes the result for two estimates in the positive definite sense
is provided in [179]. �

Applied to the joint space representation (2.36), the matrix F from
Theorem 2.5 denotes a block row of the transformation matrix. There-
fore, the fused covariance from Theorem 2.5 is a short form for
the fused block diagonal covariances that are obtained with fusion
gains (2.37) by means of (2.36). A special case of Theorem 2.5,
namely if the cross-covariance matrices are zero, is the convex com-
bination of estimates.

Corollary 2.6 Let the estimates x̂s, s ∈ S be uncorrelated. Then,
the optimal fusion gains are given by Fs = C(Cs)−1, where

C =
(∑

s∈S
(Cs)−1

)−1

denotes the covariance of the fused estimate x̂ =
∑
s∈S Fsx̂s.
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The fusion concept can also be generalized to partially overlapping
states, i.e., when individual estimates capture only a subset of the
entire state space. The corresponding theory has been discussed in
the context of control [80], and LMMSE fusion formulas have been
given in [122]. Note that Theorem 2.5 and Corollary 2.6 are general
fusion techniques that can also be used at the fusion center to combine
preprocessed measurements from the sensors.

In the perspective of decentralized estimation, the LMMSE filter op-
eration is given by local KFs and the LMMSE fusion by Theorem 2.5.
However, these operations optimize only the average MSE of the lo-
cal estimators and do not provide a joint covariance matrix that is
optimal in the positive definite sense.

Consider for example the filter operation. Even if the filter matri-
ces minimize the individual covariances on the block diagonal in the
positive definite sense, no statements can be made about the cross-
covariance matrices, which are transformed as well. In particular, it
is possible that suboptimal filter gains yield a joint covariance matrix
that features an indefinite difference to the joint covariance matrix ob-
tained with local KFs. Then, a subsequent LMMSE fusion can yield
smaller covariances on the block diagonal than the ones obtained with
the LMMSE filter processing.

The bottom line is that without the positive definite relation, the
optimality of the joint covariance matrix after several filter and fusion
operations cannot be guaranteed. Therefore, the combination of local
KFs with Theorem 2.5 is only one-step optimal.

When the models are time-invariant, the multi-step or steady state
LMMSE estimators can be obtained as the solutions to optimization
problems in the joint space. However, to the author’s knowledge, no
efficient methods are available to solve the emerging system of non-
linear matrix equations. This applies in particular to sensor networks
with limited local knowledge.
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2.4 Challenges of LMMSE Estimation
in Sensor Networks

The ideas and approaches discussed in the remainder of this thesis
touch various research areas and implement different concepts. Still,
they all serve to provide LMMSE estimators for sensor networks of
linear systems according to Definition 2.1. Of course, this is only
the framework in which the estimators are derived and optimized.
By means of linearization techniques or simplifications concerning
the independence of noise terms, the estimators are applicable to
nonlinear systems.

For linear systems, the problem of central estimation can be con-
sidered as being solved. The KF constitutes the LMMSE estima-
tor and provides covariances that are optimal in the positive def-
inite sense. For distributed and decentralized estimation, efficient
estimators have been derived as well. The distributed Kalman fil-
ter [56, 59, 60, 100] yields LMMSE estimates and the – at least for
one time step – optimal solution to decentralized estimation is ob-
tained by means of local KFs in combination with the LMMSE fusion
from Theorem 2.5. However, the distributed Kalman filter requires
global model knowledge, and in order to apply the LMMSE fusion
in decentralized estimation, cross-covariance matrices are necessary
that even depend on filter and fusion operations applied at remote
nodes.

Indeed, global model knowledge as it is required by both approaches
is a rarity in real world systems. Consider for example a distance sen-
sor. It can be expected that uncertainties of measurements increase
relative to distances between sensors and object. Thus, an intuitive
policy for the sensor is to approximate the noise covariance by means
of the estimated distance, which, however, is based on the local esti-
mate of the object’s position. Therefore, the measurement model of
the distance sensor depends on its local estimate and consequently,
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is unknown to other nodes in the sensor networks. In fact, the ex-
plicit dependency of model parameters on local estimates is
an innate property of nonlinear models.
Moreover, when the communication is stochastic due to packet delays
and losses, only the receiver knows which estimates are processed. In
particular, an unbiased combination is only feasible by adapting fu-
sion gains to the number of estimates. Therefore, again, gains depend
on realizations of stochastic variables, i.e., on knowledge that is only
locally available. Consequently, the evolution of cross-covariance
matrices cannot be calculated by remote sensors even if the utilized
estimation algorithm is known.
Additional constraints are imposed by limited resources at the sen-
sors. Especially for large sensor networks or when models are time
varying, the effort to store the measurement models of all sensors and
the computational costs to process all cross-covariance matrices are
too high. However, as discussed in Chapter 1, the challenges of mod-
ern sensor networks lie in limited knowledge about sensor network
capacities and the need to adapt online to new realities.
The objective of this thesis is to propose techniques for LMMSE es-
timation in distributed and decentralized estimation that are appli-
cable to modern sensor networks. Hence, the existing approaches for
the LMMSE filtering and fusion must be generalized to cope with the
aforementioned challenges. In the course of this, two main problems
are to be solved. First, efficient techniques for the reconstruction of
dependencies between estimates based on locally processed variables
must be developed. Then, the LMMSE fusion formula or an adap-
tion of it can be applied. Second, local estimators for the sensors
must be derived that operate without global model knowledge and
optimize the estimates with respect to the sensor network. Both of
the problems are examined in the following and different solutions
with various advantages and drawbacks are proposed.
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CHAPTER
3

Information Fusion in
Sensor Networks

In interconnected estimation systems, information is gathered at spa-
tially distributed processing units. To exploit the potential of these
systems, information is exchanged over potentially unreliable com-
munication links. It is a known fact that concurrent communication,
especially in wireless networks, poses challenges that manifest them-
selves in packet delays and losses whose frequency rises with the uti-
lization of network resources. The energy consumption caused by
data transmissions thereby largely determines the lifespan of sensors
so that in order to minimize data traffic, information should be fused
at the earliest possible stage.
Considering the classification of sensor networks into distributed and
decentralized estimation schemes, information about a common state
from several sensors is either to be weighted at the fusion center or
to be integrated regularly into local estimates. Irrespectively of the
processing type, the question arises how much trust is to be put in
individual estimates in the fusion. A meaningful concept to address
this problem in a stochastic setting must involve quality of and de-
pendency between the estimates.
In the framework of linear estimation, covariances and cross-covar-
iance matrices provide a complete specification of the quality of es-
timates. In fact, the optimal linear combination of estimates is
uniquely determined when exact knowledge about the joint covari-
ance matrix is available to the fusing node. However, the quantifi-
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cation of dependencies in sensor networks proves difficult. For an
explanation, consider two spatially distributed sensors that are ini-
tialized with the same estimate. Let sensor one observe and inte-
grate an independent measurement into its local estimate. Then, the
cross-covariance matrix between the sensor estimates depends on the
amount of information in the filtered estimate at node one that traces
back to the initial value, i.e., on the weighting in the filter step.
An approach that enables the calculation of cross-covariance matrices
is to exchange all local transformations along with the estimates and
to reconstruct the evolution of covariances at the receiver [99]. Indeed,
for multi-hop or irregular communication, this approach is hardly
realizable since it requires transmitting huge quantities of data and
considerable computational power at the sensors.
As the calculation of cross-covariance matrices poses a major chal-
lenge in sensor networks, it is tempting to ignore them in the fusion
operation. However, independently of the potentially bad outcome
of heuristic fusion methods, the uncertainty of the fused estimate de-
pends on cross-covariance matrices between prior estimates. For a
motivation and illustration of the challenges involved in the fusion of
two estimates subject to an unknown cross-covariance matrix, con-
sider the next example.

Example 3.1: Motivation of Cross-covariance
Matrix Reconstruction

Let estimates x̂s1 and x̂s2 with local covariances Cs1 = diag (2, 1),
Cs2 = diag (1, 2) be given and let the cross-covariance matrix Cs1s2

be unknown. Then, a linear estimator must determine fusion gains
Fs1 , Fs2 , and the covariance of the fused estimate x̂ = Fs1 x̂s1 +Fs2 x̂s2

without knowledge of Cs1s2 . A naïve approach is to calculate the
convex combination of the two estimates [34] with

Fs =
(
(Cs1)−1 + (Cs2)−1)−1(Cs)−1 , s ∈ {s1, s2} .
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Figure 3.1: Ellipsoids for covariances Cs1 and Cs2 as well as for covariances of
fused estimates C subject to different cross-covariance matrices.

The resulting true covariances of the fused estimate for three possible
cross-covariance matrices are depicted in Figure 3.1 by means of the
respective covariance ellipsoids E(C) = {x|(x)>(C)−1x = 1}1. Two
observations emerge from the data. First, the covariance of the fused
estimate depends on the unknown cross-covariance matrix and sec-
ond, it cannot be stated as a rule that covariances of fused estimates
are smaller than prior covariances. �

It results from Example 3.1 that, even if covariances of estimates
prior to the fusion are exactly known, the fusion of estimates sub-
ject to limited information about cross-covariance matrices induces
uncertainty in the quality assessment of the fused estimate.

Indeed, in decentralized estimation, fused estimates are priors of sub-
sequent fusion operations. Hence, not even local uncertainties could
be utilized for the optimization of fusion gains. As covariances of es-
timates are also required to calculate filter gains and for a potential
subsequent use in control or decision problems, the entire informa-
tion processing becomes questionable when dependency information
is neglected.
1It holds C ≤ P, if and only if E(C) ⊆ E(P).
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Thus, meaningful estimation in modern sensor networks subject to
limited information at the sensors is only feasible with techniques
that either provide (imprecise) cross-covariance matrices or bypass
the dependence on cross-covariance matrices in the fusion operation.
In this chapter, both approaches are explored.
In Section 3.1, sample sets are generated from the joint distribution of
the error processes and the joint covariance matrix is estimated
by means of sample covariances. In an analysis of the covariance struc-
ture of estimates in linear estimation, it is revealed that generation
and processing of samples can be decomposed into local operations
so that a scheme to estimate cross-covariance matrices that works
based on locally known variables is obtained. Efficient covariance
estimators are discussed and the optimal distribution for sampling
noise terms in the proposed scheme is derived.
A fundamentally different approach is pursued in Section 3.2 by con-
sidering all possible cross-covariance matrices in order to give a worst-
case assessment for the covariance of the fused estimate. Hence, the
objective is to provide guaranteed covariance bounds instead of
estimates of covariances that are subject to uncertainty. While co-
variance bounding under unknown correlations is an established con-
cept, the rigorous generalization to partially known cross-covariance
matrices is new and bridges the gap between fusion methods under
known and unknown correlations.
It is an insight of the results but also follows intuitively that tightness
and precision of the bound on the fused estimate improves relative
to additional knowledge about dependencies. Therefore, approaches
to reconstruct cross-covariance matrices partially based on different
decompositions are derived and evaluated. Finally, an algorithm is
proposed that uses a noise decomposition of covariances to achieve
arbitrary precision subject to computational and communication ef-
fort.
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3.1 Sample-based Covariance Estimation

As outlined above, the exact reconstruction of (cross-)covariance ma-
trices in sensor networks is impracticable. In fact, for the naïve tech-
nique from [99], the amount of stored and processed data increases
with each emerging noise term. However, limiting computational and
communication effort is not only a nice feature but also quite often
a necessity. In this section, a scheme for the sample-based estima-
tion of covariances that takes into account the limitations of sensor
networks is proposed.

The quality of estimators is specified by the distribution of the ran-
dom (estimation) error e = x̂−x. Now, consider a state estimator
and assume that the distribution of the error is known, e.g., to be
a Gaussian density specified by its covariance. Then, samples can
be generated from the distribution, which, in turn, form an equally
weighted Dirac mixture density and describe the estimation error. In
particular, it is possible to maintain the Dirac mixture description of
the error density by reflecting the transformations of the estimation
error in the sample space. From the obtained representation, prop-
erties of the original error density can be reconstructed by means of
proper techniques, as it is illustrated in Figure 3.2.

For the considered linear models, the error is linearly combined with
independent random noise variables in prediction and filter opera-
tions, which corresponds to a convolution of densities. For exam-
ple, when noise terms are Gaussian distributed, the convolution with
Dirac mixtures yields a Gaussian mixture that needs to be approxi-
mated by a Dirac mixture to enable further sample-based processing.
At this stage, an approximation is necessary. Generally, it is advis-
able to calculate deterministic sample approximations, as this is more
efficient than stochastic sampling [53, 54]. However, deriving Dirac
mixtures in sensor networks based on local knowledge without access
to the joint error distribution proves difficult.
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Figure 3.2: A schematic overview describing the transformation of the estima-
tion error and necessary operations to reflect the evolution of the
error by means of samples.

Indeed, for estimating cross-covariance matrices in the considered
sensor networks, transformations of the underlying state estimator
cannot only be assumed linear but also independent from the sam-
ples. Therefore, a simple technique to obtain a sample from the error
density at an arbitrary time step is to independently generate sam-
ples from all occurring noise distributions and to combine these sam-
ples according to the noise composition of the estimation error. The
generation can be repeated until the desired precision of the density
representation is achieved. From the obtained samples, the moments
of the error and, in particular, the covariance can be estimated.

In the following, two properties of this simple technique are exploited.
First, the proposed sample generation can be calculated recursively
such that the sample processing corresponds to a simulation of the
estimation error. Second, the generation of joint samples can be
distributed to sensors even if the transformations of remote nodes
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are unknown. For an illustration of the main insights and ideas, the
filter operation in a simple network is examined in the next example.

Example 3.2: Introduction to Sample-based
Covariance Estimation

Consider a one-dimensional system that is observed by two sensors.
The distribution of the joint space error from Section 2.3.4, i.e., of the
augmented errors, is two-dimensional and can be approximated by a
sample set as depicted in Figure 3.2. When the samples are indexed,
two lists with the first, respectively second, coordinate of the samples
can be maintained, and by means of the indices, coordinates can be
augmented to reconstruct the joint space samples, as it is depicted
in the top part of Figure 3.3.
Now, let local estimation errors esk be described by sample sets. When
a measurement is filtered, the corresponding error for unbiased esti-
mators with Ls = I−KsHs is given by

esk|k =x̂sk|k − xk
=Lsx̂sk + Kszs − xk
=Lsx̂sk − (I−KsHs)xk + Ksvs

=Lsesk + Ksvs .
As discussed above, a simple, recursive processing scheme to obtain
a sample representation of the error esk|k is to transform the samples
of esk with Ls and to add independently generated noise from the
random variable Ksvs to each of the samples.
In the next step, let the sample sets be the lists with scalar coordi-
nates of the joint space samples. The concurrent filtering of sensors
s1 and s2 yields

(
es1
k|k

es2
k|k

)
=
(

Ls1 0
0 Ls2

)(
es1
k

es2
k

)
+
(

Ks1 0
0 Ks2

)(
vs1

vs2

)
.
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Figure 3.3: The decomposition of the joint space filtering operation operating
on two-dimensional samples into two independent sensor filter steps
operating on one-dimensional samples.

Hence, in order to obtain a sample representation of the joint space
error, the corresponding block-diagonal matrix transformation must
be applied to the augmented coordinate lists and samples for the joint
space error must be generated.

Note that matrices Ls affect only local errors. Therefore, the trans-
formations of the sample sets can be applied independently of each
other. This also pertains to the adding of noise to the samples. As
the noise terms vs1 and vs2 are independent in systems according
to Definition 2.1, the random generation of samples from the joint
noise term

(
vs1 vs2

)> can be decomposed to the sensors by means
of independent samplers. This is important as in sensor networks
without global model knowledge sensors do not have access to noise
distributions and transformations of remote nodes.

In particular, different samples are not combined in the filter opera-
tion due to the independence of the sample processing from the gains
Ls. Thus, the indexing of samples can be maintained and samples
can be construed as independently generated. The proposed filter
processing is depicted in Figure 3.3. �
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Obviously, the scheme of Example 3.2 generalizes to more than two
nodes and multivariate systems. When samples are exchanged in the
fusion operation along with the estimates, (cross-)covariance matri-
ces can be estimated. More generally, the idea pursued in this section
is to decompose the processing of samples that describe the joint
space estimation error into local sensor operations, i.e., each sensor
processes sub-vectors of the joint space samples. In contrast to a
purely local processing, the generation of samples is adapted to that
of remote nodes, which, in particular, necessitates to generate identi-
cal samples for the same (process) noise terms at different nodes and
to maintain an assignment between samples from different sets.

The proposed technique enables the estimation of covariances from
local sample lists while the augmentation of sample lists also per-
mits estimating cross-covariance matrices. This section is devoted to
the presentation of the basic scheme and to the optimization of the
processing for finite sample lists. The following issues are addressed:

• A sampling policy that enables distributed processing of
joint samples in linear systems is proposed and utilized to
derive an algorithm for consistent sample-based estimation
of (cross-)covariance matrices.

• Covariance estimators are discussed that minimize the un-
certainty for a finite number of samples.

• The sampling distribution that exhibits optimality for
estimating covariances in the proposed scheme is derived.

• Methods for the regularization of the proposed covariance
estimation scheme are discussed.

The result of this section constitutes an algorithm for sample-based
covariance estimation that is asymptotically exact. The local sample
processing is carried out without access to transformations at remote
nodes and without global model knowledge. In particular, computa-
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tional and communication effort of the algorithm is not affected by
the number of emerging noise terms.

Estimated covariances can be used as a quality measure in subsequent
applications, e.g., to obtain feedback matrices in control applications.
Indeed, it is also feasible to use estimated (cross-)covariance matri-
ces for the optimization of local estimators, i.e., in filter and fusion
gain calculations. However, then, the gains Ls and Fs are functions of
the samples so that the actual transformation of the samples with the
gains in filter and fusion operations inevitably constitutes a nonlinear
transformation of the samples that induces a bias in the covariance
estimation for finite sample sets. Thus, the concurrent covariance
estimation and gain optimization is suboptimal when the noise sam-
ples are generated independently of each other. Still, the scheme can
serve as the basis for a meaningful and adjustable sensor network
estimator as demonstrated in subsequent evaluations.

3.1.1 Asymptotic Properties

In the following, the basic scheme for the recursive processing of sam-
ples is presented that enables the estimation of (cross-)covariance ma-
trices in sensor networks. The algorithm has been proposed in [186].
It consists of a sampling policy for noise distributions and transfor-
mation rules for the sample lists.

In a first instance, the estimation error in linear systems in analyzed.
For this purpose, consider a linear estimator x̂ as specified in Algo-
rithm 2.1. The estimation error ensues from the equation e = x̂ − x
and is recursively defined as follows: at initialization, the estimation
error is given by the error of the initial estimate, i.e., e0 = x̂0 − x0.
In the prediction step, it follows from (2.8) that

ek+1 = Ax̂k −Axk −wk = Aek −wk . (3.1)
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The filtering of measurements with K and L = I−KH leads to

ek|k = (I−KH)x̂k + Kzk − xk = (I−KH)ek + Kvk . (3.2)
In the fusion, it follows with

∑
s∈S Fs = I that

e =
∑

s∈S
Fsx̂s − x =

∑

s∈S
Fsx̂s −

∑

s∈S
Fsx =

∑

s∈S
Fses . (3.3)

By “rolling out” the recursive calculations, it becomes obvious that
the estimation error is a linear combination of independent
noise terms. Consider for example the subsequent calculation of
filter and prediction steps that is given by

ek+1 = A(I−KH)ek + AKvk −wk . (3.4)
Apparently, the predicted error is the linearly transformed sum of
the error of the previous time step and two noise terms. Repeating
this process with ek, the error process at ek+1 is given as the linear
combination of ek−1 and four noise terms. Notably, the transforma-
tions of the error terms adapt to the estimator processing such that
for example in (3.4), v is transformed with the matrix T = AK.
Hence, in order to achieve a sample representation of estimation er-
rors in linear systems, it is sufficient to generate samples from indi-
vidual noise terms and to transform them according to the estimator
processing.

3.1.1 - a Individual Noise Terms

Let ψ denote one of the noise terms that emerge in the estimation,
i.e., either initial, process, or measurement noise. As in the LMMSE
theory, the estimation error is sufficiently specified by its covariance,
samples do not need to represent the (entire) true error distribution
but only a random variable that exhibits the same mean and covari-
ance. The following definition introduces a concept to substitute the
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underlying true noise distribution by a sampling distribution with
the same second moment.

Definition 3.1 A random variable φ characterizes another ran-
dom variable ψ (up to the second moment) when E{ψ} = E{φ} and
Cov

(
ψ
)

= Cov
(
φ
)
.

Although the characterization of noise terms according to Defini-
tion 3.1 is not necessary for the derivation of asymptotic properties
of the covariance estimator, it already generalizes the theory to noise
terms with finite second moment from which sampling is not possible.
Moreover, thanks to the characterization, the sampling distribution
can be construed as a parameter of the algorithm, which is subse-
quently optimized in Section 3.1.2.
Note also that the sample-based covariance estimation is derived un-
der the premise that only two moments are considered. This makes
perfect sense for linear estimation, but can be too simple for nonlinear
systems or in the presence of multi-modal densities. Indeed, Defini-
tion 3.1 can be easily generalized to higher moments, e.g., a sampling
distribution may be admitted as substitute for a noise distribution
only if other moments are matched as well.
In a next step, consider an arbitrary noise sampler that indepen-
dently draws samples from a distribution φ and let Φ ∼ φ with
Φ = (φ1, . . . , φd) denote a list of noise samples that are independently
generated according to the distribution φ. For the sake of simplicity,
sample lists are assumed to contain the same number of samples d.
With T ∈ Rnx×nx , the shorthand notations

TΦ = (Tφ1, . . .Tφd)
and

Φν1 + Φν2 = (φν1
1 + φν2

1 , . . . , φ
ν1
d

+ φν2
d

)
follow directly from matrix algebra. Let Φν1 and Φν2 denote two sam-
ple lists that are distributed according to φν1 and φν2 respectively.
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Then, the (cross-)covariance matrix of φν1 and φν2 is asymptotically
obtained with any consistent covariance estimator such as the sam-
ple covariance that is given by

Ĉsc(Φν1 ,Φν2) = 1
d− 1

d∑

i=1
(φν1
i
− φ̄ν1)(φν2

i
− φ̄ν2)> , (3.5)

with sample mean φ̄ν = 1
d

∑d
i=1 φ

ν
i
. The correction of the factor 1

d
in (3.5) by one is called Bessel correction. It guarantees the unbiased-
ness of the estimator. Properties of the sample covariance, especially
regarding the minimum number of samples to achieve a desired preci-
sion have been studied in [165]. When the distribution of the samples
is known, estimators that are more efficient can be derived. For ex-
ample for Gaussian distributed samples, the population covariance
defined by

Ĉp(Φν1 ,Φν2) = 1
d

d∑

i=1
(φν1
i
− φ̄ν1)(φν2

i
− φ̄ν2)> , (3.6)

is the maximum likelihood estimator. For the sake of a simple no-
tation, let Ĉ(Φ) := Ĉ(Φ,Φ), and as the distribution φ serves as a
full substitute for the noise distribution ψ in terms of the covariance
estimation, let ψ ≡ φ without loss of generality.
As discussed above, estimation errors are linear combinations of in-
dependent noise terms. Indeed, when two sample lists Φν1 and Φν2

are generated independently of each other, the true cross-covariance
matrix is 0. Therefore, it holds

lim
d→∞

Ĉ(Φν1 ,Φν2) = 0

for consistent covariance estimators Ĉ. When the same noise term
emerges in different estimators, e.g., the process noise, fully correlated
samples must be generated at different sensors. For this purpose,
synchronized noise samplers are used.
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Figure 3.4: The emerging variables in sample-based covariance estimation. For
simplicity, only the filtering is considered and the representation is
confined to two sensors. The evaluation of the covariance estimate
indicated with E{||Ĉ,C||} becomes relevant in the context of finite
sample lists.

Definition 3.2 Two noise samplers that generate noise lists Φν ∼
φ, ν ∈ {ν1, ν2} are (second moment) φ-synchronized, if

lim
d→∞

Ĉ(Φν1 ,Φν2) = Cov
(
φ
)

for consistent estimators Ĉ.

Note that synchronized noise samplers can be implemented in sensor
networks without establishing a connection between nodes. For this
purpose, let the sensors have access to local pseudorandom num-
ber generators that can be initialized with a seeding value. When,
a network-wide known variable such as the current time step, a syn-
chronized value, or the like is used to initialize the pseudorandom
number generators, the same sequence of numbers and, consequently,
the same samples are generated.
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3.1.1 - b Reconstruction and Recursive Processing

The idea of the basic sample-based covariance estimator is to recur-
sively process a sample list Φs = (φs1, . . . , φ

s
d
) at each sensor that

describes the estimation error es and stores linear dependencies to
other estimators. For this purpose, the evolution of the estimation
error in (3.1) to (3.3) must be reflected by corresponding transforma-
tions of the sample list. An overview over the considered variables
and their relation is given in Figure 3.4

According to Definition 2.1, measurement and process noise terms
are independent from all other emerging noise terms. The only ex-
ception constitutes the common process noise that is modeled at all
nodes and implies full correlation. For a formalization, let I denote
a set of indices that contains unique identifiers for all noise terms
{vsk,wk, es0 | s ∈ S , k ∈ K}. Then, a sum representation of the
estimation error is given by

es =
∑

i∈Is
Ts
iψi , (3.7)

where Is ⊆ I contains the indices of noise terms ψ
i
that affect the

error process es and Ts
i denote the corresponding matrix transforma-

tions. Note that due to the fusion of estimates, remote noise terms
{vs̃k}k∈K,s̃ 6=s and {es̃0}s̃ 6=s are entailed in Is as well. As argued above,
sample lists are supposed to satisfy the following definition.

Definition 3.3 The tuple (x̂s,Φs) is a valid sample representa-
tion (of the state x), if Φs ∼ ∑i∈Is Ts

iφi = x̂s − x and noise terms
φ
i
are sampled according to the following policy:

• Process noise is sampled with φ
i
-synchronized noise samplers,

• Measurement noise is sampled with independent noise samplers.
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It is a direct consequence of Φ ∼ x̂− x that it holds

lim
d→∞

Ĉ(Φ) = E{(x̂− x)2} ,

for consistent covariance estimators Ĉ. A recursive processing of
tuples (x̂,Φ) that ensures Definition 3.3 is easily obtained. At ini-
tialization, a list of samples generated by an arbitrary noise sampler
that reflects the covariance C0 satisfies the claim. In prediction, fil-
tering, and fusion steps, samples are transformed in conformity with
the estimation error as specified in Algorithm 3.2.

Algorithm 3.2 Sensor Processing of the Sample-based Cov. Est.
1: Initialization: (x̂,Φ) = (x̂0,Φ0), Φ0 ∼ x̂0 − x0

2: for k = 1; k ∈ K; k = k + 1 do
3: Prediction: (Ax̂,AΦ + Φw), Φw ∼ wk (wk-synchronized gen-

eration)
4: Filtering: (Lx̂ + Kz,LΦ + KΦv), Φv ∼ vk (independent)
5: Fusion: (

∑
s∈S Fsx̂s,

∑
s∈S FsΦs)

6: end for

Note that the samples are generated and transformed based on local
sensor knowledge. In particular, computational and communication
effort is not determined by the number of considered noise terms.
The result is summarized in the following theorem.

Theorem 3.1 Let the models be linear and let all nodes employ the
linear estimator from Algorithm 3.2. Then, it holds

lim
d→∞

Ĉ(Φs,Φs̃) = Css̃, ∀s, s̃ ∈ S,

for consistent covariance estimators Ĉ.

Proof. See Appendix B. �

A detailed evaluation of the technique is provided in [186]. The next
example serves as a short summary of these results.

64



3.1 Sample-based Covariance Estimation

True

SBR 10

SBR 20

SBR 50

time step

Ex
p.

Fr
ob

en
iu

s

time step

R
M

SE

0 50 5
0

1

2

3

4

3

4

5

6

7

Figure 3.5: In the left figure, the RMSE of the estimate x̂s3 and the corre-
sponding estimated values for one run are depicted. In the right
figure, the expected Frobenius norm of the covariance estimate in
100 Monte Carlo runs is given.

Example 3.3: Evaluation of Sample-set Sizes

Consider a sensor network consisting of three nodes, where only nodes
s1 and s2 are equipped with sensor devices. A bidirectional commu-
nication is established between nodes s1 and s3 as well as between
nodes s2 and s3 at each time step. The state is two-dimensional
with transition matrix A = I and zero-mean Gaussian noise with
Q = I. The sensors observe different dimensions of the state accord-
ing to Hs1 =

(
1 0

)
and Hs2 =

(
0 1

)
, where {vsk}k∈K is Gaussian

distributed with Rs = 20, s ∈ {s1, s2}.
The sensors are initialized with independent estimates defined by
Cs = 100 · I and employ constant gain filters with K = 0.5 · ( 1 1 )>,
Ls = I − KHs. In the fusion, the average of the received values
is calculated. The covariances are obtained with Algorithm 3.2 and
noise samples are generated from Gaussian distributions. The preci-
sion of the covariance estimates is assessed by means of the expected
Frobenius norm E

{(
tr
{

(Ĉ−C)2
} ) 1

2
}
.
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The results of the sample-based covariance estimation for sample list
sizes 10, 20, and 50 are depicted in Figure 3.5. Note that the Frobe-
nius norm takes into account the off-diagonal entries of the covari-
ance as well so that its absolute value appears high compared to the
RMSE, which is a function of the diagonal elements only. While,
in the considered run, the estimated RMSE approximately matches
the true RMSE for all sample list sizes, an analysis of the Frobenius
norm over 100 Monte Carlo runs shows that the expected precision
is increased with additional samples. �

3.1.2 Finite Sample Lists

As it becomes apparent from Example 3.3, the error of the covari-
ance estimation for finite sample lists is not negligible. Indeed, in
real sensor networks, computational resources are limited so that
only finite sample lists can be processed. As the sample-based covari-
ance estimation allows the characterization of noise distributions, it
is tempting to use deterministic sampling methods, which, in general,
provide more precise covariance estimates than stochastic sampling
techniques.

However, note that the proposed processing is a decomposition of a
joint space sampling scheme so that the rigorous application of non-
linear filter methods, e.g., of the unscented KF, would require cal-
culating the Cholesky decomposition of the joint covariance matrix,
which is not available to individual sensors. Even though determinis-
tic sampling of local noise terms is possible, it must be ensured that
the samples are generated independently from all other noise terms
as otherwise correlations emerge in the sample covariance for inde-
pendent noise terms and distort the results. Indeed, the desired inde-
pendence can hardly be achieved for deterministic sampling methods,
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3.1 Sample-based Covariance Estimation

as it requires the pairwise orthogonality between arbitrary many sam-
ple sets, which, in turn, necessitates an infinite-dimensional sample
space.
Nevertheless, the covariance estimator and the distribution for the
characterization of noise terms can be optimized for finite sample
sizes according to a criterion such as the largest eigenvalue, the `1-
norm, or the Frobenius norm [17, 102]. In the following, the optimal
parameters for the expected Frobenius norm, which is defined as

E{||Ĉ−C||F} := E
{

tr
{

(Ĉ−C)2
}}

= tr
{
Cov

(
Ĉ
)}

, (3.8)

are derived. Let V denote the eigenvector and E the (diagonal) eigen-
value matrix of C such that C = VE(V)>. As V is orthogonal for
symmetric matrices C, it follows with the cyclic property of the trace

tr
{

(Ĉ−C)2
}

= tr
{

(V(Ê− E)(V)>)2
}

= tr
{
V(Ê− E)2(V)>

}

= tr
{

(V)>V(Ê− E)2
}

= tr
{

(Ê− E)2
}
,

where Ê, in general, denotes a fully occupied random matrix. In
the following, only unbiased sampling schemes with E{Ê} = E are
considered so that (3.8) simplifies to

E{||Ĉ−C||F} = tr
{

E{Ê2} − E2
}
.

If no additional information about E is available and no regulariza-
tion is applied, the sample covariance is the standard choice for finite
sample sizes. It can be proven that the sample covariance is unbi-
ased and efficient when the covariance space is viewed as an extrinsic
cone [156], i.e., when the particular structure of covariances imposed
by the positive definite property is neglected. However, when the dis-
tribution of the samples is set, other estimators may be more efficient.
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It is for example well known that the population covariance (3.6) is
the maximum likelihood estimator when samples are Gaussian dis-
tributed.
The sample-based covariance estimation considered in this section
benefits from two simplifications compared to the general covariance
estimation problem. First, the sampling technique can be chosen
freely as long as the distribution has finite second central moment.
Second, the mean of the noise samples is known to be zero. This
permits, in particular, the utilization of the natural covariance
estimator

Ĉna(Φν1 ,Φν2) = 1
d

d∑

i=1
(φν1
i
− E{φν1})(φν2

i
− E{φν2})> , (3.9)

which exploits known means for Φν ∼ φν , ν ∈ {ν1, ν2}. In basic, but
lengthy, calculations it can be shown that

var
(
Ĉna

)
≤ var

(
Ĉsc

)
.

Therefore, the natural covariance estimator is used instead of the
sample covariance. For the sake of a simple notation, the identifier
na is omitted, i.e., the natural covariance estimator is denoted as Ĉ
in the sequel.
The preceding results on asymptotic properties of sample-based co-
variance estimation have been derived on the foundation that the
sampling distributions can differ from the underlying noise distribu-
tions. More specifically, any distribution with finite second moment
such as the uniform distribution, the Gaussian distribution, etc. can
be used to characterize noise terms.

3.1.2 - a Optimal Scalar Sampling

In the following, the sampling distribution that minimizes the ex-
pected Frobenius norm of the natural covariance estimator is derived
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for scalar noise distributions φ. For scalar samples, the sample set Φ
is a vector and the sample covariance Ĉ is the scalar sample variance
denoted as v̂. Hence, the objective is to find the sampling distribution
that minimizes

var (v̂(Φ)) = E{(v̂(Φ)− var (φ))2} . (3.10)

As specified in Section 3.1.1, samples are drawn independently of
each other. This allows deriving a simple representation of (3.10)
that only depends on properties of the sampling distribution.

Lemma 3.2 Let Φν , ν ∈ {ν1, ν2} denote lists of independently gen-
erated scalar samples. Then, var (v̂(Φν1 ,Φν2)) equals

1
d

(
E{(φν1 − E{φν1})2 (φν2 − E{φν2})2} − (var (φν1 ,φν2))2

)
.

Proof. See Appendix B. �

Hence, the precision of the variance estimator depends on the number
of samples and a fourth order term. For independently generated
sample lists φν1 and φν2 , it holds

E{(φν1 − E{φν1})2(φν2 − E{φν2})2} = var (φν1)var (φν2) . (3.11)
In terms of choosing the optimal sampling distribution, (3.11) cannot
be optimized as var (φν), ν ∈ {ν1, ν2} is specified by the noise distri-
bution. However, the estimation of local variances with Φν1 = Φν2 ,
leads to

var (v̂(Φ)) = 1
d

(
E{(φ− E{φ})4} − var (φ)2

)
. (3.12)

Using the definition of the excess kurtosis2, i.e.,

κ = E{(φ− E{φ})4}
var (φ)2 − 3 ,

2The excess kurtosis is the normalized kurtosis so that κ = 0 for Gaussian variables.
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the variance from (3.12) is transformed to

var (v̂(Φ)) = var (φ)2

d

(
κ+ 2

)
. (3.13)

The excess kurtosis is a distribution-dependent variable with various
interpretations, e.g., it can be construed as a degree of bimodality of
the density [38]. Therefore, the more the density resembles bimodal
distributions, the higher is the precision in the variance estimator.
In particular, it holds κ ≥ −2, where κ = −2 is attended for a
Bernoulli distribution with equal success and failure probability [38].
Affine transformations of samples from this distribution permit the
specification of a modified Bernoulli distribution with

Pr {φ = −σ} = 0.5 and Pr {φ = σ} = 0.5 , (3.14)

with zero mean and configurable standard deviation σ. Hence, the
estimator variance from (3.12) is minimized when the samples are
distributed according to (3.14). Considering a noise term φ with
E{φ} = 0 and E{φ2} = var (φ), the modified Bernoulli distribution
with σ =

√
var (φ) characterizes the noise term φ. As E{φ2} = σ2 =

φ2 is deterministic, sample-based variance estimators with Bernoulli
distributed samples have uncertainty zero.
In the context of linear estimation, independent and fully dependent
noise terms emerge, and are sampled and transformed according to
the estimator processing. Let the estimation error be given by esk =∑
i∈Is Ts

iφi (3.7). Then, sample lists are linearly transformed noise
sample lists according to

Φs =
∑

i∈Is
Ts
iΦν

i ,

where Φν
i ∼ φi. Therefore, the expected Frobenius norm of the

variance estimator v̂(Φs) is given by the sum of terms of the form

(Ts
i )2(Ts

ĩ )
2 E{(Φν

i )2(Φν
ĩ )

2} with i, ĩ ∈ Is .
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As in the considered linear system, noise terms are independent, the
terms for i 6= ĩ are specified by (3.11). For terms with i = ĩ, the
Bernoulli distribution minimizes the variance. In summary, the fol-
lowing statement is obtained.

Theorem 3.3 Let (x̂s,Φs) denote valid sample representations ac-
cording to Definition 3.3, s ∈ S. Then, var (v̂(Φs1 ,Φs2)) is mini-
mized when noise samples are generated from the modified Bernoulli
distributions with σ =

√
var (φ) as defined in (3.14).

It is worth mentioning that the sample representation induces an
estimation error even for uncorrelated noise terms. In fact, every time
new noise samples are generated and added, co-variance terms (3.11)
emerge in the expected Frobenius norm for all noise terms that are
already comprised in the estimation error.
In particular, the sample-based variance estimation is affected by
stochastic errors even if samples are generated from the Bernoulli
distribution. Still, for individual noise terms, the variance estimator
with Bernoulli distributed samples is error-free.
Samples of the estimation error are in general not Bernoulli dis-
tributed. Indeed, as long as the individual noise samples are Bernoulli
distributed the expected Frobenius norm from Lemma 3.2 can still
be solved in closed form.

Theorem 3.4 Let (x̂,Φ) denote a valid sample representation of the
state x with Bernoulli distributed noise samples. Let furthermore Ti

denote the transformation factors and φνi the noise terms from the
error decomposition (3.7) and C denote the variance of x̂. It holds

var (v̂(Φ)) = 2
d

(
(var (C))2 −

∑

i∈I
(Ti)4(var (φνi ))2

)
. (3.15)

A proof of Theorem 3.4 is provided in Appendix B. A consequence
of the statement is that the variance of the sample-based estimator

71



Chapter 3. Information Fusion in Sensor Networks

SBR GAUSS

SBR UNI

SBR OPT

time step

Ex
p.

Fr
ob

en
iu

s

time step

Ex
p.

Fr
ob

en
iu

s

0 50 5
0

1

2

3

4

0.5

1

1.5

2

2.5

Figure 3.6: The expected Frobenius norm of the variance estimates of sensor
s1 (left) and s2 (right) obtained with Algorithm 3.2 for Gaussian
(SBR GAUSS), uniform (SBR UNI), and Bernoulli (SBR OPT)
distributed noise samples.

diminishes proportional to 1
d . The proportionality factor is given by

the square of the true variance minus deterministic local noise terms.
As a matter of fact, formulas for the recursive calculation of (3.15)
can be easily obtained so that the tracking of the precision is possible.

Example 3.4: Optimal Distribution for Sample-based Cov. Est.

In this example, the generation of noise samples according to different
distributions is examined. To this end, consider a scalar linear system
with A = 1 and Q = 1. The state is observed by two sensors with
Hs = 1, Rs = 20, and initial uncertainty Cs

0 = 40, s ∈ {s1, s2}. Both
sensors employ constant gain filters with K = 0.5, L = 0.5, and the
average operator as fusion operation. While sensor s1 receives the
latest estimate from sensor s2 in each time step, sensor s2 operates
only on local data. The precision of sample-based variance estimators
with 20 samples in terms of the expected Frobenius norm in 500
Monte Carlo runs is depicted in Figure 3.6.
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The results differ for the noise distributions. Especially in the first
time steps when the number of involved noise terms is small, the
sample representation of individual noise terms determines the esti-
mation error so that the optimization of the precision by means of
the Bernoulli distribution yields significantly smaller errors. In fact,
when the estimation error consists of only one noise term, as in time
step 0 at sensor s2, the variance estimate for Bernoulli distributed
samples is exact. With an increasing number of noise terms, the
precision of the variance estimates becomes primarily determined by
the estimation errors of co-variances (3.11), which are the same for
all sampling distributions. Therefore, the difference in estimation
performance diminishes when time progresses. Concurrently, the ab-
solute precision of the variance estimate improves. This is due to
Theorem 3.4, which establishes a direct connection between the vari-
ance of the estimate and the precision of the variance estimator. As
the variance of the estimate decreases in the considered setup, this
translates into an improvement of the variance estimators.
In summary, the usage of the modified Bernoulli distribution im-
proves the precision of sample-based variance estimators for finite
sample sizes. However, other distributions achieve similar results
when several noise terms are involved. �

By means of a probabilistic argument, the optimal scalar sampling dis-
tribution for the sample-based variance estimation of Algorithm 3.2
has been derived. In particular, it could be demonstrated that by
means of the Bernoulli distribution, individual noise terms can be
deterministically determined.

3.1.2 - b Optimal Sampling for Multivariate Systems

For an application of the sampling technique to arbitrary systems,
generalizations of Theorems 3.3 and 3.4 to multivariate systems are
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desired. Considering E{||Ĉ−C||F} = tr
{

E{Ê2} − E2
}
, for unbi-

ased sampling schemes, the minimization of the expected Frobenius
norm boils down to the optimal sampling of eigenvalue matrices. In-
deed, the sampling of eigenvalue matrices induces errors in the off-
diagonals as the matrix is estimated from (sample) vectors.

Lemma 3.5 Let Φ ∼ φ denote a list of samples. Then,

tr
{
Cov

(
Ĉ(Φ)

)}
= 1
d

(
(1)>C̆1− tr

{
E2
})

, (3.16)

where [C̆]ρρ̃ = E{([φ]ρ − E{[φ]ρ})2([φ]ρ̃ − E{[φ]ρ̃})2}.

Proof. See Appendix B. �

Considering a noise term ψ with E{ψ(ψ)>} = E, sampling distribu-
tions φ that characterize ψ must satisfy

E{(φ− E{φ})2} = E .

Hence, it follows from Lemma 3.5 that the minimization of (1)>C̆1
poses the main challenge. The optimal solution to this problem is
given in the next statement, which is proven in Appendix B.

Theorem 3.6 Let ψ denote a zero-mean noise term with covari-
ance VE(V)>, where E denotes the diagonal eigenvalue and V the
corresponding eigenvector matrix. Then, E{||Ĉ(Φ)−C||F} is mini-
mized when the sample lists Φ are distributed according to a multi-
variate modified Bernoulli distribution with φ = Vφ̃, where
[φ̃]ρ is independently distributed according to (3.14) with σ =

√
Eρ,

ρ ∈ {1, . . . , nx}.
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A comparison of Theorem 3.3 with Theorem 3.6 reveals that the state-
ment of the latter is weaker. While for scalar systems, the optimal
distribution for the estimation error is specified, the statement for
multivariate systems is confined to individual noise terms. This is
a consequence of matrix transformations that are applied to noise
terms in linear estimation. Even if the eigenvalues of all noise terms
are Bernoulli distributed at a specific time step, the transformation,
e.g., with the state transition matrix A, modify the eigenvalues so
that in subsequent time steps, the eigenvalues are no longer Bernoulli
distributed.

It is also worth mentioning that only the diagonal entries of E are
estimated without stochastic error. As the expected Frobenius norm
comprises the product of the difference between estimated and true
covariance, off-diagonal elements affect the trace in Lemma 3.5 as
well. The estimation of these off-diagonal elements is comparable
with the estimation of scalar variances between independently gener-
ated sample sets, which implies the error (3.11). Therefore, even the
estimation of (multivariate) noise terms succumbs a stochastic error.

In summary, the error in the noise covariance estimation is minimized
when the samples are generated by means of Bernoulli distributed
samples. For scalar state spaces, the optimality applies also to esti-
mation errors, where samples are linearly transformed after genera-
tion. Otherwise, the usage of the Bernoulli distribution can still be
motivated by means of Theorem 3.6.

3.1.2 - c Enforcing Local Covariances

Regularization techniques can be applied to improve the precision of
covariance estimators, if additional knowledge about the estimated
variable is available. It is, for example, possible to penalize nonzero
cross-covariance matrices between noise terms that are known to be
independent of each other. In the following, a brief state-of-the-art
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overview over regularization techniques is given before a solution that
fits to the estimation in linear systems is presented.

Pioneering work towards improving standard estimators has been pro-
posed with the James-Stein-Estimator [82] that outperforms standard
least squares estimators in terms of the MSE. The underlying idea
is called shrinkage. It encompasses approaches that (often linearly)
combine the estimate with some additional information or belief. Ap-
plied to covariance estimation, the optimal shrinkage intensity, i.e.,
the optimal weighting, for the identity matrix and the sample covari-
ance with respect to the Frobenius norm has been derived [102].

Other types of regularization such as enforcing sparsity have been
examined as well. For graphical models, conditional independence
of nodes results in zero-entries in the inverse covariance. Hence, `1-
penalties, so called lasso methods, applied to the inverse covariance
enforce the desired sparsity of the graphical model as it is achieved,
e.g., by Graphical lasso [49]. Ensuring sparsity by directly setting
entries of the covariance to zero according to hard thresholds has
been examined in [95]. When the ordering of the covariance ele-
ments defines some form of closeness, banding techniques are uti-
lized to neglect covariance entries that are too far away from the
off-diagonal [17, 140]. Alternatively, a less strict approach, called ta-
pering, can be applied to shrink off-diagonal elements to zero. Con-
venient forms to regularize covariances [140] or its inverse [134] are
regression-based methods that utilize the Cholesky decomposition.
The idea is to apply a stepwise regression with increasing sample
sizes, yielding a covariance decomposition on which regularization,
e.g., banding, is easily realizable. A comprehensive overview of dif-
ferent covariance estimation methods is given in [135].

The regularization applied in the following is based on the property
that local covariances of estimates can be exactly calculated in pre-
diction (2.22) and filtering (2.24) operations. Hence, the idea is to
align the samples to the true local covariances in order to improve
the estimates of the joint covariance matrix.
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Indeed, it is worth pointing out that the regularization developed in
the following is only applicable when local covariances, i.e., the block
diagonal of the joint covariance matrix, can be calculated. In decen-
tralized estimation with regular fusion operations or when the models
are nonlinear, only bounds or approximations for the true local co-
variances are computable, which, in turn, impedes the application of
the proposed regularization technique.

In [186], it has been proposed to modify the noise sampling proce-
dure in order to achieve the desired equality between estimated and
true local covariance. In the sequel, a more intuitive approach is pre-
sented that introduces an additional regularization operation so that
noise can be sampled without modification and the parity between
estimated and true local covariance is enforced only if required. The
key operation is stated next.

Proposition 3.7 Let Ĉ(Φ) denote a positive definite covariance es-
timate obtained by means of the sample list Φ and let C denote a
positive definite matrix. The sample list Φ̃ = TΦ with

T =
√

C
√

Ĉ(Φ)
−1

, (3.17)

where
√· denotes a regular matrix square root such as the Cholesky

decomposition, satisfies Ĉ(Φ̃, Φ̃) = C.

Proof. It follows from (3.9) that Ĉ(TΦ,TΦ) = TĈ(Φ)(T)>. There-
fore, for given covariances Ĉ(Φ) and C, the challenge is to derive a
transformation matrix T such that TĈ(Φ)(T)> = C. Indeed, the
claim follows with

TĈ(Φ)(T)> =
√

C
√

Ĉ(Φ)
−1√

Ĉ(Φ)
√

Ĉ(Φ)
>√

Ĉ(Φ)
−>

(
√

C)>

=C .

�

77



Chapter 3. Information Fusion in Sensor Networks

By means of Proposition 3.7, equality between estimated and true
covariance can be restored at any time. Indeed, the estimated co-
variance Ĉ(Φ) is positive definite for d ≥ nx independently gener-
ated samples. It is also worth mentioning that samples of synchro-
nized samplers at different sensors are not guaranteed to be equal
when Proposition 3.7 is applied. However, the asymptotic consistency
of valid sample representations is not affected by the regularization
as limd→∞ Ĉ(Φ) = C so that T = I for d→∞.

Moreover, in order to save storage and communication costs, esti-
mates can be integrated into the sample representation Φ by enforc-
ing the average of the samples to coincide with x̂ and by obtaining
the sample covariance with a corrected expectation vector. A more
detailed examination of this idea is given in [186].

3.1.3 Sensor Network Implementation

By means of the theory for finite sample lists, an efficient technique
for the estimation of (cross-)covariance matrices in sensor networks
can be realized. As proposed in Algorithm 3.2, sensors omit the cal-
culation of local covariances and instead maintain sample lists Φ that
depict the estimation error of estimates. As it has been demonstrated,
a recursive processing of these sample lists is feasible by applying the
estimator transformations to Φ.

For the generation of samples for measurement and process noise
terms, each sensor needs access to two noise samplers. Measure-
ment noise samples are generated independently from other samples
by using a pseudorandom number generator. The process noise of
a particular time step is the same for all estimates. Hence, synchro-
nized noise samplers that generate the same samples at all sensors
are implemented by means of pseudorandom number generators that
are initialized with the same seed value, e.g., the current time step.
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Let VE(V)> denote the eigendecomposition of the noise covariance
Cν
i . As the uncertainty of the sample-based covariance estimation

is minimized for Bernoulli distributed samples and the generation of
Bernoulli samples is simple and efficient, noise sample lists Φν are
generated according to φν

i
∼ Vφ̃ with independent [φ̃]ρ, where

Pr
{

[φ̃]ρ = −
√

[E]ρ
}

= 0.5
Pr
{

[φ̃]ρ =
√

[E]ρ
}

= 0.5
, ρ ∈ {1, . . . , nx} .

As argued in Section 3.1.2, the natural covariance estimator pro-
vides estimates with lower uncertainty than the sample covariance.
For zero-mean noise terms, it holds E{e} = 0, and (3.9) simplifies to

Ĉ(Φν1 ,Φν2) = 1
d

Φν1(Φν2)> .

In Algorithm 3.2, the covariance estimation is not explicitly listed,
as its application area depends on the scenario. Estimators for time-
variant systems usually rely on the covariance for the optimization of
filter and fusion gains so that Ĉ can be used as a substitute in these
operations. Then, however, dependencies between samples emerge
that distort the covariance estimate as contended in the introduc-
tion of this section. Still, the scheme can yield promising results as
demonstrated in the next example.

Example 3.5: Sample-based Covariance Estimation versus CI

A scalar system with A = 1.2 and process noise variance Q = 1 is
considered. The state is observed by 10 sensors with Hs = 1 and
noise variances Rs = 12 for s = s1, s2, Rs = 14 for s = s3, s4, and
so on up to Rs = 20 for s = s9, s10. The network topology is a ring
where sensors communicate with their direct neighbors and sensor s1
is connected to sensor s10. Communication is established at every
time step subject to a packet loss probability of 0.25.
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Figure 3.7: The average RMSE of all sensors at different time steps in 100
Monte Carlo runs for the compared estimators.

Overall, three processing schemes are compared. As the baseline,
the local KF processing in combination with the LMMSE fusion
from Theorem 2.5 is realized by means of an omniscient observer,
which defines the one-time-step optimal solution to decentralized es-
timation. The sample-based scheme uses the same estimator but op-
timizes the gains by means of estimated (cross-)covariance matrices
obtained with Algorithm 3.2 and Bernoulli distributed noise samples.
Additionally, the estimates provided by covariance intersection [85]
in combination with local KFs are compared.

As it can be seen in Figure 3.7, the sample-based covariance estima-
tor improves with the number of processed samples. The fusion of
estimates with covariance intersection does not exploit correlations.
Therefore, the fusion result cannot be better than the prior estimate
with the smallest bound. Consequently, the sample-based scheme
provides a lower average RMSE than covariance intersection even
though it does not take into account dependencies that emerge due
to the concurrent gain optimization and covariance estimation. As a
matter of fact, the sample-based estimation scheme with 100 samples
yields almost the same RMSE as the baseline processing. �
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3.2 Bounding of Covariances

The precision of Algorithm 3.2 can be improved further by processing
local covariances additionally to the sample lists as long as estimates
are not fused. Then, the regularization from Section 3.1.2 - c can
be used to eliminate stochastic errors in the estimation of local covari-
ances. To this end, a regularization step according to Proposition 3.7
is carried out every time before Ĉ is transmitted or calculated.
Finally, it is worth mentioning that only one-sided matrix multiplica-
tions are required to process samples. Therefore, the computational
effort is even lower than for local KFs when the size of the sample
list d is smaller than the dimension of the state. For data fusion, each
sensor transmits the tuple (x̂s,Φs) with nx × (d+ 1) elements to all
neighbors. Hence, the communication effort increases with addi-
tional samples linearly in the state dimension. Indeed, it is possible to
generalize the natural covariance estimator, e.g., by means of regres-
sion techniques, such that consistent estimates of (cross-)covariance
matrices are also obtained for differing sample list sizes. This allows
minimizing the communication effort by transmitting only subsets of
locally held samples.

3.2 Bounding of Covariances

It is an inevitable consequence of restricted model knowledge that the
exact calculation of cross-covariance matrices requires disproportion-
ate effort and the sample-based covariance estimation provides only
uncertain quality information. Hence, a computationally efficient ap-
proach that enables reliable covariance estimation with quality guar-
antees is still not available.
This is aggravated by practical problems often neglected in LMMSE
theory. Namely, due to modeling errors, unknown perturbations, and
other influences, covariances of initial estimates and those of noise
terms emerging in state and measurement models are often impre-
cisely known. A variety of techniques to cope with such systematic
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uncertainties has been proposed [119, 162]. For example, if the sys-
tematic uncertainty is the consequence of the linearization by means
of a Taylor series [168], the error in the model can be inferred from the
underlying function. A more general approach is to handle system-
atic uncertainties with set theoretic methods [121]. This, however,
may lead to conservative results and increases the complexity in the
considered stochastic framework, as additional set variables must be
processed.

A purely stochastic approach for the handling of model errors and
unknown dependencies is to inflate emerging covariances artificially
such that a conservative bound according to the next definition is
obtained.

Definition 3.4 Let C denote the covariance of a random variable.
A (covariance) bound is a symmetric matrix P that satisfies P ≥
C in the positive semi-definite sense. Tuples of estimates x̂ and
bounds P with P ≥ E{(x̂− x)2} are termed consistent.

Covariance bounds can be understood as generalizations of covari-
ances. Instead of enforcing the equality C = E{(x̂− x)2}, they are
supposed to satisfy the inequality P ≥ E{(x̂− x)2}. Bounds also in-
tegrate perfectly into linear estimation theory since they can be used
as substitutes of covariances.

An analysis of the formulas for the calculation of covariances in
the different processing steps shows that all formulas (2.20), (2.22)
and (2.24) feature the same structure C = T̃C̃(T̃)>+ T̆C̆(T̆)> with
covariances C̃, C̆ and linear transformation matrices T̃, T̆. There-
fore, with bounds P̃ ≥ C̃, P̆ ≥ C̆, it follows from Observation 7.7.2
in [76] that the true covariance after the operation is bounded as well,
i.e.,

C = T̃C̃(T̃)> + T̆C̆(T̆)> ≤ T̃P̃(T̃)> + T̆P̆(T̆)> = P . (3.18)
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3.2 Bounding of Covariances

Analogous considerations permit the substitution of covariances in
the fusion operation, which, in summary, reveals the following obser-
vation.

Observation 3.8 A bound on the true covariance of linear estima-
tors is obtained by replacing covariances with bounds in the calcula-
tions, i.e., bounds remain valid when they are processed as substitutes
of covariances.

Therefore, the equation P ≥ C is still fulfilled when initial uncer-
tainties or noise covariances are overestimated. On the other hand,
bounds describe the underlying covariance exactly as long as no ap-
proximations due to the fusion of estimates or uncertainties in the
model are applied.
Now, consider filter and fusion operations of linear estimators. In the
LMMSE framework, gains, e.g., in the KF, are supposed to optimize
the covariances of estimates. However, in the light of the above, these
covariances are unknown and are substituted by bounds. Hence, the
idea pursued in this section is to minimize covariance bounds.
This is a meaningful generalization of the mean squared error theory
as it corresponds to the LMMSE when bounds are exact and mini-
mizes the worst-case uncertainty otherwise. Indeed, bounds can then
be employed as substitutes for the unknown covariances in the for-
mulas such that filter and fusion gains with substituted covariances
minimize the bounds instead of the true covariances. The relation
between bounds and covariances is depicted in Figure 3.8.
In order to provide a bound on the true covariance in the fusion under
unknown cross-covariance matrices, the set of all possible covari-
ances of the fused estimate must be considered. Indeed, this set is
bounded, as the set of possible correlations (and cross-covariance ma-
trices) is restricted [52, 84, 114]. Now, several challenges arise. In a
first step, bounds for given gains and covariances need to be derived.
Then, the optimal bound subject to a meaningful optimization crite-
rion J {·} is to be calculated. Finally, the question arises whether

83



Chapter 3. Information Fusion in Sensor Networks

kR

1−kQprediction

fusion

kx̂

1−kx̂

k|kx̂

prediction

fusion

kC

k|kC

1−kC1−kP

kP

k|kP

}sP,sx̂{

kz f ilteringf iltering

Figure 3.8: The processing of estimates, covariances, and bounds.

there are gains that constrain the set of possible covariances in a way
that an especially small bound is obtained. The latter challenge is
given by

arg min
Fs,s∈S

J {P} with P ≥ E
{(∑

s∈S
Fsx̂s − x

)2}
(3.19)

for unknown joint covariances matrix C̄. The derivation of such
bounds P has been examined in different areas of literature. His-
torically, set theory was investigated first. Therefore, some of the
results concerned with covariance bounding are special versions of
statements from ellipsoidal set theory or rely heavily on them. Pio-
neering work pertaining to the bounding of ellipsoids has, for example,
been carried out in [146] and [101].
In the context of stochastic estimation, bounds are tried to achieve
using the maximum eigenvalues of prior covariances. To this end, the
Löwner-John Ellipsoid, i.e., the largest ellipsoid contained in the
intersection of prior covariance ellipsoids, is calculated to account for
a bound on the mutual information. The idea proposed in [15] is
to use the Löwner-John Ellipsoid to calculate a maximum covariance
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that is supposed to serve as a bound. A more rigorous motivation and
exploitation of the corresponding theory is provided in the derivation
of ellipsoidal intersection [149–151].

However, in simulations it has turned out that ellipsoidal intersection
and the technique from [15] are not consistent according to Defini-
tion 3.4. This is due to potential correlations between the maximum
mutual error and sensor-specific errors, which are neglected in the
derivations of the algorithms.

The derivation of suitable gains for the fusion under unknown corre-
lations has been examined in [180] by considering all possible cross-
covariance matrices and the corresponding LMMSE fusion formulas.
Premised on the assumption that cross-covariance matrices are uni-
formly distributed, optimized fusion gains are obtained.

Indeed, the most popular technique for the fusion under completely
unknown correlations that guarantees consistent estimates is covari-
ance intersection (CI) [85,87–89]. However, when cross-covariance
matrices are completely unknown, a large set of possible outcomes
must be considered to obtain a bound. Therefore, the objective of
this section is to reconstruct cross-covariance matrices partially and
to exploit this partial knowledge in the fusion of estimates. The key
elements are as follows:

• CI is proven to provide the smallest bound for the fusion
of two estimates under completely unknown correlations.

• A generalization of CI that takes into account partially
known cross-covariance matrices is derived.

• Different covariance representations based on noise de-
compositions for linear systems are proposed.

• A combination of reconstruction and bounding tech-
niques with tunable precision is derived.
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The results constitute important properties of CI that can help to
establish the procedure in theoretical and practical works concerned
with the fusion of estimates. In particular, the generalized fusion
method that allows including partially known correlations provides
additional flexibility in designing efficient sensor network estimators.
In combination with the techniques for the reconstruction of cross-
covariance matrices, an efficient fusion algorithm for sensor network
estimation is obtained.

3.2.1 Covariance Intersection

The idea brought forward by CI is to inflate covariances by means
of scalar factors in order to account for all possible cross-covariance
matrices in the fusion of estimates. Originally, it has been proposed
for two sensors [85] by means of the fusion formulas

x̂ω =Pω(ω(Cs1)−1x̂s1 + (1− ω)(Cs2)−1x̂s2
)
, (3.20)

Pω =
(
ω(Cs1)−1 + (1− ω)(Cs2)−1)−1

, (3.21)
where the scalar parameter ω ∈ [0, 1] is to be optimized according to
a criterion J {·} with

ω̂ = arg min
ω
J {Pω} . (3.22)

Appropriate candidates for the criterion J {·} are the trace or deter-
minant [118]. The optimization of ω is necessary as unlike for the
KF, CI does not provide a covariance Pω that is smaller than any
other covariance bound in the positive definite sense. However, for
any choice ω, the covariance provided by CI constitutes a bound [85]
as illustrated by means of covariance ellipsoids in Figure 3.9. For the
ease of notation, x̂ω and Pω are denoted as x̂ and P in the sequel.
Readers familiar with linear fusion algorithms may have noticed the
resemblance of (3.21) to the fusion of uncorrelated estimates de-
scribed in Corollary 2.6. In fact, the CI formulas correspond to the
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Figure 3.9: Bounds (dashed) provided by CI for prior covariances Cs1 =
diag (4, 1), Cs2 = diag (1, 8), and ω ∈ {0.2, 0.8}. The true co-
variances (solid) for Cs1s2 = I are depicted as well.

convex combination of Corollary 2.6 for inflated local covariances
1
ωCs1 and 1

1−ωCs2 . This similarity does not exist by chance. As it
has been shown in [31], the inflation of local covariances yields bounds
on the fused estimate for arbitrary unbiased fusion gains. Going one
step further, joint covariance matrices delineated in Section 2.3.4 can
be considered that permit the representation of local covariances and
linear dependencies of arbitrary many estimates in a unified matrix.
In particular, bounds on joint covariance matrices ensure consistency
in the fusion according to the next statement.

Lemma 3.9 Let C̄ denote the joint covariance matrix of estimates
x̂s, s ∈ S and let P̄ ≥ C̄ denote a joint covariance matrix bound.
For F =

(
Fs1 , . . . ,FsS

)
and

∑
s∈S Fs = I, P = FP̄(F)> constitutes a

bound on the true covariance E{(∑s∈S Fsx̂s − x)2} = FC̄(F)>, i.e.,
P ≥ FC̄(F)>.

Proof. According to (2.27), the true covariance of the fused esti-
mate is given by FC̄(F)>. As F ∈ Rnx×|S|·nx and nx ≤ |S| · nx, the
claim follows immediately from Observation 7.7.2 in [76]. �
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With Lemma 3.9, CI can be generalized to account for partially
known correlations. Consider for example two estimates with errors
es = x̂s − x, s ∈ {s1, s2}. When the errors es are the sums of two
parts es = esa + esb, and es1

a is independent from es2
b , es2

a , es2
b (anal-

ogously es2
a ), the joint covariance matrix is the sum of two matrices

and unknown correlations must be bounded for one part only.

Interestingly, the additive error representation evolves naturally in
linear models as noise terms can be considered independently of each
other. This has been exploited in split CI [87,88] by proposing fusion
formulas for the error decomposition into esa and esb. An extension
to multiple estimates and the explicit consideration of pedigree infor-
mation has been proposed in [4, 5].

When the errors es1
a and es2

a are not independent but correlated to
a known extent, bounding techniques for two estimates have been
presented in [68,120].

Alternatively, additional assumptions about the cross-covariance ma-
trices can be introduced. In [67], a scalar coefficient has been
utilized to confine the set of possible cross-covariance matrices and
to provide smaller covariance bounds. This idea has been rediscov-
ered and extended to include known correlations in [139]. An explicit
consideration of estimation vectors x̂s1 and x̂s2 in the fusion process
based on CI has been proposed by means of covariance union [163].
The motivation is to provide consistent estimates even if one of the
prior quantities is spurious.

Further research has been carried out to reduce computational effort
that is due to the optimization in (3.22). One path is to employ an
optimization function that can be solved efficiently. In this context,
approximations for trace and determinant optimizations have been
proposed [48,118] and set theoretic measures have been utilized [167].
In [181], efficient techniques to solve the optimization with the trace
or determinant as criterion are discussed and closed-form solutions
for low-dimensional systems are provided.
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3.2.1 - a Optimal Fusion under Unknown Correlations

For known joint covariance matrices, the LMMSE fusion for two esti-
mates is uniquely specified by Theorem 2.5. In the following, an anal-
ogous result for the fusion under unknown correlations is obtained.
To this end, CI is shown to be the solution of (3.19).
The optimality of CI has already been considered in literature. In [31]
it has been shown that CI provides the smallest bound in terms of
the trace when the fused covariance satisfies

tr {C} !=
√

tr {Fs1Cs1(Fs1)>}+
√

tr {Fs2Cs2(Fs2)>} .
However, the assumed equation holds only for covariances that are
inflated with a scalar factor. Thus, optimality of CI according (3.19)
is not implied. In [163], tightness of CI in the joint space could
be established. However, a connection between a tight bounding in
the joint space and the optimality of the fused bound has not been
provided. The following proof is conducted along the lines of [179].
It utilizes a result on the tight bounding of ellipsoidal intersections
from [90,91].

Theorem 3.10 Let J {·} denote a strictly monotonically increasing
cost function3. The linear combination of two priors that minimizes
the covariance bound on the fused estimate under completely unknown
correlations is specified by fusion gains

Fs1 = ω̂C(Cs1)−1 and Fs2 = (1− ω̂)C(Cs2)−1 (3.23)

with

C =
(
ω̂(Cs1)−1 + (1− ω̂)(Cs2)−1)−1

, (3.24)

where ω̂ = arg minω J {C}.
3A matrix function is called strictly monotonically increasing when it satisfies C > C̃⇒
J {C} > J

{
C̃
}
.
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Proof. First, note that for each cross-covariance matrix Cs1s2 , the
covariance C̃ of the LMMSE combination is obtained with Theo-
rem 2.5. As optimality holds in the positive definite sense, the com-
bination of estimates with other gains yields covariances C that are
larger in the positive definite sense. In other words, the ellipsoid Ẽ
of C̃ is contained in the ellipsoids E of C, i.e., Ẽ ⊆ E .
Hence, a necessary (but not sufficient!) condition for a covariance
bound P is that it must be larger than C̃ for all possible cross-
covariance matrices in order to guarantee that P ≥ C ≥ C̃, where
C is the covariance of the fused estimate subject to the gains used
in (3.19). According to statements (1) and (2) from [31], the set
of optimal covariances for all possible cross-covariance matrices is
described by the ellipsoidal intersection Es1 ∩ Es2 , where Es is the
ellipsoid of the covariance Cs, s ∈ {s1, s2}. From C̃ ≤ P, it follows
that the ellipsoid that depicts the optimal bound P̃ must contain the
intersection Es1 ∩ Es2 . Now, it has been proven by Kahan in [90, 91]
that for all covariances P that are not represented by

(
ω(Cs1)−1 + (1− ω)(Cs2)−1)−1

, ω ∈ [0, 1],

a covariance P̃ with P̃ < P whose ellipsoid encloses the intersection
Es1∩Es2 can be derived. It is a consequence of the strict monotonicity
of the cost function that

J
{
P̃
}
< J {P} .

Hence, if gains can be found such that the true covariances are
bounded by P̃, the solution to (3.19) is found along these gains and
bounds.
Indeed, it has been proven in [85] that for fixed ω ∈ (0, 1), the
gains (3.23) yield covariances that are conservatively bounded by
P̃. Therefore, the optimal gains and bounds are given by (3.23)
and (3.24). For ω ∈ {0, 1}, one of the estimates is dismissed and
so, a conservative bound is yielded trivially. Finally, with the opti-
mal ω̂ the cost function is minimized, which concludes the proof. �
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Figure 3.10: Emerging covariances and bounds in the fusion of two estimates.
The prior covariances are depicted in grey and the CI bound
in dashed blue. For specific cross-covariance matrices, the true
(unknown) covariance for the fused estimate is illustrated in the
right figure for two examples.

Obviously, gains and fused covariance from Theorem 3.10 correspond
to the CI formulas (3.21). Now, let C and C̃ denote two covariances
with C̃ < C. It follows from the positive definiteness of the matrix
difference that the diagonal entries in C are larger than the ones of
C̃. Therefore, it holds

tr
{
C̃
}
< tr {C} ,

i.e., the trace is a strictly monotonically increasing cost function J {·}
and satisfies the assumption of Theorem 3.10. As the trace of the
covariance denotes the MSE of the estimate, the following result is
obtained.

Corollary 3.11 The fusion of two estimates under completely un-
known correlations that minimizes the MSE of the bound on the fused
estimate is specified by CI.

As demonstrated in the proof of Theorem 3.10, the covariance el-
lipsoid provided by CI encloses the covariance ellipsoids obtained
by Theorem 2.5 for all possible cross-covariance matrices. Note, how-
ever, that for each cross-covariance matrix, the true covariance of the
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fused estimate obtained with CI gains (3.23) is larger than the coun-
terpart obtained with LMMSE gains under known correlations, i.e.,
with Theorem 2.5. In particular, the true covariances obtained by
CI are in general larger than the intersection Es1 ∩ Es2 , as illustrated
in Figure 3.10.

The extension of Theorem 3.10 to more than two estimates is not
trivial. As shown in [91], ellipsoids provided by the natural extension
of CI (c.f., Section 3.2.2) do not necessarily circumscribe the intersec-
tion of the prior covariance ellipsoids tightly. Therefore, it is possible
that smaller bounds than the ones provided by CI can be derived for
more than two estimates. A more detailed discussion on this topic is
given in [179].

3.2.2 Generalized Covariance Intersection

In sensor network estimation, all information received at a particu-
lar time step is to be combined. In general, the number of packets
exceeds two, which necessitates repeated applications of CI.

However, the bounds obtained with CI are optimal with respect to
the considered cost function only and not in the positive definite
sense. Hence, even if the same optimization criterion is utilized in
each iteration, the bound is in general suboptimal after repeated
applications of CI [174] as illustrated in Figure 3.11.

In the following, batch formulas are presented that enable the opti-
mization of bounds for an arbitrary number of estimates and that
outperform the sequential application of CI. Then, the inclusion of
partially known cross-covariance matrices is facilitated based on a
decomposition of error terms.

For CI, a generalization to more than two estimates has already been
discussed in literature [31, 118, 163]. Let ωs1 , . . . , ωsS∈ [0, 1] denote
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Figure 3.11: Bounds for three covariances Cs1 = diag (4, 1), Cs2 = diag (2, 4),
and Cs3 = diag (1, 8). In the left figure, the trace optimal bound
P1 for Cs1 and Cs2 is depicted. When this bound is used as input
for the fusion with Cs3 , the bound P2 is obtained. However, a
direct optimization over all covariances excludes information from
Cs2 and yields P3 with tr

{
P3} < tr

{
P2}.

scalar weighting factors with
∑
s∈S ω

s = 1. The CI formulas general-
ize naturally to

x̂ =P
∑

s∈S
ωs(Cs)−1x̂s , (3.25)

with fused covariance bound

P =
(∑

s∈S
ωs(Cs)−1

)−1
, (3.26)

where {ωs}s∈S are obtained subject to the optimization criterion
J {·} according to

{ω̂s}s∈S = arg min
ωs1 ,...,ωsS

J {P} = arg min
ωs1 ,...,ωsS

J
{(∑

s∈S
ωs(Cs)−1

)−1
}
.

(3.27)
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Figure 3.12: The naïve sequential application of CI versus the batch processing
that optimizes all {ωs}s=s1,s2 at once.

It is easy to verify that the formulas boil down to CI when |S| = 2
and provide different weights than a sequential optimization when
more than two estimates are combined as illustrated in Figure 3.12.

It has already been mentioned for two estimates that a bound on the
joint covariance matrix is obtained by means of inflated block diag-
onal covariances. The corresponding statement for arbitrary many
estimates is given as follows.

Lemma 3.12 Let C̄ denote a joint covariance matrix with covari-
ances Cs, s ∈ S on the block diagonal. The matrix P̄ defined as

P̄ =




1
ωs1 Cs1 . . . 0

... . . . ...
0 . . . 1

ωsS CsS


 (3.28)

with ωs > 0,
∑
s∈S ω

s = 1 is a bound on C̄.

Proof. The proof follows [178]. Let C̄S̃ and P̄S̃ denote the joint
covariance matrix and the corresponding bound of the first |S̃| ≤ |S|

94



3.2 Bounding of Covariances

entries, i.e.,

C̄S̃ =




Cs1 . . . Cs1sS̃

... . . . ...
CsS̃s1 . . . CsS̃




and

P̄S̃ =




1
ωs1 Cs1 . . . 0

... . . . ...
0 . . . 1

ω
sS̃ CsS̃


 .

It is proven by induction that ω̄S̃P̄S̃ ≥ C̄S̃ with ω̄S̃ =
∑
s∈S̃ ω

s. Then,
the claim follows immediately with ω̄S = 1.
For |S̃| = 1, it holds ω̄1P̄1 = ωs1

ωs1 Cs1 ≥ Cs1 . For the induction step,
let the claim be satisfied for |S̃| − 1. Then,

ω̄S̃P̄S̃ − C̄S̃ =ω̄S̃
(

1
ω̄S̃−1 ω̄

S̃−1P̄S̃−1 0
0 1

ωS̃
CsS̃

)
− C̄

=




ω̄S̃

ω̄S̃−1 ω̄
S̃−1P̄S̃−1 − C̄S̃−1 −C̄(S̃−1)S̃

−C̄S̃(S̃−1) ω̄S̃

ωS̃
CsS̃−CsS̃


 ,

where C̄(S̃−1)S̃ denotes an unknown cross-covariance matrix. Accord-
ing to the induction hypothesis, it holds ω̄S̃−1P̄S̃−1 ≥ C̄S̃−1. Thus,
it follows with ω̄S̃

ω̄S̃−1 ≥ 0,

ω̄S̃P̄S̃ − C̄S̃ ≥


ω̄S̃−ω̄S̃−1

ω̄S̃−1 C̄S̃−1 −C̄(S̃−1)S̃

−C̄S̃(S̃−1) ω̄S̃−ωS̃
ωS̃

CsS̃


 .

According to Theorem 7.7.6 from [76], the difference is positive defi-
nite, if and only if

C̄S̃(S̃−1) ω̄S̃−1

ω̄S̃ − ω̄S̃−1
(C̄S̃−1)−1C̄(S̃−1)S̃ <

ω̄S̃ − ωS̃
ωS̃

CsS̃ .
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With ω̄S̃ = ω̄S̃−1 + ωS̃ , the scalar factor simplifies to

ω̄S̃−1

ω̄S̃ − ω̄S̃−1
= ω̄S̃−1

ωS̃
= ω̄S̃ − ωS̃

ωS̃
.

Therefore, it holds ω̄S̃P̄S̃ ≥ C̄S̃ for positive semi-definite CsS̃ . �

Note that this result is more general than the consistency statements
in [31, 85, 118, 146], as consistency of the fused estimate follows from
consistency in the joint space according to Lemma 3.9. Applied to
the batch CI formulas, the next corollary is obtained.

Corollary 3.13 Let x̂ and P denote the CI fusion result from (3.25)
and (3.26). When Cs = E{(x̂s − x)2}, s ∈ S, then P ≥ E{(x̂− x)2}.

Proof. Let C̄ denote the true joint covariance matrix with Cs on
the block diagonal and P̄ the bound from Lemma 3.12. Consider the
fusion matrix F =

(
ωs1P(Cs1)−1 . . . ωsSP(CsS )−1). Then, the

claim follows immediately with Lemma 3.9. �

3.2.2 - a Partially known Cross-covariance Matrices

Now, let the errors of the prior estimates be the sums of two uncor-
related parts each, i.e.,

es = x̂s − x = esa + esb with E{esa(es̃b)>} = 0 ,

and let ē =
(
(es1)> · · · (esS )>

)> denote the joint space error with
decomposition ē = ēa + ēb. As error parts ea and eb are independent
from each other, the joint covariance matrix is given by

C̄ = E{ē(ē)>} = E{ēa(ēa)>}+ E{ēb(ēb)>} = C̄a + C̄b ,

where C̄a and C̄b are the joint covariance matrices that account for
the error terms ea and eb respectively.
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Starting from the premise that all (cross-)covariance matrices be-
tween esa and es̃a as well as the (local) errors E{esb(esb)>} are known,
the joint covariance matrix C̄a and the block diagonal matrices of C̄b

can be calculated. Let P̄b denote the joint covariance matrix bound
of C̄b from Lemma 3.12. Then, a bound for the (overall) joint
covariance matrix is given by

P̄ := C̄a + P̄b ≥ C̄a + C̄b = C̄ , (3.29)

which, in turn, specifies a bound on the fused covariance for any linear
combination of estimates by means of Lemma 3.9. The optimal fusion
gains for the additive covariance representation are specified in the
next statement.

Theorem 3.14 Let estimates x̂s, s ∈ S with joint covariance matrix
decomposition C̄ = C̄a + C̄b be given. Then, P̄ = C̄a + P̄b with P̄b

from Lemma 3.12 provides a joint covariance matrix bound and the
fusion gains F =

(
Fs1 . . . FsS

)
that minimize the bound P on the

fused estimate are obtained by

F =
(
Fs1 . . . FsS

)
= P1(P̄)+ with P = ((1)>(P̄)+1)+ , (3.30)

where P̄b is chosen subject to the optimization problem

min
ωs1 ,...,ωsS

J {P} , ωs > 0 ,
∑

s∈S
ωs = 1 . (3.31)

Proof. The proof follows [178]. The bound provided by Theo-
rem 3.14 is the result of a fusion operation with joint covariance
matrix C̄ = C̄a + P̄b. For a given joint covariance matrix with fixed
weights, the gains that provide the optimal covariance in the positive
definite order are given by Theorem 2.5. An application of the for-
mula leads to the fused covariance bound P =

(
(1)>(C̄a + P̄b)+1

)+
,

and the specified fusion gains. The given optimization problem for
{ωs}s∈S calculates the optimal weights subject to the cost function
J {·}. �
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Figure 3.13: The ellipsoids for the covariances Cs1 and Cs2 as well as for the
covariance of the fused estimate C subject to different degrees of
knowledge about cross-covariance matrices.

Theorem 3.14 constitutes the optimal fusion method for the theory
in [68, 120] and unifies the LMMSE fusion under known correlations
from Theorem 2.5 with bounding techniques under unknown correla-
tions. In particular, some special cases are covered:

• For C̄a = 0, the joint covariance matrix bound is given by
P̄ = P̄b, i.e., batch CI from (3.25) and (3.26) is obtained.

• For C̄a block diagonal, the known error parts ēa are uncorre-
lated, and the optimization corresponds to split CI [88].

• For C̄b = 0, no bounding is necessary and the LMMSE fusion
under known correlations from Theorem 2.5 is obtained.

Note that C̄a comprises known correlations and C̄b aggregates errors
terms with unclear dependencies. Hence, a worst-case assessment
of the tightness of the covariance C̄ = C̄a + C̄b is given by

α =
tr
{
C̄a

}

tr
{
C̄a

}
+ tr

{
C̄b

} , α ∈ [0, 1] . (3.32)
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For α = 1, the covariance of the fused estimate is exact and for α = 0,
(conservative) CI bounds are provided. In general, the smaller α is,
the more inexact is the covariance of the fused estimate provided
in Theorem 3.14. This relation is illustrated in the next example.

Example 3.6: CI with Partially Known Cross-covariance Matrix

Consider two estimates defined by (cross-)covariance matrices

Cs1 =
(8 2

2 2

)
, Cs2 =

( 2 −2
−2 8

)
, and Cs1s2 =

(2 0
0 2

)
.

The optimization of fusion gains according to Theorem 3.14 depends
on the knowledge about the cross-covariance matrices.
In this example, the cases with no, partial, and full knowledge about
cross-covariance matrices are examined. To this end, the same joint
covariance matrix C̄ with the following decompositions into C̄a and
C̄b is considered:

• No knowledge: α = 0: C̄a = 0, C̄b = C.

• Partial knowledge: α = 0.5: C̄a = 0.5 ·C, C̄b = 0.5 ·C.

• Full knowledge: α = 1: C̄a = C, C̄b = 0.

In Figure 3.13, the bounds and true covariances of the fused estimate
obtained with gains (3.30) and ω = 0.2 are depicted. The more knowl-
edge about cross-covariance matrices is available to the estimator, the
smaller are the bounds.
In fact, for the considered scalar decomposition of C̄ into C̄a and C̄b,
the bound and true covariances shrink monotonically with increasing
α. By examining other decompositions, a smooth transition from CI
(α = 0) to LMMSE fusion results (α = 1) can be observed. �
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Apart from the special case that C̄b = 0, it is necessary to opti-
mize the parameters {ωs}s∈S in (3.31). Indeed, as discussed in Sec-
tion 3.2.1, closed-form equations for arbitrary dimensions and op-
timization criteria such as the trace or determinant are not even
available for two estimates. Thus, for more than two estimates, a
multivariate optimization problem has to be solved with numer-
ical methods, which in general involves a considerable computational
effort. Fortunately, as motivated in Figure 3.14 and proven in Ap-
pendix C, the optimization is convex for the trace as optimization
criterion.

Theorem 3.15 For J {·} = tr {·}, the optimization of {ωs}s∈S in
Theorem 3.14 is an equality constrained convex optimization problem.

For convex optimization problems, local minima are globally opti-
mal so that numerical optimization techniques, e.g., gradient descend,
converge to the desired solution.

Moreover, powerful toolboxes are available that efficiently compute
convex optimization problems [20, 61]. As it has been argued above,
batch CI is a special case of Theorem 3.14 so that Theorem 3.15
applies.

Corollary 3.16 The CI optimization from (3.27) with J {·}=tr {·}
is convex.

As it has been demonstrated, CI bounding techniques can be used to
generalize the LMMSE fusion theory in terms of the knowledge about
correlations. More precisely, knowledge about cross-covariance matri-
ces can be included and the optimal fusion gains in the considered
framework can be obtained with Theorem 3.14. The necessary opti-
mization is convex so that efficient implementations can be used.
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Figure 3.14: In the left figure, covariances and bounds of Example 3.6 with
α = 0.5 for Cs1 , Cs2 , and C with ω ∈ {0.2, 0.9} are depicted. In
the right figure, the traces of C and P are plotted for all relevant ω.

3.2.3 Aggregation of Independent Noise Terms

In order to optimize the bound on the fused estimate, the part of
the covariance that needs to be inflated, i.e., C̄b must be minimized.
In the following, the conditional independence of locally observed
measurements is exploited to derive a decomposition of the local co-
variance at each node into a part that represents exclusively local
information and a remainder. As error terms comprised in the for-
mer are independent from all other noise terms, the corresponding
joint covariance matrix is block diagonal and can be used to improve
the bound in Theorem 3.14. In fact, the collection of independent
terms has originally been proposed with split CI [88] such that the
following considerations are an application of the split CI theory to
linear estimation.

Before an aggregation of noise covariances is presented, the evolution
of (cross-)covariance matrices in sensor networks is analyzed. For
this purpose, the error decomposition from Section 3.1.1 is applied
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At initialization, the cross-covariance matrix is determined by the
correlation of the estimates. For independent estimates, the cross-
covariance matrix is E{es1

0 (es2
0 )>} = 0. In the prediction step, the

common process noise {wk}k∈K is added to the true system, leading
to

Cs1s2
k+1 = AkCs1s2

k (Ak)> + Qk . (3.33)
In the filtering operation, estimates x̂s are transformed with Ls and
measurement noise with E{(x̂s − x)vs} = 0 is added such that the
cross-covariance matrix follows as

Cs1s2
k|k = Ls1

k Cs1s2
k (Ls2

k )> . (3.34)

The description of concurrent transformations at multiple nodes in
the fusion operation amounts to a complicated formula that is the
result of the matrix transformation in (2.36). If only the fusion of
estimates at node s1 is considered, this formula simplifies to

Cs1s2 =
∑

s∈S
FsCss2 . (3.35)

With the independence of individual noise terms, i.e., E{ψ
i
(ψ

ĩ
)>} =

0 for i 6= ĩ, the same considerations that led to the sum representa-
tion of the error (3.7) also permit specifying a sum representation of
(cross-)covariance matrices.

Theorem 3.17 The (cross-)covariance matrices of linear estimators
in linear systems according to Definition 2.1 are given by

Cs1s2 =
∑

i∈Is1∩Is2
Ts1
i Cν

i (Ts2
i )> , (3.36)

with transformation matrices Ts
i from (3.7) and noise covariances

Cν
i = E{ψ

i
(ψ

i
)>} , ψ

i
∈ {vsk,wk, es0 | s ∈ S , k ∈ K}.
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Figure 3.15: Relations between estimates, true state, error processes, and covari-
ances. By means of estimates and the true state, error processes
are determined, which, in turn, define (cross-)covariances.

Note that the transformation matrices Ts
i comprise all linear transfor-

mations that have been applied to the estimator since the respective
noise term has emerged. In particular, it is possible to calculate
the transformation matrices recursively at the sensors without global
model knowledge, e.g., in the prediction step by a multiplication with A.

In the subsequent considerations, it is exploited that measurement
noise covariances do not emerge in cross-covariance matrices as long
as estimates have not been fused. Hence, the idea is to classify
terms in the sum decomposition from Theorem 3.17 into a part Cs

a

that consists of linearly transformed measurement noise covariances
and a part Cs

b that accounts for all process noise covariances. Then,
both covariances can be processed recursively with standard covari-
ance formulas (2.22), (2.24) and (2.27) at the sensors.
Now, consider the fusion of two estimates x̂s1 and x̂s2 with indepen-
dently observed information. As measurement noise terms stored in
Cs
a are independent from all other noise terms in the sensor network,

the corresponding joint covariance matrix C̄a is given by the block
diagonal matrix

C̄a =
(

Cs1
a 0

0 Cs2
a

)
.
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The cross-covariance matrices between Cs1
b and Cs2

b depend on trans-
formations of both sensors and are assumed unknown. Based on the
joint covariance matrix bound P̄ = C̄a + P̄b, where P̄b is obtained
from Cs

b with Lemma 3.12, fusion gains can be derived with Theo-
rem 3.14. Hence, by assembling noise terms in two separate co-
variances, independent information can be explicitly considered.

Indeed, after the fusion in time step k, the measurements from sensor
s1 are also comprised in the estimate at sensor s2. Thus, the measure-
ment noise terms vs1

k̃
, k̃ ≤ k at sensor s1 are correlated with other

errors in the sensor network. Hence, it is necessary to set Cb = P and
Ca = 0 to ensure the block diagonality of the joint covariance matrix
C̄a. In subsequent time steps, measurement noise terms are added
to Ca such that in the fusion of time step k + 1, the independence
of vs1

k+1 from other noise terms can be exploited. The processing is
summarized in Figure 3.16.

For the considered scenario with two sensors and for distributed esti-
mation systems, the loss of correlation information in the fusion is not
critical as the estimates are highly correlated (if not even equivalent)
after the fusion and for high correlations the true covariance is al-
most as large as the bounded covariance. Unfortunately, the effect is
more striking in decentralized estimation. Consider three sensors
s1, s2, and s3 that observe the same system. Let sensors s1 and s2
communicate in time step k, and let sensors s1 and s3 communicate
in time step k + 2. Then, Cs1

a is set to 0 in the fusion with sensor s2
so that in the subsequent fusion with sensor s3 almost all noise terms
must be inflated. This is reasonable when sensor s2 communicates to
s3 in time step k+ 1. However, otherwise, the measurement noises of
sensors s1 and s3 might be independent so that the achieved bound
is more conservative than necessary.

A generalization of split CI that permits the processing of several
covariances to account for independent measurement noise at each
sensor has been proposed in [4,5]. However, independence is difficult
to achieve in sensor networks as often (weak) correlations emerge
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Figure 3.16: Overview over the processing of covariance bounds for the indepen-
dent noise separation. In the fusion, estimates are exchanged and
so, the measurement noise terms must be bounded subsequently
in Cb. The sum of Ca and Cb constitutes a covariance bound P.

between estimates due to past data exchanges or the diffusion of
information through different communication paths. Therefore, in
decentralized estimation with an arbitrary communication, the pro-
posed generalization achieves similar results as split CI and hence,
brings only little advantage in terms of minimizing the bound.

3.2.4 Individual Noise Decomposition

Motivated by the limitations of split CI, a more general decomposi-
tion scheme that is applicable to sensor network estimation has been
proposed in [178]. The idea is to process individual noise covariances
at the sensors. As it turns out, such bookkeeping allows reconstruct-
ing cross-covariance matrices based on recursively processed matrices
even if global model knowledge is not available. In particular, it is
possible to retain the decomposition structure in the fusion. However,
the processing comes with an infinitely growing computational and
communication effort so that in a second step a bounding technique
is proposed to confine the effort at the costs of optimality.
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3.2.4 - a Exact Reconstruction of Cross-covariance Matrices

Considering the covariance decomposition into transformed noise co-
variances from Theorem 3.17, a technique to reconstruct cross-co-
variance matrices is to store square root terms

√
Cs
i that comprise

transformations Ts
i applied to noise covariances Cν

i such that
√

Cs1
i

√
Cs2
i

>
= Ts1

i Cν
i (Ts2

i )> .
Beginning with a unique square root of the noise covariance Cν

i such
as the Cholesky decomposition, the transformation matrices, and,
consequently, the square roots

√
Cs1
i , can be calculated recursively at

the sensors without global model knowledge. According to (3.3), it
is, in particular, feasible to combine noise covariances in the fusion
operation according to

√
Ci =

∑

s∈S
Fs
√

Cs
i .

Hence, an algorithm for the exact reconstruction of cross-covariance
matrices is to process a set Cs of tuples (

√
Cs
i , i) with indices i ∈ I

at each sensor, exchange these sets along with the estimates, and re-
construct covariances by means of the sum representation from The-
orem 3.17 according to

Cs = ||Cs|| :=
∑

(
√

Cs
i ,i)∈Cs

√
Cs
i

√
Cs
i

>
, (3.37)

and cross-covariance matrices according to the corresponding sum
over the common indices. The proposed processing is summarized
in Figure 3.17, where TCs denotes the short form

TCs := {(T
√

Cs
i , i) | (Cs

i , i) ∈ Cs} .

Let {niν}i∈I denote the dimensions of noise terms {ψ
i
}i∈I . The

square root matrices have dimension nx × niν such that for low-di-
mensional measurements the number of stored entries per term is
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Figure 3.17: The processing of covariance square roots with the noise decompo-
sition approach. All matrices are stored and processed separately
in the set Cs. In the fusion, the sets Cs are exchanged and the
exact covariance is obtained by summing up the (squares of the)
matrices.

small. However, the number of noise terms grows with every pre-
diction and filter step as new process and measurement noise terms
emerge. In particular, after the fusion, all noise terms comprised
in at least one of the involved estimates must be processed. There-
fore, even for short time horizons, computational and communication
effort become considerable.

3.2.4 - b Bounded Reconstruction

In order to confine the effort at the sensors, an extension of the exact
reconstruction technique for the aggregation of noise terms in residu-
als is proposed. To put it into another way, the idea is to process only
“important” noise terms explicitly and to subsume the remaining ones
in a covariance part that needs to be bounded in the fusion.
Let IsC ⊆ Is denote the indices of an arbitrary subset of noise terms
that affect estimate x̂s. Then, the set

Cs = {(
√

Cs
i , i) | i ∈ IsC} (3.38)

107



Chapter 3. Information Fusion in Sensor Networks

contains all noise terms specified by IsC and defines the residual term

Cs
b ≥

∑

i∈Is\IsC

√
Cs
i

√
Cs
i

>
. (3.39)

The residual Cs
b is supposed to be a bound, which leads to the natural

application of covariance bounds to the noise decomposition structure.

Definition 3.5 The noise decomposition (x̂, C,Cb) is called con-
sistent (for the state x) when

C = E{(x̂− x)2} ≤ ||C||+ Cb .

As C gives precise information about the covariance and Cb bounds
the remaining terms, a relation s established as follows.

Corollary 3.18 Let (x̂, C,Cb) denote a consistent noise decomposi-
tion. Then

P = ||C||+ Cb (3.40)

is a covariance bound.

In order to derive an algorithm that provides a consistent decompo-
sition, the operations of linear estimators are examined. Prediction
and filtering do not involve (partially unknown) cross-covariance ma-
trices so that consistency follows directly with (3.18).

Lemma 3.19 Let (x̂, C,Cb) be consistent for the state x and let iv
and iw denote unique identifiers for process and measurement noise
terms of the linear system from Definition 2.1. Then,

• (Ax̂,AC ∪ {(√Q, iw)},ACb(A)>) is consistent for the state
Ax + w and
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• (Lx̂ + Kz,LC ∪ {(K
√

R, iv)},LCb(L)>) with L = (I−KH) is
consistent for the state x.

According to Corollary 3.18, a noise decomposition is consistent, if
the sum of two matrices bounds the true covariance. For this property,
the allocation of noise terms into explicitly stored terms and residuals
is irrelevant. In particular, it is feasible to reduce the number of stored
terms without violating consistency.

Lemma 3.20 Let (x̂, C,Cb) be consistent. Then (x̂, C\C̃,Cb + ||C̃||)
with C̃ ⊆ C is consistent.

In the fusion operation, unknown correlations between the residuals
must be bounded. To this end, the techniques from Section 3.2 are
utilized. More precisely, cross-covariance matrices are reconstructed
for those noise terms that are stored in all sets Cs while the remaining
covariances are bounded.

Lemma 3.21 Let (x̂s, Cs,Cs
b) be consistent for s ∈ S and let IsC

denote the indices of stored terms in Cs. The sets

Cs∩ := {(
√

Cs
i , i) |

√
Cs
i ∈ Cs , i ∈

⋂

s∈S
IsC} ⊆ Cs

specify the intersection of noise terms. Then, (x̂, C,Cb) with

x̂ =
∑

s∈S
Fsx̂s (3.41)

C =
{(∑

s∈S
Fs
√

Cs
i , i
)
|
√

Cs
i ∈ Cs∩

}
(3.42)

Cb =
∑

s∈S

1
ωs

Fs(Cs
b + ||Cs\Cs∩||

)
(Fs)> (3.43)

is consistent for ωs > 0 ,
∑
s∈S ω

s = 1 and fusion gains Fs with∑
s∈S Fs = I.

109



Chapter 3. Information Fusion in Sensor Networks

Proof. First, Lemma 3.20 is invoked to derive consistent noise de-
compositions (x̂s, Cs∩,Cs

b + ||Cs\Cs∩||). As discussed in Theorem 3.17,
covariances are the sums of transformed noise matrices.

According to (3.3), error processes are transformed with Fs such
that the overall noise transformations are given by

∑
s∈S FsTs

i with
Ts
i = 0, if i /∈ IsC . Hence, for the explicitly considered noise terms

Cν
i , i ∈

⋂
s∈S IsC , the square root representations

√
Ci must satisfy∑

s∈S FsTs
i

√
Cν
i , which corresponds to the covariance transformation

described in C.

The (new) residuals Cs
b+ ||Cs\Cs∩|| are inflated with the scalar factors

from Lemma 3.12, yielding a joint covariance matrix bound, which,
in turn, defines a bound on the true residual with Lemma 3.9. �

For an analysis of Lemma 3.21, consider the aggregated noise decom-
positions (x̂s, Cs∩,Cs

b + ||Cs\Cs∩||), where all noise terms that are not
in the intersection

⋂
s∈S IsC are added to the residual terms. Then,

analogies to other fusion techniques under unknown correlations can
be drawn.

In contrast to split CI, the cross-covariance matrices defined by noise
terms in Cs∩ are in general different from zero. In particular, the
set structure C is maintained through the fusion, which enables the
explicit consideration of dependencies in subsequent operations. As
already indicated in the notation, the residual term Cs

b + ||Cs\Cs∩||
corresponds to the covariance Cs

b from Section 3.2.3 and is inflated
with the same technique to achieve a bound. In fact, in the proof
of Lemma 3.21, the joint covariance matrices

C̄a =
∑

i∈
⋂
s∈S I

s
C




√
Cs1
i (
√

Cs1
i )> . . .

√
Cs1
i (
√

CsS
i )>

... . . . ...√
CsS
i (
√

Cs1
i )> . . .

√
CsS
i (
√

CsS
i )>


 (3.44)
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and

P̄b=




1
ωs1 (Cs1

b + ||Cs1\Cs1
∩ ||) . . . 0

... . . . ...
0 . . . 1

ωsS (CsS
b + ||CsS\CsS∩ ||)


 (3.45)

are constructed implicitly such that P̄ = C̄a+P̄b constitutes a bound
in the joint space. Indeed, the bounding theory from Section 3.2.2
is directly applicable to the joint covariance matrix bound. The fusion
gains, for example, are obtained with Theorem 3.14.

Corollary 3.22 Let P̄ = C̄a + P̄b be the joint covariance matrix
bound obtained with (3.44) and (3.45). The fusion gains F = (Fs1 . . .
FsS ) that minimize the bound of the fused estimate P = ||C|| + Cb

from Lemma 3.21 are given by F = P1(P̄)+.

Considerations concerning {ωs}s∈S and convexity of the optimiza-
tion from Theorem 3.15 also apply to the fusion formulas from Corol-
lary 3.22. In terms of the α assessment from (3.32), the relation
between ||Cs∩|| and Cs

b + ||Cs\Cs∩|| determines the tightness.

Now consider a linear estimator specified in Algorithm 2.1. The cor-
responding processing of (x̂, C,Cb) for unbiased linear estimators is
summarized in Algorithm 3.3.

Algorithm 3.3 Sensor Processing of the Noise Decomposition

1: Initialization: (x̂, C,Cb) = (x̂0, {(
√

C0, i
xs
0 )},0)

2: for k = 1; k ∈ K; k = k + 1 do
3: Prediction: (Ax̂,AC ∪ {(√Q, iwk−1)},ACb(A)>)
4: Filtering: (Lx̂ + Kz,LC ∪ {(K

√
R, ivsk )},LCb(L)>)

5: Aggregation: (x̂, C\C̃,Cb + ||C̃||) with C̃ ⊆ C
6: Fusion: (

∑
s∈S Fsx̂s,(3.42), (3.43))

7: end for
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The indices i are to be chosen such that they uniquely identify noise
terms Cs

0, Qk, and Rs
k, s ∈ S, k ∈ K. Viable choices are for example

ix0
s = s, ivsk = k · (S + 1) + s, and iwk = k · (S + 1) +S + 1. Combining
the consistency results for noise decompositions from Lemmata 3.19
to 3.21 with Algorithm 3.3 leads to the following statement about
consistency.

Theorem 3.23 Let the models be as in Definition 2.1 and let all
nodes employ the linear estimator from Algorithm 3.3. For uncorre-
lated initial estimates x̂s0 with Cs

0 ≥ E{(x̂s0 − x0)2}, s ∈ S,

Ps = ||Cs||+ Cs
b ≥ Cs = E{(x̂s − x)2} (3.46)

is satisfied in all time steps.

Proof. The claim is fulfilled at initialization according to the pre-
condition. For the remaining operations, the claim has been proven
in Lemmata 3.19 to 3.21. �

Hence, the noise decomposition approach is compatible with arbitrary
linear estimators and provides covariance bounds that can be used
for the optimization of filter and fusion gains. For an efficient appli-
cation of the algorithm it is, however, necessary to aggregate noise
terms. The associated trade-off between precision, computation, and
communication becomes apparent in the next statement.

Theorem 3.24 Let the assumptions be the same as in Theorem 3.23
and let Ask and Ãsk denote sets of noise terms that have been aggre-
gated in time step k ∈ K at sensor s with two different noise selection
policies. If As

k̃
⊆ Ãs

k̃
, k̃ ≤ k, s ∈ S, it holds Ps ≤ P̃s, where Ps and

P̃s denote the bounds from Theorem 3.23 for the two policies.

Proof. For the sake of simplicity, all variables are defined only for
the baseline policy with aggregation sets Ask. Let analogous variables
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for the other aggregation policy be denoted by a tilde, e.g., Ps and
P̃s. In a first step, the decomposition of the bound P = Ca + Cb is
considered. It is proven for all operations that Cs

b ≤ C̃s
b and Ps ≤ P̃s.

At initialization, the bounds are equal and the invariants are fulfilled.
In prediction and filter steps, Cb and P are linearly transformed and
noise terms Q and KR(K)> are added. As the operations are the
same for both aggregation policies, the inequalities still hold accord-
ing to Observation 3.8. In the aggregation step, the local bounds do
not change. From Ask ⊂ Ãsk, it follows ||Ask|| ≤ ||Ãsk||, and, Cb ≤ C̃b.
From P ≤ P̃ ⇔ Ca + Cb ≤ C̃a + C̃b it follows Ca − C̃a ≤ C̃b −Cb.
Now, consider the joint space covariance C̄a from (3.45) and the
block diagonal matrix C̄b = blkdiag (Cs1

b , . . . ,C
sS
b ). Let ∆ denote

the difference between the joint covariance matrices, i.e., ∆ = C̄a −
˜̄Ca. Then, the block diagonal entries of ∆ are smaller than ˜̄Cb − C̄b.
Therefore, ∆ ≤ ∆(ω), where ∆(ω) denotes any bounding matrix
obtained from ˜̄Cb − C̄b with Lemma 3.12. However, that implies
∆ ≤ ˜̄Pb − P̄b with P̄b from (3.44). Therefore,

P̄ = C̄a + P̄b = ˜̄Ca + ∆ + P̄b ≤ ˜̄Ca + ˜̄Pb = ˜̄P .

The invariants follow immediately with Lemma 3.9. �

According to Theorem 3.24, the precision of the noise decomposi-
tion approach improves monotonically with the consideration of
additional noise terms. As already discussed above, CI is a special
instance of the noise decomposition technique with C = ∅, i.e., CI
corresponds to Algorithm 3.3 when all noise terms are aggregated in
each time step. Hence, the bounds provided by the noise decomposi-
tion approach are smaller than or equal to the ones obtained with CI,
which means that CI defines the worst-case precision for the noise
decomposition technique.
The other extreme is an exact reconstruction of the covariance that
is achieved by storing all noise terms explicitly. The remaining cases
necessitate noise selection policies.
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3.2.4 - c Noise Selection Policies

The precision of the bound obtained by the noise decomposition ap-
proach is determined by the policy that is used in the aggregation
step for the selection of noise terms. Consider for example a sensor
network, where nodes exchange and combine estimates in a hop-to-
hop communication. Then, the diffusion of measurement information
through the network goes along with the distribution of noise terms.
In fact, an estimate x̂s1

k is affected by measurement noise vs2
k̃

only
when the estimate x̂s2

k̃
(or a successor) has been communicated to

sensor s1 in the time period k̃ to k. Therefore, in order to optimize
the bounds, the intersection

⋂
s∈S IsC must be anticipated and maxi-

mized under consideration of the impact of individual noise terms on
the estimation covariance.

Hence, the optimal noise selection technique involves the network
structure and depends on the estimator processing. For the sake of
applicability and simplicity, here, the focus is laid on general policies
to manage the aggregation of noise terms locally. As a motivation,
consider the drawbacks of a naïve selection policy that are illustrated
in the next example.

Example 3.7: Selection Policy for the Noise
Decomposition Approach

Example 3.3 is considered. All nodes are assumed to employ local KFs
and the fusion technique from Theorem 3.14. For the reconstruction
of cross-covariance matrices, noise terms in a varying number are
stored explicitly. Let the noise terms be numbered consecutively such
that measurement noise vsk has the index k · 4 + s, process noise wk

is indexed with k · 4 + 4, and the initial uncertainties are treated as
vs0 with s ∈ {1, 2, 3}, k ∈ {0, . . . , 9}.
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Figure 3.18: The RMSE of the bound of node s3 for different noise selection
policies. The bounds of the ND technique correspond to the
MMSE result as long as the number of stored noise terms does not
exceed the overall number of noise terms in the sensor network.

The utilized noise selection policy is to store only the latest noise
terms ordered by their index. The RMSE of the obtained bounds for
different numbers of noise terms is compared in Figure 3.18. Note
that CI equals ND 0 and the MMSE approach that is implemented
by means of an omniscient observer utilizes Theorem 2.5, which cor-
responds to ND ∞.

As initial covariances are bounded when CI is applied, the bound
provided by CI is already worse than the ones obtained by the other
approaches after the first fusion operation. The noise decomposition
approach yields the MMSE bounds when the number of stored noise
terms is larger than or equal to the number of noise terms that have
emerged in the estimation process. Note that the number of noise
terms has been chosen to cover all noise terms for specific time periods.
When noise terms must be bounded, covariances are inflated and
suboptimal bounds are achieved.
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The explicit storage of noise terms leads to an improvement of the
bounds compared to CI. However, this is only achieved by increasing
the amount of processed and communicated data significantly.
The main reason is that many “empty” noise terms with (0, i) are
processed. For example at initialization, it would be sufficient for
the nodes to know that their own estimate is independent from the
other ones. With the simple noise selection policy, three terms have
to be considered at each node to ensure that the intersection

⋂
s∈S IsC

from Lemma 3.21 entails all noise terms. �

Although the noise decomposition clearly outperforms CI even for
a few noise terms in Example 3.7, most of the stored noise terms
are empty and do not improve the covariance bound. Indeed, as
the sensor network consists of only three nodes, the effect is limited.
However, in large-scale sensor networks, storing empty tuples wastes
resources without improving the performance.
A remedy is to discard only the tuples of noise terms that are older
than a time horizon τ̄ . Then, all noise terms from time steps k−τ̄ to k
are known in the fusion, as they are either stored in Cs or the implicit
knowledge that

√
Cs
i = 0 for i /∈ IsC can be exploited. In terms of

the fusion formula from Lemma 3.21, this policy is implemented by
setting

C̃s = Cs ∪ {(0, i) | i /∈ IsC , k(i) ≥ k − τ̄} , (3.47)

where k(i) denotes the time step when noise term i has emerged.
However, by using the time horizon as optimization parameter, the
effort at the sensors is not precisely adjustable. As a matter of fact,
the number of noise terms in Cs varies and is only loosely bounded
by the number of sensors times the maximum time horizon τ̄ .
Usually, the objective is to guarantee tight bounds while concurrently
the communication effort in terms of the number of noise terms that
need to be transmitted is restricted. In order to fulfill these condi-
tions, a prioritization algorithm can be employed. Let |C | denote
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the number of noise terms in C and let c̄ denote the maximum num-
ber of tuples to store in C. With π : {1, . . . , |C |} → {1, . . . , |C |}, a
permutation is denoted that reflects an ordering of the entries in C
according to

tr
{(√

Cπ(1)

)2}
≥ · · · ≥ tr

{(√
Cπ(|C |)

)2}
.

Then, the noise aggregation with

C̃ = {(
√

Ci, i) | i ∈ {π(c̄+ 1), . . . , π(|C |)}} (3.48)

dismisses the noise terms with the lowest impact on the estimation
error. In order to exploit the partial independence of estimates in the
fusion, noise terms are removed from C only when they are from time
steps k̃ < k− τ̄ . Otherwise, the tuples (

√
Cs
i , i) are replaced by place-

holders (0, i) to indicate that the noise term has been removed. Then,
implicit knowledge about the independence from (3.47) can be uti-
lized again while additional storage and communication requirements
caused by the placeholders are insignificant for high-dimensional sys-
tems.

Additionally, the split CI idea proposed in Section 3.2.3 can be used
to combine multiple noise terms. For example, when node s does not
exchange its estimate at time step k, the measurement noise terms of
node s of time steps k and k+1 can be combined to form an artificial
noise term. Another extension pertains to different requirements in
computation and communication. In many scenarios, the costs for
the latter are higher such that it can be appropriate to generate tem-
porary noise decompositions (x̂, C\C̃,Cb + ||C̃||) exclusively for the
communication with neighboring nodes while concurrently the origi-
nal noise decompositions are utilized in subsequent local operations.
A simple implementation of a more elaborate noise selection policy
is examined in the next example.

117



Chapter 3. Information Fusion in Sensor Networks

Example 3.8: Optimized Noise Decomposition

Consider Example 3.7 again. The idea is to reduce computational and
communication effort by utilizing the concept of implicit knowledge.
To this end, let nodes store all noise terms that constitute the local
estimation error and that do not reach back more than a particular
number of time steps into the past. Then, the square roots of covari-
ances larger than zero are stored explicitly and the remaining terms
of the considered time steps are reconstructed by means of (3.47).

In order to achieve the MMSE results for the first 1, 2, or 3 time
steps, it is necessary to store 3, 7, or respectively 11 noise terms with
the naïve selection policy. Now consider the implementation of the
implicit knowledge policy with τ̄ = 1, 2, 3. Only those noise terms
that are depicted in Table 3.1 must be stored and communicated. The
remaining terms have no impact on the estimation error, i.e., they
are implicitly known to be zero. In order to quantify communication
requirements, the number of noise terms before the fusion must be
considered. From Table 3.1 these numbers follow as 1, 4(5), or 8(9)
for the different time horizons when implicit knowledge is exploited.

Node s1 Node s2 Node s3
k=0 (init) vs1

0 vs2
0 vs3

0
k=0 (fus) · · · ,vs3

0 · · · ,vs3
0 · · · ,vs1

0 ,v
s2
0

k=1 (pred) · · · ,w0 · · · ,w0 · · · ,w0
k=1 (filt) · · · ,vs1

1 · · · ,vs2
1 · · · ,vs3

1
k=1 (fus) · · · ,vs3

1 · · · ,vs3
1 · · · ,vs1

1 ,v
s2
1

k=2 (pred) · · · ,w1 · · · ,w1 · · · ,w1
k=2 (filt) · · · ,vs1

2 · · · ,vs2
2 · · · ,vs3

2

Table 3.1: Noise terms that determine the estimation error in Example 3.7

Although the number of processed and transmitted noise terms is
already smaller than for the naïve technique, the full potential of im-
plicit knowledge is developed in large sensor networks with a dense
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communication. In those sensor networks, the communication of es-
timates takes several time steps, which leads to many zero entries
in the noise decomposition of local estimation errors that can be ne-
glected by means of implicit knowledge. �

The proposed policies are supposed to provide general ideas that re-
duce computational and communication effort compared to the naïve
solution. Indeed, other approaches are conceivable and techniques
that are more efficient can be derived for specific network topologies.
However, even the simple policies permit the calculations of tight
bounds with limited capacities.

3.3 Conclusion

Processing covariances in sensor networks proves challenging as the
precise quantification of dependencies is required to determine uncer-
tainties of fused estimates. Dependencies, however, are determined
by filter and fusion gains of all sensors so that they can be calculated
only when transformations of remote sensors are known. A minimum
requirement for the availability of such information is global model
knowledge. Indeed, reasons to maintain covariances are compelling;
meaningful optimizations of filter and fusion gains are based on them
and for the possible subsequent utilization of estimates in control
or decision problems, covariances provide indispensable quality infor-
mation. The objective of this chapter was to provide covariances of
estimates in sensor networks and to derive fusion methods premised
on the assumption that no global model knowledge is available.

3.3.1 Sample-based Covariance Estimation

One approach to obtain covariances in distributed and decentralized
estimation is to recursively process variables that allow the approxi-
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mate description of dependencies between estimators. The idea pur-
sued in Section 3.1 was to estimate (cross-)covariance matrices based
on sample representations of error distributions. For this purpose,
a sample set of the joint space error that depicts the dependencies
between all estimators was considered. It turned out that the pro-
cessing of these joint space samples can be decomposed into local
operations.

The associated research questions narrowed down to deriving an ef-
ficient covariance estimator and to determining the distribution for
the generation of samples that minimizes the error of covariance es-
timation. It was demonstrated that utilizing known means to calcu-
late covariance estimates improves the precision. The optimal sam-
pling distribution for scalar systems was identified to be a modified
Bernoulli distribution, which even enables the determination of indi-
vidual noise variances from samples without stochastic errors. The
application of the results to general systems was discussed and the
corresponding multivariate Bernoulli distribution was shown to opti-
mize estimates of noise covariances.

The proposed sample-based covariance estimation with adjustable
noise generation bears the potential to be applied in various scenarios.
In particular, the technique is not confined to linear models and can
easily be generalized to higher order moments. Thus, future research
should continue towards methods for efficient sampling in multivari-
ate systems subject to finite moments. Either, this can encompass
derivations of alternative sampling distributions or further analysis
of covariance estimators in combination with Bernoulli-distributed
samples.

It could be possible to achieve considerable improvements in terms
of the precision of covariance estimation by deterministic sampling
methods. However, in the current setup, it is necessary to gen-
erate sample lists that are independent from an arbitrary number
of other noise terms. This in turn, necessitates deterministic sam-
pling schemes that provide infinitely many orthogonal sets. As these
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sets determine a minimum dimension of the sample space, no finite-
dimensional deterministic scheme that provides error-free covariance
estimates can be found. Still, it is conceivable that deterministic el-
ements in the generation of samples yield approximately orthogonal
sample sets with a higher precision than purely stochastic covariance
estimates.

3.3.2 Bounding Techniques

The strategy pursued in the second part of this chapter was to process
bounds as substitutes for covariances, which allows bypassing the ex-
plicit reconstruction of cross-covariance matrices. In Section 3.2.1, it
was proven that the bound obtained in the fusion of two estimates
with covariance intersection (CI) exhibits optimality subject to vari-
ous criteria. Therefore, CI constitutes the method of choice for the
fusion under unknown correlations. Thus, batch CI for the fusion
of more than two estimates was examined and generalized. In this
context, fundamental properties such as convexity of a necessary op-
timization were proven and the systematic inclusion of knowledge
about cross-covariance matrices in the fusion was facilitated.

The derived techniques found application to linear systems in the
ensuing section. A decomposition of local covariances into in-
dependent terms was proposed, and generalized CI was applied to
the decomposition. It turned out that exploiting partially known
cross-covariance matrices strictly improves the precision of bounds
compared to (basic) CI. In fact, generalized CI combined with the
noise decomposition of covariances constitutes an efficient algorithm
for calculating bounds in sensor networks. Tightness of the obtained
bound is adjustable between exact (cross-)covariance matrices and
CI bounds subject to computational and communication effort.

Indeed, bounding theory is not exhausted with the results presented
in this thesis. The rigorous examination of the fusion of more than
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two estimates under unknown correlations is still missing. In par-
ticular, the optimality statement for two estimates derived in this
thesis, remains to be generalized. Another interesting research direc-
tion constitutes the application of the bounding theory to consensus
techniques [126]. Spadework has been carried out in [12] by aiming
to reach a consensus in the information form, which corresponds to a
repeated application of covariance intersection without a weight opti-
mization. Extending these results to varying weights certainly yields
an improvement in precision even though the analysis is aggravated.
Further research is also needed to apply the noise decomposition tech-
nique efficiently. So far, only general policies have been proposed to
select noise covariances. Selection policies that are adapted to
typical scenarios promise a better exploitation of noise terms, which
translates into tighter bounds. In an attempt to lower computational
and communication effort of bounding techniques and still exploit
knowledge about cross-covariance matrices, it is also advisable to ap-
ply the scalar correlation constraints from [67, 139]. If restricting
cross-covariance matrices by means of scalar or low-dimensional vec-
tors is possible, the need to store noise terms explicitly could be
omitted.
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CHAPTER
4

Hypothesizing Distributed
Kalman Filtering

Sensor network theory is applied to various research areas that are
concerned with properties of and interconnections between logically
separated units. A particularly interesting field of application con-
stitutes the surveillance of large areas. In the hope of achieving
higher resolution and better coverage than it is realizable with a few
(top-notch) devices, sensors are spatially distributed over an area to
observe the phenomenon or target of interest at close range.

Practical examples for such systems are manifold. For surveillance
of air space, several radar stations observe overlapping sectors, pre-
process huge amounts of raw sensor data locally, and communicate
tracking information to aerial surveillance control centers for further
evaluation. A very different type of sensor networks are intercon-
nected minicomputers equipped with simple sensing devices that per-
form basic tasks subject to limited computational load and energy
resources. Such “smart dusks” [92] can for example be used to detect
wildfires or monitor air pollution in cities.

Both examples feature nodes with computational capabilities to pre-
process measurements. As a matter of fact, the availability of process-
ing logic is inherently linked to applying nontrivial communication
protocols, which require some – at least hard-coded – logic them-
selves. Indeed, computational tasks and capabilities of sensors vary
considerably between simple threshold functions in smart dusks and
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elaborate tracking algorithms in radars. Still, in both scenarios, in-
formation is preprocessed at the sensors and the final evaluation is
carried out in a control center.
In order to efficiently process information in such systems, commu-
nication between nodes is to be minimized and the estimate at the
fusion center is to be optimized. In this chapter, linear distributed
estimation with smart sensors is examined and proper estimators
are developed. For this purpose, initially, a controlled environment is
assumed where (stochastic) properties of the communication network
are known, data exchanges are guided by the estimator, and sensor as
well as fusion center processing can be optimized. Then, knowledge re-
quirements about the parameters are successively reduced until only
individually operating sensors aim to provide the fusion center as
much information as possible.
For the illustration of key problems associated with distributed es-
timation in sensor networks, a centralized KF is compared to ap-
proaches that are based on local KFs.

Example 4.1: Local versus Global Filter Optimization

Consider an artificial scalar system defined by A = 1, Q = 1, and two
sensors s ∈ {s1, s2} with measurement models Hs

1 = 1 and Rs
1 = 1.

The initial estimates at the sensors are denoted as x̂s0 with variances
Cs

0 = 1. When local KFs are applied at the sensors, the estimates
after one prediction and one filter step are given (after some algebraic
simplifications) by x̂s1 = 1

3 x̂s0 + 2
3zs1. When initial estimates and mea-

surements are processed with a centralized KF, the LMMSE estimate
is obtained as

x̂1 = 1
8 x̂s1

0 + 1
8 x̂s2

0 + 3
8zs1

1 + 3
8zs2

1 .

Now, consider the fusion of local tracks x̂s1. As the fused estimate is
a linear combination of x̂s1

1 and x̂s2
1 , the inner ratios between initial
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estimates and measurements cannot be modified. However, as they
are 1

3 to 2
3 for local estimators and 1

8 to 3
8 for the centralized KF, the

LMMSE estimate cannot be obtained from the locally calculated esti-
mates anymore. In fact, the LMMSE combination from Theorem 2.5
yields

x̃1 = 1
6 x̂s1

0 + 1
6 x̂s2

0 + 2
6zs1

1 + 2
6zs2

1 .

Simple calculations show that the MSE of x̃1 is 3.4% higher than
that of x̂1. Note that for more than two sensors or for a processing
over several time steps, the MSE difference can be considerable as
illustrated in [178]. �

Example 4.1 demonstrates that the precision of the estimate at the
fusion center depends on the filter processing at the sensors. In fact,
it is a consequence of the application of locally optimal KFs that the
global estimate is suboptimal. In an attempt to achieve the LMMSE
estimate at the fusion center, the filter processing at the sensors is to
be adapted to the LMMSE filter gains.
To this end, filter transformations of the centralized KF can be de-
composed and carried out at the sensors as it has been proposed
with the distributed Kalman filter (DKF) [59]. Then, only auxiliary
(suboptimal) estimates are maintained at the sensors but the fusion
result exhibits optimality. Now, the aim of this chapter is to illu-
minate distributed estimation subject to limited knowledge.
First steps are made in Section 4.1 by deriving techniques to detect
and cope with a bias that is induced in the decomposition scheme
due to sensor failures. Indeed, a reliable deterministic communica-
tion and global measurement model knowledge are still required to
apply the technique.
The generalization of the DKF to sensor networks with packet de-
lays and losses is proposed in Section 4.2. Motivated by surveillance
systems that aim to achieve an approximately constant coverage of
a large area, the idea is to identify the measurement capacity of the
sensor network, to estimate this variable, and to use a hypothesis for

125



Chapter 4. Hypothesizing Distributed Kalman Filtering

the optimization of filter gains at the sensors. In this way, the filter
processing becomes independent from global model knowledge.

Still, a common hypothesis is necessary for the application of the
so-called hypothesizing distributed Kalman filter. This condition is
relaxed in Section 4.3 by considering individual hypotheses at the
sensors. The concept is to optimize filter gains according to locally
available best guesses about the measurement capacity of the sensor
network. In this context, covariance bounds and an optimized fusion
method are derived based on the results of Chapter 3, which are also
applicable to basic hypothesizing filtering.

4.1 Decomposition of the Central
Kalman Filter

The LMMSE estimator for linear systems is given by a central KF. In
the context of sensor networks, this insight has already been exploited
in centralized estimation, where sensors communicate measurements
to the fusion center and a central KF is employed for the combination.
In this section, the concept is applied to distributed estimation.

For this purpose, consider the operations of a centralized KF that pro-
cesses several measurements at a particular time step, predicts the
estimate, and continues with measurements of the next time step. As
all models and transformations are linear, filtering an individual mea-
surement and predicting it to the current time step can be construed
as an isolated operation. Indeed, the estimate of a centralized KF is
the sum of all these “measurement packages”. Now, decomposition
approaches allot the calculation and combination of measurement
packages to the sensor sources, as it is illustrated in Figure 4.1.

While the processing in prediction and filtering is defined by the
centralized KF equations, degrees of freedom exist for the realization
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Figure 4.1: The calculations of a centralized KF boil down to the summation of
linearly transformed measurements. The aggregation over several
time steps is carried out at the sensors.

in distributed estimation. In particular, it is viable to implement
different strategies to fuse data. For example, either data packages
consisting of measurements since the last (successful) transmission
or packets consisting of measurements from all time steps can be
transmitted to the fusion center. Moreover, the fusion center can
either fuse received data packages into a local estimate or replace
previously received information.
In the following, measurements are recursively processed at the sen-
sors and data packages are replaced by the latest information from
sensors. More precisely, a decomposition of the centralized KF is
derived and the following techniques are presented:

• Sensor and fusion center processing of the distributed
Kalman filter are examined.

• A technique to detect sensor and communication failures
based on an additive bias term is derived.

• A technique to correct biased estimators with locally calcu-
lated multiplicative debiasing matrices is proposed.
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The results of this section serve as the mathematical framework for
the (advanced) estimators presented in subsequent sections. In par-
ticular, the decomposition of operations and the optimization of filter
operations according to a centralized estimator are key components
of efficient estimators for distributed systems.

4.1.1 Distributed Kalman Filter

The DKF is the natural decomposition of a centralized KF that
has been originally proposed by exploiting the conditional indepen-
dence of measurements in the context of Gaussian densities [56,59,60,
100]. The concept is to combine transformed measurements from the
same source in one vector so that only few data must be transmitted
to the fusion center to generate the central KF estimate.

The following derivation uses the LMMSE criterion to obtain a linear
estimator that fits to the structure of Algorithm 2.1. It simplifies
the original formulas [59] by freeing the equations from a scaling
factor. As already mentioned, the idea is to produce tracks from
measurements at the sensors, transmit the tracks to the fusion
center, and to generate an estimate from available data when needed.

Such a “replacement strategy” may appear counterintuitive since a
simpler approach would be to fuse all received data into a recursively
held estimate. However, assume that sensors regularly transmit the
latest estimate and the fusion center combines them with its pre-
dicted estimate. As the estimates from the sensors contain all (local)
measurements from previous time steps, measurements are included
into the estimate at the fusion center multiple times. More precisely,
when a sensor transmits its estimate in every time step, the measure-
ment from the last time step is included twice, the one from two time
steps ago thrice, and so on. In this context, it proves difficult to
achieve filter gains that are equivalent to those of the central KF.
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The central KF processing is specified in Section 2.2.2. An alge-
braically equivalent form for the calculation of filter gains is obtained
by applying the Woodbury matrix inversion lemma [171]. Let Mk

denote indices of measurements observed at time step k. The infor-
mation form of the central KF [116] for the processing of several
measurements is determined by gains

Lk = Ck|k(Ck)−1 and Km
k = Ck|k(Hm

k )>(Rm
k )−1 , (4.1)

where the posterior covariance is obtained as

Ck|k =
(
(Ck)−1 +

∑

m∈Mk

(Hm
k )>(Rm

k )−1Hm
k

)−1
. (4.2)

Now, consider a network where all sensors are equipped with comput-
ing power and assume that global model knowledge is available. The
sensor estimates are denoted by x̂sk and the estimate at the fusion cen-
ter by x̂k. The processing of the DKF is derived based on the premise
that

∑
s∈S x̂sk provides the central KF result at every processing step

of Algorithm 2.1.
Let the same initial estimate (x̂0,C0) be available to all sensors at
initialization. Then, local estimators are initialized with T = 1

|S|I
and x̂s0 = x̂0. If independent estimates (˜̂xs0, C̃s

0) are provided, the
LMMSE fusion is the convex combination of the estimates and the
sum structure is established with Ts = C0(Cs

0)−1, where C0 =
(
∑
s∈S(Cs

0)−1)−1.
In the prediction step, the standard formulas for linear estima-
tors (2.21) and (2.22) are applied, leading to

x̂sk+1 =Akx̂sk , (4.3)
Ck+1 =AkCk(Ak)> + Qk . (4.4)

For the filtering of measurements, the filter gains of a central KF
in the information form (4.1) are used. When one measurement is
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observed per sensor and time step, the processing at an arbitrary
sensor s amounts to

x̂sk|k =Lkx̂sk + Ks
kzsk , (4.5)

Ck|k =
(
(Ck)−1 +

∑

s∈S
(Hs

k)>(Rs
k)−1Hs

k

)−1
, (4.6)

where filter gains are obtained as

Lk = Ck|k(Ck)−1 and Ks
k = Ck|k(Hs

k)>(Rs
k)−1 . (4.7)

Note that the global covariance Ck is processed at the sensors
instead of the true covariances of the estimates, which are specified
by Cs

k = E{(x̂sk − x)2}. This is necessary as the filter processing
and, in particular, the gains in (4.7) are optimized with the global
covariance instead of local covariances. As the formulas were derived
on the premise that the sum

∑
s∈S x̂sk equals the central KF estimate,

the following statement is obtained.

Theorem 4.1 Let x̂0 =
∑
s∈S x̂s0 correspond to the central KF esti-

mate with covariance C0 and let x̂sk denote estimates obtained with
the DKF processing from (4.3) and (4.5), i.e., by a linear estimator
from Algorithm 2.1 with filter gains (4.7). Then,

x̂k =
∑

s∈S
x̂sk (4.8)

is the LMMSE estimator and Ck = E{(x̂k − x)2}.

Note that the DKF is a strict implementation of the decomposition
concept illustrated in Figure 4.1. In fact, sensors apply the central KF
transformations to locally observed measurements. The aggregation
of measurements leads to estimates x̂sk that correspond to the sum
of preprocessed measurement packages of one source and entail all
information collected at sensor s up to time step k.
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Figure 4.2: A hierarchical sensor network with in-network processing. Due to
the additive structure of the centralized KF, estimates from children
can be aggregated during communication.

It is also worth pointing out the additive structure of the DKF. As
the same transformation matrices Lk and Ak are applied at all sen-
sors, measurement terms Ks

kzsk can be added to arbitrary estimates
x̂s̃k without affecting the result from Theorem 4.1. In particular, it
is possible to process several measurements at one sensor per time
step and to aggregate estimates in a hop-to-hop communication to
the fusion center. Consider for example hierarchical sensor networks
where at each sensor estimates x̂s̃k from children s̃ ∈ S̃ ⊂ S are
summed up and only the aggregated vector x̂S̃k =

∑
s̃∈S̃ x̂s̃k is trans-

mitted to the fusion node, as it is illustrated in Figure 4.2. Such
an in-network-processing can significantly reduce communication
costs without affecting the precision of the fused estimate.
Indeed, for the calculation of KF gains, the global covariance Ck,
which depends on the measurement capacity

Cz
k :=

∑

s∈S
(Hs

k)>(Rs
k)−1Hs

k , (4.9)
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is required. Hence, sensors need access to all measurement mod-
els, i.e., global measurement model knowledge according to Defini-
tion 2.5 must be available. However, unexpected sensor failures alter
the (underlying) measurement capacity of the sensor network while
functioning sensors still operate on the original value of Cz

k as long
as the failure is not communicated to all sensors. This degrades the
performance of the DKF as illustrated in the next example.

Example 4.2: Effect of Sensor Failures on Decomposition Scheme

A target that moves with constant velocity on a one-dimensional
manifold, e.g., on a street, is considered. Let T denote a time interval
and ps the power spectral density of the (white) noise in continuous
time. Then, a discrete-time constant velocity model is derived from
the continuous time counterpart according to [106] as

xk+1 =
(1 T

0 1

)
xk + wk with w ∼ N (0,Q) , (4.10)

where
Q = ps ·

(
T 3/3 T 2/2
T 2/2 T

)
.

The target is tracked at a fusion center that receives data from two
sensors that measure the position of the state according to

zsk =
(
1 0

)
xk + vk with vk ∼ N (0, 10), s∈{s1, s2} .

Both sensors are initialized with independent estimates subject to an
uncertainty of Cs

0 = 100·I and the tracking process lasts 10 time steps
with T = 0.05 and ps = 10. The target starts at position 10 with
initial velocity 5. The sensors communicate with the fusion center at
every time step but due to an erroneous communication device, only
zero vectors are received from sensor s2 after time step 5.
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Figure 4.3: RMSE of the fusion center estimate in 100 Monte Carlo runs for
DKF and centralized KF. After 5 time steps sensor s2 fails and
causes the estimate of the DKF to be biased.

For an evaluation, centralized KF and DKF are compared. In con-
trast to the presented version of the DKF, the implementation of [60]
is utilized that aims to mitigate the bias of local estimates by scal-
ing local estimates with the number of sensors. The centralized KF
is assumed to use a gating procedure that detects and ignores zero
vectors.
As it is demonstrated in Figure 4.3, the effect of sensor failures is
striking. In the time period k = [0, . . . , 5], both estimators yield the
same (LMMSE) results. This is a direct consequence of Theorem 4.1.
However, while the estimation error of the centralized KF increases
slightly due to missing measurements from sensor s2, the RMSE of
the DKF jumps within one time step by more than 100% as soon as
communication failures produce an effect. �

In Example 4.2, the main drawback of the DKF has been demon-
strated. As the sensor processing of the DKF is exclusively optimized
according to a central KF scheme, it holds Lk 6= I −Ks

kHs
k. Thus,
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If all data is received at the fusion center, the summation in (4.8)
eliminates this bias. However, if communication or sensor failures
occur, the estimator at the fusion center is biased, which amounts to
an unnecessarily high estimation error according to Lemma 2.2.

4.1.2 Error Reduction with Debiasing Approaches

As it has been discussed in Section 2.3, sensor networks are typically
subject to imperfect communication and error-prone sensors. Hence,
techniques are necessary to provide efficient and reliable estimates at
the fusion center even if assumptions about the processing are not
perfectly matched. According to Lemma 2.2, unbiased counterparts
can be derived for biased estimators that yield a lower MSE. Thus,
the remainder of this section is devoted to the derivation of techniques
to either detect or correct the bias of sensor network estimators.

In linear estimation, the (random) deviation from the estimate
to the true state can be traced. For this purpose, consider a linear
estimator according to Algorithm 2.1. Then, the definition b = x̂−x
leads to the following recursive formulas for biased estimators1

Initialization: b0 = x̂0 − x0 , (4.11)
Prediction: bk+1 = Akbk + wk , (4.12)

Filtering: bk|k = Lkbk + (Lk + KkHk − I)xk + Kkvk , (4.13)

Fusion: bk =
∑

s∈S
Fs
kbsk +

(∑

s∈S
Fs
k − I

)
xk . (4.14)

The bias of an estimator is defined as the expected deviation to the
true state.

1As a matter of fact, the definition of b corresponds to the one of the error e from Sec-
tion 3.1.1. However, e was defined in the context of unbiased estimators so that the
(more general) formulas for b are different in fusion and filtering steps.
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Definition 4.1 Let x̂ denote a (potentially) biased estimator. The
expectation E{b} with b = x̂− x is referred to as the bias of x̂.

The aim of debiasing techniques is to provide quantities that per-
mit the elimination of the bias of an estimator, i.e., to derive the
unbiased counterpart to a biased estimator. This is, in particular,
relevant for the DKF from the last section but is also applicable to
arbitrary linear estimators in distributed and decentralized estima-
tion.

4.1.2 - a Additive Bias

In the first instance, the bias is quantified by means of additive vec-
tors. A stochastically motivated idea is to estimate the bias b and
to apply a correction by means of x̂ − b̂. To this end, it is sufficient
to replace the unknown state in (4.11) to (4.14) by x̃ = x̂− b̂. Then,
it is easy to verify that the estimator x̃ is unbiased.
However, b̂ is a linear estimator itself and thus, x̃ as the sum of linear
estimators is a linear estimator defined by Algorithm 2.1 with partic-
ular filter and fusion gains. Indeed, filter and fusion gains of x̃ are
in general different from the central KF. Therefore, the resulting esti-
mator is suboptimal even if the assumptions of the DKF are satisfied.
Hence, instead of applying an additive stochastic bias correction, it is
easier to employ the corresponding unbiased local estimator directly.
Indeed, even if it is not viable to correct the bias, the additive tech-
nique can still be used to detect a bias. To this end, let φ ∈ Rnx
denote an arbitrary vector known to all nodes in the sensor network.
Then, the unknown state x in (4.11), (4.13) and (4.14) can be sub-
stituted by φ and an “inspection variable” β for local estimators x̂ is
obtained according to

Initialization: β0 = E{x̂0 − x0} , (4.15)
Prediction: β

k+1 =Akβk , (4.16)
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Filtering: β
k|k =Lkβk + (Lk + KkHk − I)φ , (4.17)

Fusion: β
k

=
∑

s∈S
Fs
kβ

s
k

+
(∑

s∈S
Fs
k − I

)
φ . (4.18)

Then, β = 0 indicates that the estimate is unbiased. However, de-
pending on the choice of φ, the bias inspection suffers from false
positives. For example for constant φ = 1, β indicates a bias-free
estimate when the filter operations of two different time steps bal-
ance out, even if the fused estimate is biased due to intermediate
transformations or differing state variables.
A solution to this problem is to generate time dependent φ

k
by means

of pseudorandom number generators that are initialized with the
same values in all nodes. Then, neglecting quantization effects, false
positives are impossible.
On the other hand, a false negative, i.e., the inspection variable
indicates a bias although the estimate is unbiased, can for example
occur when a positive bias offsets a negative bias from a previous time
step. However, false negatives are difficult to avoid as this necessitates
the quantification and tracking of the true bias, which depends on the
unknown true state.
Indeed, if unexpected or unconsidered events cause the fused estimate
to be biased, this can be detected by means of the additive debiasing
technique.

Example 4.3: Detection of Sensor Failures

Let the scenario be the same as in Example 4.2. The communication
error of sensor s2 is supposed to have been temporary such that after
time step 10 the communication works again. For the evaluation an
improved DKF is considered that employs the bias detection tech-
nique. The estimator at the fusion center predicts the fused estimate
from previous time steps as long as a bias is found (DKF+).
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Figure 4.4: RMSE of the fusion center estimate in 100 Monte Carlo runs for
DKF, DKF with bias detection handling (DKF+), and centralized
KF. In time steps 6 to 10, the fusion center does not receive
information from sensor s2.

The RMSE of the considered estimators is depicted in Figure 4.4. No-
tably, both versions of the DKF perform better than the centralized
KF after time step 10. This is a direct consequence of the preprocess-
ing in distributed estimation. While measurements from time step
6 − 10 of sensor s2 are inevitable lost for the calculation of the esti-
mate in the centralized KF, the information is still included in the
recursively obtained sensor estimate that is transmitted from sensor
s2 to the fusion center at time step 11 in the DKF processing. In
fact, estimates at the fusion center that are provided by the DKF
(and DKF+) in time steps 11 to 15 correspond to the centralized KF
results that would be obtained when no communication problem had
occurred.

The other observation pertains to the difference between DKF and
DKF+. As in time steps 6 to 10 no new measurements are filtered
when the bias detection technique is utilized, the RMSE increases
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steadily. However, the error induced by the bias in the DKF is larger,
which makes the bias detection extension a meaningful technique to
handle rare communication problems. �

As it has been shown in Example 4.3, an application of the additive
bias technique can be justified to handle unexpected events. How-
ever, the main drawback of the presented approach manifests itself
in the corrective actions. When a bias is detected, the processing
at the fusion center cannot use incoming information from working
sensors. This is unacceptable for large-scale sensor networks, where
it is not only difficult to prevent sensor outages but where data from
one sensor has also only little impact on the precision of the fused
estimate.

4.1.2 - b Multiplicative Debiasing

As an alternative to the additive bias detection, a multiplicative
bias correction technique is proposed that permits the incorpora-
tion of sensor estimates even if information is received from a subset
of sensors only. This theory is used for the estimation in sensor net-
works with a stochastic communication and with time-varying models
in Section 4.2.
In the sequel of this chapter, let the state transition matrix A be
regular. Even though this appears to be a strong assumption, non-
invertible state transition matrices imply that at least one variable in
the predicted state is redundant. Therefore, another state represen-
tation with lower dimension and regular state transition matrix can
be found. More details on the reduction of the state dimension are
given in [83].
For the multiplicative correction of the bias, a debiasing matrix is
processed at the sensors. In the interest of simplicity, only the infor-
mation form of the matrix is considered. However, by means of the
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Woodbury matrix inversion lemma [171], the algebraically identical
form in the state space can be derived.

Definition 4.2 Let x̂ denote a (potentially) biased estimator. The
matrix ∆ with

E{(∆)−1x̂} = E{x} (4.19)

is referred to as (multiplicative) debiasing matrix of x̂.

Consider a linear estimator from Algorithm 2.1. Then, Definition 4.2
is a sufficient condition to specify the local processing of debiasing
matrices. In order to compensate the initial transformation Tx̃0,
the debiasing matrix is set to

∆0 = T . (4.20)

Therefore, it holds E{(∆0)−1x̂0} = E{(T)−1Tx̃0} = E{x0} for un-
biased estimators x̃0. In the prediction step, the state evolves ac-
cording to xk+1 = Akxk+wk, where E{wk} = 0. With the debiasing
matrix

∆k+1 = Ak∆k(Ak)−1 , (4.21)

the correction of time step k+ 1 is traced back to the debiasing from
time step k and

E{(∆k+1)−1x̂k+1} = E{Ak(∆k)−1(Ak)−1Akx̂k}
=Ak E{(∆k)−1x̂k}

is satisfied. In the filter step, the estimate is transformed according
to x̂k|k = Lkx̂k + Kkzk. For

∆k|k = Lk∆k + KkHk , (4.22)

it holds E{(∆k|k)−1x̂k|k − xk} = E{(∆k|k)−1(x̂k|k −∆k|kxk)}. Then,
unbiasedness follows from the linear estimator processing and the
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linear measurement model (2.9). It remains to derive the fusion of
debiasing matrices. For x̂k =

∑
s∈S Fs

kx̂
s
k, the debiasing matrix

∆k =
∑

s∈S
Fs
k∆s

k , (4.23)

leads to E{∑s∈S Fs
kx̂

s
k} = E{∑s∈S Fs

k∆s
kxk} = E{∆kxk}. In sum-

mary, the following statement is obtained.

Theorem 4.2 Let x̂sk denote an arbitrary linear estimator specified
by Algorithm 2.1. Then, the linear estimator defined by

x̃sk = (∆s
k)−1x̂sk , (4.24)

where the debiasing matrix ∆s
k is obtained according to (4.20) to (4.23)

is unbiased.

The special case ∆ = I implies E{x̂} = E{xk}, i.e., the unbiasedness
of the estimator x̂. Hence, a bias detection as it has been considered
in the last section can also be realized with a multiplicative bias cor-
rection technique. This insight is captured in the following corollary.

Corollary 4.3 The estimator x̂ from Theorem 4.2 is unbiased, if
and only if ∆ = I.

Moreover, the information form of the debiasing matrix allows
for the processing of underdetermined pseudo-estimates that emerge,
e.g., when no initial estimates are provided. For this purpose, it is
sufficient to set ∆0 = 0. Then, the actual initialization is carried out
by means of the first measurement and a reconstruction of the actual
state estimate is possible when ∆ becomes invertible in subsequent
operations.
In summary, the processing of one debiasing matrix per sensor suffices
to trace and remove the bias of an estimate in sensor networks. This
property is exploited in the next sections to derive efficient estimators
for distributed systems.
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4.2 The Hypothesizing Distributed
Kalman Filter

In this section, the DKF is generalized by means of the multiplicative
debiasing technique. As a result, the constraints concerning global
model knowledge are relaxed. More precisely, the hypothesizing
distributed Kalman filter is derived, which provides globally op-
timized filter gains subject to limited model knowledge, stochastic
communication, and sensor failures.
The next example illustrates a typical surveillance and tracking sce-
nario realized with a sensor network and serves as a motivation for
the subsequent considerations.

Example 4.4: Target Tracking in 2D with Local KFs

The challenge is to track the position and velocity of a target in a
two-dimensional area. Let the target’s initial state be (50, 3, 50, 3) (x
pos., x vel., y pos., y vel.) and assume that the state’s dynamic is
specified by a disturbed rotational motion model [183], i.e.,

xk+1 =




1 sin(ω)
ω 0 −1+cos(ω)

ω
0 cos(ω) 0 − sin(ω)
0 1−cos(ω)

ω 1 sin(ω)
ω

0 sin(ω) 0 cos(ω)


xk + wk ,

where wk ∼ N (0,Q), and

Q =




0.8 0 0.1 0.2
0 0.3 0 0

0.1 0 0.7 0
0.2 0 0 0.4


 ,

with ω = 0.1. The position of the target is observed by 40 sensors
that are randomly placed in the area [0, 100]× [0, 100].
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Sensors obtain measurements according to the distance-dependent
model

zsk=
(1 0 0 0

0 0 1 0

)
xk + vk with vk ∼ N (0,R(xk)) ,

where
R(xk)=`2

(
xk(1)− psx
xk(3)− psy

)
·
(5 2

2 5

)
,

and where psx and psy denote x and y position of sensor s. The sensors
are initialized with independent estimates specified by Cs

0 = 20 · I
and track the target with local KFs over 50 time steps. At each time
step, estimates from all sensors are transmitted to the fusion center,
which fuses the received data by means of the LMMSE combination
from Theorem 2.5.
Note that under realistic conditions, cross-covariance matrices are
unknown to the fusion center so that the LMMSE fusion method
would not be applicable (c.f., Chapter 3). However, in order to fo-
cus on filter gains, an omniscient observer is assumed to realize the
baseline for local KF approaches. The theoretic baseline for linear
estimators with an arbitrary local processing is obtained by means of
a centralized KF.
The results of one run are illustrated in Figure 4.5. For the evaluation
of the RMSE, the covariance of the estimate is calculated by means
of the joint space representation from Section 2.3.4 in closed form.
Three observations are striking. First, the RMSE and the measure-
ment capacity Cz from (4.9) are (strongly) negatively correlated. In
particular, the measurement capacity increases in areas with dense
coverage, while the RMSE declines in such regions.
Second, the local measurement models vary with the distance to the
target, but the measurement capacity as the sum of all these local
matrices remains almost constant.
Third, filter gains for the local KF processing are calculated with
measurement capacities that are smaller than or equal to the ones
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depicted in the top right part of Figure 4.5. This stands in contrast
to the centralized KF, which utilizes the true measurement capacity
and yields significantly lower estimation errors. �
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Figure 4.5: The results of one run of the tracking simulation from Exam-
ple 4.4. In the left figure, the true and the estimated paths
are depicted. Sensor positions are given as grey points. In
the top right figure, the trace of the true measurement capac-
ity tr

{∑
s∈S(Hs

k)>(Rs
k)−1Hs

k

}
and the trace of the maximum

local measurement capacity maxs∈S tr
{

(Hs
k)>(Rs

k)−1Hs
k

}
are com-

pared. In the bottom right figure, the RMSE at the fusion center
is depicted for all time steps.

143



Chapter 4. Hypothesizing Distributed Kalman Filtering

A key observation from Example 4.4 is the permanence of the
global measurement capacity. In fact, quite often this perma-
nence is a desirable design attribute of sensor networks. In order to
monitor an area with a guaranteed quality subject to minimal costs,
sensors must be deployed in a way that the global measurement ca-
pacity is similar at all locations.
For the derivation of a distributed estimator that accomplishes high
precision subject to imprecise model information, the DKF is gener-
alized. As a matter of fact, the LMMSE estimator is achieved when
distributed sensors utilize filter gains with the correct matrix-relation
between each other. Therefore, the objective must be to imitate cen-
tralized KF gains at the distributed nodes.
Now, the idea is to generalize the DKF by treating the measurement
capacity Cz

k as an application-specific matrix parameter, which can
be optimized. This is feasible since the measurement capacity in
large sensor networks is non-erratic, as it has been motivated in Ex-
ample 4.4. Then, in general, bias terms emerge due to discrepancies
between hypothesis and true measurement capacities that are traced
and corrected with the multiplicative debiasing technique from Sec-
tion 4.1.2. Overall, the following main topics are captured.

• The hypothesizing distributed Kalman filter is pro-
posed as generalization of the DKF.

• Fusion techniques are discussed when packet losses occur
during communication.

• The sensor processing is generalized to delay-dependent mea-
surement capacities in order to account for packet delays.

• A feedback technique for the optimization of the hypoth-
esis based on debiasing matrices is derived.
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means, LMMSE estimates are achieved for a properly chosen hypoth-
esis. In this section, the estimator processing is examined when all
sensors apply the same hypothesis. A more general perspective on
the optimization of filter gains with differing hypotheses is given in
the next section.

4.2.1 Motivation and Basic Processing

The hypothesizing distributed Kalman filter (HKF) consists of
a sensor processing and a technique for the combination of estimates
at the fusion center. The algorithm and the associated theory have
been developed in [175,182–185,187]. For the application of the algo-
rithm, a parameter Ĉz is employed to calculate a hypothesized global
covariance according to which filter gains can be optimized. In order
to achieve LMMSE estimates at the fusion center, this parameter is
supposed to satisfy

Ĉz != Cz
k =

∑

s∈S
(Hs

k)>(Rs
k)−1Hs

k

and must be known to all sensors.

4.2.1 - a Sensor Processing

Let initial estimates x̃s0 be independent with covariance Cs
0. A hy-

pothesized global covariance is recursively obtained at the sensors
according to

Ĉ0 =
(∑

s∈S
(Cs

0)−1
)−1

, (4.25)

Ĉk+1 =AkĈk(Ak)> + Qk , (4.26)
Ĉk|k =

(
(Ĉk)−1 + Ĉz)−1

, (4.27)
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where Ĉz denotes the hypothesis about the measurement capacity.
As the covariance Ĉ usually differs from the true global covariance of
the DKF, it is denoted with a hat. In fact, with (4.25) to (4.27) the
covariance of a centralized KF with Cz

k = Ĉz, k ∈ K is calculated.
By means of the estimated covariance, (KF) gains are determined
according to

Lk =Ĉk|k(Ĉk)−1 , (4.28)
Ks
k =Ĉk|k(Hs

k)>(Rs
k)−1 . (4.29)

Then, the processing of estimates follows Algorithm 2.1 with gains
(4.28) and (4.29) and Ts = Ĉ0(Cs

0)−1. Note that in contrast to
the DKF, gains are obtained by means of the hypothesis Ĉz and
are independent from measurement models of remote nodes. The
calculation of the debiasing matrix is specified by the filter gains and
follows along the lines of (4.20) to (4.22). The overall processing is
summarized in Algorithm 4.4.

Algorithm 4.4 Sensor Processing of the HKF

1: Initialization: (x̂0, Ĉ0,∆0) = (Ĉ0(C0)−1x̃0, Ĉ0, Ĉ0(C0)−1)
where Ĉ0 =

(∑
s∈S(Cs

0)−1)−1

2: for k = 1; k ∈ K; k = k + 1 do
3: Prediction: (x̂k, Ĉk,∆k) = (Ak−1x̂k−1,Ak−1Ĉk−1(Ak−1)> +

Qk−1,Ak−1∆k−1(Ak−1)−1)
4: Filtering: (x̂k|k, Ĉk|k,∆k|k) = (Lkx̂k + Kkzk, ((Ĉk)−1 +

Ĉz)−1,Lk∆k + KkHk) with Lk,Kk from (4.28) and (4.29)
5: end for

Considering Theorem 4.2, sensors obtain unbiased local estimates ac-
cording to x̃ = (∆)−1x̂. Multiple measurements in one time step or
missing measurements can be handled by adding or omitting Kkzk
terms in the estimate and KkHk terms in the debiasing matrix equa-
tions.
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4.2.1 - b Fusion Center Processing

As in the DKF, the fusion is realized by means of a replacement policy.
For a reconstruction of the estimate at the fusion center, estimates
and debiasing matrices must be exchanged. The fusion equation is
adopted from the DKF and is given by

x̂k =
∑

s∈S
x̂sk . (4.30)

In terms of Algorithm 2.1, the summation in (4.30) corresponds to
fusion weights Fs=I so that the debiasing matrix follows with (4.23) as

∆k =
∑

s∈S
∆s
k . (4.31)

An unbiased estimate at the fusion center is reconstructed according
to x̂k = (∆k)−1x̂k. As the combination of debiasing matrices (4.31)
is additive (4.30), the in-network processing in hierarchical sensor
networks from Section 4.1.1 is possible.
When the hypothesis Ĉz equals the true measurement capacity, the
HKF corresponds to the DKF. Note that in this case, the debias-
ing matrix vanishes according to Corollary 4.3. This leads to the
following corollary of Theorem 4.1.

Corollary 4.4 Let the sensors apply Algorithm 4.4 and let Cz
k = Ĉz,

k ∈ K. Then, x̂ =
∑
s∈S x̂s is the LMMSE estimator.

4.2.2 Packet Delays and Losses

Packet losses caused by concurrent transmissions, environmental in-
fluences, or other disturbances are common phenomena in sensor net-
works. As discussed in Section 2.3.2, one of the key drivers for dis-
tributed estimation is its capability to cushion the impact of packet
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losses. While information is inevitably lost when the transmission of
a measurement in a UDP-like2 network fails, local estimates at the
sensors comprise all information observed up to the latest time step.
Therefore, a subsequent transmission of the sensor estimate of a later
time step still entails past measurement information.
Apart from packet losses, communication time in large sensor net-
works is often not negligible. Again, there are myriad reasons, rang-
ing from actual transmission time on limited frequencies over blocking
times induced by communication protocols. In particular, in hop-to-
hop networks that involve the routing of packets, transmission of data
can require a considerable amount of time [21].

4.2.2 - a Packet Losses

By means of the implementation of the HKF from Section 4.2.1, rare
sensor failures can be handled. Indeed, due to the replacement pol-
icy, packets received prior to the latest time step are ignored in the
calculation of the fused estimate. This is an appropriate policy when
almost no packet delays or losses occur as then all information from
sensor s is stored in the latest estimate anyway. However, when the
latest estimates from several sensors are missing, past estimates from
time steps k̃ < k carry a significant amount of information about the
true state and should be used in the calculation of the fused estimate.
An efficient technique that exploits past estimates is to store sensor-
specific proxy estimates x̆s with debiasing matrices ∆̆s at the fu-
sion center. When an estimate x̂s is received from sensor s, the proxy
estimate x̆s is replaced. Otherwise, the proxy estimate is processed
like a sensor estimate that is not updated with measurements. As
discussed in Section 4.2.1, the corresponding filter processing is given
by

x̆sk|k = Lkx̆sk and ∆̆s
k|k = Lk∆̆s

k .

2User Datagram Protocol [132]: a popular protocol without a handshake mechanism,
i.e., without confirmation and re-transmission of data.
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Then, proxy estimates can be used as substitutes for estimates
that are not received in the latest time step. However, they only
correspond to sensor estimates when no packet losses occurred and
otherwise lack the measurement information from all time steps since
the last successful transmission. The proposed technique is summa-
rized in Algorithm 4.5.

Algorithm 4.5 Fusion Center Processing of the HKF

1: Initialize: X = {(x̆s0, ∆̆s
0)}s∈S , Ĉ0 =

(∑
s∈S(Cs

0)−1)−1

2: for k = 1; k ∈ K; k = k + 1 do
3: Lk = Ĉk|k(Ĉk−1)−1 with Ĉk from (4.26) and (4.27)
4: for s ∈ S do
5: if Packet Psk = (x̂sk,∆s

k) is received then
6: {X}s = Psk
7: else
8: {X}s = (LkAk−1x̆sk,LkAk−1∆̆s

k(Ak−1)−1)
9: end if

10: end for
11: (x̂k,∆k) = (

∑
s∈S x̆sk,

∑
s∈S ∆̆s

k)
12: x̃k = (∆k)−1x̂k
13: end for

The hypothesis in a sensor network that is subject to packet losses
should be calculated with regard to the stochastic properties of the
packet arrival process. Let µs

k
denote an indicator variable that spec-

ifies whether the transmission of sensor s to the fusion center in time
step k is successful. Then, the hypothesis can be obtained according
to the expected measurement capacity

Ĉz != E
{∑

s∈S
µs
k
(Hs

k)>(Rs
k)−1Hs

k

}
.

Note that this approach is only realizable when stochastic properties
of the communication network are known. A more detailed discussion
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on the choice of the hypothesis is given in Section 4.2.3. Evaluations
of the HKF with imperfectly chosen hypotheses, e.g., in the presence
of false measurements and with the Ornstein-Uhlenbeck model, are
presented in [29,35] and by means of the next example.

Example 4.5: Target Tracking in 2D with the HKF

For the evaluation of the HKF in stochastic communication networks,
the two-dimensional tracking scenario from Example 4.4 is extended.
Instead of assuming a stable connection between sensors and fusion
center, an energy-costly wireless communication is considered. More
precisely, the sensors transmit estimates only each 5th time step be-
ginning in the 5th time step and the wireless communication causes
a packet loss rate of 20%.
HKF and local KF processing in combination with the LMMSE com-
bination from Theorem 2.5 are considered. As discussed in Exam-
ple 4.4, the LMMSE fusion is not applicable and is merely used to
provide a bound on the precision of the local KF processing. In con-
trast to that, the HKF utilizes a suboptimal fusion formula that can
be calculated at the fusion center without cross-covariance matrices.
For the calculation of a suitable hypothesis, it is possible to examine
the expected measurement capacity at each position of the observed
area and determine the average under consideration of the packet
dropout rate. However, for the sake of simplicity, the value is heuris-
tically observed to be

Ĉz = 1
35(Hs)>

(5 2
2 5

)−1
Hs .

The tracking results averaged over 100 Monte Carlo runs are given
in Figure 4.6. As illustrated in the top right part of Figure 4.6, the
hypothesis matches the measurement capacity well. Thus, the HKF
estimate is close to the LMMSE estimate. Especially, if many sensors
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Figure 4.6: The results of an extended version of the scenario from Example 4.4.
As illustrated in the top right figure, the true measurement capacity
of the sensor network is approximately met by the hypothesis.
Consequently, the RMSE of the HKF is considerably lower than
for the local KF processing.

contribute information about the state, i.e., if the target is close to
a high number of sensors, as for example in time step 45, the HKF
distinctively outperforms the local KF processing.

Note that the presented results for the local KF processing define
a lower bound on the achievable performance while real-world tech-
niques rely on estimated covariances and provide a higher MSE. �
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4.2.2 - b Packet Delays

In the following, the communication delay of estimates is explicitly
considered. For this purpose, let sensors be grouped according to the
communication time to the fusion center as depicted in Figure 4.7.
Such a model covers, in particular, hop-to-hop networks where the
transmission of data requires one time step.

A naïve technique to compensate for the effect of packet delays is to
wait for estimates of the same time step at the fusion center. Indeed,
this is suboptimal as no estimate is provided for the latest time step
and smoothing techniques yield better results by incorporating all
packets received in the waiting time.

The HKF extension for the handling of stochastic packet delays is de-
rived successively. Beginning with a central filter algorithm that pro-
vides LMMSE estimates for deterministic communication networks,
the calculations are distributed, and stochastic packet delays are in-
troduced. The algorithms were proposed in [187] and are presented
here in a short version.

Centralized Kalman filter In a first step, a centralized KF that re-
ceives delayed measurements is considered. Let the upper bound
on the packet delay be denoted by τ̄ , and let the packet delays
τ ∈ {0, . . . , τ̄ − 1} be fixed for each sensor3. Then, at time step
k, measurements from time steps [k + 1− τ̄ , k] are received.

The processing of those out-of-sequence measurements has already
been discussed in Section 2.3.1. In particular, it is possible to recon-
struct the LMMSE estimate of time step k with a centralized KF by
recursively comprising measurements up to time step k − τ̄ and by
applying temporary gains to measurements from time steps k− τ̄ + 1
to k.
3For the general applicability of the approach, τ = 0 is considered as well.
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Figure 4.7: A schematic overview of a hop-to-hop network with sensors and
fusion center. When the communication is deterministic, the nodes
can be grouped according to the minimal communication time to
the fusion center.

Let k be fixed and let x̂k−τ̄ denote the estimate of a centralized KF
with covariance Ck−τ̄ . When only packet delays are considered and
the sensors are grouped as depicted in Figure 4.7, measurements of
time step k are only available from those sensors that are in the group
τ = 0, measurements of time step k− 1 are available of sensors from
the groups τ = 0 and τ = 1, and so forth. For the centralized KF,
the corresponding covariance can be obtained recursively beginning
at time step k̃ = k − τ̄ with

C̆k̃+1 =Ak̃C̆k̃(Ak̃)
> + Qk̃ , (4.32)

C̆k̃|k̃ =
(
(C̆k̃)

−1 +
∑

s∈Sk−k̃
(Hs

k̃
)>(Rs

k̃
)−1Hs

k̃

)−1
, (4.33)

where Sτ ⊆ S denotes the set of sensors that transmit measurements
with a delay of equal or less than τ to the fusion center. According
to (4.1), the filter gains of the centralized KF are given by

L̆k̃ = C̆k̃|k̃(C̆k̃)
−1 and K̆s

k̃
= C̆k̃|k̃(H

s
k̃
)>(Rs

k̃
)−1 .
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Therefore, the measurement processing of the centralized KF with
an LMMSE out-of-sequence handling is recursively specified based
on x̆k−τ̄ = x̂k−τ̄ by

x̆k̃+1 =Ak̃x̆k̃ ,
x̆k̃|k̃ =L̆k̃x̆k̃ +

∑

s∈Sk−k̃
K̆s
k̃
zs
k̃
,

for k̃ ∈ {k − τ̄ , k}.

Distributed Kalman filter In the next step, measurements com-
prised in the estimate of the centralized KF are clustered according
to sensor sources. To this end, let sensor s be subject to a delay of τ
and assume that measurements of the time period [0, . . . , k − τ̄ ] are
subsumed in the variable x̂sk−τ̄ . Then, the contribution of sensor s
to the fused estimate x̆k is recursively obtained with x̆sk−τ̄ = x̂sk−τ̄
according to

x̆sk̃+1 =Ak̃x̆
s
k̃ , (4.34)

x̆sk̃|k̃ =L̆k̃x̆
s
k̃ + δk̃≤k−τK̆

s
k̃
zs
k̃
, (4.35)

where δk̃≤k−τ is 1 for k̃ ≤ k−τ and 0 otherwise. Suppose that for each
sensor s, a vector x̆sk is obtained according to the recursive processing
from (4.34) and (4.35). Then, it is easy to verify that x̆k =

∑
s∈S x̆sk

holds. Therefore, for fixed k, the calculation of the estimate of the
centralized KF with delayed measurements can be decomposed into
sensor-specific vectors x̆sk.
Now, consider the transition from time step k to k + 1. The covari-
ances, gains, and estimates in the formulas above have already been
marked with a breve to indicate the temporary character. As
for τ < τ̄ , the groups Sk−k̃ grow in number with advancing k for
fixed k̃, the matrices and vectors implicitly depend on k and must be
recalculated at every time step.
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However, as S τ̄ = S, no additional measurements are received for
time step k + 1 − τ̄ in subsequent processing steps. Therefore, the
variables x̂sk−τ̄ and Ck−τ̄ can be predicted and filtered conclusively to
time step k+1− τ̄ . It follows that the same considerations permit the
conclusive prediction and filtering of the estimates x̂sk−τ̄ . The tem-
porary estimates x̆s are then processed based on x̂sk+1−τ̄ and Ck+1−τ̄
with (4.34) and (4.35) up to time step k + 1 such that the estimate
x̆k+1 is obtained as

∑
s∈S x̆sk+1.

The derived processing can be defined in a nested loop within the
DKF. Let ks = k−τ denote the time step at which sensor s processes
the packet that is received by the fusion center at time step k. In
the outer loop, the sensors process the vectors x̂sk̃ and covariances Ck̃

recursively up to time step k− τ̄ with the (basic) DKF and store the
measurements of subsequent time steps k̃ ∈ {k+1−τ̄ , . . . , ks} in a set.
Then, at time step ks, x̂sk−τ̄ , Ck−τ̄ , and measurements zsk+1−τ̄ , . . . , zsks
are available at sensor s.

Based on those quantities, in each time step, temporary variables
C̆k−τ̄ = Ck−τ̄ , x̆sk−τ̄ = x̂sk−τ̄ are initialized and processed with (4.32)
to (4.35) up to time step k. Finally, x̆sk is transmitted to the fusion
center at time step ks and all temporary variables are discarded. The
processing is depicted in Figure 4.8.

At the fusion center, the received packages are summed up accord-
ing to x̆k =

∑
s∈S x̆sk such that the fused estimate equals the central-

ized KF estimate. The communication effort is the same as for the
basic version of the DKF as only the vectors x̆sk need to be transmit-
ted from the sensors to the fusion center.

However, note that each sensor has to process a temporary estimate
and covariance for all time steps k̃ ∈ {k+ 1− τ̄ , . . . , k} such that the
computational load can be considerable when the maximum trans-
mission delay τ̄ is large. Therefore, techniques to minimize the com-
putational load by outsourcing calculations to the fusion center or
deriving steady state values are discussed in [187].

155



Chapter 4. Hypothesizing Distributed Kalman Filtering

�ltering

�ltering

prediction

prediction

(b
as

ic)
 D

K
F 

lo
op

te
m

po
ra

l v
ar

ia
bl

es

τ̄−kx̂

}τ−kz, . . . ,+1τ̄−kz{τ−kz

+1τ̄−kz
k̃z

k̃x̆

kx̆

Figure 4.8: The two calculation loops for the delayed DKF. On the left side,
the (basic) DKF recursively obtains an estimate with delay τ̄ in
one iteration per time step. On the right side, the calculation of
the temporary quantity x̆k̃ is illustrated. In each time step, the
variable x̆k−τ̄ is filtered and processed to time step k.

By means of the delayed DKF, the calculation of the LMMSE esti-
mate is distributed. In particular, in the presence of rare packet losses
or when estimates are required at a lower frequency than measure-
ments are observed, the distributed calculation improves the precision
and lowers the communication costs compared to measurement trans-
mission techniques significantly. The same advantages that apply to
the DKF also apply to the generalization that takes into account
packet delays. However, optimality could be achieved only based on
global model knowledge.

Hypothesizing Distributed Kalman filter The filter gain calcula-
tion of the HKF without packet delays relies on a hypothesized mea-
surement capacity. According to (4.32) and (4.33), the covariance of
the centralized KF with packet delays is obtained in the filter step
according to

C̆k̃|k̃ =
(
(C̆k̃)

−1 + Cz
k−k̃
)−1

,
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where the measurement capacity Cz
τ with delay τ ∈ {0, . . . , τ̄ − 1} is

given by
Cz
k−k̃ =

∑

s∈Sk−k̃
(Hs

k̃
)>(Rs

k̃
)−1Hs

k̃
.

In fact, when packet losses are neglected and time-invariant sys-
tems are considered, it holds Cz

0 ≤ Cz
1 ≤ · · · ≤ Cz

τ̄−1. Evidently,
assuming the same hypothesis for all delays is suboptimal so that
the HKF for packet delays requires multiple hypotheses with Ĉz

0
!=

Cz
0, . . . , Ĉz

τ̄−1
!= Cz

τ̄−1.

Let the hypotheses Ĉz
0, . . . , Ĉz

τ̄−1 be available to all sensor nodes.
Then, the processing of sensor estimates is identical to the DKF with
packet delays, which is depicted in Figure 4.8, except that the true
measurement capacities in (4.33) are replaced with the corresponding
hypotheses, i.e., the covariance is obtained with

C̃k̃+1 =Ak̃C̃k̃(Ak̃)
> + Qk̃ , (4.36)

C̃k̃|k̃ =
(
(C̃k̃)

−1 + Ĉz
k−k̃
)−1

, (4.37)

and filter gains with

L̃k̃ = C̃k̃|k̃(C̃k̃)
−1 and K̃s

k̃
= C̃k̃|k̃(H

s
k̃
)>(Rs

k̃
)−1 ,

where variables with k̃ > k − τ̄ are temporary. The properties of
the basic HKF transfer to the delayed version naturally so that for
Ĉz
τ = Cz

τ , τ ∈ {0, . . . , τ̄ − 1}, the same estimates as for the DKF are
obtained. When the hypotheses do not match the true measurement
capacities, the sum of vectors x̃sk yields a biased estimate x̃k and must
be corrected according to (∆̃k)−1x̃k with ∆̃k =

∑
s∈S ∆̃s

k. To this
end, the bias processing from Section 4.1.2, i.e., (4.20) to (4.23), is
utilized at each sensor, resulting in a recursive calculation of ∆s

k̃
up

to time step k − τ̄ , and the calculation of a temporary debiasing
matrix ∆̃s

k for the correction of x̃sk.
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The computational effort depends on the maximum communication
delay, as for delay dependent hypotheses temporary covariances and
filter gains have to be calculated. Additionally to the temporary
vector x̃sk, the HKF necessitates calculating the temporary debiasing
matrix ∆̃s

k that emanates from the recursively obtained debiasing
matrix ∆s

k−τ̄ . However, only the vector x̃sk and the debiasing ma-
trix ∆̃s

k must be transmitted to the fusion center. Therefore, the
communication effort is the same as for the basic HKF.

Finally, it is worth mentioning that the HKF provides unbiased es-
timates even if the same hypothesis is utilized for all delays at the
costs of a higher MSE. Considering the trade-off between preci-
sion and computational effort, it is reasonable to limit the number
of considered hypotheses.

For example in sensor networks where the major part of sensors trans-
mits estimates within τ̃ time steps to the fusion center and only a few
sensors cause the maximum transmission delay to be τ̄ � τ̃ , it makes
sense to provide hypotheses only for delays τ ∈ {0, . . . , τ̃ − 1} and to
use Ĉz

τ̃ for all measurement capacities with τ ≥ τ̃ in (4.37). Then,
filter gains for τ ≥ τ̃ do not change with preceding k. Thus, x̂sk̃ and
∆s
k̃
can be recursively calculated up to time step k − τ̃ . Although

filter gains for delays τ > τ̃ are suboptimal in this case, the impact
is small as only a few measurements are affected by the suboptimal
processing, and on the other hand, the computational load is signifi-
cantly lower as temporary variables have to be computed for τ̃ time
steps only.

Thanks to the ability to limit the number of hypotheses, the HKF
is a flexible and efficient estimator for distributed systems subject
to deterministic or stochastic packet delays and losses. Owing to
the pre-computation of (recursive) estimates at the sensors, packet
losses are compensated. Additionally, the calculation of filter gains
according to sensor network capabilities optimizes the RMSE at the
fusion center.
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When system and measurement models are time-invariant, the nec-
essary hypotheses in the presence of a stochastic communication can
be obtained by means of

Ĉz
k−k̃

!= E
{∑

s∈S
µs
k−k̃(H

s
k)>(Rs

k)−1Hs
k

}
,

where µs
τ
denotes the random variable that indicates a transmission

success between sensor s and the fusion center in the time interval
τ . For time-variant measurement models, the derivation of suitable
hypotheses is more elaborate as discussed next.

4.2.3 Hypothesis Optimization in Feedback Systems

Finding optimal hypotheses in general linear systems is an optimiza-
tion problem by itself. Given the stochastic attributes of the commu-
nication network and a model about the evolution of the measurement
capacity, the measurement capacities can be estimated and the hy-
potheses that minimize the expected covariance of the estimate at
the fusion center can be calculated. Unfortunately, the evolution of
the measurement capacity is usually state-dependent, nonlinear, and
unknown so that such a processing is not only complex but also quite
often impossible to realize.

The approach pursued in this section is to estimate measurement
capacities from past time steps based on the fused debiasing matrix
at the fusion center. The estimates of the measurement capacities
are then used as new hypotheses and are communicated back to the
sensors in a feedback setup.

In order to facilitate the estimation of the measurement capacity
subject to complex evolution models, the derivations are based on
the assumption that the measurement capacities as well as the state
model are (approximately) time-invariant.
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Figure 4.9: The HKF with the proposed feedback extension. The fusion center
collects debiasing matrices from the sensors, obtains the average
true measurement capacity from past time steps, calculates a new
hypothesis Ĉz, and broadcasts it. The sensors receive the new
hypothesis and use it for the calculation of local covariances Ĉ.

Moreover, for the sake of simplicity, the considerations are confined to
sensor networks without time delays. In the following, key formulas
are presented. An extensive discussion and evaluation of the approach
is provided in [185].
It is well known that for time-invariant systems, the KF covariance
converges to a steady state. Consider the global covariance of the
HKF from (4.25) to (4.27) for time-invariant state matrices that cor-
responds to the covariance of a KF with measurement model Ĉz.
When there exist matrices H, R with

Ĉz = (H)>(R)−1H
and (H,A) is observable according to Definition 2.2, the KF with
measurement capacity Ĉz is stable [83]. Therefore, Ĉk converges to
a steady state Ĉss. From the steady state covariance, constant filter
gains ensue.
Now, the calculation of the debiasing matrix is examined for time-
invariant covariances and gains. Writing out the calculations of ∆k
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by means of (4.21) to (4.23) amounts to

∆k =
∑

s∈S
∆s
k|k

=
∑

s∈S
(LA∆s

k−1(A)−1 + KsHs)

=LA
(∑

s∈S
∆s
k−1

)
(A)−1 +

∑

s∈S
KsHs .

A repeated application of the decomposition leads to a “rolled out”
description of the debiasing matrix

∆k =
k∑

k̃=1

(LA)k−k̃
(∑

s∈S
KsHs)Ak̃−k + (LA)k

∑

s∈S
TsA−k .

When ∆k converges for k → ∞, the last term can be neglected so
that the formula simplifies by means of

∑
s∈SKsHs = ĈssCz to

∆k =
k∑

k̃=1

(LA)k−k̃ĈssCzAk̃−k . (4.38)

Hence, (4.38) describes the functional dependency between known
matrices and unknown measurement capacity Cz. Utilizing Kro-
necker product and vector operator [130], (4.38) is transformed to

vec{∆k} =
( k∑

k̃=1

(Ak−k̃)−> ⊗ (LA)k−k̃
)

vec{ĈssCz} .

It follows with (Ak−k̃)−> ⊗ (LA)k−k̃ =
(
(A)−> ⊗ LA

)k−k̃ that

vec{∆k} =
k∑

k̃=1

(
(A)−> ⊗ LA

)k−k̃ vec{ĈssCz}

=
k−1∑

k̃=0

(
(A)−> ⊗ LA

)k vec{ĈssCz} .
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For k → ∞, the sum term corresponds to the Neumann series [130].
Hence, when the eigenvalues eig{(A)−> ⊗ LA} = eig{(A)−>} ⊗
eig{LA} are in the unit circle, the sum term corresponds to

vec{∆k} = (I− (A)−> ⊗ LA)−1 vec{ĈssCz} .
This, finally, leads to

vec{ĈssCz} =(I− (A)−> ⊗ LA) vec{∆k}
= vec{∆k − LA∆k(A)−1} .

Theorem 4.5 Let L denote the gain (4.28) obtained with the steady
state covariance Ĉss of a KF with measurement capacity Ĉz, and
let ∆ss denote the corresponding debiasing matrix. For observable
time-invariant linear systems according to Definition 2.1 and

max | eig{(A)−>} ⊗ eig{LA}| < 1 ,
the measurement capacity is given by

Cz = (Ĉss)−1(∆ss − LA∆ss(A)−1) . (4.39)

The covariance Ĉss is the solution of the (discrete-time) algebraic
Riccati equation [129] that is obtained with state model matrices
and hypothesis Ĉz along with the gain L from (4.28).
Therefore, the feedback hypothesis can be calculated at the fusion
center based only on the fused debiasing matrix that is transmitted
from the sensors anyway. A schematic overview of the communication
is given in Figure 4.9.
By employing the proposed feedback technique, the HKF provides
estimates that are asymptotically equal to the LMMSE estimates
for time-invariant systems. For an evaluation of the scheme in time-
variant systems, see [185]. Indeed, ensuring that the same hypothesis
is used at all sensors is not always feasible. For such scenarios, the
more general concept presented in the next section provides a solu-
tion.
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4.3 Generalized Hypothesizing Filtering

DKF and HKF optimize filter gains according to a global measure-
ment capacity. By this means, they provide higher precision at the
fusion center than methods that are based on local KFs. So far, it
was assumed that all sensors employ the same hypothesis about the
measurement capacity. This turned out to be a meaningful require-
ment to derive simple fusion rules and to obtain a feedback technique
for the optimization of the hypothesis.

However, a hypothesis that is network-wide known is restrictive, as
it must be asserted that a change of the hypothesis, e.g., as proposed
in Section 4.2.3, is acknowledged by all sensors in the network. Con-
sider a temporary communication failure due to which a new hypoth-
esis is not received by one of the sensors. If no control mechanism is
established, the fusion center estimate becomes suboptimal and the
feedback technique does not work anymore.

Therefore, either, the hypothesis should not be changed then, or all
packets received by the fusion center must be checked for compliance
with the transmitted hypotheses as it has been proposed in [185].
For both solutions, an overhead in planning and implementation is
necessary while the additive fusion rule is suboptimal when the as-
sumptions of Corollary 4.4 are not satisfied.

In this section, the filter gain optimization according to a global mea-
surement model is exploited more generally by letting sensors employ
individual hypotheses. Indeed, the ideas derived in this section are
not to be understood as a plug-and-play estimator but as a framework
for the efficient optimization of filter gains in sensor networks.

• Covariance bounds for the fused estimate are derived
based on sensor variables that are calculated without global
model knowledge.
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• Based on covariance bounds, an efficient fusion rule that
is applicable to the generalized HKF concept is proposed.

• Inflated local measurement models are used as substitutes
for the global measurement model in the derivation of the
inflation Kalman filter.

The results are generalizations of the HKF that, in particular, apply
to the theory from the last sections. Note also that the debiasing
technique from Section 4.1.2 does not rely on identical hypotheses.
Therefore, it is directly applicable to distributed estimation with dif-
fering hypotheses.

4.3.1 Covariance Bounds for Hypothesizing Estimation

The centralized KF provides closed-form equations for the calculation
of covariances, which were presented in the context of the DKF (4.4)
and (4.6). For centralized unbiased linear estimators, the covariance
is obtained according to (2.22) and (2.24). However, as discussed
in Chapter 3, the common process noise causes dependencies be-
tween estimates in distributed systems that must be considered in
the derivation of the covariance of the fused estimate.
For the HKF, different techniques have been proposed to obtain co-
variances for the fused estimate. In [184], the recursive calculation of
auxiliary matrices was presented that enables the derivation of covari-
ance bounds at the fusion center. The main idea was to differentiate
between (dependent) process noise and (independent) measurement
noise terms. As the bound becomes conservative when the measure-
ment noise covariances differ, an approximation based on a steady
state analysis was proposed in [185] that aims to reflect the true co-
variance instead of providing a bound. A different path was taken
in [55], where the authors proposed a double-debiasing technique that
provides a consistent estimate of the true covariance.
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In the sequel of this section, the bounding approach from [184] is im-
proved. The technique is generalized to cope with different hypothe-
ses and a tighter bound is found by applying the bounding technique
from Section 3.2.

For this purpose, let each sensor maintain two matrices that account
for independent and dependent noise terms respectively. Let these
auxiliary covariances be denoted by Bid and Bd. Assuming inde-
pendent initial estimates, separating measurement and process noise,
and applying the linear transformations of the HKF to the auxiliary
variables amounts to the following Lemmata.

Lemma 4.6 Let x̂ denote an estimate obtained with Algorithm 2.1
and let ∆ denote the corresponding debiasing matrix. The covariance
of the estimate x̃ = (∆)−1x̂ is given by

C = E{(x̃− x)2} = (∆)−1(Bid + Bd)(∆)−> , (4.40)

where Bid and Bd are recursively obtained 4 according to

Initialization: Bid
0 =∆0C0(∆0)> , (4.41)

Prediction: Bid
k+1 =AkBid

k (Ak)> , (4.42)
Filtering: Bid

k|k =LkBid
k (Lk)> + KkRk(Kk)> , (4.43)

and

Initialization: Bd
0 =0 , (4.44)

Prediction: Bd
k+1 =AkBd

k(Ak)> + ∆k+1Qk(∆k+1)> , (4.45)
Filtering: Bd

k|k =LkBd
k(Lk)> . (4.46)

4The formulas are given for the initialization with independent estimates. When the
sensors are initialized with the same estimate, ∆0C0(∆0)> must be added to Bd

0 and
not to Bid

0 .
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Proof. According to Theorem 4.2, x̃ = (∆)−1x̂ is unbiased. Thus,
the true covariance is given by the equations for unbiased linear fil-
ters (2.22) and (2.24). The claim is obviously fulfilled at initialization.
In the prediction step, it holds

Ck+1 =AkCk(Ak)> + Qk

=∆−1
k+1
(
Ak∆kCk∆>k (Ak)> + ∆k+1Qk∆>k+1

)
∆−>k+1 ,

which proves correctness with

Ak∆kCk(∆k)>(Ak)> = AkBid
k (Ak)> + AkBd

k(Ak)> .
In the filter step, the transformation matrices are given by

L̃k =(∆k|k)−1Lk∆k and K̃k = (∆k|k)−1Kk ,

so that the covariance is given by

Ck|k =∆−1
k|k
(
Lk∆kCk∆>k (Lk)> + KkRk(Kk)>

)
∆−>k|k

=∆−1
k|k
(
LkBid

k (Lk)> + LkBd
k(Lk)> + KkRk(Kk)>

)
∆−>k|k ,

which concludes the proof. �

Lemma 4.7 Let the assumptions be the same as in Lemma 4.6. The
cross-covariance matrix between estimates x̃sk = (∆s

k)−1x̂sk and x̃s̃k =
(∆s̃

k)−1x̂s̃k is given by

Css̃
k = E{(x̃sk − xk)(x̃s̃k − xk)>} = (∆s

k)−1Bss̃d
k (∆s̃

k)−> ,

where Bss̃d
k is recursively obtained according to

Initialization: Bss̃d
0 =0 5 (4.47)

Prediction: Bss̃d
k+1 =AkBss̃d

k (Ak)> + ∆s
k+1Qk(∆s̃

k+1)> , (4.48)
Filtering: Bss̃d

k|k =LskB
ss̃d
k (Ls̃k)> . (4.49)

166



4.3 Generalized Hypothesizing Filtering

Proof. As the measurement noise of remote nodes is independent,
it holds

E{(x̂sk − xk)(vs̃k)>} = 0

and
E{vsk(x̂s̃k − xk)>} = 0 .

Thus, the cross-covariance matrix of the filtered estimates is given by

Css̃
k|k = (∆s

k|k)−1Lsk∆s
kCss̃

k (∆s̃
k)>(Ls̃k)>(∆s̃

k|k)−> .

The remaining part of the proof follows along the lines of the proof
of Lemma 4.6. �

For known cross-covariance matrices, the covariance of the fused esti-
mate is obtained with (2.27). However, as shown in Lemma 4.7, cross-
covariance matrices depend on transformation and debiasing gains of
remote nodes. Therefore, global model knowledge is required.
In [184], it is demonstrated that a bound of the fused estimate is
achieved by equally inflating local process noise parts. Indeed, tighter
bounds are obtained with the inflation techniques from Section 3.2.

Theorem 4.8 Let x̂s denote estimates obtained by means of Algo-
rithm 2.1 and let ∆s denote the corresponding debiasing matrices.
The covariance of the fused estimate

x̃ = (∆)−1x̂ , where x̂ =
∑

s∈S
Fsx̂s (4.50)

with debiasing matrix ∆ from (4.23) is bounded by

C ≤ (∆)−1∑

s∈S
Fs
(
Bsid + 1

ωs
Bsd

)
(Fs)>(∆)−> , (4.51)

with
∑
s∈S ω

s = 1, ωs > 0.
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Proof. Considering the unbiased local estimates x̃s=(∆s)−1x̂s, the
fusion operation is given by

F̃s = (∆)−1Fs∆s .

Thus, it holds,

C = (∆)−1
( ∑

s,s̃∈S
Fs∆sCss̃(∆s̃)>(Fs̃)>

)
(∆)−> ,

where Css̃ denote the (cross-)covariance matrices between unbiased
estimates x̃s and x̃s̃. From Lemmata 4.6 and 4.7, it follows that

∆sCss̃(∆s̃)> =
{

Bsid + Bsd for s = s̃

Bss̃d else
.

As sum of linearly transformed positive semi-definite matrices, the
joint covariance matrix of the dependent parts Bsd and Bss̃d

k is posi-
tive semi-definite. From Lemma 3.9 and Lemma 3.12, it follows that

∑

s,s̃∈S
FsCss̃d(Fs̃)> ≤

∑

s∈S
Fs 1
ωs

Csd(Fs̃)> ,

which concludes the proof. �

The parameters {ωs}s∈S are chosen to optimize a criterion such as
the trace or determinant of the bound. A detailed discussion on
properties of this optimization is given in Section 3.2.2. Furthermore,
it is worth mentioning that the bound presented in [184] is a special
case of Theorem 4.8, namely ωs = 1

S and Fs
k = I.

The algorithm to obtain a covariance bound at the fusion cen-
ter by means of Theorem 4.8 consists of sensor and fusion center
processing. At the sensors, the matrices Bsd and Bsid are recursively
calculated according to Lemma 4.6. Then, both matrices are trans-
mitted along with the estimate and the debiasing matrix to the fusion
center. Note that Bsd and Bsid are symmetric so that only triangular
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matrices must be communicated. At the fusion center, the estimates
are combined with an arbitrary fusion rule and a bound is calculated
with Theorem 4.8. The necessary operations are schematically illus-
trated in Figure 4.10.

4.3.2 Fusion Methods for Biased Estimates

The fusion rule for the HKF is given as the sum operation of biased
estimates in (4.30) and (4.31). Considering the unbiased counterparts
x̃s = (∆s)−1x̂s, the fusion operation (4.30) is a weighted combination

x̃k =
∑

s∈S
Fsx̂s with Fs = (∆)−1∆s .

The matrix weights Fs are determined by biases of local estimates.
More precisely, when the same hypothesis is used at the sensors, iden-
tical gains Lk and the same global covariance are obtained, which, in
turn, lead to debiasing matrices that depend on the relation between
local measurement models and global measurement capacity. When
the hypothesis about the global measurement capacity is correct, it is
a consequence of Corollary 4.4 that the fusion gains correspond to the
LMMSE combination from Theorem 2.5. Otherwise, the technique
can fail as demonstrated in the next example.

Example 4.6: Suboptimal Fusion Rules for the Generalized HKF

Consider a sensor network consisting of two identical sensors. Let
node s1 apply a hypothesis that underestimates the true measurement
capacity by 50 percent and node s2 a hypothesis that overestimates
it by 100 percent. Then, a weighting based on debiasing matrices
would allot the unbiased estimate at node s1 four times more weight
than the other one although both estimates carry the same amount
of information. �
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Even though Example 4.6 is not realistic as the local filter processing
is to be optimized according to meaningful hypotheses, the underly-
ing problem should be resolved. As a matter of fact, the HKF and its
generalization are linear estimators. Therefore, the LMMSE combina-
tion rule from Theorem 2.5 provides the best fusion results. However,
as discussed before, the LMMSE combination necessitates the calcu-
lation of cross-covariance matrices. Hence it is only applicable when
elaborate reconstruction techniques are used.

In this regard, the additive fusion rule of the basic HKF is a compro-
mise that accepts suboptimal precision in order to keep complexity
and computational effort limited. Indeed, for the generalization with
differing hypotheses, the fusion rule is no longer justified as illustrated
in Example 4.6. Therefore, the bounding techniques from Chapter 3
are adapted to the HKF processing as follows.

Theorem 4.9 Let Bsid and Bsd , s ∈ S denote the matrices from
Lemma 4.6. Then, the fusion gains that minimize the bound from
Theorem 4.8 are given by

Fs = P(∆s)>
(

Bsid + 1
ωs

Bsd

)−1
(4.52)

with

P =
(∑

s∈S
(∆s)>

(
Bsid + 1

ωs
Bsd

)−1
∆s

)−1

, (4.53)

where {ωs}s∈S are the solutions to the constrained convex optimiza-
tion problem arg minωs,s∈S P with

∑
s∈S ω

s = 1 and ωs > 0.

Proof. The debiasing matrix ∆ from Theorem 4.8 accounts for a
possible bias of the fused estimate and, without loss of generality, can
be integrated into the optimization of fusion gains Fs. An unbiased
estimate, in turn, is yielded by correcting x̂s with (∆s)−1 and fusing
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the estimates with
∑
s∈S F̃s = I, i.e., Fs = F̃(∆s)−1. Therefore, the

considered problem can be posed as minimizing

∑

s∈S
F̃s(∆s)−1

(
Bsid + 1

ωs
Bsd

)
(∆s)−>(F̃s)>

subject to
∑
s∈S F̃s = I. This problem, however, is a special case

of Theorem 3.14 with block diagonal joint covariance matrix. Ex-
panding the minimization leads to (4.53) so that the optimal weights
are given by

F̃s = P(∆s)>
(

Bsid + 1
ωs

Bsd

)−1
∆s ,

which eventually results in (4.52) with Fs = F̃(∆s)−1. The convexity
of the optimization follows with Theorem 3.15. �

Extensions and properties of Theorem 4.9 follow along the lines of Sec-
tion 3.2. For example, it is possible to reduce the computational
effort by replacing the optimization of the weights {ωs}s∈S by heuris-
tics [48, 118]. This makes sense, as the computational effort at the
fusion center is higher than for the basic HKF where only summations
and one inversion in state dimension are necessary.

In the framework of the generalized HKF, the filter processing at the
nodes is optimized according to local hypotheses. To this end, sen-
sors optimize local filter gains by means of the HKF formulas (4.25)
to (4.27). The local hypothesis about the global measurement ca-
pacity can be construed as a “best guess” at the sensor. The fusion
center uses the estimates and matrices from the sensors to obtain op-
timized fusion gains with Theorem 4.9. The processing is illustrated
in Figure 4.10. In particular, it is viable to process biased estimates
at the sensors and to derive covariance bounds.
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Figure 4.10: The processing scheme of the generalized HKF. The sensors process
x̂s,∆s,Bsid ,Bsd locally and send the variables to the fusion
center. The fusion center collects all data and computes the fused
estimate by means of Theorem 4.9.

4.3.3 Inflation Kalman Filter

The generalized HKF in combination with the debiasing technique
from Section 4.1.2 provides a high degree of freedom in the filter de-
sign. However, it is not always feasible to employ meaningful best
guesses about the measurement capacity at the sensors or the com-
plexity of the algorithm can be too high for a considered problem.
For such cases, a simple algorithm that inflates local measurement
models for the optimization of filter gains can be used.
As motivation consider a homogeneous sensor network, i.e., a
network consisting of identical sensors that feature the same mea-
surement model (2.9). Then, the measurement capacity simplifies to

Cz =
∑

s∈S
(H)>(R)−1H = γ(H)>(R)−1H ,
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where γ = |S| denotes a scalar factor. Note that the equality still
holds when the measurement noise covariances at the sensors are
scalar multitudes of a common matrix R. The idea is to hypothesize
the scaling factor and to inflate local sensor models (H)>(R)−1H
with γ to approximate the measurement capacity. By means of the
measurement capacity, global covariances are recursively obtained
according to

Initialization: Ĉ0 = 1
γ

C0 , (4.54)

Prediction: Ĉk+1 = AkĈk(Ak)> + Qk , (4.55)
Filtering: Ĉk|k =

(
(Ĉk)−1 + γ(Hk)>(Rk)−1Hk

)−1
. (4.56)

So far, the algorithm corresponds to the generalized HKF with hy-
potheses

Ĉz = γ(H)>(R)−1H .

However, in order to reduce computational and communication effort,
filter gains are enforced to be unbiased. For this purpose, the filter
gain K is inflated with γ, yielding the formulas

Lk =Ĉk|k(Ĉk)−1 , (4.57)
Kk =γĈk|k(Hk)>(Rk)−1 . (4.58)

Then, it holds

I−KkHk =Ĉk|k(Ĉk|k)−1 − γĈk|k(Hk)>(Rk)−1Hk

=Ĉk|k(Ĉk)−1

=Lsk .

Therefore, the filter gains are unbiased according to (2.25). Moreover,
the central KF estimate can be reconstructed in homogeneous sensor
networks.
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Theorem 4.10 Let the initial estimates x̃s0 be independent and sub-
ject to a common uncertainty Cs

0, and let the measurement model be
the same for all sensors s ∈ S. When the sensors apply Algorithm 2.1
with T = I and filter gains (4.57) and (4.58) with γ = |S|, the fusion
center estimate

x̂k = 1
|S|

∑

s∈S
x̂sk (4.59)

corresponds to the LMMSE estimate.

Proof. Let the central KF covariance be denoted by C. It is proven
that Ĉ = C and that the transformation matrices of the inflation KF
correspond to the ones of the centralized KF. At initialization, the
covariance Ĉ0 reflects the central KF covariance

C0 = (
∑

s∈S
(Cs

0)−1)−1 = 1
|S|C

s
0

and the LMMSE estimate is given by

C0(Cs
0)−1 = 1

|S|
∑

s∈S
x̃sk .

In the prediction step, it holds Ĉk+1 = Ck+1 when Ĉk = Ck and the
transformations of the estimate in centralized KF and inflation KF
are the same. In the filter step, the central KF covariance is given by

Ck|k =
(
(Ck)−1 +

∑

s∈S
(Hs

k)>(Rs
k)−1Hs

k

)−1

=
(
(Ck)−1 + |S|(Hs

k)>(Rs
k)−1Hs

k

)−1
= Ĉk|k .

Therefore, the gains L are the same for both estimators. Further-
more, the factor γ in (4.58) is canceled out due to fusion formula
x̂ = 1

|S|
∑
s∈S x̂, which concludes the proof. �
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As local estimates obtained with the inflation KF are unbiased and
the true covariance of the estimates is the same for all nodes in ho-
mogeneous sensor networks, the natural fusion operation is to take
the average (4.59). This also applies when not all estimates are re-
ceived at the fusion center. For heterogeneous sensor networks,
the variable γ does not need to be the same for all sensors. In par-
ticular, it is reasonable to optimize the value of γ according to the
neighborhood of sensors. In fact, the localized optimization amounts
to formulas similar to the ones of the consensus Kalman filter [125].

Note also that the processing of the inflation KF is closely related
to the federated Kalman filter [24, 25]. However, the federated
Kalman filter achieves bounds on the fused estimate by inflating the
process noise covariance instead of the measurement model. Thus,
suboptimal filter gains are obtained and the LMMSE estimate cannot
be reconstructed at the fusion center after arbitrary many time steps.

It is also worth pointing out that bounds and more efficient fusion
rules can be obtained with the techniques from Chapter 3 and Sec-
tion 4.3.1. In particular, the bound from Theorem 4.8 is tight for
homogeneous sensor networks as shown in [184].

The main advantage of the inflation KF is its simplicity and the
possibility to derive unbiased estimates at the sensors that are opti-
mized according to the measurement capacity of the sensor network.
However, when the sensor models differ, e.g., one half of the sensors
observes the position and the other half the velocity of a target, the
inflation yields suboptimal filter gains as any multitude of the local
sensor models is a bad approximation of the true measurement ca-
pacity. In those scenarios, the HKF and its generalization are better
choices for the optimization of filter gains.
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4.4 Conclusion

LMMSE estimation with distributed smart sensors under perfect glo-
bal model knowledge is solved by means of the distributed Kalman
filter (DKF). Unfortunately, the estimate obtained at the fusion cen-
ter is biased when themeasurement capacity of the sensor network
is not exactly known to all sensors. Indeed, the measurement capacity
varies with nonlinear models, sensor failures, stochastic communica-
tion, etc. so that the areas of application of the DKF are confined
to very basic scenarios with linear models. Consequently, the aim
of this chapter was to reduce the dependence of the DKF on global
model knowledge and to provide estimates for networks that are sub-
ject to communication losses and delays. To this end, generalizations
of the DKF were proposed that successively reduced the degree of
knowledge required for optimizing filter gains at the sensors.
In a first step, the measurement capacity was assumed known but due
to unforeseeable sensor or communication failures, not all data neces-
sary to reconstruct the LMMSE estimate was received at the fusion
center. In this setup, bias detection and correction techniques
prove effective in providing reliable estimates. Then, motivated by
the sedate behavior of the measurement capacity in surveillance sce-
narios, filter gains were chosen according to a hypothesis instead of
the true measurement capacity. The technique features a simple ad-
ditive structure of estimates that enables the fusion of data already
during communication. Extensions of the basic scheme to handle
packet delays and losses were derived and the choice of the hypoth-
esis was discussed. Although the technique already uses filter gains
that are independent from global model knowledge, it still requires
employing the same hypothesis at all sensors.
The most general form of hypothesizing distributed filtering was pre-
sented in Section 4.3 by deriving general optimization rules for the
filtering and fusion of estimates. The idea is to use sensor-specific
best guesses about the measurement capacity to calculate filter gains.
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Indeed, the general form necessitates fusion techniques that were pro-
posed based on the results of Chapter 3. In this context, bounding
techniques for hypothesizing estimators were derived.
The next step would be to optimize filter gains in the presence of mul-
tiple fusion centers. However, as the filter processing at the sensors
can satisfy the LMMSE criterion only for one fusion center, conflict-
ing measurement capacities need to be reconciled. Depending on
the weighting of fusion centers in the cost function, different filter
gains are obtained. This can also be seen as preparatory work for an
application of the decomposition techniques to decentralized estima-
tion, where all nodes are construed as fusion centers and additionally
to the aforementioned challenges, common prior information need to
be considered.
Another open research question is to derive the optimal preprocessing
when estimates are recursively comprised at the fusion center. Then,
measurements are included infinitely often and the LMMSE filter
processing depends on communication properties. Still, in contrast
to the replacement strategy such an approach is directly applicable
to decentralized estimation and reduces complexity as well as storage
requirements at the fusion center.
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CHAPTER
5

Conclusions and Future Research

Sensor network estimation is a large field of study with widespread ar-
eas of application. The underlying concept is to observe information
at spatially distributed sensors, to exchange the potentially hetero-
geneous data that ideally provide different perspectives on the same
phenomenon, and to merge them to draw new or better conclusions
in control or decision problems.
For a mathematical treatment of the problem, information is ab-
stractly modeled by means of random variables and the relation be-
tween measurements and an unknown state is assumed given. In this
setup, the objective of discrete-time estimators is to optimize the pro-
cessing in initialization, prediction, filter, and fusion steps. A mean-
ingful criterion for evaluating the performance of estimators is the
mean squared error (MSE), which is popular in the Bayesian frame-
work and enables the derivation of strong theoretical statements.
Due to the sheer amount of sensor, processing, and communication
types, it is almost impossible to provide general solutions that fit
all estimation problems. In this thesis, sensor networks were classi-
fied into centralized, distributed, and decentralized processing
schemes, and the focus was laid on linear systems and estimators.
In the basic centralized setup, all observations are transmitted to a
dedicated fusion center. The linear minimum mean squared error
(LMMSE) estimator for this type of sensor network is the central-
ized Kalman filter. Distributed and decentralized schemes consider
a (pre-)processing of measurements at the sensors. Therefore, com-
munication resources can be exploited more efficiently than in the
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centralized scheme. However, the complexity of communication and
processing is increased, which aggravates the analysis and derivation
of proper estimators. Even though LMMSE filter and fusion tech-
niques for distributed and decentralized estimation have been pro-
posed in literature, they are hardly applicable to real world problems
where the knowledge at sensors is restricted and the dependencies
between estimates are concealed.

5.1 Summary of the Results

The focus of this thesis was laid on deriving adaptive and flexible
estimators for distributed and decentralized estimation that function
subject to limited sensor knowledge. The two key operations to be
considered in this context are the fusion, i.e., the combination of
estimates, and the filtering, i.e., the recursive processing of mea-
surements.

Linear Fusion in Sensor Networks

In interconnected estimation systems, sensor information about the
unknown state is gained from measurements and, in particular, by
means of data exchanges. For a meaningful fusion and analysis of
estimates, uncertainties of and dependencies between estimates must
be exploited. Techniques for the reconstruction of these quantities
and for the optimization of the fusion under imprecisely known un-
certainties were derived in Chapter 3.

In the first instance, covariance estimation in linear systems was ex-
amined. To this end, the joint error density was estimated by means
of samples. As prediction and filtering operations only necessitate up-
dating local subsets of joint samples in linear systems, sample trans-
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formations can be decomposed into local operations that can be car-
ried out at the sensors without access to transformations of remote
nodes. Indeed, by combining sample sets from different nodes, e.g.,
in the fusion, cross-covariance matrices are obtained with standard
covariance estimators. Notably, in the proposed scheme, sampling
distribution and covariance estimator can be chosen freely. The de-
composition of the central processing was derived and consistency of
the sample-based covariance estimator was established. In order
to enhance the precision of the scheme for finite sample sizes, differ-
ent covariance estimators were discussed and the optimal sampling
distribution in terms of the expected Frobenius norm was shown to
be a modified Bernoulli distribution.

The second part of the chapter was concerned with the partial re-
construction of cross-covariance matrices. For linear models
with independent measurement and process noise terms, (cross-)co-
variance matrices of estimates are specified by sums of linearly trans-
formed noise covariances. A theoretic concept for the reconstruction
of dependencies is to select and to recursively process square roots
of noise terms individually at the sensors and to obtain (cross-)co-
variance matrices from their combination. By this means, sensors
operate on locally known quantities without access to transforma-
tions of remote nodes. In order to limit the computational effort at
the sensors, irrelevant terms can be aggregated. Then, the exchange
of explicitly considered and aggregated noise terms enables the re-
construction of the joint covariance matrix as the sum of two terms,
where cross-covariance matrices are exactly quantifiable for one term
and the unknown cross-covariance matrices of the other term can be
bounded.

For the obtained joint covariance matrix representation, fusion tech-
niques were derived that minimize the bound and draw on well-
established results for completely known and completely unknown
correlations. As a matter of fact, the proposed theory is a gener-
alization of the two concepts and permits the reconstruction and
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utilization of (cross-)covariance matrices of any precision subject to
computational and communication effort. As part of the derivations,
theoretical properties such as conservative bounds for the proposed
covariance representation and convexity of a necessary fusion gain
optimization were proven. These properties also apply to the under-
lying concepts and establish results for the fusion under unknown
correlations not yet proven in literature. In particular, covariance in-
tersection was shown to provide the smallest possible bound for the
fusion of two estimates under completely unknown correlations.

Indeed, sample-based covariance estimation and covariance bound-
ing have their own assets and drawbacks. For example, it is an
inherent characteristic of bounds that the comparison of them – as
required, for example, in decision problems – is a heuristic when
no statement about the tightness of the bounds is provided. In addi-
tion, bounds tend to become conservative, i.e., the difference between
bound and true covariance is large, when cross-covariance matrices
are not partially exploited.

However, on the other hand, bounds give a reliable worst-case quality
assessment of estimates that can be used in the calculation of filtering
and fusion operations. In contrast to that, covariance estimates are
subject to stochastic errors such that every evaluation based on the
provided covariances is fraught with uncertainty, which renders the
usage of estimated covariances difficult when stability properties or
guaranteed quality are claimed.

Selecting the appropriate fusion technique depends on the applica-
tion. Still, the precision and complexity of both approaches is ad-
justable such that customized solutions for many setups can be im-
plemented. Considering the literature on decentralized estimation
and, in particular, consensus [125] and diffusion approaches [27], the
reconstruction and estimation of cross-covariance matrices based on
locally processed variables can help to supplant fusion methods for
time-invariant systems with theoretically justified techniques that
minimize the mean squared error.
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Distributed Filtering without Global Model Knowledge

The local incorporation of measurements into estimates largely de-
termines the quality of estimates. Thanks to the Kalman filter, the
associated theory for linear systems is well developed. Hence, the
challenge of filtering in sensor networks lies in applying Kalman filter
concepts to distributed and decentralized estimation schemes. For
distributed estimation, a decomposition of the centralized Kalman
filter that implements this idea is the distributed Kalman filter [59].
The decomposition scheme, however, is only applicable in very basic
setups subject to deterministic communication. When models are
time-variant or nonlinear, or when the communication is stochastic,
the decomposition approach provides biased results at the fusion center.

Hence, Chapter 4 commenced with the derivation of additive and mul-
tiplicative debiasing techniques to detect and correct the bias of
linear estimators in exceptional events like sensor failures. Indeed,
in complex and uncertain environments, debiasing techniques alone
do not suffice to provide precise estimates. The driving factor in
minimizing the error at the fusion center was rather identified to be
the optimization of filter gains according to a global measurement
capacity, which determines the joint precision of all interconnected
sensors. Consequently, the hypothesizing distributed Kalman
filter was proposed that permits the optimization of filter gains ac-
cording to a hypothesis about the global measurement capacity. Aris-
ing discrepancies between hypothesis and true measurement capacity
are cushioned with the multiplicative debiasing technique. Moreover,
methods to optimize hypotheses based on stochastic properties of
the communication, i.e., in the presence of packet delays and losses,
were discussed. As the proposed approach is a generalization of the
Kalman filter decomposition scheme, LMMSE results are achieved
for a proper chosen hypothesis. Otherwise, it was demonstrated by
means of evaluations that hypothesizing approaches outperform clas-
sical sensor network estimators that utilize local Kalman filters.
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Eventually, sensors that optimize the filter processing by means of in-
dividual local hypotheses were considered. This concept requires
the least knowledge about the sensor network but necessitates a more
elaborate fusion rule that was derived based on the bounding tech-
nique from Chapter 3. The bounding technique was also applied to
variables obtained with the basic hypothesizing distributed Kalman
filter to provide worst-case assessments of covariances in distributed
estimation. Furthermore, a special type of hypothesizing filters was
examined that is based on the scalar inflation of local measurement
models, calculates unbiased estimates even without debiasing tech-
niques, and provides the LMMSE results when all sensors are of the
same type.

The hypothesizing filter optimization in sensor networks is a new con-
cept that conceptually outperforms classical approaches that employ
Kalman filters at the sensors. In particular, for interconnected sys-
tems with a large number of sensors, globally optimized filter gains
enable a more efficient exploitation of measurement information that
amounts to significant performance improvement. The basic idea of
hypothesizing filters transfers to the estimator design in decentral-
ized schemes so that future research in this area will systematically
enhance state-of-the-art approaches.

5.2 Future Work

In this thesis, key problems of distributed and decentralized estima-
tion were examined and solutions were proposed that are applicable
to a range of real world problems. Indeed, it is the essence of research
that any advance opens up new research questions. The following
ideas portray only a few of many captivating topics that emerge from
the thesis and that should be pursued to improve linear estimation
theory for sensor networks.
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Efficient Estimation Algorithms for Decentralized
Processing Schemes

Considering the results on distributed estimation and reconstruction
of cross-covariance matrices, the natural future research direction is
to combine the gained knowledge about filter and fusion gain opti-
mizations to derive efficient estimators for decentralized systems. For
this purpose, it is necessary to optimize multiple estimates concur-
rently according to the sum or average of their mean squared errors,
which couples the optimization of filter and fusion gains. As a
matter of fact, the calculation of gains is competing in the sense
that the optimized filtering of measurements according to the mean
squared error of one node results in suboptimal processing with re-
spect to the remaining nodes.

Moreover, in order to keep data amount and complexity manage-
able, estimates must be recursively fused in decentralized estimation.
This is different from the proposed concept for distributed estima-
tion where individual sensor packages were maintained and replaced
at the fusion node. Consequently, LMMSE estimators for decentral-
ized estimation depend on the communication between nodes.

Taking into account the complexity of the concurrent optimization
of filter and fusion gains and the dependence on the stochastic com-
munication, theoretic results on decentralized estimation will only be
achieved in narrowly specified scenarios. It seems promising to de-
vote special attention to systems with time-invariant models and
communication. There, the optimization of filter and fusion pro-
cessing according to an expected use of estimates in future time steps
is possible. As the average mean squared error is not guaranteed to
improve in every time step and, in particular, the LMMSE gains for
one time step can yield suboptimal results when a horizon of two
time steps is considered, the optimization of gains according to the
steady state of the system is particularly interesting.
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Even though achieving theoretically well-founded estimators for de-
centralized estimation in the LMMSE framework is still a long way
away and will require considerable additional effort, taking into ac-
count the attention already turned on heuristically approaches for
decentralized estimation, the interest and range of applications in
research and practice makes it worthwhile.

Advances in Cross-covariance Matrix Reconstruction

The reconstruction of cross-covariance matrices constitutes an essen-
tial part in the fusion of estimates and in sensor network processing.
Nevertheless, it is an auxiliary tool for state estimation and has not
attracted much attention in literature yet.
From a mathematical perspective, the challenge of covariance estima-
tion in linear systems boils down to reconstructing a sum of terms
where the (transformed noise) terms are products of only locally
known variables. In order to keep computational and communica-
tion effort limited, it is desired to combine these variables recursively
at the sensors and still calculate the sum in the fusion. Now, differ-
ent sum terms are relevant for cross-covariance matrices of different
estimates. Thus, premised on the assumption that dependencies are
recovered from recursively calculated variables, individual sum terms
must be orthogonal to each other. Consequently, the ideas pursued in
this thesis were either to process particular terms individually or to
achieve the desired orthogonality asymptotically by generating noise
samples independently from other noise terms.
Indeed, further improvements of the proposed techniques are possi-
ble. Some of the ideas, e.g., the smart selection of noise terms and
the optimization of sampling distributions in multivariate systems,
have already been discussed. It is, however, also conceivable to take
a completely different approach in order to achieve the desired or-
thogonality. Considering that signals can be decomposed into com-
plex sinus functions and the convolution of signals corresponds to
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an element-wise multiplication of the coefficients of these sinus func-
tions, an idea is to assign each noise term a different frequency
and to store sensor-specific information about the noise term on the
corresponding frequency in the local signal. Then, estimator transfor-
mations are applied to local signals and the cross-covariance matrices
are obtained by evaluating convoluted signals. Of course, the basic
concept works only with scalar valued noise terms and only a finite
number of frequencies can be used in practical applications. Still, the
well-established signal processing theory can be used to optimize the
processing of the variables and to find appropriate representations.
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APPENDIX
A

Linear Estimation Theory

Theorem A.1 (Orthogonality Principle) Let g(·) denote an ar-
bitrary vector function of z, e.g., an estimator, and x a random vari-
able. Then, the error of the conditional expectation is orthogonal to
g(·), i.e.,

Ex,z{(Ex|z{x|z = z} − x)>g(z)} = 0 . (A.1)

Proof. Let x̃(z) denote an arbitrary estimator. With p(x, z) =
p(x|z)p(z), it follows

Ex,z{(x̃(z)− x)>g(z)} = Ez{Ex|z{(x̃(z)− x)>g(z)|z = z}}
For given z, g(z) and x̃(z) are constants. Thus, it holds

Ez{Ex|z{(x̃(z)− x)>g(z)|z = z}} =
Ez{(x̃(z)− Ex|z{x|z = z})>g(z)} .

This term vanishes for x̃(z) = Ex|z{x|z = z}, which concludes the
proof. �

Proof of Theorem 2.1 Let x̃(z) denote an arbitrary estimator and
let x̂(z) = E{x|z = z} denote the conditional expectation. It holds

E{`2(x̃(z),x)} = E{`2(x̃(z)− x̂(z),x− x̂(z))}
= E{`2(x̃(z), x̂(z))}+ E{`2(x, x̂(z))}+

2 · E{(x̃(z)− x̂(z))>(x− x̂(z))} .
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Splitting up the third term yields

E{(x̃(z)− x̂(z))>(x− x̂(z))} = E{x̃(z)>(x− x̂(z))>}−
E{x̂(z))(x− x̂(z))>}

which vanishes according to Theorem A.1. As

E{`2(x̃(z), x̂(z))} ≥ 0 ,

it holds

E{`2(x̃(z),x)} = E{`2(x̃(z), x̂(z))}+ E{`2(x, x̂(z))}
≥E{`2(x, x̂(z))} ,

which concludes the proof. �
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B

Sample-based Covariance
Reconstruction

Proof of Theorem 3.1 The statement is proven inductively. For
this purpose, let (x̂0,Φ0) denote a valid sample representation for
the state x0. It is shown for all operations of Algorithm 3.2 that the
sample representation remains valid. As process noise is generated
with synchronized samplers and measurement noise with independent
ones, the generation implements the policy described in Definition 3.3.
In order to prove correctness of the prediction operation, (Ax̂,AΦ +
Φw) must be a valid sample representation of Ax + w. Consistent
covariance estimators inherit the bilinearity of covariances for d→∞.
Thus, limd→∞ Ĉ(TΦ + Φw,TΦ + Φw) equals

lim
d→∞

(TĈ(Φ)(T)> + Ĉ(Φw,Φw) + Ĉ(TΦ,Φw) + Ĉ(Φw,TΦ)) .

Let C denote the true covariance of x̂. As Φw is sampled indepen-
dently of Φ, the terms Ĉ(TΦ,Φw) vanish, yielding

lim
d→∞

Ĉ(TΦ + Φw,TΦ + Φw) = lim
d→∞

(TĈ(Φ)(T)> + Ĉ(Φw,Φw))

=TC(T)> + Q ,

which corresponds to the true covariance of e = Ax̂−Ax−w. Anal-
ogous considerations lead to

lim
d→∞

Ĉ(LΦ + KΦv,LΦ + KΦv) = LC(L)> + KR(K)> ,

191



Appendix B. Sample-based Covariance Reconstruction

i.e., the covariance of e = Lx̂ + Kz − x = (I −KH)(x̂ − x) + Kv.
Now, let (x̂s,Φs) denote valid sample representations. As comprised
noise terms are sampled according to valid sampling policies and all
transformations are linear, it is known from (3.7) that the samples
are distributed according to error processes Φs ∼ ∑

i∈Is Ts
iψi. It

remains to show that
∑
s∈S FsΦs ∼ ∑

s∈S Fsx̂s − x = e. From the
asymptotic bilinearity of consistent covariance estimators it follows

lim
d→∞

Ĉ
(∑

s∈S
FsΦs

)
= lim
d→∞

∑

s,s̃∈S
FsĈ(Φs,Φs̃)(Fs̃)>

= lim
d→∞

∑

s,s̃∈S
Fs
∑

i,̃i∈Is∪I s̃
Ts
i Ĉ(Φs

i ,Φs̃
ĩ )(T

s̃
ĩ )
>(Fs̃)>,

where limd→∞ Ĉ(Φs
i ,Φs̃

ĩ
) = 0 for i 6= ĩ and limd→∞ Ĉ(Φs

i ,Φs̃
ĩ
) = Cν

i

for i = ĩ due to Definition 3.5. Hence,

lim
d→∞

Ĉ
(∑

s∈S
FsΦs

)
=
∑

s,s̃∈S
Fs
∑

i∈Is∩I s̃
Ts
i lim
d→∞

Ĉ(Φs
i ,Φs̃

i )(Ts̃
i )>(Fs̃)>

=
∑

s,s̃∈S
Fs
∑

i∈Is∩I s̃
Ts
iCν

i (Ts̃
i )>(Fs̃)> ,

which corresponds to the true error of
∑
s∈S Fsx̂s according to The-

orem 3.17 with (3.35). �

Proof of Lemma 3.2 Consider the distribution φ̃ = (φν1 −
E{φν1})(φν2 − E{φν2}). The natural variance estimator v̂ can be
construed as the mean of samples φ̃1, . . . , φ̃d from the distribution φ̃.
Therefore, it holds

E{v̂(Φν1 ,Φν2)} = E
{1
d

d∑

i=1
(φν1
i − E{φν1})(φν2

i − E{φν2})
}

=1
d

d∑

i=1
E{φ̃i}

= E{φ̃} .
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The desired variance is given by

var (v̂(Φν1 ,Φν2)) = E{(v̂(Φν1 ,Φν2))2} − E{v̂(Φν1 ,Φν2)}2 ,
where

E{(v̂(Φν1 ,Φν2))2} = E
{(1
d

d∑

i=1
φ̃i
)2}

= 1
d2

d∑

i,̃i=1

E{φ̃iφ̃ĩ} .

From the independence of samples φ̃, it follows E{φ̃iφ̃ĩ} = E{φ̃}2 for
i 6= ĩ. Thus, it holds

E{(v̂(Φν1 ,Φν2))2} = 1
d

E{φ̃2}+ d(d− 1)
d2 E{φ̃}2 .

The desired equation is obtained with

var (v̂(Φν1 ,Φν2)) = 1
d

E{φ̃2}+ d− 1
d

E{φ̃}2 − E{φ̃}2 ,

where E{φ̃} = var (φν1 ,φν2). �

Proof of Theorem 3.4 According to Lemma 3.2 it holds

var (v̂(Φ)) = 1
d

(
E{(φ− E{φ})4} − (var (φ))2

)
.

Considering the sum representation of the error process (3.7),
E{(φ− E{φ})4} equals

∑

j1,j2,j3,j4∈I
Tj1 · · ·Tj4 E{(φνj1 − E{φνj1}) · · · (φνj4 − E{φνj4})} .

From the independence of noise terms, it follows that the expecta-
tion term can be separated into terms with different indices. Terms
with a single occurrence of an index, e.g., j1 /∈ {j2, j3, j4}, vanish as
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E{φν − E{φν}} = 0. Therefore, only terms with (two times) two
and four equal indices must be considered. The combinations with
two different indices appear

(4
2
)

= 6 times, amounting to the following
sum

3 ·
∑

j1 6=j2∈I
(Tj1)2(Tj2)2var

(
φνj1

)
var

(
φνj2

)
.

The fourth order terms emerge only once per noise term, where
E{(φν − E{φν})4} = (var (φν))2 for the modified Bernoulli distri-
bution. Hence, the first part of the expected Frobenius norm is given
by

E{(φ− E{φ})4} =3 ·
∑

j1 6=j2∈I
(Tj1)2(Tj2)2var

(
φνj1

)
var

(
φνj2

)
+

∑

j∈I
(Tj)4 (var (φν))2 .

Considering the variance of the estimate, which is given by

(var (φ))2 =
(∑

j∈I
(Tj)2var (φν)

)2

=
∑

j1,j2∈I
(Tj1)2(Tj2)2var

(
φνj1

)
var

(
φνj2

)
,

the variance specified in Lemma 3.2 simplifies to

var (v̂(Φ)) =2
d

∑

j1 6=j2∈I
(Tj1)2(Tj2)2var

(
φνj1

)
var

(
φνj2

)

=2
d

(
(var (C))2 −

∑

j∈I
(Tj)4(var

(
φνj

)
)2
)
,

which concludes the proof. �

Proof of Lemma 3.5 It holds

tr
{
Cov

(
Ĉ
)}

= tr
{

E{(Ê)2}
}
− tr

{
E2
}
, (B.1)
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where Ê = 1
d

∑d
i=1

(
φ
i
− E{φ}

)2
. Therefore, it holds

E{Ê(Ê)>} = 1
d2

d∑

i,̃i=1

E{(φ
i
− E{φ})2(φ

ĩ
− E{φ})2} .

For independently generated samples i 6= ĩ, the sum terms are given
by

E{(φ
i
−E{φ})2(φ

ĩ
−E{φ})2} = E{(φ

i
−E{φ})2}E{(φ

ĩ
−E{φ})2}

=E2 .

If i = ĩ, E{(φ
i
− E{φ})2(φ

ĩ
− E{φ})2} is obtained by

E





nx∑

ρ=1
([φ− E{φ}]ρ)2




ε21 · · · ε1εnx... . . . ...
ε1εnx · · · ε2nx








,

with ερ =[φ − E{φ}]ρ, ρ ∈ {1, . . . , nx}. Therefore, tr
{
E{Ê(Ê)>}

}

equals

1
d

nx∑

ρ,ρ̃=1
E{([φ− E{φ}]ρ)2([φ− E{φ}]ρ̃)2}+ d− 1

d
tr
{
E2
}
.

The claim follows with (B.1). �

Proof of Theorem 3.6 From Lemma 3.5 it is known that (1)>C̆1
is to be minimized. Without loss of generality, let E{φ} = 0. Then,

(1)>C̆1 = (1)> E{(φ̃)2}1 ,

where
ρ = ([φ]ρ)2 , ρ ∈ {1, . . . , nx} .
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Let C̃ denote the positive semi-definite covariance of φ̃ with C̃ =
E{φ̃2} − E{φ̃}2. It holds E{φ̃} = diag (E), and thus, E{(φ̃)2} =
C̃ + E2. Therefore, (1)> E{(φ̃)2}1 is minimized when (1)>C̃1 = 0,
i.e., when φ̃ is deterministic.
From Theorem 3.4 it is known that ([φ]ρ)2, ρ ∈ {1, . . . , nx} is de-
terministic for Bernoulli distributed samples, i.e., the diagonal of
C̃ is 0, which implies that the entire covariance is 0. The claim
follows as the multivariate modified Bernoulli distribution satisfies
E{(φ− E{φ})2} = E.

�
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Convexity of Generalized
Covariance Intersection

Proof of Theorem 3.15 Let the variables be defined as in Theo-
rem 3.14 and let P̄b = (Ω)−1C̄b denote the joint space segmentation
into weighting terms and corresponding (uninflated) covariances. For
weights {ωs}s∈S , the derivative of the fused covariance bound is ob-
tained with basic matrix calculus, e.g., with [130], as

∂P
∂ωs

=−P1>
∂
(
P̄
)−1

∂ωs
1P ,

where
∂
(
P̄
)−1

∂ωs
= −(P̄)−1∂(Ω)−1

∂ωs
C̄b

(
P̄
)−1

.

Let C̄s
b denote the joint space matrix that has the same entries as C̄b

in the s-th diagonal block and is zero otherwise. Then,

∂(Ω)−1

∂ωs
C̄b = − 1

(ωs)2 C̄s
b

and thus, the derivative of the bound of the fused estimate is given
by the negative definite matrix

∂P
∂ωs

= − 1
(ωs)2

(
P1>

(
P̄
)−1)C̄s

b

(
P1>

(
P̄
)−1)>

.
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Let Gs denote an auxiliary variable with Gs = (ωs)−2P1>
(
P̄
)−1.

With

∂
(
P1>

(
P̄
)−1)

∂ωs
= ∂P
∂ωs

1>
(
P̄
)−1 + P1>

∂
(
P̄
)−1

∂ωs

=GsC̄s
b

((
P̄
)−1 − (P̄)−11P1>

(
P̄
)−1)

,

and the symmetry of ∂P
∂ωs , the subsequent application of the chain

rule leads to second derivatives

2 ·Gs
(
ωsC̄s

b − C̄s
b

(
P̄
)−1C̄s

b + C̄s
b

(
P̄
)−11P1>

(
P̄
)−1C̄s

b

)
(Gs)>

for ∂2P
∂(ωs)2 and

Gs
(
Φs(P̄

)−11P1>
(
P̄
)−1Φs̃ −Φs(P̄

)−1Φs̃
)
(Gs̃)> +

( · )>

for ∂2P
∂ωs∂ωs̃ . Therefore, the Hessian matrix is given as the sum H =

H̃ + (H̃)>, where H̃ equals

GΦ(P̄)−11P1>(P̄)−1(GΦ)>+GΩΦ(G)>−GΦ(P̄)−1(GΦ)> ,

and

GΦ =




GsΦs

...
GsSΦsS


 and ΩΦ =



ωsΦs . . . 0
... . . . ...
0 . . . ωsSΦsS


 .

For positive semi-definite C̄ it holds
(
P̄
)−1 =

(
C̄ + P̄b

)−1 ≤ (P̄b

)−1

and therefore,

GΦ
(
P̄
)−1(GΦ)> ≤ GΦ

(
P̄b

)−1(GΦ)> .
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With Φs
(
P̄
)−1Φs̃ = 0 for s 6= s̃ and Φs

(
P̄
)−1Φs̃ = ωsΦs for s = s̃,

it holds
GΩΦ(G)> −GΦ

(
P̄
)−1(GΦ)> ≥ 0 ,

which proves that H̃ ≥ 0. Therefore, the Hessian matrix is positive
semi-definite. As

∂2 tr {P}
∂ωs∂ωs̃

= tr
{

∂2P
∂ωs∂ωs̃

}
,

convexity follows when the trace joint covariance matrix

C̄tr =




tr {Cs1} . . . tr {Cs1sS}
... . . . ...

tr {CsSs1} . . . tr
{
CS
}




is positive semi-definite. Let σs denote vectors with standard de-
viations for covariances Cs, and let Rss̃ denote the respective cor-
relation matrices such that Css̃ = diag (σs)Rss̃ diag

(
σs̃
)
. It holds

tr
{
Css̃

}
= (σs)> diag

(
ρss̃
)
σs̃, where ρss̃ = diag

(
Rss̃

)
denotes the

diagonal of the correlation matrices. Hence, the trace joint covari-
ance matrix is given by

C̄tr = (Σ)>




diag
(
ρs1
)

. . . diag
(
ρs1sS

)

... . . . ...
diag

(
ρs1sS

)
. . . diag

(
ρsS
)




︸ ︷︷ ︸
Rdiag

Σ ,

where

Σ =



σ1 . . . 0
... . . . ...
0 . . . σsS


 .
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Therefore, C̄tr ≥ 0, i.e., the claim is satisfied, if the joint correlation
matrix Rdiag is positive semi-definite1. Now consider the permuta-
tion of elements π such that σπi = ([σ1]i, . . . , [σS ]i)> and let Rπ

diag

denote the respective joint correlation matrix. Then, Rπ
diag is a block

diagonal matrix with blocks



[Rs1 ]ii · · · [Rs1sS ]ii
... . . . ...

[RsSs1 ]ii · · · [RsS ]ii


 .

The blocks are correlation matrices of permuted random variables.
Therefore, they are positive semi-definite. Hence, the matrix Rπ

diag

and its permuted counterpart Rdiag are positive semi-definite, which
concludes the proof. �

1The removal of entries from a correlation matrix does in general not yield a valid
correlation matrix. Consider for example three fully correlated scalar values with
positive semi-definite joint correlation matrix consisting of only ones. When one of the
entries (and its symmetric counterpart) in the correlation matrix is set to zero, the
matrix is no longer positive semi-definite.
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