32 research outputs found

    Structural adaptive anisotropic recursive filter for blind medical image deconvolution

    Get PDF
    Performance of radiographic diagnosis and therapeutic intervention heavily depends on the quality of acquired images. Over decades, a range of pre-processing for image enhancement has been explored. Among the most recent proposals is iterative blinded image deconvolution, which aims to identify the inheritant point spread function, degrading images during acquisition. Thus far, the technique has been known for its poor convergence and stability and was recently superseded by non-negativity and support constraints recursive image filtering. However, the latter requires a priori on intrinsic properties of imaging sensor, e.g., distribution, noise floor and field of view. Most importantly, since homogeneity assumption was implied by deconvolution, recovered degrading function was global, disregarding fidelity of underlying objects. This paper proposes a modified recursive filtering with similar non-negativity constraints, but also taking into account local anisotropic structure of content. The experiment reported herein demonstrates its superior convergence property, while also preserving crucial image feature

    Blind Image Deconvolution of Electron Microscopy Images

    Get PDF
    V posledních letech se metody slepé dekonvoluce rozšířily do celé řady technických a vědních oborů zejména, když nejsou již limitovány výpočetně. Techniky zpracování signálu založené na slepé dekonvoluci slibují možnosti zlepšení kvality výsledků dosažených zobrazením pomocí elektronového mikroskopu. Hlavním úkolem této práce je formulování problému slepé dekonvoluce obrazů z elektronového mikroskopu a hledání vhodného řešení s jeho následnou implementací a porovnáním s dostupnou funkcí Matlab Image Processing Toolboxu. Úplným cílem je tedy vytvoření algoritmu korigujícícho vady vzniklé v procesu zobrazení v programovém prostředí Matlabu. Navržený přístup je založen na regularizačních technikách slepé dekonvoluce.Blind deconvolution has spread around multiple technical fields in recent years. Problems with computational demands are no more its limitations. Blind deconvolution signal processing techniques are promising solution for enhancement of electron microscope performance. The aim of this work is the problem formulation and proposition of appropriate solution for blind deconvolution of electron microscope images. The final goal is to develop Matlab algorithm correcting aberrations arising from imperfections of image formation and its comparison with built-in Matlab approach implemented in Image Processing Toolbox. Proposed approach is given by regularization techniques of blind deconvolution.

    Blind image deconvolution: nonstationary Bayesian approaches to restoring blurred photos

    Get PDF
    High quality digital images have become pervasive in modern scientific and everyday life — in areas from photography to astronomy, CCTV, microscopy, and medical imaging. However there are always limits to the quality of these images due to uncertainty and imprecision in the measurement systems. Modern signal processing methods offer the promise of overcoming some of these problems by postprocessing these blurred and noisy images. In this thesis, novel methods using nonstationary statistical models are developed for the removal of blurs from out of focus and other types of degraded photographic images. The work tackles the fundamental problem blind image deconvolution (BID); its goal is to restore a sharp image from a blurred observation when the blur itself is completely unknown. This is a “doubly illposed” problem — extreme lack of information must be countered by strong prior constraints about sensible types of solution. In this work, the hierarchical Bayesian methodology is used as a robust and versatile framework to impart the required prior knowledge. The thesis is arranged in two parts. In the first part, the BID problem is reviewed, along with techniques and models for its solution. Observation models are developed, with an emphasis on photographic restoration, concluding with a discussion of how these are reduced to the common linear spatially-invariant (LSI) convolutional model. Classical methods for the solution of illposed problems are summarised to provide a foundation for the main theoretical ideas that will be used under the Bayesian framework. This is followed by an indepth review and discussion of the various prior image and blur models appearing in the literature, and then their applications to solving the problem with both Bayesian and nonBayesian techniques. The second part covers novel restoration methods, making use of the theory presented in Part I. Firstly, two new nonstationary image models are presented. The first models local variance in the image, and the second extends this with locally adaptive noncausal autoregressive (AR) texture estimation and local mean components. These models allow for recovery of image details including edges and texture, whilst preserving smooth regions. Most existing methods do not model the boundary conditions correctly for deblurring of natural photographs, and a Chapter is devoted to exploring Bayesian solutions to this topic. Due to the complexity of the models used and the problem itself, there are many challenges which must be overcome for tractable inference. Using the new models, three different inference strategies are investigated: firstly using the Bayesian maximum marginalised a posteriori (MMAP) method with deterministic optimisation; proceeding with the stochastic methods of variational Bayesian (VB) distribution approximation, and simulation of the posterior distribution using the Gibbs sampler. Of these, we find the Gibbs sampler to be the most effective way to deal with a variety of different types of unknown blurs. Along the way, details are given of the numerical strategies developed to give accurate results and to accelerate performance. Finally, the thesis demonstrates state of the art results in blind restoration of synthetic and real degraded images, such as recovering details in out of focus photographs

    SIS 2017. Statistics and Data Science: new challenges, new generations

    Get PDF
    The 2017 SIS Conference aims to highlight the crucial role of the Statistics in Data Science. In this new domain of ‘meaning’ extracted from the data, the increasing amount of produced and available data in databases, nowadays, has brought new challenges. That involves different fields of statistics, machine learning, information and computer science, optimization, pattern recognition. These afford together a considerable contribute in the analysis of ‘Big data’, open data, relational and complex data, structured and no-structured. The interest is to collect the contributes which provide from the different domains of Statistics, in the high dimensional data quality validation, sampling extraction, dimensional reduction, pattern selection, data modelling, testing hypotheses and confirming conclusions drawn from the data

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855

    Impact of geogenic degassing on C-isotopic composition of dissolved carbon in karst systems of Greece

    Get PDF
    The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al., 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tectonic areas has not yet been quantified. The main aim of this research is to investigate the possible deep degassing through the big karst aquifers of Greece. Since 2016, 156 karst springs were sampled along most of the Greek territory. To discriminate the sources of carbon, the analysis of the isotopic composition of carbon was carried out. δ13CTDIC values vary from -16.61 to -0.91‰ and can be subdivided into two groups characterized by (a) low δ13CTDIC, and (b) intermediate to high δ13CTDIC with a threshold value of -6.55‰. The composition of the first group can be related to the mixing of organic-derived CO2 and the dissolution of marine carbonates. Springs of the second group, mostly located close to Quaternary volcanic areas, are linked to possible carbon input from deep sources
    corecore