13 research outputs found

    Adaptive channel selection for DOA estimation in MIMO radar

    Full text link
    We present adaptive strategies for antenna selection for Direction of Arrival (DoA) estimation of a far-field source using TDM MIMO radar with linear arrays. Our treatment is formulated within a general adaptive sensing framework that uses one-step ahead predictions of the Bayesian MSE using a parametric family of Weiss-Weinstein bounds that depend on previous measurements. We compare in simulations our strategy with adaptive policies that optimize the Bobrovsky- Zaka{\i} bound and the Expected Cram\'er-Rao bound, and show the performance for different levels of measurement noise.Comment: Submitted to the 25th European Signal Processing Conference (EUSIPCO), 201

    A Comparative Study of Several Array Geometries for 2D DOA Estimation

    Get PDF
    AbstractIn this paper, a comparison between several array geometries, including planar arrays and volume arrays, for two-dimensional Direction of Arrival (DOA) estimation using Multiple Signal Classification (MUSIC) is presented. For each geometry, various criteria is taken into consideration and a comparative study of the performance of geometries is carried out. The geometries together with their ultimate direction finding performance are compared based on Root Mean Square Error (RMSE), the ambiguity functions, and Cramer-Rao Bounds (CRB). Furthermore, the effects of phase and amplitude variations of the array element radiation pattern, namely Vivaldi and Monopole antenna, on DOA estimation performance are studied. The advantages and drawbacks of each geometry vis-Ă -vis the employed DOA estimation technique are shown through a numerical comparison

    Loudspeaker and Listening Position Estimation using Smart Speakers

    Get PDF

    Estimation and Minimization of the Cramer-Rao lower bound for radio direction-finding on the azimuth and elevation of planar antenna arrays

    Get PDF
    In this paper an approach of obtaining optimal planar antenna arrays consisting of omnidirectional sensors is proposed. The novelty of the proposed approach is to apply an exact expression of the Cramer-Rao lower bound for an arbitrary planar antenna array consisting of a number of omnidirectional elements which has been presented in the further chapters of the paper. The obtained formula describes the influence of antenna elements locations on the direction-of-arrival estimation accuracy. It has been shown that the direction-of-arrival accuracy via planar antenna arrays is determined as the sum of squares of differences between all omnidirectional elements coordinates along x- and y-axis. Thus knowing an expected area or sector of signal source it is very easy to calculate optimal arrangement of antenna elements in order to reduce direction-finding errors, because obtained by that way positions gives the best match according to the maximum likelihood criterion. It is worth nothing that such antenna arrays are useful in the way that they allow estimating the coordinates of radio emission sources in the three-dimensional coordinate space, i.e. in azimuth and elevation. In order to confirm the proposed methodology optimal antenna arrays constructed after minimization of the new formulas are researched. It is found out that the new shapes of antenna arrays based on the analytical expressions have better direction-of-arrival accuracy in comparison with the circular ones

    A Cramér-Rao bounds based analysis of 3D antenna array geometries made from ULA branches

    No full text
    International audienceIn the context of passive sources localization using antenna array, the estimation accuracy of elevation, and azimuth are related not only to the kind of estimator which is used, but also to the geometry of the considered antenna array. Although there are several available results on the linear array, and also for planar arrays, other geometries existing in the literature, such as 3D arrays, have been less studied. In this paper, we study the impact of the geometry of a family of 3D models of antenna array on the estimation performance of elevation, and azimuth. The Cramer-Rao Bound (CRB), which is widely spread in signal processing to characterize the estimation performance will be used here as a useful tool to find the optimal configuration. In particular, we give closed-form expressions of CRB for a 3D antenna array under both conditional, and unconditional observation models. Thanks to these explicit expressions, the impact of the third dimension to the estimation performance is analyzed. Particularly, we give criterions to design an isotropic 3D array depending on the considered observation model. Several 3D particular geometry antennas made from uniform linear array (ULA) are analyzed, and compared with 2D antenna arrays. The isotropy condition of such arrays is analyzed. The presented framework can be used for further studies of other types of arrays

    Sparsity-enforcing sensor selection for DOA estimation

    Full text link

    Antenna array geometries and algorithms for direction of arrival estimation

    Get PDF
    Direction of arrival (DOA) estimation with the antenna array was a forever topic of scientist. In this dissertation, a detailed comparison of the direction of arrival (DOA) estimation algorithms, including three classic algorithms as MUSIC, Root-MUSIC and ESPRIT, was performed and an analysis of various array geometries’ (configurations) properties in DOA estimation was demonstrated. Cramer-Rao Bound (CRB) was used for theoretic analysis and Root Mean Square Error (RMSE), which determined the best performance for a given geometry, regardless the specific estimation algorithm used, was implemented in simulation comparison. In the first part, MUSIC, Root-MUSIC and ESPRIT were illustrated, where theoretic underlying of the algorithms were expressed by revisited, paseudo code algorithms, and compared in the aspects of accuracy and computational efficiency. Consequently, ESPRIT was found more efficient than the other two algorithms in computation. However, the accuracy of MUSIC was better than ESPRIT. In the second part, four particular array geometries, including Uniform Circular Array (UCA), L Shaped Array (LSA), Double L Shaped Array (DLSA) and Double Uniform Circular Array (DUCA), were analyzed in the area of directivity, accuracy and resolving ability. A simulation comparison of DOA estimation with these four array geometries by MUSIC algorithm in two dimensions was made then, since MUSIC had the best accuracy in these three algorithms. According to the analysis and comparison, it was found that L Shaped Array (LSA) and Double L Shaped Array (DLSA) were more accurate than others, considering both azimuth and elevation estimation. Also, in the case of two dimensional DOA estimation, the Double L Shaped Array (DLSA) was shown a theoretically relative isotropy to other array geometries. From the simulation, the detection ability of Double L Shaped Array (DLSA) was proved the best in the array geometries discussed in this dissertation. These findings had significant implications for the further study of the array geometry in DOA estimation

    Antenna array geometries and algorithms for direction of arrival estimation

    Get PDF
    Direction of arrival (DOA) estimation with the antenna array was a forever topic of scientist. In this dissertation, a detailed comparison of the direction of arrival (DOA) estimation algorithms, including three classic algorithms as MUSIC, Root-MUSIC and ESPRIT, was performed and an analysis of various array geometries’ (configurations) properties in DOA estimation was demonstrated. Cramer-Rao Bound (CRB) was used for theoretic analysis and Root Mean Square Error (RMSE), which determined the best performance for a given geometry, regardless the specific estimation algorithm used, was implemented in simulation comparison. In the first part, MUSIC, Root-MUSIC and ESPRIT were illustrated, where theoretic underlying of the algorithms were expressed by revisited, paseudo code algorithms, and compared in the aspects of accuracy and computational efficiency. Consequently, ESPRIT was found more efficient than the other two algorithms in computation. However, the accuracy of MUSIC was better than ESPRIT. In the second part, four particular array geometries, including Uniform Circular Array (UCA), L Shaped Array (LSA), Double L Shaped Array (DLSA) and Double Uniform Circular Array (DUCA), were analyzed in the area of directivity, accuracy and resolving ability. A simulation comparison of DOA estimation with these four array geometries by MUSIC algorithm in two dimensions was made then, since MUSIC had the best accuracy in these three algorithms. According to the analysis and comparison, it was found that L Shaped Array (LSA) and Double L Shaped Array (DLSA) were more accurate than others, considering both azimuth and elevation estimation. Also, in the case of two dimensional DOA estimation, the Double L Shaped Array (DLSA) was shown a theoretically relative isotropy to other array geometries. From the simulation, the detection ability of Double L Shaped Array (DLSA) was proved the best in the array geometries discussed in this dissertation. These findings had significant implications for the further study of the array geometry in DOA estimation

    Contributions aux bornes inférieures de l’erreur quadratique moyenne en traitement du signal

    Get PDF
    A l’aide des bornes inférieures de l’erreur quadratique moyenne, la caractérisation du décrochement des estimateurs, l’analyse de la position optimale des capteurs dans un réseau ainsi que les limites de résolution statistiques sont étudiées dans le contexte du traitement d’antenne et du radar
    corecore