1,269 research outputs found

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    First-order Nilpotent Minimum Logics: first steps

    Full text link
    Following the lines of the analysis done in [BPZ07, BCF07] for first-order G\"odel logics, we present an analogous investigation for Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra. We establish a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and the monadic fragments.Comment: In this version of the paper the presentation has been improved. The introduction section has been rewritten, and many modifications have been done to improve the readability; moreover, numerous references have been added. Concerning the technical side, some proofs has been shortened or made more clear, but the mathematical content is substantially the same of the previous versio

    A note on drastic product logic

    Full text link
    The drastic product D*_D is known to be the smallest tt-norm, since xDy=0x *_D y = 0 whenever x,y<1x, y < 1. This tt-norm is not left-continuous, and hence it does not admit a residuum. So, there are no drastic product tt-norm based many-valued logics, in the sense of [EG01]. However, if we renounce standard completeness, we can study the logic whose semantics is provided by those MTL chains whose monoidal operation is the drastic product. This logic is called S3MTL{\rm S}_{3}{\rm MTL} in [NOG06]. In this note we justify the study of this logic, which we rechristen DP (for drastic product), by means of some interesting properties relating DP and its algebraic semantics to a weakened law of excluded middle, to the Δ\Delta projection operator and to discriminator varieties. We shall show that the category of finite DP-algebras is dually equivalent to a category whose objects are multisets of finite chains. This duality allows us to classify all axiomatic extensions of DP, and to compute the free finitely generated DP-algebras.Comment: 11 pages, 3 figure

    Valuations in Nilpotent Minimum Logic

    Full text link
    The Euler characteristic can be defined as a special kind of valuation on finite distributive lattices. This work begins with some brief consideration on the role of the Euler characteristic on NM algebras, the algebraic counterpart of Nilpotent Minimum logic. Then, we introduce a new valuation, a modified version of the Euler characteristic we call idempotent Euler characteristic. We show that the new valuation encodes information about the formul{\ae} in NM propositional logic

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Reducing fuzzy answer set programming to model finding in fuzzy logics

    Get PDF
    In recent years, answer set programming (ASP) has been extended to deal with multivalued predicates. The resulting formalisms allow for the modeling of continuous problems as elegantly as ASP allows for the modeling of discrete problems, by combining the stable model semantics underlying ASP with fuzzy logics. However, contrary to the case of classical ASP where many efficient solvers have been constructed, to date there is no efficient fuzzy ASP solver. A well-known technique for classical ASP consists of translating an ASP program P to a propositional theory whose models exactly correspond to the answer sets of P. In this paper, we show how this idea can be extended to fuzzy ASP, paving the way to implement efficient fuzzy ASP solvers that can take advantage of existing fuzzy logic reasoners
    corecore