5 research outputs found

    Study of the dynamics of third-order iterative methods on quadratic polynomials

    Get PDF
    In this paper, we analyse the dynamical behaviour of the operators associated with multi-point interpolation iterative methods and frozen derivative methods, for solving nonlinear equations, applied on second-degree complex polynomials. We obtain that, in both cases, the Julia set is connected and separates the basins of attraction of the roots of the polynomial. Moreover, the Julia set of the operator associated with multi-point interpolation methods is the same as the Newton operator, although it is more complicated for the frozen derivative operator. We explain these differences by obtaining the conjugacy function of each method and by showing that the operators associated with Newton's method and multi-point interpolation methods are both conjugate to powers of z.The authors thank Professors X. Jarque and A. Garijo for their help. The authors also thank the referees for their valuable comments and suggestions that have improved the content of this paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Invetigacion, Universitat Politecnica de Valencia, PAID-06-2010-2285Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel Cañas, P. (2012). Study of the dynamics of third-order iterative methods on quadratic polynomials. International Journal of Computer Mathematics. 89(13):1826-1836. https://doi.org/10.1080/00207160.2012.687446S182618368913Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086Amat, S., Busquier, S., & Plaza, S. (2010). Chaotic dynamics of a third-order Newton-type method. Journal of Mathematical Analysis and Applications, 366(1), 24-32. doi:10.1016/j.jmaa.2010.01.047Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). Multi-Point Iterative Methods for Systems of Nonlinear Equations. Lecture Notes in Control and Information Sciences, 259-267. doi:10.1007/978-3-642-02894-6_25Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). Iterative methods for use with nonlinear discrete algebraic models. Mathematical and Computer Modelling, 52(7-8), 1251-1257. doi:10.1016/j.mcm.2010.02.028Curry, J. H., Garnett, L., & Sullivan, D. (1983). On the iteration of a rational function: Computer experiments with Newton’s method. Communications in Mathematical Physics, 91(2), 267-277. doi:10.1007/bf01211162Douady, A., & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. Annales scientifiques de l’École normale supérieure, 18(2), 287-343. doi:10.24033/asens.1491Frontini, M., & Sormani, E. (2003). Some variant of Newton’s method with third-order convergence. Applied Mathematics and Computation, 140(2-3), 419-426. doi:10.1016/s0096-3003(02)00238-2Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017Özban, A. . (2004). Some new variants of Newton’s method. Applied Mathematics Letters, 17(6), 677-682. doi:10.1016/s0893-9659(04)90104-8PLAZA, S. (2001). CONJUGACIES CLASSES OF SOME NUMERICAL METHODS. Proyecciones (Antofagasta), 20(1). doi:10.4067/s0716-09172001000100001Plaza, S., & Romero, N. (2011). Attracting cycles for the relaxed Newton’s method. Journal of Computational and Applied Mathematics, 235(10), 3238-3244. doi:10.1016/j.cam.2011.01.010F.A. Potra and V. Pták,Nondiscrete Introduction and Iterative Processes, Research Notes in Mathematics Vol. 103, Pitman, Boston, MA, 1984

    Dynamics of a family of Chebyshev-Halley type methods

    Get PDF
    In this paper, the dynamics of the Chebyshev-Halley family is studied on quadratic polynomials. A singular set, that we call cat set, appears in the parameter space associated to the family. This set has interesting similarities with the Mandelbrot set. The parameter space has allowed us to find different elements of the family which have bad convergence properties, since periodic orbits and attractive strange fixed points appear in the dynamical plane of the corresponding method. (C) 2013 Elsevier Inc. All rights reserved.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel Cañas, P. (2013). Dynamics of a family of Chebyshev-Halley type methods. Applied Mathematics and Computation. 219(16):8568-8583. https://doi.org/10.1016/j.amc.2013.02.042S856885832191

    A Novel Geometric Modification to the Newton-Secant Method to Achieve Convergence of Order 1

    Get PDF
    A geometric modification to the Newton-Secant method to obtain the root of a nonlinear equation is described and analyzed. With the same number of evaluations, the modified method converges faster than Newton’s method and the convergence order of the new method is 1+2≈2.4142. The numerical examples and the dynamical analysis show that the new method is robust and converges to the root in many cases where Newton’s method and other recently published methods fail

    Dynamics of a new family of iterative processes for quadratic polynomials

    Get PDF
    AbstractIn this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter m∈N∪{0}. These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton’s and Chebyshev’s methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods

    Bulbs of period two in the family of Chebyshev-Halley iterative methods on quadratic polynomials

    Get PDF
    The parameter space associated to the parametric family of Chebyshev-Halley on quadratic polynomials shows a dynamical richness worthy of study. This analysis has been initiated by the authors in previous works. Every value of the parameter belonging to the same connected component of the parameter space gives rise to similar dynamical behavior. In this paper, we focus on the search of regions in the parameter space that gives rise to the appearance of attractive orbits of period two.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02, by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID SP20120498 and by Vicerrectorado de Investigacion, Universitat Jaume I P11B2011-30. The authors would like to thank Mr. Francisco Chicharro for his valuable help with the numerical and graphic tools for drawing the dynamical planes.Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel Cañas, P. (2013). Bulbs of period two in the family of Chebyshev-Halley iterative methods on quadratic polynomials. Abstract and Applied Analysis. 2013. https://doi.org/10.1155/2013/536910S2013Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017Plaza, S., & Romero, N. (2011). Attracting cycles for the relaxed Newton’s method. Journal of Computational and Applied Mathematics, 235(10), 3238-3244. doi:10.1016/j.cam.2011.01.010Chicharro, F., Cordero, A., Gutiérrez, J. M., & Torregrosa, J. R. (2013). Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 219(12), 7023-7035. doi:10.1016/j.amc.2012.12.075Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Neta, B., Scott, M., & Chun, C. (2012). Basins of attraction for several methods to find simple roots of nonlinear equations. Applied Mathematics and Computation, 218(21), 10548-10556. doi:10.1016/j.amc.2012.04.017Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 219(16), 8568-8583. doi:10.1016/j.amc.2013.02.042Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6Kneisl, K. (2001). Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(2), 359-370. doi:10.1063/1.1368137Cordero, A., Torregrosa, J. R., & Vindel, P. (2013). Period-doubling bifurcations in the family of Chebyshev–Halley-type methods. International Journal of Computer Mathematics, 90(10), 2061-2071. doi:10.1080/00207160.2012.745518Devaney, R. L. (1999). The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence. The American Mathematical Monthly, 106(4), 289. doi:10.2307/258955
    corecore