50 research outputs found

    Further results on the distinctness of binary sequences derived from primitive sequences modulo square-free odd integers

    Get PDF
    This paper studies the distinctness of primitive sequences over Z/(M) modulo 2, where M is an odd integer that is composite and square-free, and Z/(M) is the integer residue ring modulo M. A new sufficient condition is given for ensuring that primitive sequences generated by a primitive polynomial f(x) over Z/(M) are pairwise distinct modulo 2. Such result improves a recent result obtained in our previous paper [27] and consequently the set of primitive sequences over Z/(M) that can be proven to be distinct modulo 2 is greatly enlarged

    A new result on the distinctness of primitive sequences over Z(pq) modulo 2

    Get PDF
    Let Z/(pq) be the integer residue ring modulo pq with odd prime numbers p and q. This paper studies the distinctness problem of modulo 2 reductions of two primitive sequences over Z/(pq), which has been studied by H.J. Chen and W.F. Qi in 2009. First, it is shown that almost every element in Z/(pq) occurs in a primitive sequence of order n > 2 over Z/(pq). Then based on this element distribution property of primitive sequences over Z/(pq), previous results are greatly improved and the set of primitive sequences over Z/(pq) that are known to be distinct modulo 2 is further enlarged

    On the distinctness of binary sequences derived from primitive sequences modulo square-free odd integers

    Get PDF
    Let M be a square-free odd integer and Z/(M) the integer residue ring modulo M. This paper studies the distinctness of primitive sequences over Z/(M) modulo 2. Recently, for the case of M = pq, a product of two distinct prime numbers p and q, the problem has been almost completely solved. As for the case that M is a product of more prime numbers, the problem has been quite resistant to proof. In this paper, a partial proof is given by showing that a class of primitive sequences of order 2k+1 over Z/(M) is distinct modulo 2. Besides as an independent interest, the paper also involves two distribution properties of primitive sequences over Z/(M), which related closely to our main results

    Error Detection in Number-Theoretic and Algebraic Algorithms

    Get PDF
    CPU's are unreliable: at any point in a computation, a bit may be altered with some (small) probability. This probability may seem negligible, but for large calculations (i.e., months of CPU time), the likelihood of an error being introduced becomes increasingly significant. Relying on this fact, this thesis defines a statistical measure called robustness, and measures the robustness of several number-theoretic and algebraic algorithms. Consider an algorithm A that implements function f, such that f has range O and algorithm A has range O' where OβŠ†O'. That is, the algorithm may produce results which are not in the possible range of the function. Specifically, given an algorithm A and a function f, this thesis classifies the output of A into one of three categories: 1. Correct and feasible -- the algorithm computes the correct result, 2. Incorrect and feasible -- the algorithm computes an incorrect result and this output is in O, 3. Incorrect and infeasible -- the algorithm computes an incorrect result and output is in O'\O. Using probabilistic measures, we apply this classification scheme to quantify the robustness of algorithms for computing primality (i.e., the Lucas-Lehmer and Pepin tests), group order and quadratic residues. Moreover, we show that typically, there will be an "error threshold" above which the algorithm is unreliable (that is, it will rarely give the correct result)
    corecore