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Abstract

CPU’s are unreliable: at any point in a computation, a bit may be altered
with some (small) probability. This probability may seem negligible, but for large
calculations (i.e., months of CPU time), the likelihood of an error being introduced
becomes increasingly significant. Relying on this fact, this thesis defines a statistical
measure called robustness, and measures the robustness of several number-theoretic
and algebraic algorithms.

Consider an algorithm A that implements function f , such that f has range O
and algorithm A has range O′ where O ⊆ O′. That is, the algorithm may produce
results which are not in the possible range of the function. Specifically, given an
algorithm A and a function f , this thesis classifies the output of A into one of three
categories:

1. Correct and feasible – the algorithm computes the correct result,

2. Incorrect and feasible – the algorithm computes an incorrect result and this
output is in O,

3. Incorrect and infeasible – the algorithm computes an incorrect result and
output is in O′\O.

Using probabilistic measures, we apply this classification scheme to quantify the
robustness of algorithms for computing primality (i.e., the Lucas-Lehmer and Pepin
tests), group order and quadratic residues. Moreover, we show that typically, there
will be an “error threshold” above which the algorithm is unreliable (that is, it will
rarely give the correct result).
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Chapter 1

Introduction and Motivation

Computers currently are, and always have been, unreliable.

Historically, when “computers” were those people who calculated extensive
arithmetic formulae (sequences, factors of integers, logarithms of integers, etc.)
mistakes (such as an incorrectly written digit, or transposed digits) would invari-
ably occur.

For example, the French mathematician Edouard Lucas devoted some of his
computational energy towards determining perfect numbers. Recall that a perfect
number is a positive integer n such that

∑
d|n

1≤d<n
d = n. Euclid demonstrated that

if 2p−1 is prime, then (2p−1)2p−1 is a perfect number. Furthermore, Euler proved
that all even perfect numbers must be of the form (2p− 1)2p−1. Lucas [61], relying
on the above theorems and his extensive computations stated that “Nous pensons
avoir démontré par de très longs calculs qu’il n’existe pas de nombres parfaits pour
p = 67 et p = 89”1. Powers [78] later demonstrated that Lucas made an error in
his computations, by proving that 289 − 1 was prime, which implies that there is
a perfect number of the form (2p − 1)2p−1 where p = 89. (It is worth noting that
Lucas was correct in determining that (267 − 1)266 is not a perfect number.)

A more well-known computational error was that of William Shanks (c. 1873) [39].
Shanks claimed to have computed π to 707 decimal digits using applications of
trigonometric expansions [86]. In 1944, D. F. Ferguson reviewed Shanks’ computa-
tions more thoroughly, and discovered that Shanks introduced an error at the 528th

decimal place, which revealed that the last 179 digits in Shanks’ computation were
incorrect. Ferguson and Wrench [33] formalized these results.

1“We think we have demonstrated by lengthy calculations that there do not exist perfect
numbers for the values p = 67 and p = 89.”
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In more modern times, silicon-based computation can be adversely affected by
soft errors. A soft error can be loosely defined as an error that is a random, non-
destructive event that alters one or more bits of information stored in a RAM cell
or CPU register [101]. In early electronic circuits, soft errors could be introduced
by faulty power systems or surges of electricity (e.g., lightning). The problem of
maintaining an unwavering power supply was solved by computer manufacturers by
shielding and grounding power supplies (see Ziegler’s introduction [101]). Once the
electrical control problems were solved, research focused on soft errors caused by
radioactive particles present in earthly materials, as well as the soft errors caused by
cosmic radiation emitted from space [101]. In fact, a “solar maximum” occurs every
11 years, causing increased bursts of radiation, which can disturb radio and satellite
communication [69]. One result that provides additional motivation for studying
soft errors is that as computing devices are moved to higher altitudes from the
surface of the earth, the soft error rate increases dramatically [101] As an example,
computers in high altitude aircraft have a soft error rate that is approximately 100
times the rate at sea-level [66]. Heidergott [45] provides an excellent overview of
soft errors from an engineering perspective, as well as interesting measures of the
rate of errors. As an example, Heidergott states that in some satellite systems,
there are more than 200 soft errors per day, with peak error rates of 32 soft errors
per minute “during intense solar particle events” [45].

Soft errors differ considerably from hard errors which are more physical in their
nature. A manufacturing defect in RAM that causes predictable, repeatable mem-
ory failure, such as a bit always being set to 0, is one type of hard error. Possibly
the most “famous” (or at least, largest in terms of media exposure and economic
consequences) hard error was the incorrect division wiring on the Pentium chip:
Blum and Wasserman [15] provide a mathematical reflection on this hard error.
Stallings [88] provides a thorough introduction to hard and soft errors.

While it is debatable whether economics should motivate research, it is the case
that “NASA alone expects to spent up to $10 million on the quest for 100% reliable
software” [37]. As further motivation, researchers at IBM [20] have concluded “[f]or
every 256 Megabytes of memory, you’ll get one soft-error a month.”

In this light, the work in this thesis illustrates how certain, well-known algo-
rithms compare (in terms of accuracy and probability of success) when soft errors
occur.

2



1.1 Related work

There has been considerable analysis of algorithms under error.

Von Neumann [96] studied the effects of errors on deterministic finite automata.
In fact, von Neumann viewed error “not as an extraneous and misdirected or mis-
directing accident, but as an essential part of the process under consideration.” [96,
page 1]. This work has since been extended, notably by Delyon and Maler [30],
who define the concept of a synchronizing deterministic finite automaton.

For example, one problem that has been studied is the problem of searching
under error: in an ordered list of elements, we wish to locate a particular element.
However, the query mechanism (such as “Is the current value less than the desired
value?”) may be faulty (e.g., errors cause the response of queries to be incorrect).
Rivest et al. [82] explored binary searching where the output is incorrect by finding
an optimal continuous solution and using it to solve the discrete problem. Czumaj
and Sohler [27] introduced soft kinetic data structures, which allow some (fixed)
variation in the sorted properties, much in the same way that AVL trees (originally
presented in Adel’son-Vel’skii and Landis [1] and thoroughly explained by Lewis
and Denenberg [57]) allow flexibility in the definition of balanced binary search
trees. Feige et al. [32] modelled the computation of binary search algorithms by
way of decision trees and gave bounds on the number of repeated executions by way
of “majority voting” (i.e., running the algorithm in parallel, and using the output
which is given by a majority of processors). Pelc considered searching where there
are a fixed number of erroneous queries [73] and also a fixed probability that queries
are erroneous [74]. Borgstrom and Rao Kosaraju [16] used amortized analysis to
quantify searching when there is a fixed proportion of erroneous queries, which was
also considered by Aslam and Dhagat [4]. Muthukrishnan [68] used the defective
coins problem to correctly find an element when there are at most O(log logN)
erroneous queries out of a total of N queries. Ravikumar and Lakshmanan [80]
consider searching when there is a known set of possibly lying patterns.

Adler et al. [2] extended the work of Ravikumar and Lakshmanan to modelling
an elimination tournament that minimizes the number of games required, using the
fact that there are “erroneous” results of games if the expected winner does not, in
fact, win.

A related problem is the problem of sorting: given a sequence of elements,
place them in (increasing) order. Again, much work has been done in this area,
of which we discuss a small sampling. Lakshmanan, Ravikumar and Ganesan [54]
considered the problem of sorting in both the “half-lie” case (only “no” answers to
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queries may be erroneous; all “yes” answers are guaranteed to be correct) and “full-
lie” case (either “yes” or “no” answers may be erroneous), and they established a
lower-bound on the full-lie case. Long [60] used the search results of Rivest et al. [82]
to improve on the running time found by Lakshmanan, Ravikumar and Ganesan.
Ravikumar [81] considered an upper bound on the number of erroneous queries that
could occur in merge-sort algorithm and yet still have runtime O(n log n).

1.2 Self-checking algorithms

Some algorithms have more inherent ability to detect (and possibly recover) from
errors that occurred during computation. For instance, an integer factorization
algorithm will be able to verify that the product of the outputted factors equals
the original integer input.

In other algorithms, however, it may be more difficult to perform a verification
step to determine if the output is correct. As an example, primality testing typically
outputs whether or not an integer is prime or composite, with no short “proof” of
the correctness of the output (other than the possibility of viewing the sequence of
calculations that derived the result).

There have been several arguments that certain algorithms have a “high likeli-
hood” of success. Powers stated that Lucas’ method of determining primality (see
Chapters 5 and 6) “is free from any uncertainty as to the accuracy of the conclu-
sion that the number under consideration is prime...since an error in calculating
any term of the series would have the effect of preventing the appearance of the
residue 0 [which indicates primality]” [78]. Uhler took a less absolute opinion of the
accuracy of Lucas’ test under errors in computation. He claimed that the chance
of stating that a composite number of the form 2p − 1 is prime is “utterly negligi-
ble, although not impossible” [93]. However, the opposite case of claiming a prime
number of the form 2p − 1 is composite is “possible”, even with the “utmost care
and impeccable honesty” in the computations [93].

It is worth noting, however, that the preceding arguments offer little in the way
of formally proving any of the claims, and as such, the claims are mere opinion.

Blum presented a more formal approach to determining the reliability of algo-
rithms that have errors introduced: Blum defined the concepts of program checking
and self-checking programs. In short, a program checker for program P is a pro-
gram C that takes an (input, output) pair, and either certifies that the output of
P on the input was correct, or declares that P is “buggy”(i.e., incorrect). A strict
bound exists, however, on the running time of the checker C, in the sense that the
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running time of C is o(P ). This running time restriction ensures that the checker
is not just the original program P , and also that running the checker C will not
dramatically impact the running time of the main program P . Self-checking (or
self-testing) models are similar to the program checker model described above, but
rely on the fact that program P is not “too faulty on average” [14] to create a more
general program checker. A more thorough explanation to program checking is
presented by Blum and Kannan [13] and Wasserman and Blum [97]. Self-checking
is described in full by Blum, Luby and Rubinfeld [14]. The work by Blum has
also been extended to self-correcting algorithms (which rely on spot-checkers) as
outlined by Ergüun et al [31].

In summary, program checking has moved from informal arguments to more
formal methods. The work in this thesis branches off from the work of Blum on
numerical problems (e.g., matrix multiplication) to the area of number-theoretical
problems. Most crucially, however, the work in this thesis differs from the work
of Blum et al. in that Blum’s checker algorithms must run (asymptotically) faster
the program which they are checking. Our work is not about checking, certifying
results or detecting errors. Rather, our work measures the probability of correctness
and the probability of detecting error in our computational model, without any
computational overhead.

1.3 Error model for computation

The thrust of this thesis is to quantify the effect of errors on various algorithms.
That is, we must formally specify a model to capture how, when and where errors
may occur in order to determine what effect their occurrence has on the correctness
of the algorithm’s output.

We begin by stating where errors could be introduced into the algorithms:

• The input may be changed before any computation occurs.

• The output of any non-trivial calculation may be incorrect. For example, mul-
tiplication of two integers, neither of which is 0 or 1, is non-trivial. Division
by two or a decrement of 1 is trivial.

• At any point in the algorithm’s execution, a register containing any value
(either a computed value or a constant) may be altered.

• The output of the algorithm may be changed after all computation occurs.

5



In contrast, the following examples illustrate those operations that we will assume
to be correct:

• Computing subtraction by 1 (i.e., p− 1) is error free.

• Given the previous point, computing p−1
2

is error free.

• Computing x (mod p) will output an element y such that x = kp+y for some
integer k, where 0 ≤ y ≤ p− 1.

It is worth noting that since we will assume that modular reduction does produce
a “reasonable” result, we will view an error as some event that causes a (correct)
value x to be replaced by another value y (mod N) with uniform probability. In
other words, if an error occurs, it will change the value x to particular value y in
the range 0, . . . , N − 1 with probability 1/N . Modelling errors using only incorrect
modular computation as the form of error can be justified for a few reasons. First,
this error model can capture a wide variety of errors. For example, an “off-by-one”
error is equivalent to an error in modular computation. Second, this error model
mimics the effect of the Intel division bug (as outlined earlier in this chapter),
in that modular reduction can be viewed as repeated division. Third, this model
provides mathematically interesting results concerning the underlying structure of
the algorithms we analyze in this thesis.

Next, we outline our model of fault-detection. Consider an algorithm A that
implements function f , such that f has range O and algorithm A has range O′

where O ⊆ O′. That is, the algorithm may produce results which are not in the
possible range of the function. Specifically, given an algorithm A and a function f ,
the output of A can be classified as belonging to one of three categories:

1. Correct and feasible – the algorithm computes the correct result,

2. Incorrect and feasible – the algorithm computes an incorrect result and this
output is in O,

3. Incorrect and infeasible – the algorithm computes an incorrect result and
output is in O′\O.

It is also worth noting that for the algorithms that we will be examining, an
input from a large domain is mapped to an output value in a small range. For
example, quadratic residue computation takes as input a value from 0 to p− 1 (for
some large prime p), and computes a value in the set {−1, 0, 1}. Thus, since we

6



have a large input space and a small output space, case (3) above is a possibility,
and as such, we will need to worry about detecting such errors.

Additionally, some algorithms may not produce infeasible results. For example,
an algorithm which adds two integers x and y modulo N can produce any element in
Z/(N). Thus, there are no infeasible results. However, we can modify this algorithm
(and extend this to any algorithm of this form) by grouping two executions of the
algorithm as an ordered pair. For example, we can modify the addition algorithm
outlined above and transform it into an algorithm that produces an ordered pair,
by taking the output of one execution of the algorithm as the first element in the
ordered pair, and the second execution of the algorithm as the second element.
Therefore, this new composite algorithm would produce:

• correct and feasible output if the output was the pair (a, a) where a = x+ y
(mod N),

• incorrect and feasible output if the output was the pair (b, b) where b 6= x+ y
(mod N)

• incorrect and infeasible output if the output was the pair (c, d) where c 6= d
and c, d ∈ Z/(N).

This repeated execution technique easily generalizes to any algorithm that produces
only feasible outputs.

We now define the idea of a robust algorithm. It is desirable to avoid having
output which is incorrect but feasible, since there is often no simple way to deter-
mine if the output is in fact incorrect. Thus, we wish our algorithms to produce
either correct output or output which we can identify as infeasible, and thus, in-
correct. Formalizing this idea, we consider an algorithm to be computing a map
from the input space I to the output space O′, O ⊆ O′, where O is the space of
feasible outputs and O′ is the set of all outputs. We define a robust algorithm as
an algorithm that, on an input of size n, produces output that is

• correct with probability pc(n);

• incorrect and infeasible with probability pi(n);

• incorrect and feasible with probability pf (n);

where pc(n) > b > 0 (for some constant b) and pf (n) < pi(n). The rationale
for this definition is that if an algorithm satisfies this definition, we can execute

7



the algorithm repeatedly to increase the confidence of the output. By way of
explanation, the least desirable category of output is incorrect and feasible, since
the output is not correct yet cannot be detected as incorrect, whereas incorrect
and infeasible can be determined to be incorrect since it is infeasible. Thus, if an
algorithm is repeatedly executed, the likelihood of having either correct or infeasible
output will increase, and thus, we lessen the likelihood of feasible but incorrect
output.

In some situations, we may use an equivalent definition of robustness, where
we replace pf (n) < pi(n) with the inequality pi(n)

pf (n)+pi(n)
= pi(n)

1−pc(n)
> 0.5. By some

simple rearrangement, in order to show robustness, we need to show that

pf (n) < pi(n),

which holds if and only if
pf (n)

pi(n)
< 1,

which is equivalent to
pi(n) + pf (n)

pi(n)
< 2,

and by reciprocating, we have

pi(n)

pi(n) + pf (n)
> 0.5.

Should an algorithm not be robust for certain inputs, it may be possible to convert
it to a robust algorithm by running two independent executions of the input on
particular input. The following lemma shows that combining two independent
trials of a robust algorithm maintains robustness.

Lemma 1.3.1 Suppose algorithm A is robust. Then algorithm A∗, which runs
algorithm A on two independent executions on the same input, is also robust.

Proof: Since algorithm A is robust, we know that pc(n) > b > 0 for some constant
b and pi(n) > pf (n), where n is the size of the input given to algorithm A. Let
p∗c(n), p∗f (n) and p∗i (n) be the probabilities for correct output, feasible but incorrect
output and infeasible output (respectively) for algorithm A∗. We need to show that
p∗c(n) > b∗ > 0 for some constant b∗ and p∗i (n) > p∗f (n) for any input size n.

Since the output of algorithm A∗ is correct if and only if both independent
executions of algorithm A are correct, the probability that algorithm A∗ is correct
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is p∗c(n) = (pc(n))2. Since pc(n) > b > 0, it follows that p∗c(n) = (pc(n))2 > b2 > 0.
Thus the constant b∗ = b2 satisfies this part of the definition of robustness.

In order to show that p∗i (n) > p∗f (n), we consider what the probabilities are.

To begin to show this inequality, we consider what an infeasible output from
algorithm A∗ is. Certainly, if either of the outputs from either independent execu-
tion is infeasible, the output is infeasible. In particular, if the “first” execution has
infeasible output, it does not matter what the “second” execution gives. Addition-
ally, if the first output is not infeasible, but the second execution is, this would be
infeasible output from algorithm A∗.

To formulate this mathematically, p∗i (n) ≥ pi(n) + pi(n)(1− pi(n)). It is worth
noting that in practice, this inequality will almost always be strict, since there are
cases, such as one output being correct and the other being feasible but incorrect,
which would increase the value p∗i (n).

Additionally, in order to have feasible but incorrect output from algorithm A∗,
we would need both feasible but incorrect outputs to match. Formulating this, we
have p∗f (n) ≤ pf (n)2. It is worth noting that this inequality becomes strict if there
is more than one possible feasible but incorrect output (since if there are different
feasible outputs from the two independent executions, the output of algorithm A∗

would be deemed infeasible).

Notice that since pi(n) < 1, it follows that pi(n)2 < pi(n), and combining this
with our inequalities for p∗i (n) and p∗f (n), we have

p∗i (n) ≥ pi(n) + pi(n)(1− pi(n)) > pi(n)2 > pf (n)2 ≥ p∗f (n)

which proves that algorithm A∗ is robust.

1.4 A motivating example

We illustrate how errors affecting a particular algorithm can produce each of the
three categories of output outlined in Section 2.6. Suppose we want to determine
the validity of a credit card. Moreover, we are sending the credit card information
one digit at a time (say, over the phone to a salesperson) and a digit may be
written down incorrectly. We will suppose (for the time being) that the last digit
is the check digit. More specifically, the credit card number is an n-digit sequence,
d1, d2, ..., dn, where each digit is in the range 0 to 9, and we have the following
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equation that must be satisfied:

dn =

(
n−1∑
i=1

di

)
mod 10, (1.1)

that ensures that the check digit is dependent on the other n − 1 digits. We shall
call Equation (1.1) the check digit equation.

For our error model, we will assume that with probability ε, each digit dj (1 ≤
j ≤ n) is changed (with uniform distribution) to a different digit chosen from
{0, 1, ..., 9} − {dj}. For example, in the transmission of the credit card digits from
point A to point B, digits can be altered with probability ε.

Notice that this model differs from the model that is used throughout the re-
maining chapters, in that an error in this example must change the value of of dj
to be something other than itself. We alter the error model for this example only
simply in order to make the analysis cleaner.

It is worth noting that for the subsequent chapters in this thesis, we are assum-
ing the input size is large enough such that either model (forcing errors to alter
values, or not requiring alteration) will yield the same results, since the effect of
the additional “non-modifying error case” is negligible. For example, the difference
between 1/221000

and 1/(221000
+ 1) is insignificant for the purposes of the results

obtained in this thesis.

• Correct

In order to ensure that that the error is correct, no error can occur. Thus,
since the probability that no error occurs in a single digit is (1 − ε), the
probability that the output is correct is

pc(n) = (1− ε)n.

• Incorrect and feasible

By incorrect and feasible, we mean that an error or errors occurred that
modified the original digit sequence (thus the transmitted credit card number
is not the same as the original credit card number); however, the transmitted
card is feasible, in the sense that the check digit equation is satisfied. More
formally, after transmission, we have a new credit card number sequence
d′1, d

′
2, ..., d

′
n such that

d′n =

(
n−1∑
i=1

d′i

)
mod 10

10



where d′j 6= dj for at least one j, 1 ≤ j ≤ n.

Notice that if one exactly error occurs in d0, d1, . . . , dn, there is no possibility
of feasibility. Specifically, if one value of dj is modified, then only one side of
Equation (1.1) will be altered, and thus, the equation cannot be valid.

If two errors occur, these errors must, in effect, “cancel out.” First, observe
that if dj is altered to d′j, then d′j = (dj +a) mod 10. If the other error affects
the check digit dn, then d′n = (dn + a) mod 10 in order for Equation (1.1)
to be satisfied. If the second error affects a digit other than the check digit,
in order to cancel, we must have d′k = (dk − a) mod 10 in order to satisfy
Equation (1.1).

Notice that out of the n digits, there are
(
n
2

)
ways of “choosing” 2 digits to

modify. The chance that exactly two errors occur is ε2(1 − ε)n−2. Finally,
given one error, there is precisely one other error that causes cancellation:
formally, there is a 1

9
probability that the second error cancels out the first

error. In total, if two errors occur, the probability that the output is incorrect
and feasible is (

n

2

)
(1− ε)n−2ε2

1

9
.

We now extend this case to analyze the case when k errors occur. An argu-
ment analogous to the previous paragraph yields

(
n
k

)
ways of picking k digits

to be altered, and (1− ε)n−kεk as the probability that exactly k errors occur.
To determine the probability that k errors can “cancel” out, we consider the
probability that k − 1 errors do not cancel out. That is, iff the k − 1 errors
do not cancel out, we can use the kth digit to compensate for the remainder.
Letting f(k) be the probability that k digits cancel out, we have the following
recurrence relation:

f(1) = 0

f(k) =
1− f(k − 1)

9
, (k > 1).

This recurrence relation can be solved to yield

f(n) =
9n−1 − (−1)n−1

10 · 9n−1
, (n ≥ 1).

Since we have as few as 1 error and as many as n errors, the probability that
the output is incorrect and feasible is:

pf (n) =
n∑
k=1

(
n

k

)
(1− ε)n−kεk 9k−1 − (−1)k−1

10 · 9k−1
.

11



We can simplify this expression as follows:

pf (n) =
n∑
k=1

(
n

k

)
(1− ε)n−kεk 9k−1 − (−1)k−1

10 · 9k−1

=
1

10

n∑
k=1

(
n

k

)
(1− ε)n−kεk − 1

10

n∑
k=1

(
n

k

)
(1− ε)n−kεk

(
−1

9

)k−1

=
1

10
(1− (1− ε)n) +

9

10

n∑
k=1

(
n

k

)
(1− ε)n−kεk

(
−1

9

)k
=

1

10
(1− (1− ε)n) +

9

10

((
1− ε− ε

9

)n
− (1− ε)n

)
=

1

10
(1− (1− ε)n) +

9

10

((
1− ε− ε

9

)n
− (1− ε)n

)
=

1

10
− (1− ε)n +

9

10

(
1− 10ε

9

)n
.

• Incorrect and infeasible

In this case, we can rely on the analysis performed in the previous case. In
particular, there are

(
n
k

)
ways of picking k digits to be altered, and (1−ε)n−kεk

is the probability that exactly k errors occur. The only remaining task is to
determine the probability that k digits do not “cancel” out (that is, Equation
(1.1) is violated).

Let g(k) be the probability that k errors do not cancel out. Using the incorrect
and feasible result from above, it is clear that g(k) = 1− f(k); that is, either
errors cancel out or they do not. Thus, we have:

g(k) = 1− f(k)

= 1− 9k−1 − (−1)k−1

10 · 9k−1

=
9k − (−1)k−1

10 · 9k−1
.

In summary, the probability that the output is incorrect and infeasible is:

pi(n) =
n∑
k=1

(
n

k

)
(1− ε)n−kεk 9k − (−1)k

10 · 9k−1
.
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Since pc(n) + pf (n) + pi(n) = 1, we can write pi(n) as

pi(n) = 1− pc(n)− pf (n)

= 1− (1− ε)n −
(

1

10
− (1− ε)n +

9

10

(
1− 10

9
ε

)n)
=

9

10
− 9

10

(
1− 10

9
ε

)n
.

We now look at some asymptotic results in these cases.

• ε� 1
n

For simplicity, let us assume that ε = 1
c

for some constant c > 1.

In the “correct” output case, we have

(1− ε)n =

(
c− 1

c

)n
,

which becomes vanishingly small as n grows. Thus, we would not rely on
the algorithm in this case, since we require pc(n) > d for a constant d for
appropriately large n.

In the “incorrect but feasible case”, we have

pf (n) =
1

10
− (1− ε)n +

9

10

(
1− 10ε

9

)n
,

and since both (1−ε)n and 9
10

(
1− 10ε

9

)n
become vanishingly small as n grows,

we have

pf (n)
.
=

1

10
.

Similarly, in the “incorrect and infeasible case”, we have

pi(n) =
9

10
− 9

10

(
1− 10

9
ε

)n
.
=

9

10
.

Thus, if the probability of error is 1
c

our algorithm does detect errors (when
they occur) 90% of the time.
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• ε� 1
n

In the “correct” output case, using the binomial theorem, we can approximate
(1− ε)n as 1− nε+ n(n−1)

2
ε2.

Therefore, there is a constant lower-bound on pc(n).

In the “incorrect but feasible case”, we have

pf (n) =
1

10
− (1− ε)n +

9

10

(
1− 10ε

9

)n
≈ 1

10
− (1− nε+

n(n− 1)

2
ε2) +

9

10

(
1− 10

9
nε+

n(n− 1)

2

(
10

9
ε

)2
)

=
n(n− 1)ε2

18
.

In the “incorrect and infeasible case”, we have

pi(n) =
9

10
− 9

10

(
1− 10

9
ε

)n
≈ 9

10
− 9

10

(
1− 10

9
nε+

n(n− 1)

2

(
10

9
ε

)2
)

= nε− 10n(n− 1)

18
ε2.

To demonstrate robustness, we must show that pf (n) < pi(n). We can show
this as follows:

pf (n) < pi(n) ⇐⇒ n(n− 1)ε2

18
< nε− 10n(n− 1)

18
ε2

⇐⇒ 11n(n− 1)

18
ε2 < nε

⇐⇒ 11(n− 1)

18
ε < 1

⇐⇒ ε <
18

11(n− 1)
.

Thus, the algorithm would be robust so long as ε < 18
11(n−1)

.

• Limit as n→∞ if ε = 1
n

14



In the “correct” output case, we have

pc(n) = lim
n→∞

(
1− 1

n

)n
=

1

e
.
= 0.3679.

In the “incorrect but feasible” case, we have

pf (n) = lim
n→∞

(
1

10
− (1− ε)n +

9

10

(
1− 10ε

9

)n)
=

1

10
− 1

e
+

9

10
e−

10
9

.
= 0.0284.

In the “incorrect and infeasible case”, we have

pi(n) = lim
n→∞

(
9

10
− 9

10

(
1− 10

9
ε

)n)
=

9

10
− 9

10
e−

10
9

.
= 0.6037.

Therefore, the errors would be detected approximately 0.6037
0.6321

= 95.5% of the
time, making the algorithm very robust in this case.

To summarize the previous analysis, incorrect output that is feasible can occur
with a non-trivial probability if ε� 1

n
. However, in practice, ε� 1

n
, and thus this

algorithm would be robust.

Finally, we remark that this simple checksum analysis can be applied to other
variants of checksum. For example, the Luhn algorithm [64] for credit card check-
sums works as follows, given a card number C:

sum ← 0

size ← length(C)

parity ← size mod 2

for i from 0 to size - 1 {
digit ← C[i]

if (i mod 2 = parity)

digit ← 2 * digit

if (digit > 9)

digit ← digit - 9
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sum ← sum + digit

}
return (sum mod 10) = 0

There are two crucial items needed in order to observe the isomorphism between
Luhn’s algorithm and the simple checksum analyzed above. First, notice that the
card is valid iff the checksum is divisible by 10 in both algorithms. Second, notice
that there is a 1-1 correspondence between the digits of the simple checksum and the
digits in Luhn’s algorithm. Specifically, the table below makes this correspondence
explicit.

digit (simple) value of “odd” value of “even”
position (Luhn’s) position (Luhn’s)

0 0 0
1 1 2
2 2 4
3 3 6
4 4 8
5 5 1
6 6 3
7 7 5
8 8 7
9 9 9

Due to this mapping, the probability space is precisely the same under both of
these algorithms, and thus, our earlier analysis applies to Luhn’s algorithm.

1.5 Outline of the remaining chapters

In the remaining chapters of this thesis, we use the definition of robustness from
Section 1.3 to quantify the robustness of algorithms for computing primality (i.e.,
the Lucas-Lehmer and Pepin tests), group order and quadratic residues. Moreover,
we show that typically, there will be an “error threshold” above which the algorithm
is unreliable (that is, it will rarely give the correct result).

The main results of this thesis can be classified into three categories. The
first category of results are those related to algorithmic structure, by which we
mean algebraic classification of how particular algorithms operate on their input.
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The main results describe the underlying structure of Pepin’s test for primality,
as proved in Corollary 4.4.3; the structure underlying the Lucas-Lehmer primality
test, represented in two different formulations in Corollary 5.4.6 and Theorem 6.2.1;
and, the algebraic structure of computing the order of a group element as a Markov
chain in Lemma 7.1.1.

The second category of results proven in this thesis concern statistical measures
related to the underlying structures of algorithms. Specifically, we look at the
statistical results concerning tail lengths and cycle lengths of the digraph based on
the Pepin test in Theorem 4.7.1 and digraph based on the Lucas-Lehmer test in
Corollary 5.7.1. We also provide interesting asymptotic measures for Pepin’s test
in Theorems 4.7.4 and 4.7.5, and analogous theorems related to the Lucas-Lehmer
test in Theorems 5.7.2 and 5.7.3

The final category of results of this thesis relate to quantifying robustness of
algorithms. Specifically, we determine conditions that ensure algorithms are ro-
bust for computing quadratic character (Theorems 3.6.7 and 3.7.3), Pepin’s test
for primality (Theorem 4.4.7 and 4.5.12), Lucas-Lehmer test for primality (Corol-
lary 5.6.5) and computing group order of an element (Theorem 7.1.6).

We now outline the remainder of this thesis. In Chapter 2 we present some
notation and definitions used throughout the remaining chapters. In Chapter 3,
we analyze the robustness of two algorithms for computing the quadratic character
of an integer modulo p (p prime), showing that in order to make the algorithms
robust, two independent executions of the algorithm are required. In Chapter 4,
we analyze the robustness of Pepin’s primality test for numbers of the form 22k + 1
(k ≥ 1), showing robustness results for this algorithm for prime input, as well
as heuristic and explicit results for composite input. In showing these robustness
results for Pepin’s test, we also present some statistical measures concerning the
digraph formed by the iteration x→ x2, and these statistical measures give insight
into the underlying algorithmic process of Pepin’s test. In Chapter 5, we apply
techniques similar to those used in Chapter 4 on the Lucas-Lehmer primality test
for numbers of the form 2p − 1 (p prime). Again, we prove robustness results for
both the prime and composite input cases, and we also give statistical measures
concerning the digraph formed by the iteration x→ x2−2. In Chapter 6, we present
an alternative proof of one of the main theorems of Chapter 5 (Corollary 5.4.6, which
deals with the structure of the digraph formed by the iteration x→ x2 − 2), using
Dickson polynomials and Lucas functions. We move away from primality tests in
Chapter 7, and extend the analysis techniques used in the credit card verification
example from Section 1.4 to an algorithm that computes the order of an element
in a group.
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Chapter 2

Definitions and Notation

2.1 Introduction

In this chapter, we briefly define mathematical structures and notation that will be
used throughout the rest of this thesis.

2.2 Galois fields and multiplicative groups

We denote the Galois field of q elements as GF(q). When q = p, a prime, we denote
the elements of GF(p) as elements of Z/(p). We let GF(p)[x] denote the ring of
polynomials (in x) with coefficients from GF (p).

If H is a multiplicative group and h ∈ H, we define the order of h (in H) as
the least integer i (i ≥ 1) such that hi = 1. We usually denote the order of h in H
as ordH h. If H = (Z/(N))∗, we write ordN h.

We let ϕ denote the Euler-phi function. One identity we will make use of
frequently is

∑
d |n ϕ(d) = n.

Let νb(d) denote the largest power of b that divides d (that is, νb(d) = w if
d = bwl for some l where b 6 | l).

Let π(x; l, k) denote the number of primes ≤ x that are congruent to k (mod l).
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2.3 Iterated functions

Define a function f : D → R for sets D and R (R ⊆ D). We can define the iteration
of f as:

f i(x) =

{
x, if i = 0;
f(f i−1(x)), otherwise.

2.4 Directed graphs

In this thesis, we define a particular directed graph (also called a digraph) GN,a =
(V , E) where the vertices are given by

V = {x : x ∈ (Z/(N))∗}

and the directed edges are given by

E = {(x, (x2 − a) mod N) : x ∈ V)}.

It should be noted that the notation (v, w) indicates the edge is directed from
v to w.

We also consider the digraph GR
N,a to be the digraph (V , E) where V = Z/(N)

and E = {(x2 − a, x) : x ∈ Z/(N)}. In other words, GR
N,a is the graph GN,a with

the edge directions reversed.

We will be dealing with certain directed graphs. A complete binary tree of height
h, denoted Bh, is a directed graph with 2i nodes at depth i, for 0 ≤ i ≤ h, with the
property that every non-leaf node has exactly two children. The graph Bh contains
2h+1 − 1 nodes in total.

In order to make explicit statements about the robustness of number theoretic
algorithms, we will need to discuss the “shape” of these digraphs GN,a. Since the
vertex set is fixed, the defining factor in the “shape” of the graph is the parameter
a in the map x → x2 − a (mod N). As an example, these types of digraphs have
been considered by Harris [44], Kravitz [53] and recently by Teske & Williams [92]
in the context of Cunningham chains of primes.

If we pick a particular x ∈ V , and let f be any function we can consider the orbit
of x (the directed path in GN,a beginning at x) under f . Since V is finite, there must
exist a least positive integer s = s(x) such that f s(x) ∈ {f 0(x), f1(x), ..., f s−1(x)}.
Let t = t(x) be the least such non-negative integer such that f t(x) = f s(x). We
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call t the tail length and the elements x, f(x), f2(x), ..., f t(x) the tail. If we set
c = c(x) = s(x)− t(x), we have f t(x) = f t+c(x). We call c the cycle length and the
elements f t+1(x), ..., f t+c−1(x) the cycle. For a visual definition, see Figure 2.1.
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Figure 2.1: The tail and cycle length.

We will also use some statistical measures to describe the digraphs GN,a. In
particular, we define:

• TC(N, a) := total number of cycles;

• T0(N, a) := total number of elements in all cycles, i.e., the number of g ∈
(Z/(N))∗ with t(g) = 0;

• AC(N, a) := average length of a cycle;

• C(N, a) := average value of c(g) over all g ∈ (Z/(N))∗;

• T (N, a) := average value of t(g) over all g ∈ (Z/(N))∗;

• ST0(M) :=
∑

2<p≤M,p prime T0(p, a);

• ST (M) :=
∑

2<p≤M,p prime

∑
1≤x<p t(x).

These measures were studied by Pollard [77] in his ρ-factoring method. Pollard’s
ρ-method, which is based on iterating a random quadratic map and using a cycle-
finding algorithm attributed to Floyd (outlined in Knuth [51]), provides asymptotic
results on the quantity AC, specifically. Pollard’s method was improved upon by
Brent [18] using a variation on the cycle finding algorithm. Thus, as one example,
determining bounds on these asymptotic measurements is useful for classifying and
comparing running times of various factoring methods.
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2.5 Congruence solutions

In this section, we define what is meant by a solution to a congruence and what is
meant by the number of solutions to individual or simultaneous congruences.

Let f(x) = anx
n+an−1x

n−1 +· · ·+a1x+a0 where n ≥ 1 and not all ai, 0 ≤ i ≤ n
are zero. Let N be a positive integer. Consider the congruence

f(x) ≡ 0 (mod N).

We call x∗ a solution to the congruence if f(x∗) = mN where 0 ≤ x∗ ≤ N and
m ∈ Z. Certainly, if there is such an x∗ then for any integer t, x∗ + tN satisfies
the congruence: however, we view these other satisfying integers as being in the
equivalence class of x∗ and not as distinct solutions.

The number of solutions to the congruence is n if there are distinct solutions x∗i
(as described above) for 1 ≤ i ≤ n.

A system of simultaneous congruences is a collection of congruences of the form:

f1(x) ≡ 0 (mod N1)

f2(x) ≡ 0 (mod N2)
...

fk(x) ≡ 0 (mod Nk),

where Ni are distinct positive integers.

We call x∗ a solution to a system of simultaneous congruences if f(x∗) = miNi

for some integer mi where 1 ≤ i ≤ k and 0 ≤ x∗ < Πk
j=1Nj. We can similarly define

the number of solutions to a simultaneous congruence as the number of distinct x∗

that are solutions to the system of simultaneous congruence.

2.6 A computational model

We now formalize our computational model.

Our model is based on the Random Access Machine model which is outlined
in Papadimitriou [71, Section 2.6], as well as many other computational analysis
texts. Specifically, we have the following descriptive points:

• The main data structure is a collection of registers, where each register can
store an arbitrarily large positive or negative integer. We label registers with
x, y, ... .
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• Algorithms are finite sequence of instructions executed sequentially, where
each instruction is either an assignment, comparison, iteration or conditional
instruction.

• We may assign a value to a register by way of the ← operator. For example,
the instruction x ← y, semantically gives register x the value contained in
register y, without modifying the contents of y (or any other register).

• We may compare a register to another register or value by way of the =
operator. For example, the instruction x = 3 would evaluate to true iff the
value 3 is stored in register x.

• We may iterate a sequence of instructions by way of the following construct:

for R from b to v do

X

end for

which will execute the instructions called X a total of v − b + 1 times, where
on the ith iteration, X is executed with R having value b+ i− 1.

• We may also conditionally evaluate instructions using the following construct:

if C1 then

X1

else if C2 then

X2

else if ...
...

else if CN then

XN

else

Y

end if

which will execute instructions Xi iff conditions C1, ..., C(i-1) evaluate
to false and condition Ci evaluates to true. The instructions labeled Y are
executed if and only if all conditions Ci evaluate to false.

• We will also use mathematical operations such as arithmetical operators
(+,−, ∗, /), exponentiation (xy) and modular reduction (x mod y) when we
are computing a value or condition.

22



2.7 Asymptotic analysis

We define asymptotic bounds on functions in the standard way: see, for example
Lewis and Denenberg [57]. Let f, g be functions from non-negative real numbers
to non-negative real numbers. We say f ∈ O(g) if there exist constants c > 0
and n0 ≥ 0 such that f(n) ≤ cg(n) for all n ≥ n0. For lower bounds, we use the
notation f ∈ Ω(g) to indicate that there exist constants c > 0 and n0 ≥ 0 such that
f(n) ≥ cg(n) for all n ≥ n0. We say that f ∈ Θ(g) if f ∈ O(g) and f ∈ Ω(g).

2.8 Conclusion

Having provided some definitions, we are now ready to apply these on algorithms
for quadratic character, primality testing and group order computation in the re-
maining chapters of this thesis.
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Chapter 3

Quadratic residue algorithms

3.1 Introduction

In this chapter, we determine the robustness of two quadratic residue calculations.
Specifically, we outline a naive algorithm that uses linear exponentiation, and a
slightly more sophisticated algorithm that uses binary exponentiation. We then
analyze these two algorithms using our error model outlined in Section 1.3, con-
cluding that both algorithms are robust under reasonable assumptions about the
rate of error.

3.2 Basics

In this section, we provide some basic definitions concerning quadratic residues
and the computational model that will be used to analyze the robustness of the
algorithms used to compute quadratic residues.

To begin, consider an integer m > 0 and a non-zero integer a (with gcd(a,m) =
1). Then a is a quadratic residue mod m iff x2 ≡ a (mod m) has a solution. If
gcd(a,m) = 1 and a is not a quadratic residue, then we call a a quadratic nonresidue.

If we restrict the modulus m to be some prime p, we can determine the quadratic
character computationally, using what is known as Euler’s criterion.

Lemma 3.2.1 Let p be an odd prime and let gcd(a, p) = 1. Then a is a quadratic
residue mod p if

a
p−1

2 ≡ 1 (mod p)
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and a is a quadratic nonresidue mod p if

a
p−1

2 ≡ −1 (mod p).

Proof: See Corollary 5.7.3 in Bach and Shallit [5].

The two algorithms for computing the quadratic character of a number (which
will be presented in the next two sections) both use Lemma 3.2.1 as the skeleton
for their algorithms.

To aid us notationally, we also define the Legendre symbol to be the following:(
a

p

)
= a

p−1
2 (mod p).

We conclude this section by capturing the cardinality of quadratic residues and
nonresidues. This lemma will be useful later when computing various probabilities
in the robustness analysis.

Lemma 3.2.2 GF (p)∗, where p is prime, has p−1
2

quadratic residues, and p−1
2

quadratic nonresidues.

3.3 Quadratic residue computation: linear algo-

rithm

As outlined in the previous section, Lemma 3.2.1 provides a calculation for comput-
ing quadratic residues. Essentially, to compute the quadratic residue of a modulo
p, we must raise a to the (p− 1)/2 power and reduce modulo p. For this first algo-
rithm, we compute the quadratic residue by multiplying the element a repeatedly
to obtain a

p−1
2 modulo p. This algorithm is described formally in Algorithm 3.1.

3.4 Quadratic residue computation: binary algo-

rithm

We can improve on the running time of Algorithm 3.1 by using the binary repre-
sentation on the number, and repeatedly squaring our intermediate results. The
method of multiplication is outlined in, for example, Cormen, Leiserson, Rivest and
Stein [26]. This algorithm is outlined in Algorithm 3.2.
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T ← 1
for i from 1 to p−1

2
do

T ← T ∗ a (mod p)
end for
if T = 1 then

print “a is a quadratic residue”
else if T = −1 then

print “a is a quadratic nonresidue”
else if T = 0 then

print “a ≡ 0 (mod p)”
else

print “An error causing incorrect and infeasible output has occurred.”
end if

Algorithm 3.1: Linear Quadratic Residue Algorithm

Compute the binary representation for p−1
2

Denote it by B = bkbk−1 · · · b1b0

T ← ab0 (mod p)
P ← a
for i from 1 to k do

if bi = 1 then
T ← T ∗ P (mod p)

end if
P ← P ∗ P (mod p)

end for
if T = 1 then

print “a is a quadratic residue”
else if T = −1 then

print “a is a quadratic nonresidue”
else if T = 0 then

print “a ≡ 0 (mod p)”
else

print “An error causing incorrect and infeasible output has occurred.”
end if

Algorithm 3.2: Binary Quadratic Residue Algorithm
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3.5 Robustness preliminaries

We now measure the accuracy of both the linear and binary quadratic residue
algorithms (Algorithms 3.1 and 3.2) when errors occur during computation.

For both algorithms, observe that if we obtain a value of T which is outside of
the set {−1, 0, 1} the output is infeasible (and incorrect).

We now concern ourselves with determining errors that cause incorrect output
that is feasible.

To begin, we consider the case where an error is introduced in the algorithm
before the first step. Formally, by “introducing an error”, we simply mean that
input value of a can become any element in Z/(p) with uniform probability. (It is
worth noting that we use Z/(p) instead of GF ∗(p) in order to make the probability
space easier to work with.) Specifically, we let ε represent the probability that an
event occurred (i.e., a stored value has been tampered with). We also assume that
this error is equally likely to occur before any particular step in the algorithm.

Moreover, since we assume that we reduce modulo p correctly, this error simply
replaces a with an element b ∈ Z/(p) (where we allow the possibility that b = a).
For simplicity, we suppose that all of the remaining steps in the algorithms are
computed correctly. We now perform analysis on the various cases for a and b.

If the input a is a quadratic nonresidue, and b is a quadratic nonresidue, then
the output of our algorithm will be correct: the algorithm run on input a without
error produces the same output as the algorithm run on input b. Similarly, if a was
a quadratic residue and b is a quadratic residue, the output will be correct.

If the input a is 0 and b is anything other than 0, the output will be incorrect
(i.e., the output will be either 1 or −1) but feasible.

As described in Section 1.3, we use the notation pc to denote the probability the
output of the given algorithm is correct; pf to denote the probability the output
of the given algorithm is incorrect but feasible; and pi to denote the probability
the output is incorrect and infeasible. Using this notation, we summarize our
observations concerning the effect of an error introduced into the algorithm. We
can apply these observations into the following lemma.

Lemma 3.5.1 Consider an element a ∈ Z/(p) for some prime p. If an error
is introduced in the input a 6= 0 to either the linear or binary quadratic residue
algorithms, and the algorithm continues execution without error, we have

(a) pc(p) = 1
2
− 1

2p
,
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(b) pf (p) = 1
2

+ 1
2p

, and

(c) pi(p) = 0.

Proof: We begin by proving part (c). From our earlier observations, there are no
infeasible outputs if the error occurs before the first step, since the input to the
algorithm will still be an element from Z/(p). Since there are no infeasible outputs,
pi(p) = 0.

To show part (b), we observed that if the input is altered and the algorithm
proceeds without error, the output is guaranteed to be feasible. To have the output
be incorrect, we must have the altered input value be 0 or an element which does
not have the same quadratic character as the original input. There are a total of
p+1

2
such values (one value of 0 and p−1

2
values of the opposite quadratic character).

Since we are assuming that any of the p values from Z/(p) are equally likely to be
the altered value, the probability is p+1

2p
which simplifies to the desired result.

Part (a) follows from the fact pc(p) + pi(p) + pf (p) = 1.

The case when the input is 0 is similar to analyze.

Lemma 3.5.2 Consider a prime p. If an error is introduced in the input a = 0 to
either the linear or binary quadratic residue algorithms, and the algorithm continues
execution without error, we have

(a) pc(p) = 1/p,

(b) pf (p) = 1− 1/p, and

(c) pi(p) = 0.

Proof: Part (c) follows the same reasoning used in Lemma 3.5.1.

Part (b) results from the earlier observation that if the input is replaced by a
random element of Z(p) and the algorithm proceeds without error, the output is
guaranteed to be feasible. To have the output be incorrect, the element must be
something other than 0. Since p − 1 of the p values in Z/(p) are not 0, we have
pf (p) = 1− 1/p.

Part (a) follows from pc(p) + pi(p) + pf (p) = 1.

Next, we compute these probabilities for the case of an error being introduced
during the execution of the linear algorithm, Algorithm 3.1.
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Lemma 3.5.3 Consider a prime p, and an element a ∈ Z/(p) where a 6≡ 0
(mod p). In the linear quadratic residue algorithm (Algorithm 3.1), if the last error
is introduced at the start of iteration i of the loop (where 2 ≤ i ≤ p−1

2
) such that

the value T is replaced with a new value, we have

(a) pc(p) = 1
p
,

(b) pf (p) = 2
p
, and

(c) pi(p) = 1− 3
p
.

Proof: We begin with part (a). If the value of T is replaced at the start of iteration
i with the value r, the algorithm will proceed to completion and terminate with
the value

T = r · a
p−1

2
−i.

The output will be correct iff

r · a
p−1

2
−i =

(
a

p

)
(mod p).

This equation has a unique solution for r, which is

r = ai (mod p).

Therefore, the probability that the error introduced resulted in correct output is 1
p
.

For part (b), we use the same reasoning as used in proving part (a) to conclude
that the output will be feasible but incorrect iff

r · a
p−1

2
−i = −

(
a

p

)
(mod p)

or
r · a

p−1
2
−i = 0 (mod p).

These equations each yield one solution for r, which is

r = −ai (mod p)

and
r = 0

respectively. Therefore, pf (p) = 2
p
.

Part (c) follows immediately.

The same results apply for the binary quadratic residue algorithm, Algorithm 3.2,
whose proof follows a similar structure to Lemma 3.5.3.
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Lemma 3.5.4 Consider a prime p, and an element a ∈ Z/(p) such that a 6≡ 0
(mod p). If the last error is introduced at iteration i of the loop (where 2 ≤ i ≤ k)
in the binary quadratic residue algorithm (Algorithm 3.2) such that the value T is
replaced with a new value, we have

(a) pc(p) = 1
p
,

(b) pf (p) = 2
p
, and

(c) pi(p) = 1− 3
p
.

Proof: We begin by proving part (a). If the value of T is replaced at the start of
iteration i with the value r, the algorithm will proceed to completion and terminate
with the value:

T = r · a2i+1·bi+1+···+2k·bk ,

where bi is the ith bit of the binary representation of p−1
2

. The output will be
correct iff

r · a2i+1·bi+1+···+2k·bk =

(
a

p

)
(mod p).

This equation has a unique solution (for r), which is

r =

(
a

p

)
(a−1)2i+1·bi+1+···+2k·bk (mod p).

Therefore, the probability that the error introduced resulted in correct output is 1
p
.

To show part (b), we note that the output will be feasible but incorrect iff

r · a2i+1·bi+1+···+2k·bk = −
(
a

p

)
(mod p)

or
r · a2i+1·bi+1+···+2k·bk = 0 (mod p).

These two equations each have one solution (for r), which is

r = −
(
a

p

)
(a−1)2i+1·bi+1+···+2k·bk (mod p)

or r = 0 (respectively). Therefore, pf (p) = 2
p
.

Part (c) follows immediately.

We now consider the case where the value a is a multiple of p. In particular, we
begin by considering the linear quadratic residue algorithm.
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Lemma 3.5.5 Consider a prime p and an element a ∈ Z/(p) with a ≡ 0 (mod p).
If the last error is introduced during the execution of the linear quadratic residue
algorithm before the last multiplication (a ∗ T ), we have

(a) pc(p) = 1, and

(b) pf (p) = pi(p) = 0.

Proof: In the linear quadratic residue algorithm described in Algorithm 3.1, the
last multiplication will be a ∗ T modulo p, where T may be any element in Z/(p)
(due to possible errors introduced in earlier steps). However, since a ≡ 0 (mod p),
this final multiplication produces the correct output. Thus pc(p) = 1. It follows
that pf (p) = pi(p) = 0.

For the binary quadratic residue algorithm, we get the same result as in Lemma 3.5.5,
using the consistency of the register P to yield the result.

Lemma 3.5.6 Consider a prime p and an element a ∈ Z(p) such that a ≡ 0
(mod p). If an error is introduced during the execution of the binary quadratic
residue algorithm (Algorithm 3.2) before the last T ← T ∗ P (mod p) operation we
have

(a) pc(p) = 1, and

(b) pf (p) = pi(p) = 0.

Proof: Since a ≡ 0 (mod p), if there is an error altering the value of T before the
last assignment of T ∗ P (mod p), we know that the value of P will be computed
correctly. That is,

P ≡ ab0+2b1+···+2kbk ≡ 0 (mod p).

Therefore, on computing the last T value will result in T ≡ 0 (mod p), which
guarantees the output will be correct. Thus p(c) = 1 and, therefore, pf (p) = pi(p).

The only remaining case to consider is where errors are introduced into the
value of P during the binary quadratic residue computation. Unlike the previous
few lemmas, there is not a concise closed-form for the probabilities that occur when
the value P is modified.
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Lemma 3.5.7 Consider a prime p and an element a ∈ Z/(p) such that a 6≡ 0
(mod p). If an error is introduced into the binary quadratic residue algorithm (Al-
gorithm 3.2) which causes P to take on a new value at step i, where 1 ≤ i ≤ k,
then the probability that the output will be feasible but incorrect (pf (p)) is cr

p
, where

cr is the number of solutions to

rbi+1+···+2k−i−1bk = −
(
a

p

)
· (a−1)b0+2b1+···+2ibi (mod p).

Proof: If the value of P is changed to r at step i, we have at step i the values

T = ab0+2b1+···+2ibi

and
P = r.

After the remaining k − i steps of the algorithm, we have

T = ab0+2b1+···+2ibirbi+1+···+2k−i−1bk

and
P = r2k−i .

Thus, using an argument similar to the proofs above, the output will be feasible

but incorrect iff the output value T is −
(
a
p

)
, which holds iff the equation

rbi+1+···+2k−i−1bk = −
(
a

p

)
· (a−1)b0+2b1+···+2ibi (mod p).

has a solution, which proves the result.

This result could be improved by finding tight bounds on the number of solutions
to

rbi+1+···+2k−i−1bk = −
(
a

p

)
· (a−1)b0+2b1+···+2ibi (mod p).

However, work in this direction did not yield any non-trivial bounds.
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3.6 Robustness results for the linear algorithm

We now turn to formally determining the robustness of Algorithms 3.1 and 3.2,
using the Lemmas presented in the previous section. In particular, we will show
that both the linear and binary versions of the quadratic residue algorithms are
robust, using the error model introduced in Section 1.3 and refined for the quadratic
residue computation context in Section 3.5.

We will consider the linear quadratic residue algorithm in this section, and then
perform similar analysis for the binary quadratic residue algorithm in the next
section.

We begin by computing the probability of incorrect but feasible output for the
linear quadratic residue algorithm for a 6= 0.

Theorem 3.6.1 Consider a prime p. If the probability of an error occurring before
any particular step in the linear quadratic residue algorithm (Algorithm 3.1) is ε,
and the input a 6= 0, then the probability that the output of the algorithm will be

(a) correct is

pc(p) = (1− ε)
p−1

2 + ε(1− ε)
p−3

2 (
1

2
− 1

2p
) +

1

p

(
1− (1− ε)

p−3
2

)
,

(b) feasible but incorrect is

pf (p) = ε(1− ε)
p−3

2 (
1

2
+

1

2p
) +

2

p

(
1− (1− ε)

p−3
2

)
,

(c) infeasible and incorrect is

pi(p) =

(
1− 3

p

)
(1− (1− ε)

p−3
2 ).

Proof: We begin by proving part (b), and we do this by breaking up the proof
into two components. If the last error occurs before the first step, then there are
p−3

2
steps which must occur without error. The probability of this is ε(1 − ε) p−3

2 .
From Lemmas 3.5.1, the probability that this error will cause feasible but incorrect
output is 1

2
+ 2

p
, so we compute the product of these quantities to compute the value

of pf (p) if the last error affects the initial input value.
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The second component is when the error occurs somewhere after the first step.
In this case, we consider all possible steps as the last error step: that is, if the
last error occurs at step i of the algorithm, the remaining p−1

2
− i steps must

occur without error. We combine this sum with Lemma 3.5.3 multiplicatively, and
summing these two cases, we derive

pf (p) = ε(1− ε)
p−3

2 (
1

2
+

1

2p
) +

p−1
2∑
i=2

(1− ε)
p−1

2
−iε

2

p

= ε(1− ε)
p−3

2 (
1

2
+

1

2p
) +

2

p
(1− ε)

p−1
2 ε

p−1
2∑
i=2

(
1

1− ε

)i
= ε(1− ε)

p−3
2 (

1

2
+

1

2p
) +

2

p
(1− ε)

p−1
2 ε

( 1
1−ε)

(p+1)/2 − ( 1
1−ε)

2

1
1−ε − 1

= ε(1− ε)
p−3

2 (
1

2
+

1

2p
) +

2

p
(1− ε)

p−1
2 ε

(
1

1− ε

)2(
(

1

1− ε
)
p−3

2 − 1

)
1− ε
ε

= ε(1− ε)
p−3

2 (
1

2
+

1

2p
) +

2

p

(
1− (1− ε)

p−3
2

)
,

which proves the result.

For part (a), we need to compute the probability of correct output. First observe
that if no errors occur, then the output will be correct: the probability of having
no errors is (1 − ε)

p−1
2 , since each of the p−1

2
steps must have no error, and the

probability of no error occurring is (1 − ε). In addition to this observation, we
combine Lemmas 3.5.1 and 3.5.3 using the same reasoning as in our computation
of pf (p) above, along with the same arithmetic reductions used to compute pf (p).
Specifically, we derive

pc(p) = (1− ε)
p−1

2 + ε(1− ε)
p−3

2 (
1

2
− 1

2p
) +

p−1
2∑
i=2

(1− ε)
p−1

2
−iε

1

p

= (1− ε)
p−1

2 + ε(1− ε)
p−3

2 (
1

2
− 1

2p
) +

1

p

(
1− (1− ε)

p−3
2

)
,

which is the desired result.

For part (c), in order for the output to be infeasible, recall that from Lemma 3.5.1,
if the last error occurs before the first step of the Algorithm 3.1, the output cannot
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be infeasible. Thus, we only need to consider the last error occurring between steps
2 to p−1

2
, and the probability if the last error occurs in these steps is 1 − 3

p
, by

Lemma 3.5.3. Taking this sum over all possible steps, and using the simplifications
used to compute pf (p), we derive

pi(p) =

p−1
2∑
i=2

ε(1− ε)
p−1

2
−i
(

1− 3

p

)

= ε

(
1− 3

p

)
(1− ε)

p−1
2

p−1
2∑
i=2

(
1

1− ε

)i
=

(
1− 3

p

)
(1− (1− ε)

p−3
2 ),

which is the desired probability measure.

We are now ready to show the main result of this chapter, which is to show that
Algorithm 3.1 is robust.

Theorem 3.6.2 If the probability of error ε < 1
p

and p ≥ 11 is a prime, Algo-
rithm 3.1 is robust on input a 6= 0.

Proof: To show robustness from the definitions outlined in Section 1.3 we need
to show that pc(p) > b for some constant b > 0 and

pf (p)

pi(p)
< 1. To show that

pc(p) > b > 0, notice that

pc(p) = (1− ε)
p−1

2 + ε(1− ε)
p−3

2

(
1

2
− 1

2p

)
+

1

p

(
1− (1− ε)

p−3
2

)
=

(
1− 1

p(1− ε)

)
(1− ε)

p−1
2 + ε(1− ε)

p−3
2

(
1

2
− 1

2p

)
+

1

p
.

To show this inequality, we know that since p > 11, we have

(p− 1) ln(1− 1

p
) > 11 ln(1− 1

12
) > −0.95 > −1.

Thus (1− 1
p
)p−1 > 1

e
. Combining this inequality with ε < 1

p
, we have

(1− ε)
p−1

2 = ((1− ε)p−1)
1
2 >

(
1

e

) 1
2

>
1

2
.
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Returning to pc(p), we have

pc(p) =

(
1− 1

p

)
(1− ε)

p−1
2 + ε(1− ε)

p−3
2

(
1

2
− 1

2p

)
+

1

p

>

(
1− 1

11

)(
1

2

)
=

5

11
> 0

which proves that pc(p) > b > 0.

It is worth noting that to this point, we have only required p ≥ 3.

To show
pf (p)

pi(p)
< 1, notice this is equivalent to showing that pi(p) > pf (p).

Equivalently, we must show the following inequality holds:

pi(p)− pf (p) =

(
1− 5

p

)
(1− (1− ε)

p−3
2 )− ε(1− ε)

p−3
2

(
1

2
+

2

p

)
> 0.

Rearranging, we must show(
1− 5

p

)
(1− (1− ε)

p−3
2 ) > ε(1− ε)

p−3
2

(
1

2
+

2

p

)
.

Notice that if we assume p > 11 and ε < 1
3
, then

1− (1− ε)
p−3

2 > 1− (1− ε)4

= 4ε− 6ε2 + 4ε3 − ε4

= ε(4− 6ε+ 4ε2 − ε3)

> ε(4− 6ε)

> 2ε

>
11

6
ε.

Thus, (
1− 5

p

)
(1− (1− ε)

p−3
2 ) >

6

11
(1− (1− ε)

p−3
2 )

> ε

> ε(1− ε)
p−3

2

(
1

2
+

2

p

)
,
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which proves the desired inequality, showing that pi(p) > pf (p). Thus, the linear
quadratic residue algorithm is robust.

To complete the analysis of robustness of the linear quadratic residue algorithm,
we need to consider the case when the input to the algorithm is a multiple of the
prime p. We use similar reasoning as was used in proving the previous theorem.
As we will demonstrate, however, Algorithm 3.1 is not robust according to our
definition.

To begin, prove a theorem analogous to Theorem 3.6.1.

Theorem 3.6.3 Consider a prime p. If the probability of an error occurring before
any particular step in the linear quadratic residue algorithm (Algorithm 3.1) is ε,
and input a ≡ 0 (mod p), then the probability that the output of the algorithm will
be

(a) correct is

pc(p) = (1− ε)
p−1

2 + ε(1− ε)
p−3

2
1

p
+

p−1
2∑
i=2

1 · ε(1− ε)
p−1

2
−i,

(b) feasible but incorrect is

pf (p) = ε(1− ε)
p−3

2 (1− 1

p
),

(c) infeasible and incorrect is
pi(p) = 0.

Proof: To show part (a), notice that there are three cases to consider. The first

case is where no errors occur, which has probability (1 − ε) p−1
2 . The second case

is where an error occurs before the first step, and the remaining p−3
2

steps occur

without error. Using the result of Lemma 3.5.2, we have probability ε(1 − ε) p−3
2

1
p

in this case. The third case to consider is the last error occurs at some step i
(2 ≤ i ≤ p−1

2
). For this third case, we use Lemma 3.5.5 to derive the probability

of correctness as
∑ p−1

2
i=2 1 · ε(1 − ε) p−1

2
−i. Summing these three quantities together

gives the desired result.

For part (c), both Lemma 3.5.2 and 3.5.5 show that pi(p) = 0. Rephrasing this
result, regardless of when an error occurs, there is no possibility of incorrect and
infeasible output. Thus pi(p) = 0.
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Part (b) follows from the fact that pc(p) + pf (p) + pi(p) = 1.

In order to show that Algorithm 3.1 is robust if a is a multiple of p, we need to
show that pi(p)

1−pc(p) > 0.5. However, since pi(p) = 0, this inequality cannot hold, and
thus, the algorithm is not robust in this case.

Thus, we need to alter the output of algorithm slightly. As we will show, if we
combine the results of two independent executions of Algorithm 3.1, the algorithm
satisfies the definition of robustness.

To begin, we define p∗c(p) to be the probability of correct output under this
combined execution model. Notice that p∗c(p) = pc(p)

2, since the independent trials
must both give the same correct answer. In order for the output to be incorrect
and feasible, the output on both independent trials must match, but must not be
the correct quadratic residue for the given input. In other words, if the input a 6= 0,
then the output of both independent trials must match, in that they both must be

0 or both must be −
(
a
p

)
.

We calculate this probability in the following lemma.

Lemma 3.6.4 Suppose that integer a 6= 0 and that p is prime. If two independent
trials of Algorithm 3.1 are run on input a, the probability that the output (of the
combined trials) is feasible but incorrect is

p∗f (p) = 2

(
1− (1− ε) p−1

2

p

)2

.

Proof: From the proof of Lemmas 3.5.1 and 3.5.3, we can observe that the proba-
bility that an output is 0 is exactly the probability that the last error which causes

the value stored in T to be 0. Similarly, the output will be −
(
a
p

)
iff the value

of T is altered to hold the value a−i (mod p) if the error occurs at step i of Algo-
rithm 3.1. In both of these cases, there is exactly one value that T can acquire in
order to produce the desired result. We let p0(p) denote the probability that the
output will be 0 in one execution. We compute this probability as

p0(p) =
1

p
ε(1− ε)

p−3
2 +

p−1
2∑
i=2

1

p
ε(1− ε)

p−1
2
−i,

where the first term arises from the error replacing the value a with 0 occurring
before the first step, and the second term arises from considering cases where 0
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replaces T during the execution of the algorithm. We simplify this probability
p0(p) as

p0(p) =
1

p
ε(1− ε)

p−3
2 +

p−1
2∑
i=2

1

p
ε(1− ε)

p−1
2
−i

=
1

p
ε

p−1
2∑
i=1

(1− ε)
p−1

2
−i

=
1

p
ε(1− ε)

p−1
2

p−1
2∑
i=1

(1− ε)−i

=
1

p
ε(1− ε)

p−1
2

1− ε
ε

(
1

(1− ε) p+1
2

− 1

1− ε

)
=

1

p
(1− (1− ε)

p−1
2 ).

Notice that p0(p) is also the probability that the output is −
(
a
p

)
, in one of the

independent trials. Since the other independent trial must match the first one, we

have to square p0(p). Moreover, we could have either 0 or −
(
a
p

)
as the possible

values, therefore, we must multiply this probability by 2, so that p∗f (p) = 2(p0(p))2

which yields the result.

In the case that the input is a = 0, the feasible but incorrect outputs must both
be 1 or both be −1. Again, we calculate the probability that we have feasible and
incorrect output in this case.

Lemma 3.6.5 Suppose that integer a = 0 (mod p) and that p is prime. If two
independent trials of Algorithm 3.1 are run on input a, the probability that the
output (of the combined trials) is feasible but incorrect is

p∗f (p) = 2

(
ε(1− ε)

p−3
2
p− 1

2p

)2

.

Proof: From Lemma 3.5.2 and 3.5.5, the only possible way to have output 1 or −1
from the algorithm is for an error to occur during the first step of the algorithm
and the remaining p−3

2
steps are free from error. The probability that the output is

1 is exactly the same as the probability that the output is −1 (there are an equal
number of quadratic residues and non-residues). Therefore, the probability that one

39



independent trial of Algorithm 3.1 results in output 1 on input 0 is ε(1− ε) p−3
2

p−1
2p

,
which is the same as the probability that the output is −1 on input 0. Thus, since
we have two independent trials that must agree, we must square this result. Again,
as in the proof of Lemma 3.6.4, we must multiply this quantity by 2 in order to
capture the two possible feasible answers.

We are now ready to discuss the robustness results in this new light.

Theorem 3.6.6 If the probability of error ε < 1
2

and p is a prime, an algorithm
which is the combination of two independent trials of Algorithm 3.1 on input a = 0
is robust.

Proof: We first have to show that p∗c(p) > b > 0 for some constant b. Since we have
shown that pc(p) > d > 0 for some constant d, it follows that p∗c(p) = (pc(p))

2 >
d2 > 0, where d2 is a constant.

Next, we need to demonstrate that

p∗i (p)

p∗i (p) + p∗f (p)
> 0.5.

Using the fact that p∗c(p) + p∗i (p) + p∗f (p) = 1, we can rewrite this inequality as

1−
p∗f (p)

1− p∗c(p)
> 0.5

which is equivalent to showing

1− p∗c(p)
p∗f (p)

> 2.

Notice that from Theorem 3.6.3, we can write pc(p) = 1−pf (p) = 1−ε(1−ε) p−3
2

p−1
p

.

Using the result of Lemmas 3.6.5 for the quantity p∗f (p) and the fact that p∗c(p) =
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(pc(p))
2, we have

1−
(

1− ε(1− ε) p−3
2 (p−1

p
)
)2

2ε2(1− ε)p−3(p−1
2p

)2

=

(
2− ε(1− ε) p−3

2 (p−1
p

)
)(

ε(1− ε) p−3
2 (p−1

p
)
)

2ε2(1− ε)p−3(p−1
2p

)2

=
2− ε(1− ε) p−3

2 (p−1
p

)

2ε(1− ε) p−3
2 (p−1

2p
)

=
1

ε(1− ε) p−3
2 (p−1

2p
)
− 1

2

= (
1

ε
)

(
1

(1− ε) p−3
2

)(
2p

p− 1

)
− 1

2
.

Using the facts that ε < 1
2

and p > 2, we group and prove the inequality.
Specifically,

(
1

ε
)

(
1

(1− ε) p−3
2

)(
2p

p− 1

)
+ 1

> (2)(1)(2)− 1

2
> 2,

which proves that this “two-trial” algorithm is robust when a = 0.

Combining Lemma 1.3.1 with Theorem 3.6.2, we know that two independent
trials of Algorithm 3.1 will be robust when the input is non-zero. We summarize
this result in the following theorem, which is one of two main theorems in this
chapter.

Theorem 3.6.7 When two independent executions of Algorithm 3.1 are run on the
same input, the algorithm is robust, so long as the probability of error is ε < 1

p
and

the prime p satisfies p ≥ 11.
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3.7 Robustness results for the binary algorithm

We apply a similar analysis to the binary algorithm (Algorithm 3.2) as was done for
the linear algorithm (Algorithm 3.1) in Section 3.6. We will show that Algorithm 3.2
is robust, so long as two independent trials are executed or the input is not 0. For
this analysis, we will make the assumption that errors only affect the variable T in
Algorithm 3.2. This assumption does not adversely limit the effectiveness of the
analysis, since an error introduced into variable P will cause the value of T to also
be erroneous, and thus, we capture that case even under this restriction.

It is worth noting that in all cases below, we use log to denote log2.

Theorem 3.7.1 Consider a prime p. If the probability of an error occurring before
any particular step in the binary quadratic residue algorithm (Algorithm 3.2) is ε,
and the input a 6= 0, then the probability that the output of the algorithm will be

(a) correct is

pc(p) = (1−ε)dlog( p−1
2

)e+ε(1−ε)dlog( p−1
2

)e−1(
1

2
− 1

2p
)+

1

p

(
1− (1− ε)dlog( p−1

2
)e−1
)
,

(b) feasible but incorrect is

pf (p) = ε(1− ε)dlog( p−1
2

)e−1(
1

2
+

1

2p
) +

2

p

(
1− (1− ε)dlog( p−1

2
)e−1
)
,

(c) infeasible and incorrect is

pi(p) =

(
1− 3

p

)
(1− (1− ε)dlog( p−1

2
)e−1).

Proof: Relying on the proof used in Theorem 3.6.1, we note the only difference is
that there are dlog

(
p−1

2

)
e steps in the binary algorithm. Moreover, Lemma 3.5.1

states that both the binary and linear algorithm behave the same when the input
is altered before the first step, and Lemmas 3.5.3 and 3.5.4 yield the same result.
Thus, we only need to alter the summation formulas to take into account the
dlog

(
p−1

2

)
e steps of the binary quadratic residue algorithm.

We begin by proving part (b), using the same reasoning as in Theorem 3.6.1,
and letting k = dlog

(
p−1

2

)
e, we have

pf (p) = ε(1− ε)k−1(
1

2
+

1

2p
) +

k∑
i=2

(1− ε)k−iε2
p
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which simplifies to

pf (p) = ε(1− ε)k−1(
1

2
+

1

2p
) +

2

p

(
1− (1− ε)k−1

)
.

which proves the result.

Again, using the same reasoning as Lemma 3.6.1 we derive a formula for part
(a) as

pc(p) = (1− ε)k + ε(1− ε)k−1(
1

2
− 1

2p
) +

k∑
i=2

(1− ε)k−iε1
p

= (1− ε)k + ε(1− ε)k−1(
1

2
− 1

2p
) +

1

p

(
1− (1− ε)k−1

)
,

which is the desired result.

For part (c), we have

pi(p) =
k∑
i=2

ε(1− ε)k−i
(

1− 3

p

)
=

(
1− 3

p

)
(1− (1− ε)k−1),

which is the desired probability measure.

We now need to demonstrate the robustness of Algorithm 3.2. To do this, we
will mimic the proof of Theorem 3.6.2.

Theorem 3.7.2 If the probability of error ε < 1

dlog( p−1
2

)e and p > 33 is prime,

Algorithm 3.2 is robust on input a 6= 0.

Proof: We must show that pc(p) > b > 0 for some constant b and
pf (p)

pi(p)
< 1.

To minimize the notation, we let k = dlog
(
p−1

2

)
e, and will expand k only when

necessary.

We begin by showing pc(p) > b > 0 for some constant b. We can rearrange pc(p)
as

pc(p) = (1− ε)k + ε(1− ε)k−1(
1

2
− 1

2p
) +

1

p

(
1− (1− ε)k−1

)
=

(
1− 1

p(1− ε)

)
(1− ε)k + ε(1− ε)k−1(

1

2
− 1

2p
) +

1

p
.

43



Notice that since ε < 1
k
, we have

(1− ε)k > (1− 1

k
)k > (

1

e
)2

using the facts that k > 4 and the function (1 − 1
k
)k is monotonically increasing.

Returning to pc(p), we have

pc(p) = (1− 1

p
)(1− ε)k + ε(1− ε)k−1(

1

2
− 1

2p
) +

1

p

> (1− 1

33
)(

1

e2
)

> 0,

which proves that pc(p) > b > 0. Notice that to this point, we only required p ≥ 3
to demonstrate that pc(p) is bounded below by a constant: we will need a larger
lower bound on p in the next part of the proof, however.

To show
pf (p)

pi(p)
< 1, notice this is equivalent to showing that pi(p) > pf (p).

Equivalently, we must show the following inequality holds:

pi(p)− pf (p) =

(
1− 5

p

)
(1− (1− ε)k−1)− ε(1− ε)k−1

(
1

2
+

2

p

)
> 0.

Rearranging, we must show(
1− 5

p

)
(1− (1− ε)k−1) > ε(1− ε)k−1

(
1

2
+

2

p

)
.

Notice that if we assume p > 33 and ε < 1
3
, then

1− (1− ε)k > 1− (1− ε)4

= 4ε− 6ε2 + 4ε3 − ε4

= ε(4− 6ε+ 4ε2 − ε3)

> ε(4− 6ε)

> 2ε

>
33

28
ε.
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Thus, (
1− 5

p

)
(1− (1− ε)k−1) >

28

33
(1− (1− ε)k−1)

> ε

> ε(1− ε)k−1

(
1

2
+

2

p

)
,

which proves the desired inequality, showing that pi(p) > pf (p). Thus, the binary
quadratic residue algorithm is robust for input a 6= 0.

In a similar way to what was demonstrated in the linear quadratic residue
algorithm, the Algorithm 3.2 is not robust on input a = 0. However, we can show
that combining two independent trials of Algorithm 3.2 does result in a robust
algorithm. That result is summarized in the second main theorem of this chapter.

Theorem 3.7.3 When two independent executions of Algorithm 3.2 are run on the
same input, the algorithm is robust.

Proof: Alter Theorem 3.6.6 by substituting the value dlog
(
p−1

2

)
e − 1 into the

expression p−3
2

, it follows that two independent trials on input a = 0 result in a
robust algorithm. We can combine this fact with Theorem 3.7.2 and Lemma 1.3.1
to demonstrate that combining two independent trials of Algorithm 3.2 on non-
zero input maintains robustness. Thus, on all inputs, two independent executions
of Algorithm 3.2 satisfies the conditions for robustness.

3.8 Conclusion

We have shown robustness results for both the linear and binary quadratic residue
algorithms. In particular, both algorithms require two independent executions in
order to meet the specifications of robustness.

In the next chapter, we apply some of the same techniques used in the analysis
of quadratic residues to perform analysis of the robustness of algorithms for deter-
mining primality. Specifically, we will examine the robustness of Pepin’s test for
primality.
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Chapter 4

Robustness of Pepin’s primality
test

4.1 Introduction

In this chapter, we examine the robustness of Pepin’s test for primality for numbers
of the form Fk = 22k + 1, k ≥ 1. In particular, we prove robustness results for all
Fk both explicitly (given the factorization of Fk) and heuristically (based only on
k).

4.2 Pepin’s algorithm

Pepin’s test for primality of Fermat numbers Fk = 22k + 1 (described in his 1877
paper [75]), relies on the iteration of f : x → x2 (mod Fk) beginning with x = 5.
Specifically, we can consider Pepin’s test to be equivalent to the following pseu-
docode:

The correctness of Pepin’s algorithm can be easily shown, based on two lem-
mas. Specifically, we will need Euler’s criterion (Lemma 3.2.1 in Chapter 3) in
addition to the following lemma, first published by Kraitchik [52] and subsequently
by Lehmer [55].

Lemma 4.2.1 An integer n is prime if and only if there exists an integer a such
that

an−1 ≡ 1 (mod n)
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x← 5
for i from 1 to 2k − 1 do
x← x2 (mod Fk)

end for
if x = Fk − 1 then

print “Fk is prime”
else

print “Fk is composite”
end if

Algorithm 4.1: Pepin’s Algorithm

and
a
n−1
q 6≡ 1 (mod n)

for all primes q that divide n− 1.

Proof: Assume n is prime. Consider a generator, a for GF (n)∗. Since a has order

n − 1, it must be the case that an−1 ≡ 1 (mod n) and a
n−1
q 6≡ 1 (mod n) for all

divisors q of n− 1.

For the converse, assume an a exists such that an−1 ≡ 1 (mod n) and a
n−1
q 6≡ 1

(mod n) for all primes q that divide n− 1. We can deduce that the multiplicative
order of a in (Z/(n))∗ must divide n − 1. Suppose, by way of contradiction, that
ordn a < n − 1. Then there must exist an integer k > 1 such that ordn a = n−1

k
.

Furthermore, there is some prime p that must divide k, or equivalently, k = mp for
some m. Using this relation as an exponent, we have

a
n−1
k ≡ a

n−1
mp ≡ 1 (mod n).

Raising this equation to the mth power, we have

a
n−1
p ≡ 1 (mod n),

which contradicts the fact that all prime p have a
n−1
p 6≡ 1 (mod n). Thus ordn a =

n− 1 and hence, n is prime.

Relying on Lemma 3.2.1 and 4.2.1, we prove the correctness of the algorithm
outlined by Pepin [75].

Theorem 4.2.2 The algorithm for Pepin’s test for primality (Algorithm 4.1) is
correct (if no errors occur).
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Proof: We need to demonstrate that Fk is prime iff 522k−1 ≡ −1 (mod Fk), since

after the for-loop, we know that x ≡ 522k−1
(mod Fk).

Suppose that Fk is prime. We have Fk − 1 = 22k . Inductively, 222 ≡ 1 (mod 5)
and if 22k ≡ 1 (mod 5) for k ≥ 2, then (22k)2 ≡ 22k+1 ≡ 1 (mod 5). Thus, we know
that 22k ≡ 1 (mod 5) for all k ≥ 2. Using quadratic reciprocity, we have(

5

Fk

)
=

(
Fk
5

)
=

(
2

5

)
= −1.

Since 5 is a quadratic nonresidue of Fk we can use Lemma 3.2.1 to deduce 5
Fk−1

2 ≡
522k−1 ≡ −1 (mod Fk).

On the other hand, suppose 522k−1 ≡ −1 (mod Fk). Then

5
Fk−1

2 ≡ −1 (mod Fk)

which, by squaring both sides, yields

5Fk−1 ≡ 1 (mod Fk).

Since Fk − 1 = 22k , the only prime divisor of Fk − 1 is 2. Using Lemma 4.2.1, we

have that all prime divisors, q, of Fk − 1 satisfy 5
Fk−1

q 6≡ 1 (mod Fk). Therefore,
Fk must be prime.

4.3 Previous work

Since Pepin’s test for primality relies on the map f : x → x2 (mod N), and
since squaring is the one of the fundamental operations in computing elements
in (Z/(N))∗ (see Chapter 3 for evidence of this fact), it is not surprising that the
map x→ x2 (mod N) has been thoroughly studied, for both prime and composite
N , as well as generalized powers (other than 2). We briefly outline such work in
this section.

Chassé [21, 22, 23] proved some basic results regarding the cycle length of iter-
ations of the form x→ x2 + d.

When the modulus is prime, Blanton, Hurd and McCranie [10, 11], Rogers [84]
and Flores [35] independently analyzed the structure of the digraph formed by the
map x → x2 (mod N). Lucheta, Miller and Reiter [63] generalized this iteration
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to allow arbitrary powers (i.e., x→ xα (mod N)) when the modulus is prime. The
iteration x→ xk over the p-adic numbers was discussed by Khrennikov and Nilsson
[50].

When the modulus is composite, Wilson [100] and Brennan and Geist [17] in-
dependently analyzed the iteration x → xα (mod N) for all α ≥ 2 and composite
N . Additional work by Somer and Kř́ıžek [87] in this area led to two necessary
and sufficient conditions for compositeness of Fermat numbers. Martin and Pomer-
ance [65] examine the statistical properties of an upper bound for the length of the
period of the iteration x → xα (mod N), and in doing so, provide some measures
for the number of cycles formed by this iteration.

It is also worth noting that the topology of the functional digraph of quadratic
maps is related to Shanks’ chains of primes, as recently investigated by Teske and
Williams [92].

Finally, the iteration x → x2 modulo composite numbers is an integral part of
modern pseudo-random bit generation, as discussed, for example, in Blum, Blum,
and Shub [12].

We will use some of the previous work on the map x → x2 (mod N) over
(Z/(N))∗ to make both explicit and heuristic arguments for the robustness of
Pepin’s test for primality in the following sections.

4.3.1 Viewing the iteration as a digraph

For the map x→ x2 (mod N), we illustrate three examples: one for Fermat primes
(i.e., primes of the form 22k + 1), one for Mersenne primes (i.e., primes of the
form 2k − 1) and one for a composite number (i.e., N = 35). These are shown in
Figures 4.1, 4.2, and 4.3 respectively.
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Figure 4.1: The digraph G17,0.
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Figure 4.2: The digraph G31,0.
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Figure 4.3: The digraph G35,0.

4.4 The case when Fk is prime

If Fk is prime, we consider how an output of “composite” can occur if an error is
introduced before, during or after the for-loop in the algorithm discussed above for
the computed value of x.

We begin our analysis by considering the case f : x → x2 (mod p) when p is
prime. This case has been thoroughly studied, and we summarize that previous
work in the following two theorems.

Theorem 4.4.1 Let p be an odd prime, and let the iteration be f : x → x2

(mod p). The tail length for an element x 6= 0 is t(x) = ν2(ordp x) and the cycle
length for x is c(x) = ordl 2, where ordp x = 2e · l and e, l are non-negative integers
with l odd.

Proof: By the definitions of tail and cycle length from Chapter 2, we know that
f t(x) = f t+c(x). It follows we must have x2t ≡ x2t+c (mod p). Rearranging, we
have x2t(2c−1) ≡ 1 (mod p). Write ordp x = 2e · l where l is an odd positive integer
and e is a non-negative integer. Then by definition of order, we have 2e ·l | 2t(2c−1).
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Since c(x) and t(x) are the least such integers that satisfy the necessary relations,
we have t(x) = e = ν2(ordp x), and c = ordl 2.

We can characterize the tails of elements in terms of primitive roots, as follows:

Theorem 4.4.2 Let p be an odd prime, and let γ be a primitive root modulo p.
Then

(a) the set of elements in cycles is

{a ∈ GF (p)∗ : t(a) = 0} = {γi : 0 ≤ i < p and ν2(i) ≥ ν2(p− 1)};

(b) the set of elements that have tail length k (for 1 ≤ k ≤ ν2(p− 1)) is

{a ∈ GF (p)∗ : t(a) = k} = {γi : 0 ≤ i < p and ν2(i) = ν2(p− 1)− k};

Proof: Since a ∈ GF (p)∗, there must exist an integer i such that a = γi. Write
p− 1 = 2τ · ρ, where ρ is odd. To prove (a), we have the following equivalences:

t(a) = 0 ⇐⇒ a = a2l for some l > 0

⇐⇒ a2l−1 = 1

⇐⇒ γi(2
l−1) = 1

⇐⇒ p− 1 | i(2l − 1)

⇐⇒ ρ | 2l − 1 and ν2(i) ≥ ν2(p− 1).

To see the last equivalence, notice that if we pick l = ordρ2, then 2l ≡ 1 (mod ρ)
and thus ρ | 2l − 1.

For (b), we have the following equivalences:

t(a) = k for k ≥ 1 ⇐⇒ a2k = a2k+l

and a2k−1 6= a2k+l−1

for some l > 0

⇐⇒ a2k(2l−1) = 1 and a2k−1(2l−1) 6= 1

⇐⇒ γi2
k(2l−1) = 1 and γi2

k−1(2l−1) 6= 1

⇐⇒ p− 1 | i2k(2l − 1) and p− 1 - i2k−1(2l − 1)

⇐⇒ ρ | i(2l − 1) and ν2(i2k) = ν2(p− 1).
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It is worth noting that Theorem 4.4.1 was originally proved in the literature by
Blanton, Hurd and McCranie [10, 11]. Corollary 4.4.3 is also due to Blanton, Hurd
and McCranie [10, Theorems 2 and 4].

We now prove the first major result of this chapter concerning the structure of
Pepin’s test.

It follows from the previous theorem that, in general, the topology of the func-
tional digraph Gp,0 can be described as follows:

Corollary 4.4.3 Let p be an odd prime with p − 1 = 2τ · ρ, ρ odd. For each
positive divisor d of ρ, Gp,0 contains ϕ(d)/ordd 2 cycles of length ordd 2. There are
ρ elements in all these cycles, and off each element in these cycles hangs a reversed
complete binary tree of height τ − 1 containing 2τ − 1 elements.

Proof: Let γ be a primitive root modulo p. Elements that are in a cycle have no
tail length, and thus, if x is in a cycle, then t(x) = 0. Using Theorem 4.4.2, x must
be of the form γj·2

τ
, 0 ≤ j < ρ. It follows that there must be a total of ρ elements

in all cycles. Since γ2τ generates a subgroup of (Z/(ρ))∗ of order ρ, we must have
ϕ(d) elements of order d for each divisor of ρ. The elements of order d are γj2

τρ/d for
0 ≤ j < d, gcd(j, d) = 1. Using a similar technique to Theorem 4.4.2, we see that if
the cycle length is c, then γ(j2τρ/d)(2c−1) = 1, that gives a cycle of length c = ordd 2.
It immediately follows that there must be a total of ϕ(d)/ordd 2 distinct cycles.

For the tails of size 1, we must square to an element of the form γj·2
τ

but not be
of this form. That is, the elements that have tail length 1 are γj·2

τ−1
. Inductively,

if γi is an element of tail length t, 1 ≤ t < τ , the elements with tail length t+ 1 are
γi/2 and γ(i+p−1)/2, which are distinct since γ(p−1)/2 = −1.

As an example, let us consider the case p = 29, where τ = 2 and ρ = 7. See
Figure 4.4.
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Figure 4.4: The topology of G29,0
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We can enumerate the number of elements in GF (p)∗ that have a given cycle
structure, as follows: for each divisor d of p− 1 there are exactly ϕ(d) elements of
GF (p)∗ of order d. From above, the tail length for each such element is t = ν2(d)
and the cycle length is of size ordd/2ν2(d) 2. For example, for p = 29 we have the
data in Table 1.

d ϕ(d) elements of order d t = ν2(d) l = d/2t c = ordl 2

1 1 {1} 0 1 1
2 1 {28} 1 1 1
4 2 {12, 17} 2 1 1
7 6 {7, 16, 20, 23, 24, 25} 0 7 3

14 6 {4, 5, 6, 9, 13, 22} 1 7 3
28 12 {2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27} 2 7 3

Table 1: The structure of G29,0

We are now ready to use these general theorems in the case when Fk is prime.

Theorem 4.4.4 The structure of the digraph GFk,0 when Fk is prime is a reversed
complete binary tree of height 2k − 1 with root −1, attached to a cycle of length 1
on the integer 1. The elements x with t(x) = a are given by 5e·2

k−a
, 0 ≤ e < 2a, e

odd.

Proof: Use Theorem 4.4.2 and Corollary 4.4.3. Since Fk − 1 = 22k , the only odd
divisor of p − 1 is 1. By the argument presented in Theorem 4.2.2, 5 must be a
primitive root of Fk when Fk is prime.

As an example, we can observe that for Figure 4.1, we have k = 2 when p = 17,
and thus, the height of the binary tree is 22 − 1 = 3.

Having the structure for GFk,0 when Fk is prime, we now explicitly quantify the
robustness of Algorithm 4.1 if an error occurs to the register containing x. Again,
we are assuming the error model outlined in Section 1.3, where we model errors as
events that change x randomly to any element of Z/(Fk).

Theorem 4.4.5 Suppose Fk is prime, for some k ≥ 2. If the last error to occur
to x is just before the ith squaring step in the for-loop of the algorithm for Pepin’s
test as outlined in Section 4.2, the probability that the output is “prime” is

22k−i

Fk
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If the last error is introduced into x after the for-loop, the probability the output is
“prime” is 1

Fk
.

Proof: Let x1, x2, ..., x2k−1 be the value of x before the first, second, ..., (2k − 1)th
squaring step, respectively. Let x2k be the value of x after the (2k − 1)th squaring
step.

To prove this result, we work backwards. Consider x2k : if there are no more
squaring steps, we enter the if-statement. That is, if the error is introduced, it must
cause x2k to remain Fk − 1: the chance that this occurs is 1

Fk
.

By Theorem 4.4.4, we know that the element −1 is the root of a complete binary
tree of height 2k − 1. Thus, if we have j more squarings to do before outputting,
we must have

(x2k−j)
2j = Fk − 1 (mod Fk)

in order for the output to be “prime.” The only solutions to this equation are those
elements that are at depth j in the complete binary tree rooted at −1, and there
are 2j such elements at depth j in the complete binary tree rooted at −1. Since
j = 2k − i (that is, if there are j more squarings to do, we must be at step 2k − i),
there are 22k−i values that satisfy the above equation. Therefore, the probability

that the error introduced into xi will lead to Fk − 1 is 22k−i

Fk
.

We now use Theorem 4.4.5 to evaluate the robustness of Pepin’s test in the
case when the input is prime. As outlined in Section 1.3, we have to compute
the probability of correct output (pc(Fk)), the probability of incorrect and feasible
output (pf (Fk)) and the probability of incorrect and infeasible output (pi(Fk)) on

inputs of size Fk = 22k + 1.

We capture some fundamental probabilities in the following lemma.

Lemma 4.4.6 Consider Pepin’s algorithm (Algorithm 4.1) on input Fk that is
prime. If the probability of an error occurring at any step of the algorithm is ε,
we have

1. pc(Fk) = (1− ε)2k + 22k

Fk

ε
1−2ε

(
(1− ε)2k − 1

22k

)
2. pf (Fk) = 1− pc(Fk), and

3. pi(Fk) = 0.
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Proof: To begin, we compute the probability of correctness. There are two com-
ponents. The first component of this probability is the case when no error occurs,
which means that at all 2k steps, no error occurs, and the probability of no error in
a single step is (1 − ε). If an error does occur, we use the result of Theorem 4.4.5
together with the probability that an error occurs at step i, where i ranges over all
possible steps. Recall that if the probability of error is ε, the probability that the
last error occurs at step j is ε(1−ε)2k−j, since there must be an error (this accounts
for the ε term) and the remaining 2k − j steps must be error free (which accounts
for the (1− ε)2k−j term). To summarize mathematically, we have

pc(Fk) = (1− ε)2k +
2k∑
i=1

(1− ε)2k−iε
1

2i
22k

Fk

= (1− ε)2k + ε(1− ε)2k 22k

Fk

2k∑
i=1

(
1

2(1− ε)

)i
= (1− ε)2k + ε(1− ε)2k 22k

Fk

1

2(1− ε)
( 1

2(1−ε))
2k − 1

1
2(1−ε) − 1

= (1− ε)2k + ε(1− ε)2k 22k

Fk

1

2(1− ε)

((
1

2(1− ε)

)2k

− 1

)
2(1− ε)
2ε− 1

= (1− ε)2k +
22k

Fk

ε

2ε− 1

(
1

22k
− (1− ε)2k

)
= (1− ε)2k +

22k

Fk

ε

1− 2ε

(
(1− ε)2k − 1

22k

)

Since the only other output from Pepin’s test will be a valid integer in the range
0, . . . , 22k , we have pf = 1− pc and pi = 0. That is, there are no infeasible outputs.

Using this lemma, we note that Pepin’s algorithm is not robust, since the ratio
pi

1−pc = 0 does not satisfy the definition of robustness as stated in Section 1.3.
However, if we combine the results of two independent executions of the algorithm,
Pepin’s test becomes robust.

Under this combined model, the output is correct if both independent trials
give the same result. Thus, p∗c(Fk) = pc(Fk)

2 where p∗c represents the probability
of correct output under this combined model. The output is incorrect and feasible
if the results from both independent executions of the algorithm yield the same
answer. In other words, an error must occur in one execution, and the other
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execution must end up with exactly the same value. Suppose the value of the first
execution of the algorithm is v. Based on Theorem 4.4.4, we know that in order
for the second execution of the algorithm to end up with v we must have

• the last error to occur at step 2k and the error changes its stored value to v,
or

• in general, the last error occurs at step 2k−j and the error changes the stored
value to one of the 2j children of v that are distance j below v in the tree,
where 0 ≤ j < 2k.

Formulating these observations, we have

p∗f (Fk) = pf (Fk) ·
2k∑
j=1

(1− ε)2k−jε
2j

Fk

= pf (Fk)
ε(1− ε)2k

Fk

2k∑
j=1

(
2

1− ε

)j

= pf (Fk)
ε(1− ε)2k

Fk

 22k+1

(1−ε)2k+1
− 2

1−ε
2

1−ε − 1


= pf (Fk)

ε(1− ε)2k

Fk

2

1− ε

 22k

(1−ε)2k
− 1

1+ε
1−ε


= pf (Fk)

ε(1− ε)2k

Fk

2

1− ε
1− ε
1 + ε

(
22k

(1− ε)2k
− 1

)

= pf (Fk)
ε(1− ε)2k

Fk

2

1 + ε

(
22k − (1− ε)2k

(1− ε)2k

)

=
2pf (Fk)ε(2

2k − (1− ε)2k)

Fk(1 + ε)
.

To show our combined algorithm is robust, we need to show that

p∗i (Fk)

p∗i (Fk) + p∗f (Fk)
> 0.5,

and also show that p∗c(Fk) is bounded below by a constant larger than 0. We do
so in the following theorem, which is one of the main results concerning robustness
for Pepin’s test.
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Theorem 4.4.7 Consider Pepin’s algorithm (Algorithm 4.1). If the input Fk given
to the algorithm is prime, and if the probability of an error occurring is ε < 1

2k
, the

combination of two independent trials of Pepin’s algorithm is robust.

Proof: We must show two things:
p∗i (Fk)

p∗i (Fk)+p∗f (Fk)
> 0.5 and p∗c(Fk) > b > 0 for some

constant b. First, we will show that p∗c(Fk) is bounded below by a constant larger
than 0. We will use the fact that p∗c(Fk) = (pc(Fk))

2 combined with the definition
of pc(Fk) from Lemma 4.4.6 to prove this first part. We know that

pc(Fk) = (1− ε)2k +
22k

Fk

ε

1− 2ε

(
(1− ε)2k − 1

22k

)
.

Since we have ε < 1
2k

, we can bound the first term in the sum by

(1− ε)2k >
1

e
,

which gives a suitable lower bound on pc(Fk), and thus a lower bound on p∗c(Fk).

To demonstrate the second part of the theorem, we need to show that

p∗i (Fk)

p∗i (Fk) + p∗f (Fk)
> 0.5.

We have

p∗i (Fk)

p∗i (Fk) + p∗f (Fk)
=

1− pc(Fk)2 − p∗f (Fk)
1− pc(Fk)2 − p∗f (Fk) + p∗f (Fk)

=
1− pc(Fk)2 − p∗f (Fk)

1− pc(Fk)2

= 1−
p∗f (Fk)

1− pc(Fk)2

= 1− 2pf (Fk)ε(2
2k − (1− ε)2k)

Fk(1 + ε)

1

1− pc(Fk)2

= 1− 2(1− pc(Fk))ε(22k − (1− ε)2k)

Fk(1 + ε)

1

(1 + pc(Fk))(1− pc(Fk))

= 1− 2ε(22k − (1− ε)2k)

Fk(1 + ε)(1 + pc(Fk))

> 1− 2ε(Fk − 2)

Fk(1 + ε)(1 + pc(Fk))

= 1− Fk − 2

Fk

2ε

(1 + ε)(1 + pc(Fk))
.
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We look at components of the last line of the inequality. Since k > 0 then Fk−2
Fk

< 1.

Also, since k > 0, it follows that ε < 1
4

and thus 2ε < 1
2
. Additionally, since ε ≥ 0

and pc(Fk) ≥ 0, we have that (1 + ε)(1 + pc(Fk)) > 1. We can combine these
inequalities to yield

1− Fk − 2

Fk

2ε

(1 + ε)(1 + pc(Fk))
> 1− 1

2

=
1

2

which proves the result.

4.5 The case when Fk is composite

In this section, we analyze the robustness of Pepin’s test when Fk is composite.
In order to do this, we will present more general results for arbitrary composite
moduli due to Wilson [100] and use these results to prove robustness measures for
composite Fk.

We begin by presenting some basic results on composite moduli, drawn from
the classic text by Hua [47].

Lemma 4.5.1 A necessary and sufficient condition for m to have a primitive root
is that m = 2, 4, pl or 2pl, where p is prime, l ≥ 1.

Proof: This is Theorem 3.9.1 of Hua [47].

The following three lemmas rely on the definition of solutions to congruences as
defined in Section 2.5.

Lemma 4.5.2 Let f(x) = anx
n+· · ·+a2x

2+a1x+a0 and define f ′(x) = nanx
n−1+

· · · + 2a2x + a1. Let p be prime and l ≥ 1. If f(x) ≡ 0 (mod p) and f ′(x) ≡ 0
(mod p) have no common solution, then the two congruences f(x) ≡ 0 (mod pl)
and f(x) ≡ 0 (mod p) have the same number of solutions.

Proof: See Theorem 2.9.3 of Hua [47].

Lemma 4.5.3 The congruence xk ≡ n (mod p), (p - n, k ≥ 0) has 0 or gcd(k, p−
1) solutions.
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Proof: This is Theorem 3.7.2 of Hua [47].

We now consider the case when the modulus is a power of 2.

Lemma 4.5.4 The congruence xk ≡ n (mod 2a), 2 - n has 0 or C solutions, where

C =


1, if a ∈ {0, 1};
gcd(k, 2), if a = 2;
gcd(k, 2) · gcd(2a−2, k), if a > 2.

Proof: If the modulus is 2a, it is well known (see Hua [47, Theorem 3.9.4]) that

(Z/(2a))∗ ∼=


{1}, if a ∈ {0, 1};
Z/(2), if a = 2;
Z/(2)× Z/(2a−2), if a > 2.

The first two cases give the result trivially for a ∈ {0, 1, 2}. For a > 2, we know
computing the k-th power in (Z/(2a))∗ is equivalent to multiplying by k in the
corresponding additive representation, and since multiplying by k is a gcd(2a−2, k)-
to-1 map, the result follows.

We combine the previous three lemmas into a result on the indegree of vertices
in the component containing −1 in the digraph formed by x→ xk (mod N).

Theorem 4.5.5 Let N = 2ape11 p
e2
2 · · · pemm , where pi is prime, a ≥ 0 and ei ≥ 1.

In the digraph formed by x → xk (mod N), where pi - k for all i, 1 ≤ i ≤ m, the
indegree of every vertex in the component containing −1 is either 0 or I, where

I =


Πm
i=1 gcd(k, pi − 1), if a ∈ {0, 1};

gcd(k, 2)Πm
i=1 gcd(k, pi − 1), if a = 2;

gcd(k, 2) gcd(2a−2, k)Πm
i=1 gcd(k, pi − 1), if a > 2.

Proof: Using the Chinese Remainder Theorem, we know that solving xk ≡ −1
(mod N) is equivalent to solving the system of congruences

xk ≡ −1 (mod 2a)

xk ≡ −1 (mod pe11 )
...

xk ≡ −1 (mod pemm ).
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Since pi - k for all i, we know that xk ≡ −1 (mod pi) and kxk−1 ≡ 0 (mod pi) have
no common solution. It follows that we can apply Lemma 4.5.2 with Lemma 4.5.3
to deduce that xk ≡ −1 (mod peii ) has gcd(k, pi − 1) solutions. We combine this
result with Lemma 4.5.4 using the Chinese Remainder Theorem to derive the value
of I as indicated.

We now present a key result on the structure of the digraphs formed when the
modulus is composite, due to Wilson [100].

Theorem 4.5.6 Let N = 2ape11 p
e2
2 · · · pemm , where pi is prime, a ≥ 0 and ei ≥ 1. In

the digraph GN,0, the height of the tree rooted at −1 is h, where

h =

{
0, if a > 1;
min{ν2(pi − 1)− 1 : 1 ≤ i ≤ m}, otherwise.

Proof: If a > 1, then 4 |N . Therefore, for x2 ≡ −1 (mod N) to have a solution,
x2 ≡ −1 (mod 4) must have a solution. However, x2 ≡ 3 (mod 4) has no solution,
and so the height of the tree rooted at −1 must be 0 in this case.

If a ≤ 1, we use the Chinese Remainder Theorem to deduce that x2 ≡ −1
(mod N) has solution x0 iff x0 is a solution to x2 ≡ −1 (mod peii ) for each i,
1 ≤ i ≤ m. Furthermore, using Lemma 4.5.2, there is a one-to-one correspondence
between solutions to x2 ≡ −1 (mod peii ) and solutions to x2 ≡ −1 (mod pi).

We know by Corollary 4.4.3 that the height of the tree rooted at −1 is ν2(pi −
1)− 1. In other words,

x2ν2(pi−1)−1 ≡ −1 (mod pi)

has a solution and
x2ν2(pi−1) ≡ −1 (mod pi)

has no solution, for each i. Applying this to the composite case, we have the height
of the tree rooted at −1 is h iff

x2h ≡ −1 (mod N)

has a solution and
x2h+1 ≡ −1 (mod N)

has no solution, which holds if and only if

x2h ≡ −1 (mod pi)
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has a solution for all i and

x2h+1 ≡ −1 (mod pi)

has no solution for at least one such i. Combining these two facts together, we see
that h = min{ν2(pi − 1)− 1 : 1 ≤ i ≤ m}, which proves the result.

The following corollary is immediate.

Corollary 4.5.7 Let N = 2ape11 p
e2
2 · · · pemm , where pi is prime, a ≥ 0 and ei ≥ 1.

In the digraph GN,0, the height of the tree rooted at −1 is 0 iff a > 1 or pi ≡ 3
(mod 4) for some i.

We now analyze the structure of this tree rooted at −1 to determine the number
of elements contained within it.

Theorem 4.5.8 Let N = 2ape11 p
e2
2 · · · pemm , where pi is prime, a ≥ 0 and ei ≥ 1. In

the digraph GN,0, the tree rooted at −1 is a complete 2m-ary tree.

Proof: Define h = min{ν2(pi− 1)− 1 : 1 ≤ i ≤ m}. We know from Corollary 4.5.7
that the tree rooted at −1 in GN,0 is empty if a > 1 or if pi ≡ 3 (mod 4) for some
i, 1 ≤ i ≤ m. Thus, we can view this as a complete 2m-ary tree: it just happens to
have height 0.

Thus, non-empty trees occur only if a ∈ {0, 1} and pi ≡ 1 (mod 4) for all
i, 1 ≤ i ≤ m. It must be that h > 0 since pi − 1 ≡ 0 (mod 4) for 1 ≤ i ≤ m.

We know that an element in the tree rooted at −1 has indegree 0 or

Πm
i=1 gcd(2, pi − 1) = 2m

by Lemma 4.5.5. Since elements that are at depth h in the tree rooted at −1 are
solutions to the equivalence

x2h ≡ −1 (mod N),

it follows that there must be

Πm
i=1 gcd(2h, pi − 1) = (2h)m

elements at depth h in the tree rooted at −1 in GN,0. Combining this fact with the
fact that all elements have indegree 0 or 2m, it follows that the tree rooted at −1
must be a complete 2m-ary tree.

We now combine the two main theorems of this section into a theorem for the
case when N = Fk = 22k + 1.
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Theorem 4.5.9 Suppose Fk is composite. Write Fk = pe11 · · · pemm . The tree rooted
at −1 in GFk,0 is a complete 2m-ary tree of height h = min{ν2(pi− 1)− 1 : 1 ≤ i ≤
m}.

Proof: We note Fk ≡ 1 (mod 4), and so we may apply Theorems 4.5.6 and 4.5.8
to get the result.

We will now use the previous theorem to prove a theorem on the robustness of
Pepin’s test in the composite case, based on the factorization of Fk.

Theorem 4.5.10 Suppose Fk is composite, for some k ≥ 1. Write Fk = pe11 · · · pemm
where all pi’s are distinct odd primes, and ei > 0. Let h = min{ν2(pi − 1) − 1 :
1 ≤ i ≤ m}. If the last error to occur to x is just before the jth squaring step
in the for-loop of the algorithm for Pepin’s test, the probability that the output is
“composite” is 1 if j < 2k − h and

Fk − 2m(2k−j)

Fk

otherwise. If the last error is introduced into x after the for-loop, the probability
the output is “composite” if Fk is composite is Fk−1

Fk
.

Proof: As in the proof of the robustness of Pepin’s test if Fk is prime, let x1, x2, ..., x2k−1

be the value of x before the first, second, ..., (2k − 1)th squaring step, respectively.
Let x2k be the value of x after the (2k − 1)th squaring step.

To prove this result, we work backwards. Consider x2k : if there are no more
squaring steps, we enter the if-statement. That is, if the error is introduced, it
must cause x2k (assuming it is any of the Fk values) to become Fk − 1 in order
for the output to be “prime”. Thus, the chance that “composite” is outputted is
1− 1

Fk
= Fk−1

Fk
.

By Theorem 4.5.9, we know that the element −1 roots a complete 2m-ary tree
of height h. Thus, if we have l more squarings to do before outputting, we must
have

(x2k−l)
2l ≡ Fk − 1 (mod Fk)

in order for the output to be “prime,” with the proviso that l ≤ h. If l > h, either
the element (x2k−l)

2l (mod Fk) will be 1 (if x2k−l is in the same component as 1) or
it will some other element y, where y is not in the same component as 1 (or, more
importantly, −1) in GFk,0. Thus, we are guaranteed to finish the algorithm with a
value of x 6≡ −1 (mod N), and so the result holds if l > h.
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If l ≤ h, we know that the only solutions to the equation

(x2k−l)
2l = Fk − 1 (mod Fk)

are those elements that are at depth l in the complete tree rooted at −1, and there
are 2ml such elements at depth l in the complete tree rooted at −1. Since l = 2k− i
(that is, if there are l more squarings to do, we must be at step 2k − i), there are
2m(2k−i) values that satisfy the above equation. Therefore, the probability that the

error introduced into xi will lead to Fk − 1 is 2m(2k−i)

Fk
. Reversing this result gives a

probability of Fk−2m(2k−i)

Fk
in the case when i ≥ 2k − h, as desired.

We use Theorem 4.5.10 to quantify the probabilities of correct output, incorrect
but feasible output and infeasible output, and summaries these statistics in the
following lemma.

Lemma 4.5.11 Consider Pepin’s algorithm (Algorithm 4.1) on composite input.
Write Fk = pe11 · · · pemm where all pi’s are distinct odd primes, and ei > 0. Let
h = min{ν2(pi − 1)− 1 : 1 ≤ i ≤ m}. If the probability of error is ε, we have

• the probability that the output is correct (pc(Fk)) is

1−
(
ε

Fk

)(
1− ((1− ε)2m)h+1

1− (1− ε)2m

)
• the probability that the output is incorrect but feasible is

pf (Fk) = 1− pc(Fk),

• the probability that the output is incorrect and infeasible is pi(Fk) = 0.

Proof: We begin by looking at computing the probability of correctness. Notice
that the output will be correct is no errors occur, and this happens with probability
(1− ε)2k . If there is an error, then the last error either occurs before step 2k−h, in
which case Theorem 4.5.10 indicates the output will be composite with probability
1, or the last error occurs at or after step 2k − h, in which case Theorem 4.5.10

indicates the output will be composite with probability 1 − 2m(2k−j)

Fk
. We need to

sum these two values over the range 1 . . . 2k − h− 1 and 2k − h . . . 2k respectively.
Combining these three possibilities together, we get

pc(Fk) = (1− ε)2k +
2k−h−1∑
i=1

1 · (1− ε)2k−iε+
2k∑

i=2k−h

(1− ε)2k−iε

(
1− 2m(2k−i)

Fk

)
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which we simplify as

pc(Fk) = (1− ε)2k +
2k−h−1∑
i=1

1 · (1− ε)2k−iε+
2k∑

i=2k−h

(1− ε)2k−iε

(
1− 2m(2k−i)

Fk

)

= (1− ε)2k + ε(1− ε)2k
2k∑
i=1

(1− ε)−i − ε(1− ε)2k
2k∑

i=2k−h

(1− ε)−i2
m(2k−i)

Fk

= (1− ε)2k + ε(1− ε)2k


(

1
(1−ε)

)2k+1

− 1
(1−ε)

1
(1−ε) − 1


−ε(1− ε)2k

(
2m2k

Fk

)
2k∑

i=2k−h

(
1

(1− ε)2m

)i
= (1− ε)2k + ε(1− ε)2k

(
1

1− ε

)(
1− ε
ε

)(
1

(1− ε)2k
− 1

)
−ε(1− ε)2k

(
2m2k

Fk

)(
( 1

(1−ε)2m )2k+1 − ( 1
(1−ε)2m )2k−h

1
(1−ε)2m − 1

)

= (1− ε)2k + (1− ε)2k
(

1

(1− ε)2k
− 1

)
−ε(1− ε)2k

(
2m2k

Fk

)(
(

1

(1− ε)2m
)2k+1 − (

1

(1− ε)2m
)2k−h

)(
(1− ε)2m

1− (1− ε)2m

)

= 1− ε(1− ε)2k

(
2m2k

Fk

)
(

1

(1− ε)2m
)2k−h

(
(

1

(1− ε)2m
)h+1 − 1

)(
(1− ε)2m

1− (1− ε)2m

)
= 1− ε(1− ε)h+1

(
2m(h+1)

Fk

)(
(

1

(1− ε)2m
)h+1 − 1

)(
1

1− (1− ε)2m

)
= 1−

(
ε

Fk

)(
1− ((1− ε)2m)h+1

1− (1− ε)2m

)
.

Since there are no infeasible answers pi(Fk) = 0 and pf (Fk) = 1 − pc(Fk), which
completes the proof.

We have to show robustness for this case. However, as in earlier examples, we
notice that since pi(Fk) = 0 implies this algorithm is not robust, and we must
combine two independent executions of this algorithm to satisfy the conditions for
robustness.
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We are ready to prove the second main result on robustness for Pepin’s test.
That is, we prove the analogue of Theorem 4.4.7 for the composite case.

Theorem 4.5.12 Consider Pepin’s algorithm (Algorithm 4.1). If the input Fk
given to the algorithm is composite, and if the probability of an error occurring is
ε < 1

2k
, the combination of two independent trials of Pepin’s algorithm are robust.

Proof: We must show two things:
p∗i (Fk)

p∗i (Fk)+p∗f (Fk)
> 0.5 and p∗c(Fk) > b > 0 for

some constant b, where p∗c(Fk), p
∗
f (Fk) and p∗i (Fk) represent the probabilities of

correctness, incorrect but feasible and infeasible under this combined execution
model.

First, we will show that p∗c(Fk) is bounded below by a constant larger than 0.

We provide a very loose, but usable, lower bound on p∗c(Fk). Notice that if
there is no error that occurs in either independent trial, the output will be correct.
The probability of this occurring is ((1− ε)2k)2, which is a lower bound on p∗c(Fk).
However, if ε < 1

2k
then

p∗c(Fk) ≥ ((1− ε)2k)2 ≥ e−2 > 0.

We will rearrange the inequality
p∗i (Fk)

p∗i (Fk)+p∗f (Fk)
> 0.5 to be p∗f (Fk) < p∗i (Fk).

Notice that if the independent executions of the yield different results (i.e., one
indicates the input was prime, while the other indicates the input was composite),
that will be an infeasible result. Thus, p∗i (Fk) ≥ 2pc(Fk)pf (Fk), since the right-
hand side of this inequality is exactly the probability that the two independent
executions yield different outcomes.

Since the only feasible output is when the algorithm outputs “prime” on compos-
ite input, both independent executions must yield prime. Thus, p∗f (Fk) = (pf (Fk))

2.

Thus, to show p∗f (Fk) < p∗i (Fk), we only need to show (pf (Fk))
2 < 2pc(Fk)pf (Fk),

which is equivalent to showing pf (Fk) < 2pc(Fk). However, since pf (Fk) = 1 −
pc(Fk), we can simplify pf (Fk) < 2pc(Fk) to pf (Fk) < 2(1 − pf (Fk)), which is
equivalent to showing pf (Fk) <

2
3
.
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We have

pf (Fk) =
ε

Fk

(1− ε)h+12m(h+1) − 1

(1− ε)2m − 1

<
ε

Fk

(1− ε)h+12m(h+1)

(1− ε)2m − 1

= ε(1− ε)h+1 1

(1− ε)2m − 1

2m(h+1)

Fk

<
1

2k
· 1 · 12m(h+1)

Fk

≤ 1

2k

<
2

3
,

since the number of elements in the 2m-ary tree of height h that has root −1 in
GFk,0 is bounded above by 2m(h+1), which is in turn, bounded above by Fk, since
the number of elements in GFk,0 is Fk.

We now turn attention back towards some empirical results on Fermat primes,
and how they apply to the results outlined in this chapter.

Notice that Theorem 4.5.10 relies on the factorization of Fk. This reliance seems
counter-intuitive: knowing the factorization of Fk helps us determine the robustness
of the algorithm to determine if Fk is prime. It may be more beneficial if robustness
arguments could be made relying only on k, rather than the factorization of Fk.
Moreover, we would like to bound the parameters m (the number of factors of Fk)
and h (= min{ν2(pi − 1)− 1 : 1 ≤ i ≤ m}, the height of the complete 2m-ary tree)
in order to give a reasonable and practical probability result.

In order to make such arguments, we recall the work of Keller [48]. It is well-
known that if Fk is composite, it has a factor c · 2n + 1, where n ≥ k + 2, c odd.
Heuristically, it appears as though the difference n−k is an exponentially distributed
function: see Table 4.1 for current empirical results derived from Keller [49].

n− k 2 3 4 5 6 7 8 9 10
Frequency 117 60 31 5 7 5 4 2 3
Freq/Total 0.500 0.256 0.132 0.0214 0.030 0.021 0.017 0.001 0.012

Table 4.1: Values of n− k where c · 2n + 1 |Fk for 234 composite Fermat numbers
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Figure 4.5: Plot of f(x) = 2−(x−1) and Freq/Total values from Table 4.1

As further evidence that n− k is exponentially distributed, we can graph these
empirical points against an exponential curve f(x) = 2−(x−1) as in Figure 4.5.

These empirical results yield the following conjecture.

Conjecture 4.5.13 Suppose Fk is composite for some k in the range [1..N ]. Con-
sider a prime divisor of Fk: it must have the form c · 2n + 1 where n ≥ k+ 2 and c
is odd. As N →∞, the fraction of all the differences n− k that equal l is about

2−(l−1).

We use Conjecture 4.5.13 to determine the expected value of h (the height of
the 2m-ary complete tree in Gk,0).
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Theorem 4.5.14 Assume Conjecture 4.5.13 holds. Consider a composite Fk in the
range [1..N ]. As N →∞, the expected value of h = min{ν2(pi−1)−1 : 1 ≤ i ≤ m}
is

k + 1 +
1

2m − 1
.

Proof: Since Fk is composite, we can write

Fk = Πm
i=1(ci · 2k+2+li + 1)

for some li ≥ 0 and odd ci, 1 ≤ i ≤ m. Recall, by the definition of h, we have

h = min{ν2(ci · 2k+2+li)− 1 : 1 ≤ i ≤ m}
= min{k + 1 + li : 1 ≤ i ≤ m}
= k + 1 + min{li : 1 ≤ i ≤ m}.

Using the definition of expected value (E(X) =
∑

X=i i ·P(i)), we have

E(h) = k + 1 +
∑
j≥0

j ·P(min{li : 1 ≤ i ≤ m} = j).

Our task now is to evaluate P(min{li : 1 ≤ i ≤ m} = j). Again, using basic
probability theory, we know

P(min{li : 1 ≤ i ≤ m} = j) = P(li ≥ j for all i) ·P(li = j for some i|li ≥ j for all i)

= P(li ≥ j for all i) ·P(li = 0 for some i)

= P(li ≥ j for all i) · (1−P(li > 0 for all i))

= P(li ≥ j for all i) · (1− 1

2m
),

since we know the distribution of these li is governed by 1
2(li+1) from Conjec-

ture 4.5.13, where we have shifted the distribution curve 2 units to the left. Con-
tinuing, we have

P(min{li : 1 ≤ i ≤ m} = j) = P(li ≥ j for all i) · (1− 1

2m
)

= (
∞∑
t=0

1

2j+t+1
)m · (2m − 1

2m
)

= (
1

2j
)m · (2m − 1

2m
)

= (2m − 1) · ( 1

2m
)j+1.
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We now return to determining the expected value for h. Consider

E(h) = k + 1 +
∑
j≥0

j ·P(min{li : 1 ≤ i ≤ m} = j)

= k + 1 + (2m − 1)
∑
j≥0

j · ( 1

2m
)j+1.

We know ∑
j≥0

xj =
1

1− x
,

which, after differentiating once and multiplying by x2, yields∑
j≥0

jxj+1 =
x2

(1− x)2
=

1

( 1
x
− 1)2

.

Letting x = 1
2m

we have

E(h) = k + 1 + (2m − 1)
∑
j≥0

j · ( 1

2m
)j+1

= k + 1 + (2m − 1) · 1

(2m − 1)2

= k + 1 +
1

2m − 1
.

4.6 The iteration x→ x2 on Mersenne primes

As a bridge between this chapter and Chapter 5, we analyze the iteration x→ x2 on
Mersenne primes, which are primes of the form p = 2q − 1. We provide a complete
characterization in the following theorem.

Theorem 4.6.1 When p = 2q − 1, a Mersenne prime, the digraph Gp,0 consists of
cycles whose length divides q − 1. Off each element in these cycles there hangs a
single element with tail length 1.

Proof: We have p− 1 = 2(2q−1− 1), so τ = 1 and ρ = 2q−1− 1. It follows that
the divisors of p−1 are of the form 2fj, where j | 2q−1−1 and f ∈ {0, 1}. The cycle
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length for any element is therefore given by ordj 2 for some j a divisor of 2q−1 − 1.
Now ordj 2 | q − 1, and so the cycle length for every element is a divisor of q − 1
which is approximately log2 p.

The result of Theorem 4.6.1 can be contrasted with the average cycle length of
approximately

√
p in the case of a random map [44].

Figure 4.2 illustrates Theorem 4.6.1 in the case where q = 5, p = 31. Specifically,
the cycles lengths are 4, 2, 1 and the tails all have length 1.

Further work on Mersenne primes under x → x2 was developed in an internet
forum (see [83]).

4.7 Statistical measures of x→ x2

We will now consider some statistics about the tail and cycle lengths for a given
prime p over the iteration x→ x2.

Recall the statistical measures from Section 2.4.

For example, TC(29, 0) = 3, T0(29, 0) = 7, AC(29, 0) = 7/3, C(29, 0) = 19/7,
and T (29, 0) = 5/4. The following theorem, which is one of the main results of this
chapter, gives formulas for these quantities.

Theorem 4.7.1 Let p − 1 = 2τ · ρ with ρ odd. With respect to the iteration x →
x2 (mod p) we have

(a) TC(p, 0) =
∑

d | ρ
ϕ(d)

ordd 2
;

(b) T0(p, 0) = ρ;

(c) AC(p, 0) = ρ
TC(p,0)

;

(d) C(p, 0) = 1
ρ

∑
d | ρ ϕ(d)ordd 2;

(e) T (p, 0) = 1
p−1

∑
d | p−1 ϕ(d)ν2(d) = τ − 1 + 2−τ .
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Proof: Parts (a)-(d) follow directly from Corollary 4.4.3. For part (e) we have

T (p, 0) =
1

p− 1

∑
1≤a≤p−1

tp(a)

=
1

p− 1

∑
d | p−1

ϕ(d)ν2(d)

=
1

p− 1

∑
d | ρ

∑
0≤i≤τ

ϕ(d · 2i)ν2(d · 2i)

=
1

p− 1

∑
d | ρ

ϕ(d)
∑

1≤i≤τ

ϕ(2i) · i

=
1

p− 1

∑
d | ρ

ϕ(d)
∑

1≤i≤τ

i · 2i−1

=
1

p− 1

∑
d | ρ

ϕ(d)((τ − 1)2τ + 1)

=
1

p− 1
ρ((τ − 1)2τ + 1)

= τ − 1 + 2−τ .

We now examine the average behavior of some of these quantities over all odd
primes p ≤M , which we capture in two main theorems.

We can obtain good asymptotic estimates for these quantities, assuming the
Extended Riemann Hypothesis (ERH). We will need the following lemmas.

Lemma 4.7.2 Assume the ERH. Then if the logarithmic integral li(x) is defined
by li(x) =

∫ x
2

1
ln t
dt and if gcd(k, l) = 1 then

π(x; l, k) =
li(x)

ϕ(l)
+O(

√
x(lnx+ 2 ln l)).

Proof: See, for example, [5, pp. 217, 235].

It should be noted that without the assumption of the ERH, we would not
have such a tight bound on the O term. Specifically, without the ERH, we would
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have (using results from [5, p. 215]) that there is a constant c > 0 such that if
gcd(k, l) = 1 then

π(x; l, k) =
li(x)

ϕ(l)
+O(xe−c(lnx)3/5(ln lnx)−1/5

).

This bound is not strong enough for our purposes. Therefore, we assume the ERH
and use the tighter bound in our analysis.

Lemma 4.7.3 Assume the ERH. Let k, l be integers with gcd(k, l) = 1. Then∑
p≤x

p≡ k (mod l)

p =
1

ϕ(l)

(
x2

2 ln x

)(
1 +O(

1

lnx
)

)
+O(x3/2(lnx+ 2 ln l)).

Proof: By Lemma 4.7.2 we have

π(x; l, k) =
li(x)

ϕ(l)
+O(

√
x(lnx+ 2 ln l)).

Now, by Stieltjes integration (see, e.g., [5, pp. 28-29]), we have∑
p≤x

p≡ k (mod l)

p =
1

ϕ(l)

∫ x

2

t

ln t
dt+O(x3/2(lnx+ 2 ln l)). (4.1)

On the other hand, by asymptotic integration (see, e.g., [5, pp. 27-28]), we have∫ x

2

t

ln t
dt =

x2

2 ln x
+O

(
x2

(lnx)2

)
. (4.2)

The result comes from combining Eqs. (4.1) and (4.2).

Now we are ready to estimate ST0(M).

Theorem 4.7.4 Assume the ERH. Then ST0(M) ∼ M2

6 lnM
.
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Proof: We have, using Lemma 4.7.3, that∑
p≤M

p− 1

2ν2(p−1)
=

∑
1≤i≤log2 M

∑
p≤M

p≡2i+1 (mod 2i+1)

p− 1

2i

=
M2

2 lnM
(1 +O(

1

lnM
))

∑
1≤i≤log2 M

1

4i

=
M2

2 lnM
(1 +O(

1

lnM
))

1

3
(1 +O(

1

M
)).

We now turn to ST (M).

Theorem 4.7.5 Assume the ERH. Then

ST (M) ∼ 2

3
· M

2

lnM
.

Proof: We have∑
p≤M

∑
1≤x≤p−1

tp(x) =
∑
p≤M

(p− 1)(ν2(p− 1)− 1 + 2−ν2(p−1))

=
∑
p≤M

ν2(p− 1)p−
∑
p≤M

ν2(p− 1)−
∑
p≤M

p+
∑
p≤M

1 +
∑
p≤M

p− 1

2ν2(p−1)
.

We start by evaluating
∑

p≤M ν2(p− 1)p. We have∑
p≤M

ν2(p− 1)p =
∑

1≤i≤log2 M

∑
p≤M

p≡ 1 (mod 2i)

p

=
M2

lnM

(
1 +O(

1

lnM
)

)(
1 +O(

1

M
)

)
,

where we have used Lemma 4.7.3.

Next we have, using Lemma 4.7.2, that∑
p≤M

ν2(p− 1) =
∑

1≤i≤log2 M

π(M ; 2i, 1)

=
∑

1≤i≤log2 M

(
li(M)

2i−1
+O(

√
M lnM)

)
= li(M)(2 +O(

1

M
)) +O(

√
M(lnM)2),
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It is well known that
∑

p≤M p ∼ M2

2 lnM
; see, for example, [5, p. 28-29].

By the prime number theorem,
∑

p≤M 1 ∼ M
lnM

.

Putting all these estimates together with Theorem 4.7.4, and the well-known
estimate li(x) = x

lnx
(1 +O( 1

lnx
)), we obtain the desired result.

It is worth noting that Chou and Shparlinski [24] have removed the ERH condi-
tion on Theorems 4.7.4 and 4.7.5. This improvement occurred after the publication
of Theorems 4.7.4 and 4.7.5 in Vasiga and Shallit [94]. Specifically, Chou and Sh-
parlinski refine Lemma 4.7.3 using three mathematical tools. The first tool is the
the Page Bound (as outlined in Davenport [28]) which states that

π(x; k, a) =
x

ϕ(k) ln x
+O(x ln−2 x),

for all integers k ≤ ln
3
2 x and gcd(a, k) = 1.

The second tool used by Chou and Shparlinski is the use of I -units. Given a
set I = {p1, p2, ..., pn}, we say that integer q is an I -unit if all prime divisors of
q belong in I .

Finally, the previous two tools are combined together using inclusion-exclusion
to obtain an ERH-free bound.

We now compare the estimates in Theorem 4.7.4 and 4.7.5 with empirical data:

M ST0(M) M2/(6 lnM) ST (M) 2M2/(3 lnM)
10 5 7.24 9 28.95
102 342 361.91 1366 1447.65
103 25875 24127.47 99383 96509.88
104 1922532 1809560.34 7481452 7238241.36
105 151468221 144764827.30 605859857 579059309.20
106 12531875547 12063735608.42 49994218943 48254942433.69

Table 2: Comparing ST0(M) and ST (M) to asymptotic estimates

It is harder to estimate the average behavior of c(x). A reasonable conjecture
is that there are infinitely many primes p such that (a) p′ := (p− 1)/2 is also prime
and (b) 2 is a primitive root (mod p′). The first few such primes are

7, 11, 23, 59, 107, 167, 263, 347, 359, 587, 839, 887, 983, 1019, 1307, 1319, 2039, 2459,

2903, 2999, 3467, 3803, 3863, 3947, 4139, 4283, 4679, · · ·
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For these primes p we have∑
1≤x<p

c(x) = 2
∑

d | (p−1)/2

ϕ(d)ordd 2 = 2(1 + (p′ − 1)(p′ − 1)) = Ω(p2).

If p is a Fermat prime, then p − 1 = 22k for some k. Using Theorem 4.7.1, we
have ρ = 1 and so∑

1≤x<p

c(x) =
p− 1

ρ

∑
d | ρ

ϕ(d)ordd 2 = 22k = p− 1.

However, few believe there are infinitely many Fermat primes.

If p is a Mersenne prime, say p = 2q − 1, then∑
1≤x<p

c(x) ≤ (q − 1)(2q−1 − 1) = O(p ln p).

Most people believe there are infinitely many Mersenne primes, but of course no
proof currently exists.

Assuming a conjecture of Wagstaff [98] on the distribution of the least prime
in an arithmetic progression, we now show there are infinitely many primes p for
which ∑

1≤x<p

c(x) = O(p(ln p)2).

To observe this, for each integer τ ≥ 1 consider the least prime p with p ≡ 1 (mod
2τ ). Now write

p− 1 = 2τ+c · ρ (4.3)

for some non-negative integer c and odd integer ρ. Then ϕ(p) = p − 1 = 2τ+c · ρ.
Wagstaff’s conjecture states that the least prime p ≡ x (mod n), when gcd(x, n) =
1, is O(ϕ(n)(lnn)(lnϕ(n))). Letting n = 2τ , we find

p = O(ϕ(2τ )(ln 2τ )(lnϕ(2τ )))

= O(2τ−1τ(ln 2)(τ − 1)(ln 2))

= O(τ 22τ ).

Dividing this last result by (4.3), we get ρ = O(τ 2). Also, p = O(τ 22τ ) gives
τ = Θ(ln p).
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Using Theorem 4.7.1, we have∑
1≤x<p

c(x) =
p− 1

ρ

∑
d | ρ

ϕ(d)ordd 2

= 2τ+c
∑
d | ρ

ϕ(d)ordd 2

≤ 2τ+c · ρ
∑
d | ρ

ϕ(d)

= 2τ+c · ρ2

= O(ρp).

Combining this result with the previous fact that ρ = O(τ 2) = O((ln p)2), we
have ∑

1≤x<p

c(x) = O(p(ln p)2),

as desired.

4.8 Conclusion

We have shown that two independent trials of Algorithm 4.1 are sufficient to meet
the definition of robustness. In proving this result, we have analyzed the digraph
formed by x → x2 obtaining interesting statistical measures of cycle length, tail
length, number of cycles, etc., for this digraph.

Next, we apply this form of analysis to the Lucas-Lehmer test for primality,
which will require slightly more sophisticated mathematical machinery in order to
obtain bounds on robustness.
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Chapter 5

Robustness of the Lucas-Lehmer
primality test

5.1 Introduction

Rogers [84] stated,

“The family of nonlinear maps given by f(x) = x2 + c, c ∈ Fp, for
nonzero values of the parameter c ∈ Fp, produces graphs whose tree
structure (graphically, the transients leading down to the cycles) seems
beyond description; in general the trees attached to the cycles are of
variable height, and even those trees attached to the same cycle vary.”

However, as we will see in this chapter, Rogers’ statement is not true for the
case c = −2, as recognized by Pollard [77]. In describing the tree structure of the
iteration x→ x2−2, and thus graphically demonstrating Pollard’s caution, we will
also prove robustness results for the Lucas-Lehmer primality test. The majority of
the work in this chapter was published in Vasiga and Shallit [94].

5.2 Lucas-Lehmer primality test

The Lucas-Lehmer test determines the primality of numbers of the form 2d−1. (See
the original paper by Lucas [62] or the generalization by Lehmer, for example, in
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Bach and Shallit [5].) Specifically, the Lucas-Lehmer primality test takes as input
an integer N = 2d − 1, d > 2, d prime, and computes the sequence

S1 = 4,

Sk = (S2
k−1 − 2) mod N (1 < k < d).

Then N is prime iff Sd−1 = 0. The key concept that will be used in this chapter
is the recurrence Sk = S2

k−1 − 2 (mod n). We can consider the Lucas-Lehmer test
can be expressed in pseudocode in the following manner:

x← 4
for i from 1 to d− 1 do
x← x2 − 2 (mod N)

end for
if x = 0 then

print “N is prime”
else

print “N is composite”
end if

Algorithm 5.1: Lucas-Lehmer Primality Algorithm

Although the algebraic structure on which Lucas-Lehmer is based is well-known,
our observation about the particular elements contained in the binary tree seems
to be new.

For the remainder of this chapter, let h(x) = x2 − 2.

5.3 Previous work

It is worth noting that Dickson polynomials (see Lidl, Mullen and Turnwald [58])
can be used to describe this iteration. In particular, Dickson polynomials (of the
first kind) can be defined recursively as follows:

D0(x, a) = 2,

D1(x, a) = x,

Dn(x, a) = xDn−1(x, a)− aDn−2(x, a), for n ≥ 2.

where x is an indeterminate and a is an element from a commutative ring. From
this, one can derive that hn(x) = D2n(x, 1). It is worth noting that Morton [67],
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Vivaldi and Hatjispyros [95] and Batra and Morton [7, 8] (as well as many others)
examined the more general context of periods of maps described by irreducible
polynomials over finite fields. Dickson polynomials with a = 1 have been studied
to some depth [70], but, as Lidl, Mullen and Turnwald [58, p. 90] point out,

The computations and arguments for determining the fixed point for-
mulas for the cases a = 1 and a = −1 are quite detailed and lengthy
(some twenty pages for each case)...

Our techniques can be used to obtain these results for the case of prime mod-
uli. Furthermore, we obtain much more detailed results (e.g., Theorem 5.4.5 and
Corollary 5.4.6).

More recently, Peinado, Montoya, Munõz and Yuste [72] have proven upper
bounds on the cycle lengths for x→ x2 + c over Fq, where q is a prime power.

Additionally, Gilbert, Kolesar, Reiter, and Storey [38] obtained similar results,
but in an ad hoc manner. One of our contributions is a general algebraic framework
for understanding the iteration x→ x2 − 2, which shows that it is quite analogous
to the (well-understood) map x→ x2.

As well, the study of this iteration leads to interesting open problems (see [85,
Exercise 40S]).

5.3.1 Viewing the iterations as a digraph

To build intuition, let us look at some examples. For the map x→ x2−2 (mod N),
we illustrate four examples: one for Fermat primes (i.e., primes of the form 22k +1),
one for Mersenne primes (i.e., primes of the form 2p−1, p prime), and two examples
of primes that are not of this form (p = 29 and p = 191). These are shown in
Figures 5.1–5.4 respectively.
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Figure 5.1: The topology of G17,2
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Figure 5.2: The topology of G31,2
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Figure 5.3: The topology of G29,2
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Figure 5.4: A component of the digraph G191,2

82



5.4 General topology results for x→ x2 − 2

In this section, we outline the general topology results for the iterated function
x → x2 − 2 (mod p), which will be used in proving robustness results for the
Lucas-Lehmer primality test.

Given a ∈ GF (p), let us define the polynomial u(X) = X2−aX + 1. Let α and
β be the roots of u in GF (p2). Note that α + β = a and αβ = 1.

Proposition 5.4.1 We have hn(a) = α2n + β2n for n ≥ 0.

Proof: By induction on n. For n = 0 we have h0(a) = a = α+ β. Now assume
the result is true for n; we prove it for n+ 1. We have

α2n+1

+ β2n+1

= (α2n + β2n)2 − 2α2nβ2n = hn(a)2 − 2.

We will also require the following small lemma.

Lemma 5.4.2 Suppose F is a field and a, b ∈ F − {0} with a + a−1 = b + b−1.
Then a = b or a = b−1.

Proof: Notice that we can multiply both sides of the equation a + a−1 = b + b−1

by a to get
a2 + 1 = ab+ ab−1.

Rearranging this equation we have

(a− b−1)(a− b) = 0,

and therefore, either a = b or a = b−1.

Theorem 5.4.3 Let a ∈ GF (p), and suppose that iterating h, starting with a,
results in a tail of length t = t(a) and a cycle of length c = c(a). Then t and c
can be computed as follows. Let α and β be the roots of u(X) = X2 − aX + 1 over
GF (p2). Let ordGF (p2)∗ α = 2e · l, where l is odd. Then e = t and c is the least
integer i ≥ 1 such that 2i ≡ ±1 (mod l).
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Proof: We have ht+c(a) = ht(a) and t ≥ 0, c ≥ 1 are as small as possible. Then
by Proposition 5.4.1 this is equivalent to

α2t+c + α−2t+c = α2t + α−2t .

By Lemma 5.4.2, we know that α2t+c = α2t or α2t+c = α−2t , which holds iff
α2t(2c−1) = 1 or α2t(2c+1) = 1. If ordGF (p2)∗ α = 2e · l, where l is odd, then
2e · l | 2t(2c − 1) or 2e · l | 2t(2c + 1). The desired result now follows.

It follows that c = ordl 2 or (ordl 2)/2.

From the previous result we see that t(a) and c(a) depend on ordGF (p2)∗ α, where
α, β are the roots of X2 − aX + 1 = 0. (Note that ordGF (p2)∗ α = ordGF (p2)∗ β.)
The following theorem characterizes these orders.

Theorem 5.4.4 (a) For each divisor d of p − 1, d 6= 1, 2 there are ϕ(d)/2 ele-
ments a ∈ GF (p) for which the corresponding α has ordGF (p2)∗ α = d;

(b) For each divisor d′ of p + 1, d′ 6= 1, 2 there are ϕ(d′)/2 elements a ∈ GF (p)
for which the corresponding α has ordGF (p2)∗ α = d′;

(c) For a = 2 we have α = β = 1 and ordGF (p2)∗ α = 1;

(d) For a = −2 we have α = β = −1 and ordGF (p2)∗ α = 2.

Proof: Consider the polynomial u(X) = X2 − aX + 1 over GF (p). This
polynomial is reducible if and only if it can be written in the form (X−b)(X−b−1)
where a = b+ b−1. By symmetry, this occurs for (p+ 1)/2 distinct values of a. The
roots b, b−1 are identical iff b2 = 1, that is, if b = ±1. For the remaining (p− 3)/2
values of a the roots are distinct. This proves parts (a), (c), and (d).

Otherwise the polynomial u(X) is irreducible over GF (p) with distinct zeroes
α, β. We claim that the equation

θp+1 = 1 (5.1)

has p+ 1 roots in GF (p2): namely 1, −1, and the p−1 roots α, β of the irreducible
u(X). To see this, note that αp+1 = α · αp = αβ = 1. Since the roots of Eq. (5.1)
form a cyclic group, for each d′ | p + 1 there are ϕ(d′) roots of order d′. Now each
a corresponding to an irreducible u has two roots, so there are ϕ(d′)/2 different a’s
corresponding to α of order d′.

We now prove the analogue of Theorem 4.4.2.
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Theorem 5.4.5 Let p be an odd prime. Let δ be a generator for GF (p2)∗ and
define θ = δp−1, so that θ is a generator of the subgroup of (p+ 1)’th roots of unity
in GF (p2). Let γ = δp+1, so that γ generates GF (p)∗.

If p ≡ 1 (mod 4) then

(a)

{a ∈ GF (p) : t(a) = 0} = {θi+θ−i : 1 ≤ i ≤ (p−1)/2 and ν2(i) ≥ ν2(p+1)} ∪
{γj + γ−j : 0 ≤ j ≤ (p− 1)/2 and ν2(j) ≥ ν2(p− 1)}; (5.2)

(b) For 1 ≤ k ≤ ν2(p− 1) we have

{a ∈ GF (p) : t(a) = k} = {θi+θ−i : 1 ≤ i ≤ (p−1)/2 and ν2(i) = ν2(p+1)−k} ∪
{γj + γ−j : 0 ≤ j ≤ (p− 1)/2 and ν2(j) = ν2(p− 1)− k}. (5.3)

If p ≡ 3 (mod 4) then

(c)

{a ∈ GF (p) : t(a) = 0} = {θi+θ−i : 0 ≤ i ≤ (p+1)/2 and ν2(i) ≥ ν2(p+1)} ∪
{γj + γ−j : 1 ≤ j ≤ (p− 3)/2 and ν2(j) ≥ ν2(p− 1)}; (5.4)

(d) For 1 ≤ k ≤ ν2(p+ 1) we have

{a ∈ GF (p) : t(a) = k} = {θi+θ−i : 0 ≤ i ≤ (p+1)/2 and ν2(i) = ν2(p+1)−k} ∪
{γj + γ−j : 1 ≤ j ≤ (p− 3)/2 and ν2(j) = ν2(p− 1)− k}. (5.5)

Furthermore, all these unions are distinct.

Proof: We begin by proving case (a) and (b). For case (a), assume p ≡
1 (mod 4). Write p + 1 = 2τ

′ · ρ′, where ρ′ is odd. Note that τ ′ = 1 since
p+ 1 ≡ 2 (mod 4).

By Theorem 5.4.3 we have that

t(a) = 0 iff there exists c ≥ 1 such that α2c−1 = 1 or α2c+1 = 1, (5.6)

where α is a zero of u(X) = X2 − aX + 1. (Note: a = α + α−1.) There are two
cases to consider: (i) u is irreducible over GF (p) or (ii) u is reducible.
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(i) If u is irreducible, then α = θi for some i with 1 ≤ i ≤ p, i 6= (p + 1)/2.
(Note that θ0 = θp+1 = 1 and therefore θ(p+1)/2 = −1.) Restating (5.6), we have
t(a) = 0 iff there exists c ≥ 1 such that θi(2

c−1) = 1 or θi(2
c+1) = 1, iff there exists

c ≥ 1 with p + 1 | i(2c − 1) or p + 1 | i(2c + 1), iff there exists c ≥ 1 with ν2(i) ≥ τ ′

and ρ′ | 2c − 1, or ν2(i) ≥ τ ′ and ρ′ | 2c + 1. We know there does exist a c that
satisfies the condition ρ′ | 2c − 1: that is, pick c = ordρ′ 2. Therefore, t(a) = 0 iff
a = θi + θ−i for some i with 1 ≤ i ≤ p, i 6= (p + 1)/2, ν2(i) ≥ τ ′. But θp+1 = 1, so
θi + θ−i = θp+1−i + θ−(p+1−i), so we may eliminate duplicates by dividing our range
for i by one-half. To summarize this case, we have t(a) = 0 iff a = θi + θ−i with
1 ≤ i ≤ (p− 1)/2 and ν2(i) ≥ ν2(p+ 1).

(ii) If u is reducible, then α = γj for some j with 0 ≤ j ≤ p − 2. Write
p − 1 = 2τ · ρ. From the proof of Theorem 5.4.3 we have t(a) = 0 iff there exists
a c ≥ 1 such that α2c−1 = 1 or α2c+1 = 1, iff γj(2

c−1) = 1 or γj(2
c+1) = 1, iff

2τ · ρ | j(2c − 1) or 2τ · ρ | j(2c + 1). That is, t(a) = 0 iff τ ≤ ν2(j) and either
ρ | j(2c − 1) or ρ | j(2c + 1). Again, as in the earlier case, we picking c = ordρ 2
yields ρ | (2c−1). As well, notice that γp−1 = 1, so γj +γ−j = γp−1−j +γ−(p−1−j), so
we need only consider one-half of the range of possible values for j. Thus, t(a) = 0
iff a = γj + γ−j with 0 ≤ j ≤ (p− 1)/2 and ν2(j) ≥ ν2(p− 1).

We now show that the quantities θi + θ−i, 1 ≤ i ≤ (p − 1)/2 and γj + γ−j,
0 ≤ j ≤ (p− 1)/2 are all distinct.

If θi + θ−i = θi
′
+ θ−i

′
for 1 ≤ i, i′ ≤ (p− 1)/2 we know from Lemma 5.4.2 that

θi = θi
′

or θi = θ−i
′
. The case i = −i′ is impossible since i ≥ 1, and thus i = i′.

A similar argument applies if γj + γ−j = γj
′
+ γ−j

′
.

Finally, suppose θi+θ−i = γj+γ−j where 1 ≤ i ≤ (p−1)/2 and 0 ≤ j ≤ (p−1)/2.
We know from Lemma 5.4.2 that either θi = γj Now θ = δp−1 and γ = δp+1, where
δ is a generator for GF (p2)∗. Thus δ(p−1)i+(p+1)j = 1 or δ(p−1)i−(p+1)j = 1. Since
ordGF (p2)∗ δ = p2−1, it follows that p2−1 | (p−1)i+(p+1)j or p2−1 | (p−1)i−(p+1)j.
Therefore, since p is odd, we get that there exists k such that either

p− 1

2
i = −p+ 1

2
j + k

p2 − 1

2
(5.7)

or
p− 1

2
i =

p+ 1

2
j + k

p2 − 1

2
. (5.8)

In both cases, p+1
2

divides both terms of the right-hand side, and hence must divide

the left-hand side. But gcd(p−1
2
, p+1

2
) = 1, so p+1

2
| i, a contradiction. This concludes

the proof of case (a).
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Now let us look at case (b). By Theorem 5.4.3 we have

t(a) = k iff ordGF (p2) α = 2k · l, (5.9)

where l is odd and α is a zero of u(X) = X2 − aX + 1. Once again we break up
the argument into two cases: (i) u is irreducible and (ii) u is reducible.

(i) If u is irreducible, then α = θi, for some i with 1 ≤ i ≤ p, i 6= (p + 1)/k.
Restating (5.9), we have t(a) = k iff θi2

kl = 1 and θi2
k−1l 6= 1, iff p + 1 | i2kl and

p+ 1 - i2k−1l, iff ν2(p+ 1) = ν2(i) + k.

Case (ii) is similarly proven.

We now indicate the minor changes needed to prove (c) and (d). We need only
remark that the different ranges for the exponents arise because of two reasons: first,
the polynomial X2+1 is irreducible if p ≡ 3 (mod 4) and reducible if p ≡ 1 (mod 4).
Second, t(−2) = 1 and must be treated as a special case depending on p (mod 4).

For l odd define ord′l 2 to be the least e such that 2e ≡ ±1 (mod l).

Corollary 5.4.6 Let p be an odd prime with p − 1 = 2τ · ρ, p + 1 = 2τ
′ · ρ′, and

ρ, ρ′ odd. For each divisor d > 1 of ρ, G = Gp,2 contains ϕ(d)/(2 ord′d 2) cycles
of length ord′d 2. There are ρ elements in all these cycles, and off each element in
these cycles there hang reversed complete binary trees of height τ − 1 containing
2τ − 1 elements.

Similarly, for each divisor d′ > 1 of ρ′ there exists ϕ(d′)/(2 ord′d′ 2) cycles of
length ord′d′ 2, and off each element in these cycles there hang reversed complete
binary trees of height τ ′ − 1 containing 2τ

′ − 1 elements.

Finally, the element 0 is the root of a complete binary tree of height τ − 2
(respectively τ ′ − 2) when p ≡ 1 (mod 4) (respectively p ≡ 3 (mod 4)), and G also
contains the directed edges (0,−2), (−2, 2), (2, 2).

Proof: Exactly like that in Corollary 4.4.3.

For p = 29 we have the structure in Figure 5.3 and the data in Table 3.
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d ϕ(d) a with α of order d t = ν2(d) l = d/2t c = ord′l 2

1 1 {2} 0 1 1
2 1 {27} 1 1 1

4 2 {0} 2 1 1
7 6 {3, 7, 18} 0 7 3

14 6 {11, 22, 26} 1 7 3
28 12 {10, 12, 13, 16, 17, 19} 2 7 3

3 2 {28} 0 3 1
5 4 {5, 23} 0 5 2
6 2 {1} 1 3 1

10 4 {6, 24} 1 5 2
15 8 {4, 14, 20, 21} 0 15 4
30 8 {8, 9, 15, 25} 1 15 4

Table 3: The structure of G29,2

There are two special cases where we can give more detailed information about
Gp,2. The first is when p = 22k + 1, a Fermat prime.

Theorem 5.4.7 The structure of the digraph Gp,2 when p = 22k + 1, a Fermat
prime is as follows:

(i) A reversed complete binary tree of height 2k − 2 with root 0, attached to the
node −2, attached to the node 2 with a cycle of length 1 on this node. The
elements in this component are of the form 3j + 3−j for 0 ≤ j ≤ 22k−1.

(ii) A set of cycles of length dividing 2k−1. Off each element in these cycles there
hangs a single element with tail length 1.

Proof: Part (i) follows immediately from Theorem 5.4.5 and the fact that 3 is
a primitive root (mod p).

Part (ii) follows from the fact that p+ 1 = 2(22k−1 + 1).

For p = 222
+ 1 = 17 we have the structure in Figure 5.1.
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5.5 Robustness results for Mersenne primes

The second case where we can describe Gp,2 more precisely is when p = 2q − 1, a
Mersenne prime. Here q is an odd prime.

Theorem 5.5.1 When p = 2q − 1, a Mersenne prime, the digraph Gp,2 consists of

(i) A reversed complete binary tree of height q − 1 with root 0, attached to the
node −2, that is attached to the node 2 with a cycle of length 1 on this node.
The nodes in this tree are given by θn + θ−n, 0 ≤ n ≤ 2q−1, where θ is a zero
of X2 − 4X + 1.

(ii) A set of cycles of length dividing q− 1. Off each element in these cycles there
hangs a single element with tail length 1. The nodes in these cycles are given
by γn + γ−n, 1 ≤ n ≤ 2q−1 − 2, where γ is a generator of GF (p)∗.

Proof: Use Corollary 5.4.6.

(It should be noted that the Theorem 17(ii) stated in [94] is actually incorrect
and differs from the statement above. As well, this structure of the cycles has been
more thoroughly explored in an internet discussion forum: see [83].)

For p = 25 − 1 = 31 we have the structure in Figure 5.2.

We can use Theorem 5.5.1 to prove the main robustness result for Mersenne
primes. We begin by proving a basic lemma that we will refine and extend in
subsequent theorems.

Lemma 5.5.2 Suppose the input p (= 2q − 1, q an odd prime) to Algorithm 5.2 is
prime. If the last error occurs before iteration i (1 ≤ i < q) of the algorithm, then
with probability

2q−i−1

2q − 1

the output of the algorithm is correct (that is, the output is “prime”).

Proof: By Theorem 5.5.1, there is a complete binary tree of height q − 1 with
root 0. At step i of our algorithm, we are i levels away from the root (with value
0) of this tree. There are 2q−1−i elements in the complete binary tree that are i
levels away from the root. Thus, so long as an error causes the algorithm to be
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at the correct level in the tree, the output will be correct. The probability of this
occurring is

2q−1−i

2q − 1
=

2q

2q − 1

1

2i+1
.

We extend this result to create the analogous version of Lemma 4.4.6.

Lemma 5.5.3 Consider the Lucas-Lehmer algorithm (Algorithm 5.2) on input 2q−
1 which is prime. If the probability of an error occurring at any step of the algorithm
is ε, we have

1. pc(2
q − 1) = (1− ε)q−1 + 2q

2q−1
ε

2(1−2ε)

(
(1− ε)q−1 − 1

2q−1

)
2. pf (2

q − 1) = 1− pc(Fk), and

3. pi(2
q − 1) = 0.

Proof: We follow the same reasoning as in Lemma 4.4.6. If no errors occur, the
output Algorithm 5.2 will be correct. The probability of no error occurring in a
single step is (1− ε)q−1. If there is an error that occurs, we need only consider the
last error of the algorithm, sum up all possible steps where this last error can occur
and use Lemma 5.5.2.

We have

pc(2
q − 1) = (1− ε)q−1 +

q−1∑
i=1

(1− ε)q−1−iε
1

2i+1

2q

2q − 1

= (1− ε)q−1 + ε(1− ε)q−1 1

2

2q

2q − 1

q−1∑
i=1

(
1

2(1− ε)

)i
= (1− ε)q−1 + ε(1− ε)q−1

(
1

2

)
2q

2q − 1

1

2(1− ε)
( 1

2(1−ε))
q−1 − 1

1
2(1−ε) − 1

= (1− ε)q−1 +
ε

2(1− 2ε)

2q

2q − 1

(
(1− ε)q−1 − 1

2q−1

)
.

Since the only other output from the Lucas-Lehmer test will be a valid integer in
the range 0, . . . , 2q − 2, we have pf = 1 − pc and pi = 0. That is, there are no
infeasible outputs.
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As in the case of Pepin’s test, the Lucas-Lehmer test is not robust, since pi = 0.
However, combining two independent executions of the algorithm will yield a robust
algorithm.

We capture bounds, though not explicit formulas, for p∗c(2
q−1), p∗f (2

q−1), and
p∗i (2

q − 1) in the following lemma.

Lemma 5.5.4 Suppose the input p (= 2q−1) for Algorithm 5.2 is prime. Consider
two independent executions of the algorithm on the same input. If the probability of
an error occurring is ε, we have bounds on the probability measures for robustness
as follows:

• the probability of correctness is

p∗c(2
q − 1) = (pc(2

q − 1))2

,

• the probability of feasible but incorrect (i.e., “composite”) output is

p∗f (2
q−1) ≤ pf (2

q−1)

(
1

2
ε(1− ε)q−1

q−1∑
i=1

2q−1−i

2q − 1

1

(1− ε)i
+

1

2
ε(1− ε)q−1

q−1∑
i=1

2

2q − 1

1

(1− ε)i

)
,

and

• the probability of infeasible output is

p∗i (2
q − 1) ≥ 2pc(2

q − 1)pf (2
q − 1).

Proof: We begin by considering correctness. The only way that the combined
execution outputs a correct answer is if both executions output a correct answer
(of “prime”). That is, the combined probability of correctness is p∗c(2

q − 1) =
(pc(2

q − 1))2.

For feasible but incorrect output, we note that the first execution must yield a
non-zero result, say R, and the second execution must result in the same result R.
That is, the second execution must have an error which results in the same location
at the termination of the algorithm. There are two cases to consider, based on the
observations in Theorem 5.5.1: either R is an element of the binary tree or it is an
element contained in a cycle component. There are 2q−1− 2 elements in the cycles,
and the remaining elements are in the binary tree.
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We first discuss the case where R is an element in the binary tree component
of Gp,2.

Notice that non-zero elements in the binary tree other than−2 have two children
in the tree. These elements each have two children (again, other than −2) and so on.
Considering only the second execution of the algorithm, if the last error happens k
steps before termination of the algorithm, there are at most 2k elements that would
result in R being the output. We say “at most” since R may be an element that is
less than k levels from the bottom of the tree, in which case an error with k steps
remaining cannot produce element R.

We now consider the case where R is part of a cycle. In this case, either R
has two “children” (elements x, y such that x2 − 2 = y2 − 2 ≡ R (mod p)) or no
children (if R is an element outside of the cycle). Moreover, if the last error occurs k
steps before termination of the algorithm, there are at most 2 elements that would
result in R being the output, since there is no exponential branching in the cyclic
components.

Thus, we can provide an upper bound on the probability of feasible but incorrect
output by considering all q−1 steps where the last error may occur. First, we note
that we must have a feasible but incorrect output in the first execution of the
algorithm. Considering the second execution of the algorithm, the probability that
the last error occurs at step j (1 ≤ j ≤ q− 1) is ε(1− ε)j−1. If the last error occurs
at step j, then there are either at most 2 or at most 2q−1−j possible elements that
will yield the desired output, depending on whether the desired output is in a cycle
or binary tree, respectively. We will combine these observations to yield an upper
bound on p∗f (2

q − 1) of

pf (2
q − 1)

(
1

2
ε(1− ε)q−1

q−1∑
i=1

2q−1−i

2q − 1

1

(1− ε)i
+

1

2
ε(1− ε)q−1

q−1∑
i=1

2

2q − 1

1

(1− ε)i

)
.

For incorrect and infeasible output, p∗i (2
q − 1) is bounded below by

2pc(2
q − 1)pf (2

q − 1),

because, at a minimum, if the two independent executions yield different answers
(i.e., one yields “composite” while the other yields “prime”), which taken together
is infeasible. Since there are two orderings of output (i.e., (composite, prime) and
(prime, composite)), we have the constant factor 2 in the bound.

Having established these bounds, we are now prepared to prove robustness for
the Lucas-Lehmer test on prime input.
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Theorem 5.5.5 Consider prime p = 2q − 1. When the Lucas-Lehmer algorithm
(Algorithm 5.2) is executed twice on input p and the results are combined, and if
the probability of an error occurring is ε < 1

q−1
, the combined execution is robust.

Proof: We will have to show that p∗c(2
q − 1) > b > 0 for some constant b and

p∗i (2
q − 1) > p∗f (2

q − 1).

We begin with providing a constant lower bound on p∗c .

We have

p∗c(2
q − 1) = (pc(2

q − 1))2

≥ ((1− ε)q−1)2

>

(
1

e

)2

> 0.

We now prove p∗i (2
q − 1) > p∗f (2

q − 1).

From Lemma 5.5.4, we know that

p∗i (2
q − 1) ≥ 2pc(2

q − 1)pf (2
q − 1)

and

p∗f (2
q−1) ≤ pf (2

q−1)

(
1

2
ε(1− ε)q−1

q−1∑
i=1

2q−1−i

2q − 1

1

(1− ε)i
+

1

2
ε(1− ε)q−1

q−1∑
i=1

2

2q − 1

1

(1− ε)i

)
.

Notice that the previous two inequalities have a common term of pf (2
q − 1) on the

right hand sides. Let A = 2pc(2
q − 1) and let

B =

(
1

2
ε(1− ε)q−1

q−1∑
i=1

2q−1−i

2q − 1

1

(1− ε)i
+

1

2
ε(1− ε)q−1

q−1∑
i=1

2

2q − 1

1

(1− ε)i

)
.

Therefore, to show p∗i (2
q − 1) > p∗f (2

q − 1), we will show

p∗i (2
q − 1) ≥ pf (2

q − 1)A > pf (2
q − 1)B ≥ p∗f (2

q − 1),

which will require demonstrating A > B, as all the other inequalities have been
shown above.
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Write B = B1 +B2 where

B1 =
1

2
ε

q−1∑
i=1

2q−1−i

2q − 1
(1− ε)q−1−i

and

B2 = ε

q−1∑
i=1

1

2q − 1
(1− ε)q−1−i.

Since A = 2pc(2
q − 1), we will show that pc(2

q − 1) > B1 and pc(2
q − 1) > B2,

which will prove A = pc(2
q − 1) + pc(2

q − 1) > B1 +B2 = B.

Recall from Lemma 5.5.3, we have

pc(2
q − 1) = (1− ε)q−1 +

q−1∑
i=1

(1− ε)q−1−iε
1

2i+1
.

To show that A/2 > B1, first observe that since q > 1, know 2q < 2(2q − 1). Using
this fact, we have

A/2 = pc(2
q − 1)

≥
q−1∑
i=1

(1− ε)q−1−iε
1

2i+1

=

q−1∑
i=1

(1− ε)q−1−iε
1

2i+1

2q−1−i

2q−1−i

=

q−1∑
i=1

(1− ε)q−1−iε
2q−1−i

2q

>

q−1∑
i=1

(1− ε)q−1−iε
2q−1−i

2q
2q

2(2q − 1)

=

q−1∑
i=1

(1− ε)q−1−iε
2q−1−i

2(2q − 1)

= B1.
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To show A/2 > B2, we will use the facts that ε < 1
q−1

and 1 ≤ 1
1−ε ≤ 2.

Specifically, we have

A/2 = pc(2
q − 1)

≥ (1− ε)q−1

> (1− ε)q−1ε(q − 1)

> (1− ε)q−1ε(q − 1)
1

2q − 1
2q−1

> (1− ε)q−1ε
1

2q − 1
(q − 1)

(
1

1− ε

)q−1

≥ (1− ε)q−1ε
1

2q − 1

q−1∑
i=1

(1− ε)−i

= B2.

To see the last step, notice the third last line has q− 1 terms of size
(

1
1−ε

)q−1
. The

second last line has q− 1 terms, where each term (of the form (1− ε)i) is bounded
above by (1− ε)q−1.

Since we have shown pc satisfies the necessary inequalities, it follows that p∗i (2
q−

1) > p∗f (2
q− 1). Therefore, the combined execution of the Lucas-Lehmer algorithm

is robust on prime input.

5.6 Robustness results for Mersenne composites

We now consider the case where the input to the Lucas-Lehmer test is composite.
That is, we consider 2q − 1 = pe11 p

e2
2 · · · pemm , where the pi are distinct primes and

ei ≥ 1 for 1 ≤ i ≤ m.

We note that any factor of a Mersenne number must be equivalent to 1 or 7
mod 8. To observe this, if prime p | 2q−1, then 2q ≡ 1 (mod p), and therefore 2 has
order q (mod p). But 2 has order dividing p − 1, so p − 1 = 2kq for some integer
k > 1. Thus

2
p−1

2 = 2kq ≡ 1 (mod p),

which implies 2 is a quadratic residue of p. Therefore, p ≡ ±1 (mod 8).

Theorem 5.6.1 Suppose the input to the Lucas-Lehmer test is composite; that is,
2q − 1 = pe11 p

e2
2 · · · pemm , where pi is prime and ei ≥ 1 for 1 ≤ i ≤ m.
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Since all odd prime factors of 2q − 1 are congruent to 1 or 7 (mod 8), define

h1 = min{ν2(pi − 1) : 1 ≤ i ≤ m, pi ≡ 1 (mod 8)},

and
h2 = min{ν2(pi + 1) : 1 ≤ i ≤ m, pi ≡ 7 (mod 8)}.

Let h = min{h1, h2} − 2. The output is correct with probability 1 if the last error
occurs at or before the (q−1−h−1)th squaring step. If the last error occurs at the
jth squaring step, where q− 1− h ≤ j ≤ q− 1, the probability the output is correct
is

1− (2m)q−1−j

2q − 1
.

Proof: First, notice that all pi are odd since ν2(2q − 1) = 0. So, we may apply
Lemma 4.5.2 to the function f(x) = x2 − 2− k, where k ∈ Z/(2q − 1) to conclude
that we need only consider solutions to each of x2 − 2 ≡ k (mod peii ). Using the
Chinese Remainder Theorem, we may get to an element k ∈ Z/(2q − 1) by an
iteration of x→ x2 − 2 by simultaneously satisfying

x2 − 2 ≡ k (mod pe11 )

x2 − 2 ≡ k (mod pe22 )
...

x2 − 2 ≡ k (mod pemm ).

Since all prime divisors of 2q− 1 are congruent to 1 or 7 (mod 8), we can apply
Corollary 5.4.6 on each of these prime factors. If the last error occurs at or before
the (q−1−h−1)th squaring step, there are at least h+1 squaring steps remaining,
but the minimum height of the complete binary tree in any pi subgroup is h, and
thus, the algorithm cannot complete with value 0. Therefore, the algorithm will
output “composite” in this case.

If the last error occurs at step j, q − 1− h ≤ j ≤ q − 1, then the only way the
output will be “prime” (i.e., the incorrect output) is if the error causes the element
to be at the appropriate depth (q − 1 − j) in these complete binary trees (with
respect to each prime divisor). Since there are a total of m prime divisors, and
each solution to x2 − 2 = k (mod pi) has either 0 or 2 solutions by Lemma 4.5.3,
there are a total of (2m)q−1−j elements at the appropriate depth. Thus, the output
will be correct (i.e., “composite”) with probability

1− (2m)q−1−j

2q − 1
.
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Thus, we have shown that Powers’ statement that Lucas’ method of determining
primality “is free from any uncertainty as to the accuracy of the conclusion that
the number under consideration is prime...since an error in calculating any term
of the series would have the effect of preventing the appearance of the residue 0
[which indicates primality]” [78] requires some explicit quantification and is not (in
an absolute sense) true.

It is worth noting that the previous theorem relies on the factors of the Mersenne
number, and much work has been done on providing various bounds for the number
or magnitude of Mersenne factors. A suitable starting point in this analysis of
Mersenne factors is found in Stewart [90], which also contains similar analysis of
Fermat factors. This work has been extended and improved more recently by Ford,
Luca and Shparlinski [36].

We now turn our attention to proving robustness results for the Lucas-Lehmer
test on composite input. As in the case of prime input, we begin by computing
basic probability measures for correct output, incorrect but feasible output and
infeasible output. Unlike the prime input case, however, our probabilities will be
divided into two cases, based on the division used in Theorem 5.6.1.

Lemma 5.6.2 Suppose the input to the Lucas-Lehmer test is composite; that is,
2q − 1 = pe11 p

e2
2 · · · pemm , where pi is prime and ei ≥ 1 for 1 ≤ i ≤ m. Suppose the

probability of an error occurring at any given step is ε.

Since all odd prime factors of 2q − 1 are congruent to 1 or 7 (mod 8), define

h1 = min{ν2(pi − 1) : 1 ≤ i ≤ m, pi ≡ 1 (mod 8)},

and
h2 = min{ν2(pi + 1) : 1 ≤ i ≤ m, pi ≡ 7 (mod 8)}.

Let h = min{h1, h2} − 2. We have the following results:

(a) the probability of correct output is

pc(2
q−1) = (1−ε)q−1+

q−1−h−1∑
i=1

ε(1−ε)q−1−i+

q−1∑
i=q−1−h

ε(1−ε)q−1−i
(

1− (2m)q−1−i

2q − 1

)
,

(b) the probability of incorrect but feasible output is pf (2
q − 1) = 1 − pc(2q − 1),

and
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(c) the probability of incorrect and infeasible output is pi(2
q − 1) = 0.

Proof: To begin, we prove the results for pi(2
q − 1) and pf (2

q − 1), which are very
simple. For pi(2

q − 1), since the final numerical value computed by Algorithm 5.2
is in the range 0 . . . 2q − 2, there are no infeasible outputs, and thus pi(2

q − 1) = 0.
Combining this fact with the fact that pi(2

q − 1) + pf (2
q − 1) + pc(2

q − 1) = 1, we
have pf (2

q − 1) = 1− pc(2q − 1).

The remainder of the proof deals with the probability of correctness.

We turn to computing the probability of correct output in the case where all
factors of 2q − 1 are equivalent to 1, 7 (mod 8). We use an argument similar to the
above.

Notice that correct output can occur several ways in this case. If there are no
errors introduced into the algorithm, the output will be correct. The probability
that no errors occur is (1 − ε)q−1. From Theorem 5.6.1, we know the output will
be correct if the last error occurs at or before the (q − 1 − h − 1)th step, and we
also know the output will be correct with probability

1− (2m)q−1−i

2q − 1

if the last error occurs at or after step q − 1 − h. This implies the probability of
correctness, taken over all possible steps where the last error occurs is

q−1−h−1∑
i=1

ε(1− ε)q−1−i +

q−1∑
i=q−1−h

ε(1− ε)q−1−i
(

1− (2m)q−1−i

2q − 1

)
,

which when combined with the probability of no error occurring, yields the stated
value of pc(2

q − 1).

As in the case for prime inputs into the Lucas-Lehmer test, the algorithm is
not robust, since pf (2

q − 1) = 0. To improve the robustness, we must combine
two independent trials of the algorithm, as we have done in the prime case. As
before, we let p∗c(2

q − 1), p∗f (2
q − 1) and p∗i (2

q − 1) represent the probabilities of
correct output, incorrect but feasible output and incorrect and infeasible output
(respectively) under this combined independent execution model.

We give bounds on these values in the following lemma.

Lemma 5.6.3 Suppose the input p(= 2q−1) for Algorithm 5.2 is composite. Con-
sider two independent executions of the algorithm on the same input. If the proba-
bility of an error occurring is ε, we have the following relationships on probabilities:
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• the probability of correct output is p∗c(2
q − 1) ≤ pc(2

q − 1),

• the probability of incorrect but feasible output is p∗f (2
q − 1) = (pf (2

q − 1))2,

• the probability of incorrect but infeasible output is

p∗i (2
q − 1) ≥ 2pc(2

q − 1)pf (2
q − 1).

Proof: In order for the combined execution to output an incorrect but feasible
answer, both executions must output “prime.” The probability of this occurring is
exactly (pf (2

q − 1))2.

For incorrect but infeasible output, a lower bound would be when one execution
of the algorithm outputs “prime” while the other outputs “composite”. This can
happen one of two ways: either the first execution outputs “prime” while the second
outputs “composite” or vice versa. To summarize in this case,

p∗i (2
q − 1) ≥ 2pc(2

q − 1)pf (2
q − 1).

Finally, to bound the probability of correct output, we notice that pc(2
q − 1) +

pf (2
q−1) = 1, which follows from Lemma 5.6.2, we can square both sides to derive

(pc(2
q − 1))2 + (pf (2

q − 1))2 + 2pc(2
q − 1)pf (2

q − 1) = 1.

Rearranging this equation and applying the bounds for p∗i (2
q − 1) and p∗f (2

q − 1)
yields p∗c(2

q − 1) ≤ (pc(2
q − 1))2.

Having these bounds is enough information to prove that the combining two
independent executions of Algorithm 5.2 satisfies the conditions for robustness.

Theorem 5.6.4 Suppose the input p(= 2q − 1) for the Lucas-Lehmer test (Algo-
rithm 5.2) is composite. When Algorithm 5.2 is executed twice on input p and the
results are combined, and if the probability of an error occurring is ε < 1

q−1
, the

combined execution is robust.

Proof: We will have to show that p∗c(2
q − 1) > b > 0 for some constant b and

p∗f (2
q − 1) > p∗i (2

q − 1).

We begin by proving lower bounds on p∗c(2
q − 1). Notice that the output will

be correct if no error occurs in either one of the independent executions. The
probability that no error occurs in either execution is ((1− ε)q−1)2, which is a lower
bound on p∗c(2

q − 1). Since ε < 1
q−1

, we have

p∗c(2
q − 1) ≥ ((1− ε)q−1)2 ≥ e−2 > 0.
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The second condition that must be satisfied to show robustness is to prove
p∗f (2

q − 1) < p∗i (2
q − 1).

From Lemma 5.6.3, we know that p∗i (2
q−1) ≥ 2pc(2

q−1)pf (2
q−1) and p∗f (2

q−
1) = (pf (2

q − 1))2. We will prove that 2pc(2
q − 1)pf (2

q − 1) > p∗f (2
q − 1), which

will demonstrate the desired condition of robustness.

Manipulating the previous inequality, we can substitute p∗f (2
q − 1) = pf (2

q −
1)(1 − pc(2

q − 1)) into the right hand to prove 2pc(2
q − 1)pf (2

q − 1) > pf (2
q −

1)(1− pc(2q − 1)). We can cancel out pf (2
q − 1) from both sides, yielding 2pc(2

q −
1) > 1 − pc(2

q − 1). Thus, we must show pc(2
q − 1) > 1

3
. However, we know

pc(2
q− 1) ≥ (1− ε)q−1 due to the fact that it may be the case that no error occurs,

and we also know that ε < 1
q−1

. Therefore, combining this fact as we did in showing

a lower-bound for p∗c(2
q − 1), we have that pc(2

q − 1) > e−1 > 1
3
, which proves the

result.

We combine the previous theorem on composite input with the theorem on
prime input (Theorem 5.5.5) to make a statement on robustness in all cases for the
Lucas-Lehmer test.

Corollary 5.6.5 When the Lucas-Lehmer test (Algorithm 5.2) is executed twice
on input p = (2q − 1) and the results are combined, and if the probability of error
occurring is ε < 1

q−1
, the combined execution is robust.

Proof: Combine Theorems 5.5.5 and 5.6.4.

5.7 Statistical measures for x→ x2 − 2

In this section, we will apply similar statistical measures as was done in Section 4.7.

Recall the definitions of Section 2.4 concerning TC(p, 2), T0(p, 2), etc. We use
these definitions to prove the main result for statistical measures for the Lucas-
Lehmer algorithm.

Corollary 5.7.1 Let p be prime. Let p − 1 = 2τ · ρ and p + 1 = 2τ
′ · ρ′ with ρ, ρ′

odd. With respect to the iteration x→ x2 − 2 (mod p), we have

(a) TC(p, 2) = 1
2

(∑
d | ρ

ϕ(d)
ord′d 2

+
∑

d′ | ρ′
ϕ(d′)

ord′
d′ 2

)
;

(b) T0(p, 2) = (ρ+ ρ′)/2;
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(c) AC(p, 2) = T0(p, 2)/TC(p, 2);

(d) C(p, 2) = 1
2p

(
2τ
∑

d | ρ ϕ(d)ord′d 2 + 2τ
′∑

d′ | ρ′ ϕ(d′)ord′d′ 2
)

;

(e) T (p, 2) = 1
2p

(∑
d | p−1 ϕ(d)ν2(d) +

∑
d′ | p+1 ϕ(d′)ν2(d′)

)
= τ+τ ′

2
+ τ ′−τ+ρ+ρ′

2p
−

1.

Proof: Parts (a)-(d) rely on a direct application of Corollary 5.4.6. Part (e)
requires some explanation. We have

T (p, 2) =
1

2p

∑
d | p−1

ϕ(d)ν2(d) +
∑
d′ | p+1

ϕ(d′)ν2(d′)


=

1

2p

∑
d | ρ

ϕ(d)((τ − 1)2τ + 1) +
∑
d′ | ρ′

ϕ(d′)((τ ′ − 1)2τ
′
+ 1)


=

1

2p

(
ρ((τ − 1)2τ + 1) + ρ′((τ ′ − 1)2τ

′
+ 1)

)
=

1

2p
((τ − 1)(p− 1) + ρ+ (τ ′ − 1)(p+ 1) + ρ′)

=
τ + τ ′

2
+
τ ′ − τ + ρ+ ρ′

2p
− 1.

As an example, we have TC(29, 2) = 5; T0(29, 2) = 11; AC(29, 2) = 11/5;
C(29, 2) = 81/29; and T (29, 2) = 25/29.

In the next two theorems, we prove the main results concerning the asymptotics
of the Lucas-Lehmer test. First, we give a result analogous to Theorem 4.7.4.

Theorem 5.7.2 Assume the ERH. Then with respect to the iteration x → x2 − 2
(mod p) we have ST0(N) ∼ N2

6 lnN
.

Proof: Exactly like that for Theorem 4.7.4.

It is interesting to note that we can obtain a slightly weaker result without any
unproved hypotheses. Indeed, since

p+ 1

2
≤ ρ+ ρ′ ≤ 3p+ 1

4

we immediately obtain T0(p, 2) = Θ(p) and hence ST0(N) = Θ(N2/(lnN)).

Next, we prove a result analogous to Theorem 4.7.5.
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Theorem 5.7.3 Assume the ERH. Then with respect to the iteration x → x2 − 2
(mod p) we have ST (N) ∼ 2

3
· N2

lnN
.

Proof: By Theorem 5.7.1 (e) we have

ST (N) =
∑

2<p≤N

p

(
ν2(p− 1) + ν2(p+ 1)

2
+
τ ′ − τ + ρ+ ρ′

2p
− 1

)
=

1

2

∑
2<p≤N

ν2(p− 1)(p− 1) +
1

2

∑
2<p≤N

ν2(p+ 1)(p+ 1) +
1

2

∑
2<p≤N

p− 1

ν2(p− 1)

+
1

2

∑
2<p≤N

p+ 1

ν2(p+ 1)
−
∑

2<p≤N

p.

Using exactly the same techniques as in the proof of Theorem 4.7.5, we obtain the
desired result.

It should be noted that unconditional results of Theorems 5.7.2 and 5.7.3 have
been proved by Chou and Shparlinski [24].

Table 4 compares the asymptotic estimates to empirical data.

N ST0(N) N2/(6 lnN) ST (N) 2N2/(3 lnN)
10 5 7.24 17 28.95
102 350 361.91 1368 1447.65
103 25484 24127.47 98718 96509.88
104 1918051 1809560.34 7548493 7238241.36
105 151494654 144764827.30 605787238 579059309.20
106 12516198017 12063735608.42 50108219545 48254942433.69

Table 4: Comparing ST ′0(N) and ST (N) to asymptotic estimates

5.8 Pollard’s factoring method

Pollard’s factoring method is based on the fact that iterating a random quadratic
map, modulo p, seems to produce tails and cycles that average O(

√
p) in size. Is

this true for the iteration x→ x2 − 2? As we have seen in Theorem 5.7.3,∑
2<p≤N

∑
0≤a<p

tp(a) ∼ 2

3
· N

2

lnN
,
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while ∑
2<p≤N

∑
0≤a<p

1 ∼ N2

2 lnN
.

One way to interpret this is to say that, on average, iterating the map x→ x2 − 2
produces a tail of size 4/3 — which is quite short.

However, we do not know any good asymptotic estimate for

SC(N) :=
∑

2<p≤N

∑
0≤a<p

cp(a).

If p is a Mersenne prime, say p = 2q − 1, then∑
0≤a<p

cp(a) =
2τ
∑

d | ρ ϕ(d)ord′d 2 + 2τ
′∑

d′ | ρ′ ϕ(d′)ord′d′ 2

2

≤ 2(2q−1 − 1)(q − 1) + 2q

2
= O(p ln p).

However, for certain primes p, such as those for which (a) p′ := (p − 1)/2 is
prime and (b) 2 is a primitive root (mod p′), we have

∑
0≤a<p

cp(a) =
2τ
∑

d | ρ ϕ(d)ord′d 2 + 2τ
′∑

d′ | ρ′ ϕ(d′)ord′d′ 2

2

≥ (p′ − 1)
p′ − 1

2
= Ω(p2).

We expect there to be infinitely many such primes; indeed, heuristics such as Artin’s
conjecture on primitive roots suggest there are about cN/(lnN)2 such primes ≤ N .
This suggests that SC(N) might well be Ω(N3/(lnN)2) and hence the “average”
element will have cycle length at least c′N/(lnN)2. This suggests it is indeed wise
to avoid the iteration x→ x2 − 2, as Pollard suggested.

We did some computations on this question, which are summarized in Table 5.

N SC(N)
10 15
102 6106
103 3292717
104 1896148462
105 1269905340415
106 902615197142485
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Table 5: Some selected values of SC(N)

These computations suggest that perhaps SC(N) ∼ c′′ N3

(lnN)2 , where c′′
.
= .17.

5.9 Conclusions

In this chapter, we have fully described the topology of the digraph formed by
x→ x2− 2. To do this, we used polynomials over Galois fields and statistical mea-
surements for this digraph. We used the description of the topology of the digraph
formed by x → x2 to prove that the Lucas-Lehmer test requires two independent
executions to satisfy the definition of robustness.

In the following chapter, we use Dickson polynomials and Lucas functions to
prove one of the main results of this chapter, Corollary 5.4.6.
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Chapter 6

Alternative proofs concerning the
Lucas-Lehmer test

6.1 Introduction and motivation

In this section, we prove the main results of the previous chapter using Dickson
polynomials and Lucas functions.

6.2 Main result

We prove a simplified version of Corollary 5.4.6, which demonstrates the existence
(and height) of the complete binary tree subgraph of GR

p,2 for any prime p. This
main theorem presents the same result as Corollary 5.4.6 but in a slightly different
formulation.

Theorem 6.2.1 For any prime p = k · 2d ± 1, where k ≥ 1 is odd and d ≥ 3, the
digraph induced by the iterated function x→ x2 − 2 (mod p) contains a connected
component which is a complete binary tree of height d − 1 with a “tail” of two
additional vertices attached to the root.

In particular, there is a map V : Z → GF (p) such that V (i) and V (j) are
distinct for 0 ≤ i < j ≤ 2d − 1, and the digraph GR

p,2 contains

(a) a complete binary tree with root 0 (attached to a tail consisting of vertices
V (2d−1) = −2 and V (0) = 2);
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(b) leaves V (1), V (3), . . . , V (2d−1 − 1); and

(c) internal vertices V (2), V (4), . . . , V (2d−1 − 2). Each internal vertex has in-
edges from V (i) and V (2d−1 − i).

Our proof is broken down into several cases.

6.2.1 The case p ≡ 3, 5 (mod 8)

In this case, we know that
(

2
p

)
= −1 from the basic properties of the Legendre

symbol; see, for example, Bach & Shallit [5]. Thus, x2 − 2 = 0 has no solution in
GF (p), and so our “binary tree” has height 0 in this case.

6.2.2 The case p ≡ 1, 7 (mod 8)

Let p be a prime such that p = k · 2d ± 1, where k ≥ 1, k odd, d ≥ 3.

Pick any primitive polynomial f(x) over GF (p)[x] of degree 2. It is well known
that f(x) exists. (For proof of this fact, see Cor. 2.11 of Lidl & Niederreiter [59].)

Let γ, δ be the roots of f(x). Then γ, δ ∈ GF (p2) and hence γp
2−1 = 1.

Since f(x) is primitive, then γ, δ must be generators of the multiplicative subgroup

GF (p2)∗. By definition of a generator γ
p2−1

2 = −1.

Define α = γ
(p−1)(p+1)

2d and β = α−1. Thus αβ = 1. It is worth noting that

α =

{
γ(p+1)k, if p ≡ 1 (mod 8);

γ(p−1)k, if p ≡ 7 (mod 8).

Lemma 6.2.2 We have

(a) αp = α and βp = β if p ≡ 1 (mod 8).

(b) αp = β and βp = α if p ≡ 7 (mod 8).

Proof:

(a) If p ≡ 1 (mod 8), we know α = γ(p+1)k. Thus, we have

αp = γ(p+1)kp = γ(p+1)kpγ−(p2−1)k = γkp
2+kp−kp2+k = γk(1+p) = α.
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Since β = α−1, we have βp = (α−1)p = (αp)−1 = α−1 = β.

(b) If p ≡ 7 (mod 8), we have

αp = γ(p−1)kp = γkp
2−kp−kp2+k = γ(1−p)k = α−1 = β.

Since α ∈ GF (p2), we have αp
2

= α. Thus, αp
2

= βp = α.

Lemma 6.2.3 For α and β defined as above, α + β ∈ GF (p).

Proof: We know that if x ∈ GF (p2) where p is prime, then x ∈ GF (p) if and only
xp = x. For the case p ≡ 7 (mod 8), we have

(α + β)p = αp + βp = β + α,

by Lemma 6.2.2.

For the case p ≡ 1 (mod 8), we know that αp = α and βp = β by Lemma 6.2.2.
Thus, α, β ∈ GF (p), which implies α + β ∈ GF (p).

It is clear that α+β+2 ∈ GF (p). We now prove a result regarding the Legendre
symbol for α + β + 2.

Lemma 6.2.4 We have (
α + β + 2

p

)
= −1.

Proof: From the definition of α and β, we know that α = γ(p−1)k for p ≡ 7 (mod 8)
and α = γ(p+1)k for p ≡ 1 (mod 8). Notice that in the case p ≡ 7 (mod 8) we have

α + β + 2 = γ(p−1)k + γ(1−p)k + 2

= (γ
(p−1)k

2 + γ
(1−p)k

2 )2

and in the case p ≡ 1 (mod 8) we have

α + β + 2 = (γ
(p+1)k

2 + γ
(−1−p)k

2 )2.

It is worth noting that since p is odd, the exponent (p±1)k
2
∈ Z.

In order to prove the desired result, we need to show that (γ
(p−1)k

2 + γ
(1−p)k

2 )2 6∈
GF (p), for p ≡ 7 (mod 8) and (γ

(p+1)k
2 + γ

(−1−p)k
2 )2 6∈ GF (p), for p ≡ 1 (mod 8)

which is done in a manner similar to Lemma 6.2.3.
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We will demonstrate that if p ≡ 7 (mod 8) then

(γ
(p−1)k

2 + γ
(1−p)k

2 )p = −(γ
(p−1)k

2 + γ
(1−p)k

2 )

and if p ≡ 1 (mod 8) then

(γ
(p+1)k

2 + γ
(−1−p)k

2 )p = −(γ
(p+1)k

2 + γ
(−1−p)k

2 ).

To prove this, first note that γ
(p2−1)k

2 = −1, since γ has order p2 − 1 and k is
odd. Based on this fact, if p ≡ 7 (mod 8), we have

(γ
(p−1)k

2 )p = γ
(p2−p)k

2

= γ
−(p2−1)k

2 γ
−(p2−1)k

2 γ
(p2−p)k

2

= −γ
(p2−p−p2+1)k

2

= −γ
(1−p)k

2 .

Similarly, if p ≡ 1 (mod 8), we have

(γ
(p+1)k

2 )p = −γ
(p+1)k

2 .

In the case p ≡ 7 (mod 8), we use the identity (γ
(p−1)k

2 )p = −γ
(1−p)k

2 to derive
the following:

(γ
(p−1)k

2 + γ
(1−p)k

2 )p = γ
(p2−p)k

2 + γ
(p−p2)k

2

= −γ
(1−p)k

2 − γ
(p−1)k

2

= −(γ
(p−1)k

2 + γ
(1−p)k

2 ).

In the case p ≡ 1 (mod 8), we use the identity (γ
(p+1)k

2 )p = −γ
(p+1)k

2 to deduce
that

(γ
(p+1)k

2 + γ
(−1−p)k

2 )p = γ
(p2+p)k

2 + γ
(−p−p2)k

2

= −γ
(p+1)k

2 − γ
(−p−1)k

2

= −(γ
(p+1)k

2 + γ
(−1−p)k

2 ).

Since there is no element x ∈ GF (p) such that x2 = α + β + 2, it must be the

case that
(
α+β+2

p

)
= −1.

Define V (i) = αi + βi for i ≥ 0. We prove a simple relationship for V (i) and
then use this relationship to prove that V (i) ∈ GF (p).
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Lemma 6.2.5 For integers i, j such that i ≥ j ≥ 0,

V (i+ j) = V (i) · V (j)− V (i− j).

Proof: From the definition of V (i) we have

V (i) · V (j) = (αi + βi)(αj + βj)

= αi+j + βi+j + αiβj + αjβi

= V (i+ j) + αi−j(αβ)j + βi−j(αβ)j

= V (i+ j) + V (i− j).

As an immediate consequence to the previous lemma, we have the following
corollary.

Corollary 6.2.6 For all integers i ≥ 0, V (2i) = V (i)2 − 2.

We now show that all V (i) are elements of GF (p).

Lemma 6.2.7 For i ≥ 0, V (i) ∈ GF (p).

Proof: We prove that V (i) ∈ GF (p) by showing that V (i)p = V (i). Consider

V (i)p = (αi + βi)p = (αp)i + (βp)i.

If p ≡ 7 (mod 8), we know αp = β and βp = α by Lemma 6.2.2. Thus, V (i)p =
βi + αi = V (i).

If p ≡ 1 (mod 8), we know αp = α and βp = β by Lemma 6.2.2. Thus
V (i)p = αi + βi = V (i).

Next we prove our claim about the distinctness of the V (i):

Lemma 6.2.8 We have V (i) 6= V (j) for 0 ≤ i < j ≤ 2d−1.

Proof: Suppose V (i) = V (j). Then αi + βi = αj + βj. Since β = α−1, we have
αi+α−i = αj+α−j. Multiplying by αj and rearranging, we get α2j−αj+i−αj − i+
1 = 0. Factoring, we get (αj+i−1)(αj−i−1) = 0. Thus either αj−i = 1 or αj+i = 1.

109



Since α is of order 2d in GF (p), it follows that either 2d | (j − i) or 2d | (j + i). But
this is impossible since 0 ≤ i < j ≤ 2d−1.

Now define the following recurrence relation:

U(0) = 0

U(1) = 1

U(n+ 1) = (α + β)U(n)− U(n− 1) (for n > 0)

It is known (see Williams [99]) that the sequence U(n) has the following closed
form:

U(n) =
αn − βn

α− β
.

From the definitions of V (n) and U(n), we have the following results, which are
proved in Williams [99, Chapter 4]

Lemma 6.2.9 For all n ≥ 0, the following hold

(a) V (n) = 2U(n+ 1)− (α + β)U(n);

(b) U(2n) = 2U(n+ 1)U(n)− (α + β)U(n)2;

(c) U(2n+ 1) = U(n+ 1)2 − U(n)2;

(d) U(n+ 1)2 − U(n)U(n+ 2) = 1.

Proof: We will prove only part (a). It is worth noting that α 6= β since if α = β,
then α is of order 1 or 2; but α is of order 2d ≥ 8 by definition.

V (n) = αn + βn

=
(αn + βn)(α− β)

α− β

=
αn+1 − βn+1 + αn−1 − βn−1

α− β

=
2(αn+1 − βn+1)− (α + β)(αn − βn)

α− β
= 2U(n+ 1)− (α + β)U(n).

The remaining relationships (b)–(d) can be proved in a similar manner.
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We now describe another relationship between V (i) and U(i) that allows us to
prove our main theorem for this section.

Lemma 6.2.10 For i ≥ 0, V (2i+ 1) + 2 = (α + β + 2)(U(i+ 1)− U(i))2.

Proof: We have

V (2i+ 1) = 2U(2i+ 2)− (α + β)U(2i+ 1)

= 2(2U(i+ 2)U(i+ 1)− (α + β)U(i+ 1)2)− (α + β)U(2i+ 1)

= 4U(i+ 2)U(i+ 1)− 2(α + β)U(i+ 1)2 − (α + β)(U(i+ 1)2 − U(i)2)

= 4((α + β)U(i+ 1)− U(i))U(i+ 1)− 3(α + β)U(i+ 1)2 + (α + β)U(i)2

= (α + β)U(i+ 1)2 − 4U(i)U(i+ 1) + (α + β)U(i)2

= (α + β)U(i+ 1)2 − 4U(i)U(i+ 1) + (α + β)U(i)2 +

2U(i+ 1)2 − 2U(i)U(i+ 2)− 2

= (α + β)U(i+ 1)2 − 4U(i)U(i+ 1) + (α + β)U(i)2 +

2U(i+ 1)2 − 2U(i)((α + β)U(i+ 1)− U(i)− 2

= (α + β + 2)(U(i+ 1)2 − 2U(i)U(i+ 1) + U(i)2)− 2

= (α + β + 2)(U(i+ 1)− U(i))2 − 2.

The following lemma follows directly from Lemmas 6.2.4 and 6.2.10.

Lemma 6.2.11 For all i ≥ 0, there does not exist x ∈ GF (p) such that x2 − 2 =
V (2i+ 1).

We now turn our attention to V (i) for even values of i.

Lemma 6.2.12 V (2d−1) = −2.

Proof:

V (2d−1) = γ(p−1)
(p+1)

2d
2d−1

+ γ(1−p) (p+1)

2d
2d−1

= γ(p−1)
(p+1)

2 + γ(1−p) (p+1)
2

= γ
p2−1

2 + γ
1−p2

2

= −1 +−1

= −2.
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From the previous lemma, the following corollary is immediate.

Corollary 6.2.13 V (2d−2) = 0.

We know by Corollary 6.2.6 that V (2i) = V (i)2 − 2. Thus, in the digraph GR
p,2,

we view V (i) as a “child” of V (2i) in a binary tree sense. That is, for 1 ≤ i ≤ 2d−2

all V (2i) have children. We now prove that V (2i) has a second child in GR
p,2.

Lemma 6.2.14 V (2i) = V (2d−1 − i)2 − 2.

Proof: We have

V (2d−1 − i)2 = (α2d−1−i + β2d−1−i)2

= α2d−2i + β2d−2i + 2

= γp
2−1α−2i + γ−(p2−1)β−2i

= V (2i) + 2.

By Lemma 6.2.11, we know that all V (k) where k is odd have no children.
Therefore, V (2i+ 1) forms the leaves of the binary tree with height 2d−2 which has
a root vertex of V (2d−2) = 0.

In summary, by Lemmas 6.2.11, 6.2.14, 6.2.8 and Corollary 6.2.13, we have
proven Theorem 6.2.1.

It should be noted that this result does not resolve the D. H. Lehmer’s query
about the sign in Sp−2 ≡ ±2(p+1)/2 (mod 2p − 1) (see Guy [43, p. 9]), since our
result does not classify which “side” of the tree the (starting) element 4 resides
on. Rather, we give a closed form for the elements of the tree, but the actual
computation of Sp−2 cannot be short-circuited using our results.

We have the following Corollary that extends this result to other quadratic
maps.
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Corollary 6.2.15 If we have the map x→ Ax2 +Bx+ C where

B

2
− B2 − 4AC

4
= −2,

then we have the same binary tree structure in the directed graph formed by this
map over GF (p) as in Theorem 6.2.1.

Proof: See Exercise 9.5 from Holmgren [46] to see that the map x → x2 − 2 has
the conjugate function given above.

As an example application of the previous Corollary, the digraph induced with
the map 4x2 +12x+7 over GF (p) will contain a binary tree component as outlined
above.

To conclude this section, we present an example which traces through all of the
steps in the proof of Theorem 6.2.1.

Let p = 191 = 3 · 26 − 1. Take the primitive polynomial over GF (191)[x] to be
f(x) = x2 + 9x + 21. We have as roots γ = x and δ = 190x + 182. Since p ≡ 7
(mod 8), we take α = γk(p−1) = x3·190 = 123x+ 136. It follows that β = 68x+ 175.
Therefore V (1) = α + β = 120. The remaining V (i) values are illustrated in
Figure 6.1. It is worth noting that Figure 6.1 corresponds to the same graph as in
Figure 5.4.
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V(0)

V(32)

V(16)

V(28)

V(18) V(14)

V(21) V(11) V(27) V(5) V(19) V(29)V(13) V(3) V(7)

V(24)

V(22) V(10) V(26)

V(20) V(12)

V(6)

V(9) V(23)

V(2)

V(1) V(31) V(17) V(15)

V(30)

V(8)

V(4)

V(25)

Figure 6.1: The digraph Gp,2 with p = 191 and f(x) = x2 + 9x+ 21

6.3 Conclusions

We have provided an alternative version of the underlying structure of the digraph
formed by the iteration x2 → x2 − 2.

We now move from the robustness analysis of primality tests to the robustness
results for an algorithm that computes the order of an element in a group.
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Chapter 7

Robustness of computing order of
an element in a group

7.1 Introduction

In this chapter, we consider the robustness of algorithms for computing the order
of an element in a group under a black-box model. We begin by formalizing the
problem of computing the order of an element in a group, and then proceed to
prove robustness results using Markov chains.

Suppose we have an additive group G and an element x ∈ G. We wish to
find the order of x: that is, we wish to find the least positive integer k such that
x ∗ k = e, where e is the identity element of group G. The algorithm to do this
(Algorithm 7.1) will repeatedly add the element x to itself, terminating at step k
iff
∑k

i=1 x = e. We will assume |G| = m.

As outlined in previous chapters, we will assume that an error can occur to the
value t during execution. That is, at each step, the value t in Algorithm 7.1 can
change uniformly to any value in group G with probability ε. We will quantify the
probability that the algorithm computes the correct element order under this error
model.

We will assume G = Z/(m), though the results in this chapter can be generalized
to any additive group of order m.

We consider the values that t may contain during execution of Algorithm 7.1.
If we view each value of t) as “states” that Algorithm 7.1 can be in, we can model
the algorithm execution by way of a Markov chain. Specifically, we consider the
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Input: x ∈ G
t← e
i← 0
repeat
t← t+ x
i← i+ 1

until t = e
print “Order of x is i”

Algorithm 7.1: Simple Group Order Algorithm

following matrix M that is of size (m+1)×(m+1) (with the index of each position
shown):

0 1 2 3 · · · m− 1 m
0 0 1− m−1

m
ε ε

m
ε
m

· · · ε
m

ε
m

1 0 ε
m

1− m−1
m
ε ε

m
· · · ε

m
ε
m

2 0 ε
m

ε
m

1− m−1
m
ε · · · ε

m
ε
m

...
...

...
...

. . .
...

...
m− 1 0 ε

m
ε
m

ε
m

· · · ε
m

1− m−1
m
ε

m 0 0 0 0 · · · 0 1

.

We now describe the details of what this matrix actually represents and how we
will use it in computing robustness results.

The crucial definition is that the element at position M [i, j] (0 ≤ i, j < m) is
the probability that variable t had its value of i changed to the value j after one
iteration of the loop of Algorithm 7.1. The elements in position M [i,m] (0 ≤ i < m)
represent the probability that variable t had its value of i changed to the loop-exit
condition value 0. The elements in position M [m, j] (0 ≤ j ≤ m) represent the
probability that variable t contains the value 0, which is the starting condition. In
other words, the last row (row m) represents starting in the “stopped state.” That
is, the algorithm has terminated on an earlier step due to its internal total t being
element e. In terms of Markov chain terminology, state m is an absorbing state.

We now make a few observations regarding the elements of matrix M . One key
point to observe is that there are m+ 1 states. We create the initial state 0, which
is represented by column 0 in the matrix M , with the other columns representing
elements in the group, and specifically, column m representing element e. The
values in column 0 are 0, since we guarantee that this special start state is never
entered again.
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Notice that the row sums are 1, since we are guaranteed to be in some non-
starting state after each step of the algorithm.

In terms of robustness results, we wish to determine the probability that Algo-
rithm 7.1 terminates at step m and not before, when the order of the element is m.
We will assume the input element is 1 (which has order m): if any other element
which has order m is chosen, the same arithmetic derivations can yield the result.
If the element we wish to consider has order less than m, our computations would
need to be modified to examine all possible divisors of m.

In order to determine the probability that Algorithm 7.1 terminates at exactly
step m, we first make a few general observations.

First, notice that Mk[i, j] is the probability that we start in state i and end in
state j after exactly k steps, provided the input state i 6= m. We wish to determine
the probability that we start in the starting state (corresponding to row 0) and end
in state m (i.e., at the identity element) in exactly k steps. Our task is to determine

(Mk −Mk−1)[0,m]

which can be factored as (
Mk−1(M − I)

)
[0,m].

(If an element other than 1, say x ∈ G, which has order k, is given as input, the
previous formula changes to

(
Mk−1(M − I)

)
[x,m].)

We prove the following lemma, which is one of the main results of this chapter.

Lemma 7.1.1 The entry in row 0, column j (0 ≤ j ≤ m) of the matrix Mk

(2 ≤ k ≤ m) is

Mk[0, j] =



0, if j = 0;
jε
m
− j3+3(m−k)j2+(3k2−3m−1)j

6
ε2

m2 +O(m2ε3), if 1 ≤ j < k;

1− k(m−1)
m

ε+ k(k−1)(m2−m−1)/2−k(k−1)(k−2)/6
m2 ε2 +O(m2ε3), if j = k;

kε
m
− k3+3(m−k)k2+(3k2−3m−1)k

6
ε2

m2 +O(m2ε3), if k < j < m;
k(k+1)

2m
ε− k4+(4m+2)k3−k2−(4m+2)k

24
ε2

m2 +O(m2ε3), if j = m.

Proof: By induction on k. One can easily verify that the base case k = 2 is
satisfied.

Suppose that the lemma holds for k = q, q ≥ 2. To show the lemma holds for
k = q + 1, we break this into five cases:
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Case 1: Position 0 to position q in matrix M q+1.
Clearly, position 0 is always 0. We consider position i, where 1 ≤ j ≤ q.

Notice that column j (2 ≤ j ≤ q) in matrix M has ε
m

in positions 0 through
j − 2, 1− m−1

m
ε in position j − 1, ε

m
in positions j to m− 1, and 0 in position m.

Computing the dot product of row 0 of matrix M q with column j in matrix M
yields the sum A+B + C +D + E, where

A =

j−2∑
c=1

(
cε

m
− c3 + 3(m− q)c2 + (3q2 − 3m− 1)c

6

ε2

m2
+O(m2ε3)

)
ε

m
,

B =
(j − 1)ε

m
− (j − 1)3 + 3(m− q)(j − 1)2 + (3q2 − 3m− 1)(j − 1)

6

ε2

m2
+O(m2ε3)

−(m− 1)ε

m

(
(j − 1)ε

m
− (j − 1)3 + 3(m− q)(j − 1)2 + (3q2 − 3m− 1)(j − 1)

6

ε2

m2

)
,

C =

q−1∑
c=j

(
cε

m
− c3 + 3(m− q)c2 + (3q2 − 3m− 1)c

6

ε2

m2
+O(m2ε3)

)
ε

m
,

D =

(
1− q(m− 1)

m
ε+

q(q − 1)(m2 −m− 1)/2− q(q − 1)(q − 2)/6

m2
ε2 +O(m2ε3)

)
ε

m
,

E =
m−1∑
c=q+1

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)
ε

m
.

It is worth noting that if j = q, the value of C is 0.

Computing these sums (using Maple), we get the desired result for the ε
m

and
ε2

m
terms. For the ε3 terms, we consider each of A,B,C,D and E in turn.

For A, since j − 2 ∈ O(m), the dominant ε3 term is
∑j−2

c=1 c
3ε3/m3, which is

O(m4ε3/m3) = O(mε3) which is O(m2ε3).

For B, we note that j − 1 ∈ O(m) and q ∈ O(m), so the dominant ε3 term is

(j − 1)3 ε(m−1)
m

ε2

m2 ∈ O(mε3) which is O(m2ε3).

For C, we have the same result as A, since q − 1 ∈ O(m).

For D, we have q ∈ O(m) and thus the dominant ε3 term is q(q− 1)m2ε3/m3 ∈
O(mε3) which is O(m2ε3).

For E, we note that each term in the sum does not depend on c, and thus we
have the dominant ε3 term being (m−q−2)mq2ε3/m3 ∈ O(mε3), which is O(m2ε3).
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Case 2: Position q + 1 in matrix M q+1.
As in the previous case, notice that column q+ 1 in matrix M has ε

m
in positions 0

to q− 1, 1− m−1
m
ε in position q, ε

m
in positions q+ 1 to m− 1, and 0 in position m.

We compute the dot product of row 0 of matrix M q with column q in matrix
M , to yield the sum A+B + C where

A =

q−1∑
c=1

(
cε

m
− c3 + 3(m− q)c2 + (3q2 − 3m− 1)c

6

ε2

m2
+O(m2ε3)

)( ε
m

)
,

B =

(
1− q(m− 1)m

m
ε+

q(q − 1)(m2 −m− 1)/2− q(q − 1)(q − 2)/6

m2
ε2 +O(m2ε3)

)
·
(

1− m− 1

m
ε

)
,

C =
m−1∑
c=q+1

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)
ε

m
.

The coefficients of ε0, ε and ε2 can be verified correct by hand.

For the coefficient of ε3, we perform case analysis as we performed in Case 1
above.

The value of A in this case is identical to the value for A in Case 1, and thus,
the relevant bounding term is O(m2ε3).

Looking at B, we have the ε3 term is dominated by q(q − 1)m2(m − 1)ε3/m3,
and since q ∈ O(m), this expression is O(m2ε3). (It is worth noting that this is the
first time the bound actually required m2ε3 as the bounding term.)

For C, this formula is analogous to the formula for E in case 1, which had the
ε3 term bounded by O(m2ε3).

Thus, in the sum A+B + C, the ε3 term is bounded by O(m2ε3).

Case 3: Position q + 2 in matrix M q+1.

In matrix M , column q + 2, there is ε
m

in positions 0 to q, 1− m−1
m
ε in position

q + 1, ε
m

in positions q + 2 to m− 1, and 0 in position m.

As in the previous cases, we compute the dot product of row 0 in matrix M q
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and column q + 2 in matrix M . The result sum can be written as

A =

q−1∑
c=1

(
cε

m
− c3 + 3(m− q)c2 + (3q2 − 3m− 1)c

6

ε2

m2
+O(m2ε3)

)
ε

m
,

B = (1− q(m− 1)

m
ε+

q(q − 1)(m2 −m− 1)/2− q(q − 1)(q − 2)/6

m2
ε2 +O(m2ε3))

ε

m
,

C =

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)(
1− m− 1

m
ε

)
,

D =
m−1∑
c=q+2

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)
ε

m
.

The ε and ε2 terms can be verified correct by hand.

For the ε3 term, A contributes
∑q−1

c=1 c
3ε3/m3, and since q − 1 ∈ O(m), this A

term contributes O(mε3).

B contributes q(q−1)m2ε3/m3, and again, since q ∈ O(m), the B term provides
O(mε3).

The C term contributes q3(m− 1)ε3/m3 ∈ O(m2ε3).

The D term contributes
∑m−1

c=q+2 q
3ε3/m3 and since m− 1− (q + 2) ∈ O(m), we

can bound the ε3 term by O(mq3ε3/m2) ∈ O(m2ε3).

Thus, the sum A+B + C +D contains O(m2ε3) as the ε3 term, as required.

Case 4: Position q + 3 to m− 1 in matrix M q+1.

In matrix M , column j (q + 3 ≤ j ≤ m− 1), there is ε
m

in positions 0 to j − 2,
1− m−1

m
ε in position j − 1, ε

m
in positions j to m− 1, and 0 in position m.

As in the previous cases, we compute the dot product of row 0 of matrix M q
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with column j (q + 2 ≤ j ≤ m− 1), to yield the sum A+B + C +D, where

A =

q−1∑
c=1

(
cε

m
− c3 + 3(m− q)c2 + (3q2 − 3m− 1)c

6

ε2

m2
+O(m2ε3)

)( ε
m

)
,

B = (1− q(m− 1)

m
ε+

q(q − 1)(m2 −m− 1)/2− q(q − 1)(q − 2)/6

m2
ε3 +O(m2ε3))

ε

m
,

C =

j−2∑
c=q+1

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)
ε

m
,

D =

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)(
1− m− 1

m
ε

)
,

E =
m−1∑
c=j

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)
ε

m
.

The ε and ε2 terms can be verified by hand.

To bound the ε3 term, notice that A and B in this case are identical to A and
B in case 3. Thus, those terms are bounded by O(mε3).

Since j ∈ O(m) and q ∈ O(m), it follows that C contributes O(mq3ε3/m3) ∈
O(mε3).

The D term contributes q3(m− 1)ε3/m3 ∈ O(mε3).

For the E term, we have (m− 1− j)q3ε3/m3 ∈ O(mε3).

Thus, the sum A + B + C + D + E, we can bound the ε3 term by O(m2ε3)
(though it should be noted that O(mε3) is sufficient in this case).

Case 5: Position m.
Consider column m in matrix M . This column has ε

m
in positions 0 to m − 2,

1− m−1
m
ε at position m− 1 and 1 in position m.
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A =

q−1∑
c=1

(
cε

m
− c3 + 3(m− q)c2 + (3q2 − 3m− 1)c

6

ε2

m2
+O(m2ε3)

)
ε

m
,

B = (1− q(m− 1)

m
ε+

q(q − 1)(m2 −m− 1)/2− q(q − 1)(q − 2)/6

m2
ε2 +O(m2ε3))

ε

m
,

C =
m−2∑
c=q+1

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)
ε

m
,

D =

(
qε

m
− q3 + 3(m− q)q2 + (3q2 − 3m− 1)q

6

ε2

m2
+O(m2ε3)

)(
1− m− 1

m
ε

)
,

E =
q(q + 1)

2m
ε− q4 + (4m+ 2)q3 − q2 − (4m+ 2)q

24

ε2

m2
+O(m2ε3).

This sum yields the correct coefficients for both the ε and ε2 terms, which can
be verified by hand.

For the ε3 term, the A, B, C and D terms where analyzed (with minor variation)
in case 4, and all these terms provided an O(m2ε3) factor. For the E term, there is
only a O(m2ε3) term. Thus, in sum we have an O(m2ε3) bound, which proves the
lemma.

From Lemma 7.1.1, we can see that each element of the first row of Mm−1 can
be described as Mm−1[0, j] with values

0 if j = 0,
jε
m
− j3+3j2+(3(m−1)2−3m−1)j

6
ε2

m2 +O(m2ε3) if 1 ≤ j < m− 1,

1− (m−1)2

m
ε+ (m−1)(m−2)(m2−m−1)/2−(m−1)(m−2)(m−3)/6

m2 ε2 +O(m2ε3) if j = m− 1,
(m−1)m

2m
ε− (m−1)4+(4m+2)(m−1)3−(m−1)2−(4m+2)(m−1)

24
ε2

m2 +O(m2ε3) if j = m.

Now, when we take the product of Mm−1 and M − I, we only concern ourselves
with the element in row 0, column m. Thus, multiply the first row of Mm−1

(described above) by the last column of M − I to obtain (Mm −Mm−1)[0,m].
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We get

(Mm −Mm−1)[0,m] =
m−2∑
j=1

(
jε

m
− j3 + 3j2 + (3(m− 1)2 − 3m− 1)j

6

ε2

m2
+O(m2ε3)

)
ε

m
+(

1− m− 1

m
ε

)
·(

1− (m− 1)2

m
ε

+
(m− 1)(m− 2)(m2 −m− 1)/2− (m− 1)(m− 2)(m− 3)/6

m2
ε2

+O(m2ε3)
)

= 1− (m− 1)ε+
3m3 − 7m2 + 3m+ 1

6m
ε2 +O(m2ε3).

We summarize this result in the following theorem, which handles the “correct
output” case of robustness for Algorithm 7.1.

Theorem 7.1.2 Let G be a group of order m. Suppose x ∈ G where the order of
x is |G|. Let ε be the probability that Algorithm 7.1 alters its stored element t to a
random element in G. Under this error model, the probability that the Algorithm 7.1
correctly computes the group order of x is

pc(m) = 1− (m− 1)ε+ (m2/2− 7m/6 + 1/2 + 1/(6m))ε2 +O(m2ε3).

In terms of the robustness analysis for Algorithm 7.1, we have two other cases to
consider, based on the definition of robustness outlined in Chapter 1.

Before we analyze the incorrect but feasible and incorrect and infeasible cases,
we will need the following lemma.

Lemma 7.1.3 The entry in matrix (Mk −Mk−1)[0,m] (2 ≤ k < m) is

k

m
ε− k3 + 3mk2 − 3mk − k

6m2
ε2 +O(m2ε3).

Proof: Apply Lemma 7.1.1 twice.

We are now ready to prove the final two cases for the robustness analysis.
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We will define an incorrect and infeasible output of Algorithm 7.1 to be a group
order which does not divide |G|. Similarly, we define an incorrect but feasible
output of Algorithm 7.1 to be a group order which divides |G| but is strictly less
than |G|.

We will use these definitions in the following two theorems.

Theorem 7.1.4 Let G be a group of order m. Suppose x ∈ G where the order of
x is |G|. Let ε be the probability that Algorithm 7.1 alters its stored element t to a
random element in G. Under this error model, the probability that Algorithm 7.1
computes an incorrect but feasible group order of x is

pf (m) = (σ(m)−m)
ε

m
+O(mε2).

Proof: First, we require some number theoretic results. We use the standard
notation of

σi(m) =
∑

1≤k≤m
k|m

ki,

and we use σ(m) to denote σ1(m).

From Lemma 7.1.3, we have

pf (m) =
∑

1≤k<m
k|m

(
k

m
ε− k3 + 3mk2 − 3mk − k

6m2
ε2 +O(m2ε3)

)

= (σ1(m)−m)
ε

m

+
(σ3(m)−m3 + 3m(σ2(m)−m2)− (3m+ 1)(σ1(m)−m)

6m2
ε2 +O(m2ε3).

From Gronwall [41], we know that σ2(m) ∈ O(m2) and σ3(m) ∈ O(m3). Thus
we can simplify the above expression to write pf (m) = (σ1(m) −m) ε

m
+ O(mε2),

which proves the result.

Next, we complete the quantification of the error under this algorithm.

Theorem 7.1.5 Let G be a group of order m. Suppose x ∈ G where the order of
x is |G|. Let ε be the probability that Algorithm 7.1 alters its stored element t to a
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random element in G. Under this error model, the probability that Algorithm 7.1
computes an incorrect and infeasible group order of x is

pi(m) = (m2 − σ(m))
ε

m
+O(mε2).

Proof: Use the results of Theorems 7.1.2 and 7.1.4 and the fact that pi(m) =
1− pc(m)− pf (m).

We now prove robustness results for Algorithm 7.1, which is the second main
result of this chapter.

Theorem 7.1.6 Let G be a group of order m. Suppose x ∈ G where gcd(|x|,m) =
1. Let ε be the probability that the internal black box used in Algorithm 7.1 produces
a random element from the range 1..m. Under this error model, Algorithm 7.1 is
robust, provided ε < b

m
for a constant 0 < b < 1 and m sufficiently large.

Proof: From Section 1.3, we know we must show two things to prove robustness.
First, we must show that pc(m) > b for some constant C > 0. Second, we must
show that pi(m) > pf (m).

To show that pc(m) > C, we have

pc(m) = 1− (m− 1)ε+ (m2/2− 7m/6 + 1/2 + 1/(6m))ε2 +O(m2ε3)

> 1− (m− 1)ε

if m is sufficiently large, since the O(m2ε3) becomes vanishingly small. Continuing,
we have

pc(m) > 1− (m− 1)ε

> 1− b(m− 1)

m

= 1− b+
b

m
> 1− b
> 0,

since we know that the constant 0 < b < 1. Thus C = 1− b and the result is shown
in this case.
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We now turn our attention to showing that pi(m) > pf (m). We will ignore
the difference in the lower order terms since O(mε2) becomes vanishing small for
sufficiently large m, and thus we have

pi(m)− pf (m) = (m2 − σ(m))
ε

m
− (σ(m)−m)

ε

m

= (m2 +m− 2σ(m))
ε

m
.

Notice that σ(m) < m(m+ 1)/2 if m > 2, and thus, pi(m) > pf (m).
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Chapter 8

Conclusions and Further Work

8.1 Conclusions

In this thesis, we have formulated an error model for computation that mimics the
types of errors that may alter CPU performance. By applying this error model on
various algorithms, we have new and interesting results due to two consequences.
The first consequence is that probabilistic arguments allow us to consider the ro-
bustness of algorithms under various error assumptions, allowing some reassurance
of the correctness of the output. A second consequence is that, in proving the proba-
bilistic results concerning algorithms, surprising and interesting algebraic structures
emerge.

8.2 Further work

There are three main areas of open research problems that are worth pursuing.

The first area is an open problem from number theory due to Lehmer (as out-
lined in Guy [43, page 9]). Lehmer notes that the p − 2nd squaring step yields
either a value 2((p+1)/2) mod 2p− 1 or −2((p+1)/2) mod 2p− 1. Determining whether
the value is the positive or negative value is still an open problem. Our digraph
representation and algebraic definition of the elements in the digraph does not
seem to help answer this problem. Determining a self-checking mechanism for the
Lucas-Lehmer test or Mersenne test, seems even more difficult, since to do this, it
would appear at each “level” in the binary tree in the digraph would need to be
categorized in an easily computable and comparable manner.
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A second area of further work would be to apply the analysis of Chapters 6 and
4 to other primality tests, such as the Solovay-Strassen or Miller-Rabin primality
tests (see Bach and Shallit [5] for details about these algorithms).

A final area of further work would be finding the maximum and minimum value
from a set of integers simultaneously, where queries on the set may be erroneous.
Ravikumar, Ganesan and Lakshmanan [79] find the minimum number of queries
with a fixed number of erroneous queries for an algorithm that determines the
maximum value. Combining this result with the 3

2
n − 3

2
algorithm for finding

the maximum and minimum simultaneously (which is outlined in, for example,
Basse [6]) is an unsolved problem.
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[87] L. Somer and M. Kř́ıžek, “On a connection of number theory and graph the-
ory”, Czech. Math. J. 54 (2004), 465–485. 49

[88] W. Stallings, Computer Organization and Architecture: Principles of Structure
and Function, second edition, Macmillan, New York, 1990. 2

[89] D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, New
York, 1986.

[90] C.L. Stewart, “On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers”,
Proc. London Math. Soc. 35 (1977), 425–447. 97

[91] M. Szegedy and X. Chen, “Computing boolean functions with multiple faulty
copies of input bits”, in S. Rajsbaum, ed., Proceedings of LATIN 2002, Lecture
Notes in Computer Science #2286, Springer-Verlag (2002), 539–553.

135



[92] E. Teske and H.C. Williams, “A note on Shanks’ chains of primes” in W.
Bosma, ed., Proceedings of ANTS IV, Lecture Notes in Computer Science
#1838, Springer-Verlag (2000), 563–580. 19, 49

[93] H. S. Uhler, “A brief history of the investigations on the Mersenne numbers
and the latest immense primes,” Scripta Mathematica 181, 122–131 (1952). 4

[94] T. Vasiga and J. Shallit, “On the iteration of certain quadratic maps over
GF(p)”, Discrete Math., 277, 219–240 (2004). 75, 78, 89

[95] F. Vivaldi and S. Hatjispyros, “Galois theory of periodic orbits of rational
maps”, Nonlinearity, 5, 961–978 (1992). 80

[96] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms
from unreliable components”, Automata Studies (ed. by C. E. Shannon and J.
McCarthy) Princeton University Press, 43–98. 3

[97] H. Wasserman and M. Blum, “Software reliability via run-time result-
checking”, J. ACM 44 (1997), 826–849. 5

[98] S. S. Wagstaff, Jr. “Greatest of the least primes in arithmetic progressions
having a given modulus,” Math. Comp. 33 (1979), 1073–1080. 76

[99] H. C. Williams, Édouard Lucas and Primality Testing, Wiley, 1998. 110

[100] B. Wilson, “Power digraphs modulo n”, Fib. Quart. 36 (1998), 229–239. 49,
59, 61

[101] J.F. Ziegler et al., “IBM experiments in soft fails in computer electronics
(1978-1994)”, IBM J. Res. Develop. 40, 1–17 (1996). 2

136


	List of Tables
	List of Figures
	List of Algorithms
	Introduction and Motivation
	Related work
	Self-checking algorithms
	Error model for computation
	A motivating example
	Outline of the remaining chapters

	Definitions and Notation
	Introduction
	Galois fields and multiplicative groups
	Iterated functions
	Directed graphs
	Congruence solutions
	A computational model
	Asymptotic analysis
	Conclusion

	Quadratic residue algorithms
	Introduction
	Basics
	Quadratic residue computation: linear algorithm
	Quadratic residue computation: binary algorithm
	Robustness preliminaries
	Robustness results for the linear algorithm
	Robustness results for the binary algorithm
	Conclusion

	Robustness of Pepin's primality test
	Introduction
	Pepin's algorithm
	Previous work
	Viewing the iteration as a digraph

	The case when Fk is prime
	The case when Fk is composite
	The iteration xx2 on Mersenne primes
	Statistical measures of xx2
	Conclusion

	Robustness of the Lucas-Lehmer primality test
	Introduction
	Lucas-Lehmer primality test
	Previous work
	Viewing the iterations as a digraph

	General topology results for xx2 -2
	Robustness results for Mersenne primes
	Robustness results for Mersenne composites
	Statistical measures for xx2-2
	Pollard's factoring method
	Conclusions

	Alternative proofs concerning the Lucas-Lehmer test
	Introduction and motivation
	Main result
	The case p 3,5 8mu(mod6mu8)
	The case p 1,7 8mu(mod6mu8)

	Conclusions

	Robustness of computing order of an element in a group
	Introduction

	Conclusions and Further Work
	Conclusions
	Further work

	References

