247 research outputs found

    Resolving sets for Johnson and Kneser graphs

    Get PDF
    A set of vertices SS in a graph GG is a {\em resolving set} for GG if, for any two vertices u,vu,v, there exists xSx\in S such that the distances d(u,x)d(v,x)d(u,x) \neq d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.Comment: 23 pages, 2 figures, 1 tabl

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    The spectrum and toughness of regular graphs

    Full text link
    In 1995, Brouwer proved that the toughness of a connected kk-regular graph GG is at least k/λ2k/\lambda-2, where λ\lambda is the maximum absolute value of the non-trivial eigenvalues of GG. Brouwer conjectured that one can improve this lower bound to k/λ1k/\lambda-1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/λk/\lambda. In this paper, we improve Brouwer's spectral bound when the toughness is small and we determine the exact value of the toughness for many strongly regular graphs attaining equality in the Hoffman ratio bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and complements of point-graphs of generalized quadrangles. For all these graphs with the exception of the Petersen graph, we confirm Brouwer's intuition by showing that the toughness equals k/(λmin)k/(-\lambda_{min}), where λmin\lambda_{min} is the smallest eigenvalue of the adjacency matrix of the graph.Comment: 15 pages, 1 figure, accepted to Discrete Applied Mathematics, special issue dedicated to the "Applications of Graph Spectra in Computer Science" Conference, Centre de Recerca Matematica (CRM), Bellaterra, Barcelona, June 16-20, 201

    Graphs Cospectral with Kneser Graphs

    Get PDF
    AMS Subject Classification: 05C50Kneser graph;Johnson scheme;Spectral characterization
    corecore