
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2009–76 

 
  

GRAPHS COSPECTRAL WITH KNESER GRAPHS 

 

By Willem H. Haemers, Farzaneh Ramezani 
 
 
 

September 2009 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 0924-7815 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6651578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Graphs cospectral with Kneser graphs

Willem H. Haemersa,1 Farzaneh Ramezanib

aDepartment of Econometrics and Operations Research,
Tilburg University, Tilburg, The Netherlands

bFaculty of Mathematics and Computer Science,
Amirkabir University of Technology, Tehran, Iran

Abstract

We construct graphs that are cospectral but nonisomorphic with Kneser
graphs K(n, k), when n = 3k − 1, k > 2 and for infinitely many other
pairs (n, k). We also prove that for 3 ≤ k ≤ n − 3 the Modulo-2 Kneser
graph K2(n, k) is not determined by the spectrum.
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1 Introduction

Given a simple graph G, the spectrum of G is the multi-set of eigenvalues of
the adjacency matrix of G. Two graphs with the same spectrum are called
cospectral. A graph G is said to be determined by the spectrum if every graph
cospectral with G is isomorphic to G. Two non-isomorphic cospectral graphs G
and G′ are called cospectral mates.

An important research topic in the theory of graph spectra is to find out
which graphs are determined by their spectra. Especially for graphs with a
high degree of regularity, like distance-regular graphs, the problem has received
much attention. See [2] and [3] for a survey and recent developments. Here we
consider some graphs in the Johnson association scheme J(n, k). In other words,
the vertex set V (n, k) consists of all k-subsets of {1, . . . , n}, and adjacency only
depends on the intersection size of the corresponding k-subsets. For a subset S
of K = {0, . . . , k− 1}, we denote by JS(n, k) the graph with vertex set V (n, k),
where two vertices are adjacent if the intersection size of the corresponding sub-
sets is in S. The graph J0(n, k) is better known as the Kneser graph K(n, k),
and Jk−1(n, k) is the Johnson graph. If S consists of all even numbers in K, we
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call the graph JS(n, k) the Modulo-2 Kneser graph, and denote it by K2(n, k).
Note that JS(n, k) is isomorphic with JS+n−2k(n, n− k), and with the comple-
ment of JK\S(n, k). In particular, K2(n, k) is isomorphic with K2(n, n− k) if n
is even, and isomorphic with the complement of K2(n, n− k) is n is odd.

Hoffman and Chang (see for example [8]) have shown that J1(n, 2) is deter-
mined by its spectrum if and only if n 6= 8. A regular graph is determined by its
spectrum if and only if its complement is, therefore also K(n, 2) is determined by
its spectrum if n 6= 8. Other Kneser graphs which are known to be determined
by the spectrum are the trivial cases k = 1 and k ≥ n/2, and the Odd graphs
K(2k + 1, k) (see [7]). In [4], it is proved that the Johnson graphs Jk−1(n, k)
are not determined by the spectrum if k > 2. The odd graphs K(2k +1, k), and
the Johnson graphs Jk−1(n, k) are distance-regular. These graphs and their
complements are graphs in the Johnson scheme for which the answer to the
characterization problem is known. However, for almost all other graphs in the
Johnson scheme the problem has been unsolved. In this note we give an answer
for Kneser graphs K(n, k), when n = 3k − 1, and for infinitely many other val-
ues of n and k by constructing cospectral mates. In addition we find cospectral
mates for all Modulo-2 Kneser graphs K2(n, k) with 3 ≤ k ≤ n− 3.

Our main tool for constructing a cospectral mate is the following result due to
Godsil and McKay [6] (see also [2]):

Proposition 1.1 Let G be a graph and let H be an induced regular subgraph
of G of even order h (say). Assume that each vertex outside H is adjacent to
h, h/2 or 0 vertices of H. Make a new graph G′ as follows. For each vertex v
outside H with h/2 neighbors in H, delete the h/2 edges between x and H, and
join v instead to the h/2 other vertices in H. Then G and G′ have the same
spectrum.

The operation that changes G into G′ is called Godsil-McKay switching. The
vertex set of H will be called a (Godsil-McKay) switching set.

2 Kneser graphs

For a positive integer ` ≤ k − 1 we define:

V` = {v ∈ V (n, k) : {1, . . . , k − `} ⊂ v}.

It is clear that the set V` induces a coclique (independent vertex set) in K(n, k).
The following result states for which values of n, k, and ` the set V` is a switching
set.

Theorem 2.1 Let n, k and ` be positive integers such that ` < k < n/2. Then
V` is a Godsil-McKay switching set in K(n, k) if n, k, and ` satisfy the following
equation (

n− k + `

`

)
= 2

(
n− 2k + `

`

)
. (1)
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Moreover, if ` < k− 1, then the graph K ′(n, k) obtained by switching is noniso-
morphic with K(n, k).

Proof. Clearly V` has order h =
(
n−k+`

`

)
. Let x ∈ V (n, k) be a vertex of

K(n, v), which is not in V`. Suppose x is disjoint from {1, . . . , k − `}. Then
x has

(
n−2k−`

`

)
= h/2 neighbors in S`. If x has nonempty intersection with

{1, . . . , k − `}, then x is nonadjacent to all vertices of S`. Therefore V` is a
switching set, and K ′(n, k) is cospectral with K(n, k) by Proposition 1.1.

To see that these graphs are nonisomorphic, first observe that Equation 1
implies that

n− k + i

n− 2k + i
≤ 2 for i = 1, . . . , `.

In particular n−k+1 ≤ 2(n−2k+1), which yields n ≥ 3k−1. This implies that
for the considered values of n and k, the Kneser graph K(n, k) has diameter 2.
Consider the vertices v = {1, . . . , k} and u = {1, . . . , k−`−1, k−`+1, . . . , k+1}.
Then v ∈ V` and u 6∈ V`. Since ` < k − 1, u is adjacent to no vertex of V`, so
u and v are nonadjacent in K(n, k) and in K ′(n, k). We claim that there is no
vertex adjacent to both u and v. Suppose not, and let x be a common neighbor
of u and v. Then x 6∈ V` (since V` is a coclique). If ` ∈ x, x is adjacent to
no vertex of V` which will remain so after switching, contradiction. If ` 6∈ x,
then x ⊂ {k + 2, . . . , n} because x is adjacent to u. But then x is adjacent to
v before switching, but becomes nonadjacent after switching. This proves our
claim. Therefore K ′(n, k) has diameter at least 3, and hence is nonisomorphic
to K(n, k). �

If ` = 1 then we easily have that Equation 1 has a solution whenever n =
3k − 1. Note that for K(5, 2) (the Petersen graph), the set V1 is a Godsil-
McKay switching set, but ` = k − 1, and K ′(5, 2) is isomorphic with K(5, 2).

If ` = 2 we need integral solutions of the equation: 2n = 6k− 3 +
√

8k2 + 1.
So we want values of k > 1 for which 8k2 + 1 is a square. There are infinitely
many such values, being the solutions of the second order recurrence relation:
kt = 6kt−1 − kt−2 with k0 = 0 and k1 = 1. An explicit formula is k = b(3 +
2
√

2)i/4
√

2c, for integer i ≥ 2. The smallest solutions with k > 1 are (n, k) =
(25, 6), (153, 35), (899, 204) (see [11]).

For ` ≥ 3 we don’t know of any solution. We checked by computer ` = 3
and n ≤ 10000. After that, Blokhuis and De Weger [1] proved that there is no
solution with ` = 3. It was conjectured by Erdös [5] that for given ` ≥ 3 there
are only finitely many solutions to Equation 1.

We can conclude that the Kneser graph K(n, k) is not determined by its
spectrum if n = 8, k = 2, if n = 3k − 1, k ≥ 3, and if

n =
6k − 3 +

√
8k2 + 1

2
, k =

⌊
(3 + 2

√
2)i

4
√

2

⌋
, i = 2, 3, . . .

We mentioned that for k ≤ 2, (n, k) 6= (8, 2) and for k ≥ bn/2c the Kneser
graphs are determined by their spectrum. For all other values we don’t know
the answer. The smallest open case is (n, k) = (9, 3). We looked by computer
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for switching sets of order 4 and 6 in K(9, 3) and K(10, 3). There were no such
switching sets. However we found switching sets for the graph J{0,2}(9, 3) =
K2(9, 3). One is the affine plane of order 3. Another one, which generalizes to
arbitrary n and k ≥ 3 will be discussed in the next section.

3 Modulo-2 Kneser graphs

In this section we use Godsil-McKay switching in the Modulo-2 Kneser graphs
K2(n, k), to construct cospectral mates. Assume 3 ≤ k ≤ n − 3, define S =
{1, . . . , 6}, and R = {7, . . . , k + 3}. Then the following subsets of {1, . . . , n} are
vertices of K2(n, k).

v1 = {1, 2, 3} ∪R,

v2 = {1, 5, 6} ∪R,

v3 = {2, 4, 6} ∪R,

v4 = {3, 4, 5} ∪R,

v5 = {4, 5, 6} ∪R.

Proposition 3.1 The set V = {v1, v2, v3, v4} is a switching set of K2(n, k).

Proof. Any two vertices from V intersect in k − 2 elements, therefore the sub-
graph of K2(n, k) induced by V is a clique or a coclique, and therefore regular.
Consider an arbitrary vertex x ∈ V (n, k)\V . Every element from {1, . . . , k+3}
occurs an even number of times in a subset of V , therefore

∑
v∈V |v ∩ x| is

even. So x cannot have odd intersection with an odd number of vertices from
V . Hence x has 0, 2 or 4 neighbors in V , and therefore V in a switching set. �

Let G′ be the graph obtained from G = K2(n, k) by switching with respect to
V . The hard part of this section is to show that G and G′ are nonisomorphic.
To achieve this we need a couple of lemmas and definitions. For two vertices x
and y of a graph G, the number of common neighbors of x and y will be denoted
by λG(x, y). The common neighbor pattern of a vertex x of G is the multi-set
of all possible values of λG(x, y), where y runs through the vertex set of G.

Lemma 3.2 If G and G′ are isomorphic, then λG(v1, v5) = λG′(v1, v5).

Proof. Clearly all vertices in G have the same common neighbor pattern. If G
and G′ are isomorphic then also all vertices of G′ have this pattern. In particular,
v5 has the same common neighbor pattern before and after switching. From the
switching operation it easily follows that λG(v5, vi) = λG′(v5, vi) for i ≥ 5. Thus

{λG(v5, v1), λG(v5, v2), λG(v5, v3), λG(v5, v4)} =
{λG′(v5, v1), λG′(v5, v2), λG′(v5, v3), λG′(v5, v4)} .

Moreover, the permutation (1, 2, 3)(4, 5, 6) of {1, . . . , n} induces an automor-
phism of G that fixes v1 and v5, and cyclicly shifts (v2, v3, v4). Therefore
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λG(v5, v2) = λG(v5, v3) = λG(v5, v4). This automorphism remains an auto-
morphism after switching, and thus λG′(v5, v2) = λG′(v5, v3) = λG′(v5, v4).
Therefore λG(v5, v1) = λG′(v5, v1). �

Lemma 3.3 If λG(v1, v5) = λG′(v1, v5), then

(n, k) = (7, 3), (7, 4), (10, 3), (10, 7), (8, 4), (12, 4), or (12, 8).

Proof. First we compute

∆ = λG(v1, v5)− λG′(v1, v5).

If a vertex x of G is adjacent to all or no vertices of V , it will remain so after
switching, so x does not contribute to ∆. In particular, if |x ∩ S| = 0 or 6, x
does not contribute to ∆.

There are 6
(
n−6
k−1

)
vertices x with |x ∩ S| = 1, half of which is adjacent to v5

and not adjacent to v1, whilst none is adjacent to both. Therefore these vertices
contribute with −3

(
n−6
k−1

)
to ∆. Similarly, the 6

(
n−6
k−5

)
vertices x with |x∩S| = 5,

contribute to ∆ with −3
(
n−6
k−5

)
.

There are 15
(
n−6
k−2

)
vertices x with |x ∩ S| = 2. Out of these the ones whose

intersection with S is {1, 4} ,{2, 5}, or {3, 6} are adjacent to all or no vertices of
V . So 12

(
n−6
k−2

)
are adjacent to two vertices of V , and exactly half of these are

adjacent to v5 and v1, and none is adjacent to v5 and v1 after switching. So in
this case the contribution to ∆ is 6

(
n−6
k−2

)
. Similarly, vertices x with |x ∩ S| = 4

contribute with 6
(
n−6
k−4

)
.

If x∩S is one of the following {1, 2, 3}, {4, 5, 6}, {1, 5, 6}, {2, 3, 4}, {2, 4, 6},
{1, 3, 5}, {3, 4, 5}, {1, 2, 6}, then x is adjacent to all or no vertices of V . Of the
remaining 12

(
n−6
k−3

)
vertices x with |x ∩ S| = 3, half is adjacent to v5, but none

is adjacent to both v5 and v1. So in this case the contribution to ∆ is −6
(
n−6
k−3

)
.

Thus we have

∆ = −3
(

n− 6
k − 1

)
+ 6

(
n− 6
k − 2

)
− 6

(
n− 6
k − 3

)
+ 6

(
n− 6
k − 4

)
− 3

(
n− 6
k − 5

)
.

Assume that ∆ = 0. By use of straightforward computations we get:

(n− k − 1)(n− k − 2)(n− k − 3)(n− k − 4)
−2(n− k − 1)(n− k − 2)(n− k − 3)(k − 1)

+2(n− k − 1)(n− k − 2)(k − 1)(k − 2)
−2(n− k − 1)(k − 1)(k − 2)(k − 3)
+(k − 1)(k − 2)(k − 3)(k − 4) = 0.

Defining x = n− 2k leads to

x4 + x2(n2 − 15n + 40)− n3 + 14n2 − 56n + 64 = 0,
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a quadratic equation in x2. We are only interested in integral solution, in which
case the discriminant

(n2 − 15n + 40)2 + 4(n3 − 14n2 + 56n− 64) = (n2 − 13n + 40)2 + 64n− 256

is the square of an integer. Since this number is even, it must be at least
(n2 − 13n + 42)2, therefore 64n− 256 ≥ 2(2n2 − 26n + 82), hence n ≤ 24. For
all integer values of n and k with n ≤ 24 and 3 ≤ k ≤ n − 3 we computed ∆,
and found that ∆ = 0 only if (n, k) is one of the seven mentioned cases. �

Of the remaining seven cases, K2(7, 3) is the complement of K2(7, 4), and
K2(10, 3) and K2(12, 4) are isomorphic to K2(10, 7) and K2(12, 8), respectively.
So only the four cases (n, k) = (7, 3), (10, 3), (8, 4) and (12, 4) need to be ex-
amined. For these four graphs we have computed the spectra of the neighbor
graphs of v5 before and after switching. In all four cases switching changed the
spectrum, and therefore the graphs are nonisomorphic. Thus we have:

Theorem 3.4 For 3 ≤ k ≤ n − 3, the Modulo-2 Kneser graph K2(n, k) is not
determined by its spectrum.

The graphs K2(7, 3), K2(7, 4), K2(10, 3), and K2(12, 4) are strongly regular. A
graph G′ is cospectral with a strongly regular graph G if and only if G′ is strongly
regular with the same parameters as G. All strongly regular graphs with the
same parameters as K2(7, 3) have been generated by McKay and Spence [10].
This gives exactly 3853 cospectral mates for K2(7, 3) (and for K2(7, 4)), one
of these is the cospectral mate constructed above. Mathon and Street [9] have
constructed several strongly regular graphs with the parameters of K2(10, 3).
We don’t know if our cospectral mate is among these. However, as far as
we know, up till now only one strongly regular graph with the parameters of
K2(12, 4) has been constructed. So the cospectral mate of K2(12, 4) seems to
be a new strongly regular graph with parameters (495, 238, 109, 119).
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