53 research outputs found

    Modélisation au niveau RTL des attaques laser pour l'évaluation des circuits intégrés sécurisés et la conception de contremesures

    Get PDF
    Many aspects of our current life rely on the exchange of data through electronic media. Powerful encryption algorithms guarantee the security, privacy and authentication of these exchanges. Nevertheless, those algorithms are implemented in electronic devices that may be the target of attacks despite their proven robustness. Several means of attacking integrated circuits are reported in the literature (for instance analysis of the correlation between the processed data and power consumption). Among them, laser illumination of the device has been reported to be one important and effective mean to perform attacks. The principle is to illuminate the circuit by mean of a laser and then to induce an erroneous behavior.For instance, in so-called Differential Fault Analysis (DFA), an attacker can deduce the secret key used in the crypto-algorithms by comparing the faulty result and the correct one. Other types of attacks exist, also based on fault injection but not requiring a differential analysis; the safe error attacks or clocks attacks are such examples.The main goal of the PhD thesis was to provide efficient CAD tools to secure circuit designers in order to evaluate counter-measures against such laser attacks early in the design process. This thesis has been driven by two Grenoble INP laboratories: LCIS and TIMA. The work has been carried out in the frame of the collaborative ANR project LIESSE involving several other partners, including STMicroelectronics.A RT level model of laser effects has been developed, capable of emulating laser attacks. The fault model was used in order to evaluate several different secure cryptographic implementations through FPGA emulated fault injection campaigns. The injection campaigns were performed in collaboration with TIMA laboratory and they allowed to compare the results with other state of the art fault models. Furthermore, the approach was validated versus the layout of several circuits. The layout based validation allowed to quantify the effectiveness of the fault model to predict localized faults. Additionally, in collaboration with CMP (Centre Microélectronique de Provence) experimental laser fault injections has been performed on a state of the art STMicroelectronics IC and the results have been used for further validation of the fault model. Finally the validated fault model led to the development of an RTL (Register Transfer Level) countermeasure against laser attacks. The countermeasure was implemented and evaluated by fault injection campaigns according to the developed fault model, other state of the art fault models and versus layout information.De nombreux aspects de notre vie courante reposent sur l'échange de données grâce à des systèmes de communication électroniques. Des algorithmes de chiffrement puissants garantissent alors la sécurité, la confidentialité et l'authentification de ces échanges. Néanmoins, ces algorithmes sont implémentés dans des équipements qui peuvent être la cible d'attaques. Plusieurs attaques visant les circuits intégrés sont rapportées dans la littérature. Parmi celles-ci, les attaques laser ont été rapportées comme étant très efficace. Le principe consiste alors à illuminer le circuit au moyen d'un faisceau laser afin d'induire un comportement erroné et par analyse différentielle (DFA) afin de déduire des informations secrètes.L'objectif principal de cette thèse est de fournir des outils de CAO efficaces permettant de sécuriser les circuits en évaluant les contre-mesures proposées contre les attaques laser et cela très tôt dans le flot de conception.Cette thèse est effectuée dans le cadre d'une collaboration étroite entre deux laboratoires de Grenoble INP : le LCIS et le TIMA. Ce travail est également réalisé dans le cadre du projet ANR LIESSE impliquant plusieurs autres partenaires, dont notamment STMicroelectronics.Un modèle de faute au niveau RTL a été développé afin d’émuler des attaques laser. Ce modèle de faute a été utilisé pour évaluer différentes architectures cryptographiques sécurisées grâce à des campagnes d'injection de faute émulées sur FPGA.Ces campagnes d'injection ont été réalisées en collaboration avec le laboratoire TIMA et elles ont permis de comparer les résultats obtenus avec d'autres modèles de faute. De plus, l'approche a été validée en utilisant une description au niveau layout de plusieurs circuits. Cette validation a permis de quantifier l'efficacité du modèle de faute pour prévoir des fautes localisées. De plus, en collaboration avec le CMP (Centre de Microélectronique de Provence) des injections de faute laser expérimentales ont été réalisées sur des circuits intégrés récents de STMICROELECTRONICS et les résultats ont été utilisés pour valider le modèle de faute RTL.Finalement, ce modèle de faute RTL mène au développement d'une contremesure RTL contre les attaques laser. Cette contre-mesure a été mise en œuvre et évaluée par des campagnes de simulation de fautes avec le modèle de faute RTL et d'autres modèles de faute classiques

    Quantifiable Assurance: From IPs to Platforms

    Get PDF
    Hardware vulnerabilities are generally considered more difficult to fix than software ones because they are persistent after fabrication. Thus, it is crucial to assess the security and fix the vulnerabilities at earlier design phases, such as Register Transfer Level (RTL) and gate level. The focus of the existing security assessment techniques is mainly twofold. First, they check the security of Intellectual Property (IP) blocks separately. Second, they aim to assess the security against individual threats considering the threats are orthogonal. We argue that IP-level security assessment is not sufficient. Eventually, the IPs are placed in a platform, such as a system-on-chip (SoC), where each IP is surrounded by other IPs connected through glue logic and shared/private buses. Hence, we must develop a methodology to assess the platform-level security by considering both the IP-level security and the impact of the additional parameters introduced during platform integration. Another important factor to consider is that the threats are not always orthogonal. Improving security against one threat may affect the security against other threats. Hence, to build a secure platform, we must first answer the following questions: What additional parameters are introduced during the platform integration? How do we define and characterize the impact of these parameters on security? How do the mitigation techniques of one threat impact others? This paper aims to answer these important questions and proposes techniques for quantifiable assurance by quantitatively estimating and measuring the security of a platform at the pre-silicon stages. We also touch upon the term security optimization and present the challenges for future research directions

    A Comprehensive Survey on Non-Invasive Fault Injection Attacks

    Get PDF
    Non-invasive fault injection attacks have emerged as significant threats to a spectrum of microelectronic systems ranging from commodity devices to high-end customized processors. Unlike their invasive counterparts, these attacks are more affordable and can exploit system vulnerabilities without altering the hardware physically. Furthermore, certain non-invasive fault injection strategies allow for remote vulnerability exploitation without the requirement of physical proximity. However, existing studies lack extensive investigation into these attacks across diverse target platforms, threat models, emerging attack strategies, assessment frameworks, and mitigation approaches. In this paper, we provide a comprehensive overview of contemporary research on non-invasive fault injection attacks. Our objective is to consolidate and scrutinize the various techniques, methodologies, target systems susceptible to the attacks, and existing mitigation mechanisms advanced by the research community. Besides, we categorize attack strategies based on several aspects, present a detailed comparison among the categories, and highlight research challenges with future direction. By underlining and discussing the landscape of cutting-edge, non-invasive fault injection, we hope more researchers, designers, and security professionals examine the attacks further and take such threats into consideration while developing effective countermeasures

    SYNFI: Pre-Silicon Fault Analysis of an Open-Source Secure Element

    Get PDF
    Fault attacks are active, physical attacks that an adversary can leverage to alter the control-flow of embedded devices to gain access to sensitive information or bypass protection mechanisms. Due to the severity of these attacks, manufacturers deploy hardware-based fault defenses into security-critical systems, such as secure elements. The development of these countermeasures is a challenging task due to the complex interplay of circuit components and because contemporary design automation tools tend to optimize inserted structures away, thereby defeating their purpose. Hence, it is critical that such countermeasures are rigorously verified post-synthesis. Since classical functional verification techniques fall short of assessing the effectiveness of countermeasures (due to the circuit being analyzed when no faults are present), developers have to resort to methods capable of injecting faults in a simulation testbench or into a physical chip sample. However, developing test sequences to inject faults in simulation is an error-prone task and performing fault attacks on a chip requires specialized equipment and is incredibly time-consuming. Moreover, identifying the fault-vulnerable circuit is hard in both approaches, and fixing potential design flaws post-silicon is usually infeasible since that would require another tape-out. To that end, this paper introduces SYNFI, a formal pre-silicon fault verification framework that operates on synthesized netlists. SYNFI can be used to analyze the general effect of faults on the input-output relationship in a circuit and its fault countermeasures, and thus enables hardware designers to assess and verify the effectiveness of embedded countermeasures in a systematic and semi-automatic way. The framework automatically extracts sensitive parts of the circuit, induces faults into the extracted subcircuit, and analyzes the faults’ effects using formal methods. To demonstrate that SYNFI is capable of handling unmodified, industry-grade netlists synthesized with commercial and open tools, we analyze OpenTitan, the first opensource secure element. In our analysis, we identified critical security weaknesses in the unprotected AES block, developed targeted countermeasures, reassessed their security, and contributed these countermeasures back to the OpenTitan project. For other fault-hardened IP, such as the life cycle controller, we used SYNFI to confirm that existing countermeasures provide adequate protection

    Advances in Logic Locking: Past, Present, and Prospects

    Get PDF
    Logic locking is a design concealment mechanism for protecting the IPs integrated into modern System-on-Chip (SoC) architectures from a wide range of hardware security threats at the IC manufacturing supply chain. Logic locking primarily helps the designer to protect the IPs against reverse engineering, IP piracy, overproduction, and unauthorized activation. For more than a decade, the research studies that carried out on this paradigm has been immense, in which the applicability, feasibility, and efficacy of the logic locking have been investigated, including metrics to assess the efficacy, impact of locking in different levels of abstraction, threat model definition, resiliency against physical attacks, tampering, and the application of machine learning. However, the security and strength of existing logic locking techniques have been constantly questioned by sophisticated logical and physical attacks that evolve in sophistication at the same rate as logic locking countermeasure approaches. By providing a comprehensive definition regarding the metrics, assumptions, and principles of logic locking, in this survey paper, we categorize the existing defenses and attacks to capture the most benefit from the logic locking techniques for IP protection, and illuminating the need for and giving direction to future research studies in this topic. This survey paper serves as a guide to quickly navigate and identify the state-of-the-art that should be considered and investigated for further studies on logic locking techniques, helping IP vendors, SoC designers, and researchers to be informed of the principles, fundamentals, and properties of logic locking
    corecore