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Advances in Logic Locking:
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Abstract—Logic locking is a design concealment mechanism for protecting the IPs integrated into modern System-on-Chip (SoC)
architectures from a wide range of hardware security threats at the IC manufacturing supply chain. Logic locking primarily helps the
designer to protect the IPs against reverse engineering, IP piracy, overproduction, and unauthorized activation. For more than a decade,
the research studies that carried out on this paradigm has been immense, in which the applicability, feasibility, and efficacy of the
logic locking have been investigated, including metrics to assess the efficacy, impact of locking in different levels of abstraction, threat
model definition, resiliency against physical attacks, tampering, and the application of machine learning. However, the security and
strength of existing logic locking techniques have been constantly questioned by sophisticated logical and physical attacks that evolve
in sophistication at the same rate as logic locking countermeasure approaches. By providing a comprehensive definition regarding the
metrics, assumptions, and principles of logic locking, in this survey paper, we categorize the existing defenses and attacks to capture
the most benefit from the logic locking techniques for IP protection, and illuminating the need for and giving direction to future research
studies in this topic. This survey paper serves as a guide to quickly navigate and identify the state-of-the-art that should be considered
and investigated for further studies on logic locking techniques, helping IP vendors, SoC designers, and researchers to be informed of
the principles, fundamentals, and properties of logic locking.

Index Terms—IP Piracy, IC Supply Chain, IP Protection, Logic Locking.
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1 INTRODUCTION

MODERN integrated circuit (IC) supply chain has
evolved dramatically in the last two decades for mul-

tiple reasons, such as ever-increasing cost/complexity of IC
manufacturing, huge recurring cost of IC fab maintenance
and troubleshooting, aggressive time-to-market, the expedi-
tion of the IC supply chain flow, involvement of multiple
third-party Intellectual Property (IP) vendors, engagement
of cutting-edge technologies, being a primary forerunner in
the semiconductor market, etc. [1]. Over time, the economy
of scale has pushed for ever-increasing adoption of the IC
supply chain’s horizontal model. In the IC supply chain’s
horizontal model, separate entities fulfill various stages of
design, fabrication, testing, packaging, and integration of
ICs, forming a globally distributed chain.

Plunged in the globalization ocean of the IC supply
chain, given the complexity of originally implementing ma-
jor components of a chip, the design team will bring and
acquire multiple 3rd party IPs from numerous IP owners to
reduce time-to-market. Additionally, given the overall cost
of fabrication, wafer sort, dicing, packaging, package test,
and getting access to state-of-the-art technologies, perform-
ing most, if not all, these steps in the offshore facility may
be the preferred approach for design houses. Outsourcing
and the involvement of numerous stakeholders in various
stages of the supply chain dramatically reduce the cost and
time-to-market of the chip.

Retaining of being competitive is even getting worse
especially in the current post-pandemic market, where
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chip demand is exceeding foundry fab capacity, causing
tremendous shortages in the market, which even results in
increasing the share prices of major contract chipmakers,
including TSMC, UMC, and SMIC [2]. In such a market
with this unprecedented demand, we will face a more panic
IC design, implementation, manufacturing, and testing by
original equipment manufacturers (OEM), which is done
precariously to steal the market/contracts. So, with fewer
precautions taken by the OEMs to meet the market demand,
and by getting more globalization, OEMs and/or IP vendors
face a drastic reduction of the control and monitoring capa-
bility over the supply chain.

Despite the benefit achieved by the globalization of the
IC supply chain, after the involvement of multiple entities
within the IC supply chain with no reciprocal trust and
lack of reliable monitoring, the control of original man-
ufacturers and IP owners/vendors over the supply chain
will be reduced drastically, resulting in numerous hardware
security threats, including but not limited to IP piracy, IC
overproduction, and counterfeiting [3], [4].

To address threats associated with the horizontal IC
supply chains, a variety of design-for-trust countermeasures
have been investigated in the literature. Watermarking, IC
metering, IC camouflaging, and hardware obfuscation are
examples of passive to active design-for-trust countermea-
sures [5], [6], [7], [8]. In comparison to other Design-for-trust
countermeasures, logic locking as a proactive technique for
IP protection has garnered remarkable attention in recent
years, culminating in a plethora of research over the last
two decades on designing a variety of robust solutions at
different levels of abstraction.

Logic locking enables the IP/IC designers to provide
limited post-fabrication programmability to the fabricated
designs, thereby concealing the underlying functionality
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behind an ocean of options. The resultant locked circuit
functionality is governed by the logic locking secret, known
as the key, which is known only to authorized/trusted
entities, such as IP owners or original component man-
ufacturers (OCM), and by loading the correct key value,
the design house can unlock the circuit. The concept of
locking a circuit against malicious or unauthorized activities
was first introduced in Lock and Key technique [8], [9],
[10]. In this technique, a key-based mechanism has been
introduced that add programmability (randomness) to the
design-for-testability (DFT) sub-circuits (subchains) when
being accessed by an unauthorized user. Over time, this
programmability has been extended to other parts of the
design, like combinational parts [11], [12], sequential (non-
DFT) parts [13], [14], and even parametric/behavioral (non-
Boolean) aspects of the design [15]. With high applicability
and adaptability of logic locking, a wide range of logic
locking techniques currently being explored in both the
academic context and semiconductor industries, such as
Mentor Graphic’s TrustChain platform enabled by logic
locking and the newest Defense Advanced Research Projects
Agency (DARPA) project on Automatic Implementation of
Secure Silicon (AISS) [16], [17].

Logic locking countermeasures appeared as a promising
protection mechanism against IP piracy and IC overproduc-
tion. However, the development of attacks on logic locking
by white hatter researchers, known as logic de-obfuscation
attacks, is also essential for the evolution of the logic locking
paradigm. This helps the researchers to distinguish between
weak and robust countermeasures, highlighting the weak-
nesses of existing countermeasures and illuminating the
need for and giving direction to future research in this
area. Hence, for more than a decade, numerous studies
investigated logic locking in both defense and attack per-
spectives. It results in the evolution of both the attacks
and countermeasures to become increasingly sophisticated.
Furthermore, over time, the emergence of cutting-edge tech-
nologies, e.g. failure analysis (FA) equipment [18], [19], [20],
application of state-of-the-art approaches like the usage of
machine learning [21], [22], and deeper infiltration by the
adversaries even into trusted facilities [23], show that the
logic locking countermeasures are not yet as mature as what
promised from the theoretical point of view.

In this survey paper, we first holistically review the
direction of logic locking through the last decade, in both
the attack and defense sides. We will define the parameters,
characteristics, and assumptions, either directly or indirectly

affect the outcome of logic locking or the de-obfuscation
attacks. Then, we will categorize all defenses and attacks
and will evaluate each category based on all pre-defined
characteristics and parameters, separately. By providing a
very comprehensive comparison between different cate-
gories, in both the attack and defense sides, this paper helps
to delineate the future of logic locking and new possible
directions.

The paper is organized as follows. In Section 2, we
first provide all background knowledge, including pivotal
parameters, characterization, models, and assumptions on
logic locking helping us to have a better understanding
of the categorization provided through the paper. Then
Section 3 provides the details of state-of-the-art logic locking
techniques, different breeds, characteristics, etc. Section 4
will also cover all notable de-obfuscation attacks introduced
so far on logic locking. Then in Section 5, based on all
observations and details covered in this survey, we will
discuss the possible futuristic trends in this domain, and
finally, Section 6 concludes the paper.

2 BACKGROUND: PARAMETERS, MODELS, AND
ASSUMPTIONS IN LOGIC LOCKING

Fig. 1 demonstrates the main steps of modern IC design
flow, in which by starting from the design specification,
multiple parties will be involved horizontally in the process
of IC manufacturing [24], and by outsourcing that can
be engaged at different stages, the OEMs have the least
reliable form of control to their belongings (the circuitry
or the IP), which results in introducing these contracted
and mainly offshore entities as the untrusted parties. As
for malicious/untrusted entities, from each IC manufactur-
ing stage, per Fig. 2, given any representation of the IC,
including integrated design, physically-synthesized netlist,
layout, packaged IC, or IC under test, the functionality
can be reverse-engineered. The toughest yet possible form
of circuit reconstruction is usually referred to as physical
reverse-engineering, which can be done by malicious end-
users. Successful reverse-engineering, in any form, allows
the malicious (untrusted) entities to steal the IP/design
and/or illegally over-produce or re-use it.

Given such circumstances, in which the IP vendors or
design teams have to protect their belongings (IP and the
design (integrated)) against any form of reverse-engineering
demonstrated in Fig. 2, we are witnessing different broad
categories of design-for-trust techniques, which mainly are
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Fig. 2: Different Threat Models at Different Stages of IC Design Flow.

(i) IC camouflaging [7], [25], [26], [27], [28], (ii) split man-
ufacturing [29], [30], [31], [32], and (iii) logic locking [10],
[11], [12], [33], [34]. Considering the possibility of having
reverse-engineering at different layers (as demonstrated in
Fig. 2), both IC camouflaging and split manufacturing are
applicable to a subset of these threats. For instance, IC
camouflaging use high-structural similar logic gates (or
other physical structures such as dummy vias) with dif-
ferent functions. However, it is only effective against post-
manufacturing attempt(s) of reverse engineering (by the
malicious end-user), and it provides no limitations against a
foundry’s attempt at reverse engineering, as a foundry has
access to all masking layers and is not trapped by structural
ambiguity for being able to logically extract a netlist. Split
manufacturing, on the other hand, is the integration of the
transistors and lower metal layers (a.k.a. Front End Of Line
(FEOL) layers) fabricated in cutting-edge technology nodes
by an untrusted (and mostly offshore) high-end foundry,
with higher metal layers (a.k.a. Back End Of Line (BEOL)
layers) fabricated at the design house’s trusted low-end
foundry. This countermeasure alleviates the security risks
at the untrusted foundry. However, this methodology still
cannot protect the design against malicious end-users and
malicious insiders that threaten the confidentiality of the
proprietary technology. On the contrary, logic locking -if
implemented meticulously- can be a proactive hardware-
for-trust technique that can protect against all previously
mentioned threats through the IC supply chain.

2.1 Basic Definitions of Logic Locking
Logic locking1 is the capability of adding post-fabrication
programmability that could be added using some extra
gates, known as key-programmable gates (key gates) that
are driven from the secret of logic locking, i.e. the key. Logic
locking techniques could be implemented at different levels

1. Although the term logic locking indicates a specific (gate-level)
variation of hardware obfuscation, both terms have been widely used
interchangeably in the literature. In this paper, we also used logic locking
as the synonymous word for hardware obfuscation.
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case STATE is 

    when “0000”  => 

          if (key[0] = ‘1’) then 

                STATE <= “1010”;

          else STATE <= “0110”;

    when “0001” => 

          if (key[1] = ‘0’) then 

                STATE <= “1110”;

          else STATE <= “0111”;

    when “0110” => 

          if (key[2] = ‘1’) then 

                STATE <= “1011”;

          else STATE <= “0010”;

void shift_reg

(dp <4> in, cp <4> key, dp <4> out) {

     volatile reg<4> shift_temp;

     for (i = 4 ; i>0 ; i--) {

          #pragma HLS unroll
          shift_temp[i-1] = 

                          shift_temp[i] ^ key[i] 

     }

     out[3] = shift_temp[3];

     out[2] = shift_temp[2];

     out[1] = shift_temp[1];

     out [0] = shift_temp[0];

}
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Fig. 3: Logic Locking Examples at Different Levels of Abstraction: (a)
Layout-level Key-based Routing, (b) Transistor-level Key-based Basic
Gates, (c) Key-based Logic/Routing Gate-level, (d) RTL-level Key-
based FSM, (e) HLS-level Key-based Shift Register.

of abstraction. Fig. 3 demonstrates a simple example of
logic locking in different levels of abstraction. For instance,
at layout-level as shown in Fig. 3(a), the metal-insulator-
metal (MIM) structure, which connects two adjacent metal
layers, has been engaged as key-based programmable unit
for routing-based locking [35]. Table 1 shows general spec-
ification of logic locking at different layers of abstraction.
In general, moving from layout-level to RTL- or HLS-level
mitigates the implementation effort. However, at a lower
level of abstraction, finding a logic locking countermeasure
at lower overhead is easier to be achieved. Furthermore,
moving to a higher level of abstraction (like RTL and HLS)
can also provide some form of protection against a sub-
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TABLE 1: Logic Locking Specification at Different Abstraction Layers.

Circuit Granularity Overhead Implementation
Effort

Layout-level bitwise, wiring Near to zero High
Transistor-level bitwise, switching, wiring low High

Gate-level bitwise, logical variant Medium
RTL-level bitwise, operational, behavioral mid-high low

High-level (HLS) bitwise, operational, behavioral mid-high low

set of insider threats. Although at the moment, more than
90% of existing logic locking techniques are introduced
and implemented at the gate-level, mostly done as a post-
synthesis stage on the synthesized gate-level netlist in the
supply chain, we will demonstrate RTL/HLS-based logic
locking is one of the pivotal and widely-used current trends
in logic locking.

As bitwise form of logic locking is achievable at any
abstraction layer, based on the type of key gates, either used
for logic locking or obtained after synthesis/compilation,
we also can categorize logic locking into three main groups:
(1) XOR-based, (2) MUX-based, and (3) LUT-based. As their
names imply, they are using eXclusive-OR2, MUltipleXers,
Look-Up-Tables for obfuscation, respectively. Fig. 4 depicts
a simple example of each of these models, demonstrated
at gate-level abstraction. It is worth mentioning that except
layout-level and transistor-level locking that can be applied
for concealment of wiring or switching, for both RTL-level
and HLS-level that can target operational or behavioral, the
locking part in the resultant netlist generated after synthesis
has been implemented using one (or a combination) of these
three key-gates. During the last decade, different logic lock-
ing techniques commonly have engaged these gates with
different structures/functions for locking purposes. Based
on some properties of these key gates, such as location,
structure, count, intercorrelation, etc., the countermeasures
provide various levels of robustness against the existing de-
obfuscation attacks.

A crucial property of logic locking techniques is the
output corruptibility. Output corruptibility is a very effi-
cient measure of hiding the design’s functionality while the
logic locking is in place. Corruptibility means that when
an incorrect key is applied to the locked circuit, (1) for

2. For simplicity, we describe it as XOR-based. It can be trivially
extended to be XNOR-based as well.
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Fig. 4: Basic Gates used for Logic Locking, (a) Original, (b) correct key
(k0 = 0), (c) correct key (k0 = 1), (d) correct key (k0:3 = 0001).
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Fig. 5: Logic Locking Key Initialization from TPM.

how many output pins, and more importantly (2) for how
many of the input patterns, the primary output (PO) will
be corrupted once the key is incorrect. Usually, the output
corruption is measured in terms of the hamming distance
(HD) between the correct and the wrong output. Ideally, a
50% hamming distance is considered the highest deviation.
Based on the location, structure, count, intercorrelation, etc.,
of the key-based XORs/MUXs/LUTs that are engaged for
locking purposes, the corruptibility will change. Corrupt-
ibility directly affects the resiliency of the countermeasures
against the existing attacks. For instance, if the corruptibility
is low, it allows the adversary to look for a specific way
for only those POs affected or those specific input patterns
that produce output corruption. For a well-designed logic
locking countermeasure, the corruptibility must be high to
avoid such vulnerabilities.

As demonstrated in Fig. 4, the secret of logic locking,
referred to as the key, must be provided to recover the correct
functionality of the locked circuit. The key initialization of
logic locking must be accomplished at a trusted facility and
will be stored in TPM after the fabrication. Hence, the key
management infrastructure around logic locking determines
how the key will be initiated [36], [37], [38]. At power UP of
a locked IC, as a part of the boot process, the content of TPM
must be read and loaded into temporary registers connected
to the locked circuit3. Fig. 5 shows a simple example of
key initialization structure when logic locking is in place.
Building the competent and secure infrastructure for key
initiation4 has been studied tremendously in the literature
[36], [37], [38], [39], [40], [41], [42], whose details can be
found in [43]. This part of the design consists of (1) TPM that
consists of the logic locking key, (2) TPM wrapper which
serializes the logic locking key via parallel-in to serial-out
(P/S) module, and (3) temporary registers that stores the
logic locking key while the IC is power ON, and (4) all
infrastructure or customized cell required for securing the
logic around key registers.

3. This is when the logic locking key size is large enough (In the range
of 1k-2k key bits). For smaller key sizes, range of <200, although not
recommended for incurred routing and overhead challenges, the key
could be simultaneously loaded from the TPM with no shift process,
but still needs to be registered for testability purposes.

4. In these infrastructures, regardless of the logic locking technique,
different factors must be considered, e.g., the mechanism of key load-
ing, integrating of key registers with DFT structure, removing the key
leakage possibility through the scan chain, retaining the test coverage
at high rates, etc.



FUTURE HARDWARE SECURITY RESEARCH SERIES 5

2.2 Models/Assumptions in Attacks on Logic Locking
Based on the threat models and assumptions evaluated in
the de-obfuscation attacks on logic locking, the attacks could
be categorized into different sub-groups. From a malicious
end-user point-of-view, some of the attacks require access to
one additional activated version of the fabricated circuit (at-
least two in total: one for reverse-engineering and obtaining
the locked netlist, and one as the reference known as oracle).
This group of attacks could be referred to as oracle-guided
attacks. On the other hand, those attacks with no need for
having access to the oracle are called oracle-less attacks.
During the last decade, most of the attacks are members
of oracle-guided attacks. However, in many real cases, the
adversary cannot obtain one additional activated chip, and
the fulfillment of this requirement is hard to be achieved. So,
the adversary has to rely on only oracle-less attack models.

Many of the de-obfuscation attacks are invasive. They
require access to the netlist of the chip. Acquiring the netlist
of the chip could be accomplished differently at various
stages of the IC supply chain, as demonstrated in Fig. 2.
For instance, the malicious end-user as the adversary can
obtain the fabricated IC from the field/market, and then
reconstructs the netlist through physical reverse engineering
(orange path), in which the main steps of physical reverse
engineering are de-packaging, delayering, imaging, image
(of metal layers) processing, and re-constructing the netlist.
In this case, during the physical reverse engineering, since
the key is stored in TPM, it will be wiped out in the de-
packaging stage, and the obtained netlist would be locked.

Regarding the obtained (reverse-engineered) netlist, the
same happens in all other cases, and the extracted netlist
would be the locked version with no (correct) key. Another
example is when the adversary might be at the foundry,
and once they receive the GDSII of the chip from the design
house to be fabricated, the GDSII is provided without the
correct key (locked). In this case, although no delayering
or physical infiltration is required, GDSII is required to
be accessed and evaluated for netlist extraction, thus we
consider it a weak invasive model. Even while the adversary
is a rogue insider in the design house, except verification
engineer5 who needs the key for verification purposes, there
is no necessity of sharing the key for stages like integration,
synthesis, floorplanning, etc., showing that the obtained
design is available with no key.

Unlike invasive attacks, there exists a very limited
number of semi-invasive and non-invasive de-obfuscation
attacks. In these attacks, the adversary relies on optical
probing, such as electro-optical probing (EOP) and electro-
optical frequency management (EOFM). Such attacks focus
on pinpointing and probing the logic gates and flip-flops of
the circuits containing the secrets. So, regardless of the logic
locking technique used in the circuit, this group of attacks,
which will be discussed through the paper, would be able
to be a real threat for revealing the security assets like logic
locking key.

The availability of design-for-testability (DFT) structure,
i.e. scan chain architecture, for testability/debug purposes
in ICs opens a big door for the attackers to assess and
break logic locking techniques. Hence, many of the attacks

5. We assume that the verification team is always trusted.
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Fig. 6: Design for Testability (Scan Chain) Architecture in ICs.

on logic locking assume that the scan chain is OPEN. Fig.
6 shows a simplified scan architecture with two chains.
Assuming that the scan chain is OPEN, SE, SI, and SO pins
would be available. So, the adversary can reach (control and
observe) each combinational part, e.g. CL1 and CL2 in Fig.
6, whose FFs are part of the scan chain. The scan chain
access allows the adversary to divide the de-obfuscation
problem into a bunch of much smaller sub-problems (each
CL), and assess them independently. However, it is very
common for an IC to limit/restrict access to the scan chain
for security purposes. But, even while the access to the scan
chain is NOT OPEN (e.g. SO pins are burned), some other
de-obfuscation attacks have studied and demonstrated the
possibility of retrieving the correct key/functionality of the
locked circuit via primary inputs/outputs (PI/PO).

Furthermore, the adversary located at the foundry might
have the capability of priming and manipulating the GDSII
to insert hardware Trojan for different purposes, such as key
leakage through PO after the activation. The capability of
inserting stealthy Trojans around the logic locking circuitry
will be able to (1) disable the test access or (2) retrieve
the logic locking key through PO. Hence, the capability of
adding hardware Trojans when logic locking is in place, and
being non-detectable by Trojan detection techniques could
be a part of adversary capabilities that required meticulous
consideration by the designers.

3 LOGIC LOCKING: COUNTERMEASURES

Starting 2008, numerous logic locking techniques have been
introduced in the literature each trying to introduce a new
countermeasure against the existing de-obfuscation attacks.
Fig. 7 demonstrates a top view of existing notable logic
locking techniques introduced so far. Based on the pre-
viously discussed basics and definitions of logic locking,
we categorized them into different groups: (1) primitive,
(2) point function, (3) cyclic, (4) LUT/routing, (5) scan-
based locking/blocking, (6) sequential/FSM, (7) timing-
based, (8) eFPGA-based, and (9) high-level (RTL/HLS). The
main specification of any member of each countermeasure
is illustrated in Fig. 7. In this section, regardless of the



FUTURE HARDWARE SECURITY RESEARCH SERIES 6

Logic Locking (Defenses)

Fault-based Logic Locking (FLL)

Gate    XOR    oL     HgCr     ✘

Strong Logic Locking (SLL)
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Random Logic Locking (SLL)
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SARLock

Gate    XOR    oL     LwCr     ✘

AntiSAT

Gate   XOR    oL     LwCr     ✘

TTLock

Gate   XOR    oL     LwCr     ✘

SFLL (Stripped Functionality)

Gate    XOR/LUT   oL     LwCr     ✘

SFLL-Fault
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G-AntiSAT
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CASLock
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Cyclic Obfuscation

Gate  MUX/XOR  oM   HgCr   ✘

SRCLock
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CycSAT-unresolvable

Gate  MUX/XOR  oM   HgCr   ✘

Memristor-based Cyclic

Gate  MUX/XOR  oM   HgCr   ✘
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LOOPLock Cyclic
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LUT-based Obfuscation

Gate    LUT    oM     HgCr     ✘

LUT-Lock

Gate  MUX/LUT  oH   HgCr   ✘

MTJ-LUT Exploration 

Transistor  MUX/LUT  oH   HgCr   ✘

Dot Connection 

Transistor  MUX  oM  HgCr    ✘

Cross-Lock 

layout    MUX    oL     HgCr     ✘

Full-Lock 

Gate    MUX/LUT    oH     HgCr     ✘

InterLock 

Gate/Transistor    MUX    oM     HgCr     ✘

Dynamically Obfuscated Scan

Gate    XOR/LFSR    oM     HgCr     ✘

Encrypt-FF

Gate    XOR   oL     HgCr     ✘

Seql

Gate    MUX   oL     HgCr     ✘

Dynamic-EFF

Gate    MUX/LFSR   oM     HgCr     ✘

R-DFS + SLL

Gate    XOR/MUX    oL     HgCr     ✘

mR-DFS + RLL

Gate    XOR/MUX    oL     HgCr     ✘

kt-DFS + SLL

Gate    XOR/MUX    oL     HgCr     ✘

DisORC + TRLL

Gate    XOR/MUX    oL     HgCr     ✘

HARPOON

Gate    XOR/MUX    oM     HgCr     ✘

FSM Interlocking

Gate    XOR/MUX    oM     HgCr     ✘

State Deflection

Gate    XOR/MUX    oM     HgCr     ✘

DFSSD

Gate    XOR/MUX    oM     HgCr     ✘

JANUS

Gate    XOR/MUX    oM     HgCr     ✘

Delay and Logic Locking

Gate    XOR/MUX    oL     HgCr     ✘

Latch-based Logic Locking

Gate    XOR/MUX    oM     HgCr     ✘

Latch-based Logic Locking

Gate    XOR/MUX    oL     HgCr     ✘

TAO

RTL  XOR/MUX    oM     HgCr     ✘

ASSURE

RTL  XOR/MUX    oM     HgCr     ✘

HLock

HLS  XOR/MUX    oM     HgCr     ✘

HOST

HLS  XOR/MUX    oM     HgCr     ✘

Fortifying RTL

RTL-Gate  XOR/MUX  oM  HgCr   ✘

eFPGA redaction

Gate  LUT/MUX    oH     HgCr     ✘

eFPGA redaction exploration

Gate  LUT/MUX    oH     HgCr     ✘

Decoy

Gate  LUT/MUX    oH     HgCr     ✘

Bool: Boolean Obfusation Behv: Behavioral Obfusation

Cmb: Combinational Obfusation Seq: Sequential Obfuscation ✘: Already Broken

Primitive Obfuscation Point Function Obfusation

LwCr: Low Output Corruption HgCr: High Output Corruption

Combinational Cyclic Obfuscation

LUT and Routing ObfuscationScan Blockage/Obfuscation High-level Locking Sequential Obfuscation

Delay and Asynchrouns Obfuscation

XOR: XOR-based Obfusation MUX: MUX-based Obfusation LUT: LUT-based Obfusation

eFPGA IP redaction

2008

2009

2012

Strong Logic Locking (SLL)

Gate-level   XOR-based       ✘

Fault-based Logic Locking (FLL)

Gate-level    XOR-based       ✘

SFLL-Fault

Gate    XOR    oL     LwCr     ✘

SAT-hard Cyclic

Gate  MUX/XOR  oH   HgCr   ✘

LOOPLock Cyclic

Gate-level  MUX/XOR-based   ✘

MTJ-LUT Exploration 

Transistor -level  MUX/LUT -based       

Full-Lock  Gate-level   

MUX/LUT-based    ✘

Dynamically Obfuscated Scan

Gate-level    XOR/LFSR       ✘

Seql     Gate-level    

MUX-based       ✘

kt-DFS + SLL     Gate-level    

XOR/MUX-based   ✘

DisORC + TRLL Gate-level   

XOR/MUX-based     ✘ 

DFSSD     Gate-level  

XOR/MUX-based      ✘

Delay and Logic Locking

Gate-level    

XOR/MUX-based   ✘

Latch-based Logic 

Locking

Gate-level    

XOR/MUX-based   ✘

Data-flow Obfuscation

Gate-level   XOR/MUX-based      ✘ 

   

TAO       HLS-level  

XOR/MUX     ✘

ASSURE RTL-level

XOR/MUX-based   ✘

HLock       HLS-level  XOR/MUX -based    ✘

HOST       HLS-level       XOR/MUX-based   ✘

Fortifying RTL

RTL&Gate-level  XOR/MUX      ✘

eFPGA redaction exploration

Gate-level  LUT/MUX-based        ✘

Decoy

Gate  LUT/MUX    oH     HgCr     ✘

2015

2016

20172010 2013

FSM Interlocking

Gate-level    XOR/MUX-based    ✘

SARLock

Gate-level   XOR-based       ✘

AntiSAT

Gate-level   XOR-based      ✘

LUT-based Obfuscation

Gate-level    LUT-based    ✘

HARPOON Gate-level

  XOR/MUX-based    ✘

Random Logic Locking (RLL)

Gate-level   XOR-based       ✘

State Deflection   Gate-level

   XOR/MUX-based     ✘

Cyclic Obfuscation

Gate-level  MUX/XOR-based  ✘

TTLock

Gate-level   XOR-based       ✘

SFLL & SFLL-HD

Gate-level    XOR/LUT -based  ✘

2018

Encrypt-FF      Gate-level    

XOR-based     ✘

LUT-Lock      Gate-level

  MUX/LUT-based     ✘

Memristor-based Cyclic

Gate-level  MUX/XOR    ✘

2019

CycSAT-unresolvable

Gate-level  MUX/XOR-based  ✘

Dynamic-EFF      Gate-level    

MUX/LFSR-based     ✘

2020

CASLock   Gate-level   

XOR-based      ✘

SRCLock     Gate-level  

MUX/XOR-based     ✘

R-DFS + SLL     Gate-level    

XOR/MUX-based   ✘

Logic Locking (Defenses)

Dot Connection    

Transistor-level  MUX-based   ✘

Cross-Lock  Layout-level  

MUX-based      ✘

InterLock 

Gate/Transistor-level   

MUX-based    ✘

2021

mR-DFS + RLL    Gate-level    

XOR/MUX      ✘

G-AntiSAT   Gate-level   

XOR-based    ✘

2022

JANUS/HD      Gate-level    

XOR/LFSR-based       ✘

SFLL-HLS

HLS    XOR/LUT-based   ✘

eFPGA-based IP protection

Gate  LUT/MUX    oH     HgCr     ✘

Primitive Obfuscation Point Function Obfusation Combinational Cyclic Obfuscation

LUT and Routing ObfuscationScan Blockage/Obfuscation High-level Locking Sequential Obfuscation

Delay and Asynchrouns Obfuscation

eFPGA IP redaction

2008

2009

2012

Strong Logic Locking (SLL)

Gate-level   XOR-based       ✘

Fault-based Logic Locking (FLL)

Gate-level    XOR-based       ✘

SFLL-rem (Fault-based)

Gate    XOR    oL     LwCr     ✘

SAT-hard Cyclic   Gate-level  

MUX/XOR -based 

LOOPLock Cyclic

Gate-level  MUX/XOR-based   

MTJ-LUT Exploration              ✘

Transistor -level  MUX/LUT -based       

Full-Lock  Gate-level   

MUX/LUT-based    ✘

Dynamically Obfuscated Scan

Gate-level    XOR/LFSR       ✘

Seql     Gate-level    

XOR-based       ✘

kt-DFS + SLL     Gate-level    

XOR/MUX-based      

DisORC + TRLL Gate-level   

XOR/MUX-based  

DFSSD     Gate-level  

XOR/MUX-based     

Delay and Logic Locking

Gate-level    

XOR/MUX-based   ✘

Latch-based Logic 

Locking

Gate-level    

XOR/MUX-based   

Data-flow Obfuscation

Gate-level   XOR/MUX-based        

TAO       HLS-level  

XOR/MUX     ✘

ASSURE RTL-level

XOR/MUX-based   ✘

HLock       HLS-level  XOR/MUX -based   

HOST       HLS-level       XOR/MUX-based  

Fortifying RTL

RTL&Gate-level  XOR/MUX      

eFPGA redaction exploration  

Gate-level  LUT/MUX-based  

Decoy

Gate-level  LUT/MUX   

2015

2016

20172010 2013

FSM Interlocking

Gate-level    XOR/MUX-based    ✘

SARLock

Gate-level   XOR-based       ✘

AntiSAT

Gate-level   XOR-based      ✘

LUT-based Obfuscation

Gate-level    LUT-based    ✘

HARPOON Gate-level

  XOR/MUX-based    ✘

Random Logic Locking (RLL)

Gate-level   XOR-based       ✘

State Deflection   Gate-level

   XOR/MUX-based     ✘

Cyclic Obfuscation

Gate-level  MUX/XOR-based  ✘

TTLock

Gate-level   XOR-based       ✘

SFLL & SFLL-HD

Gate-level    XOR/LUT -based  ✘

2018

Encrypt-FF      Gate-level    

XOR-based     ✘

LUT-Lock      Gate-level

  MUX/LUT-based     

Memristor-based Cyclic

Gate-level  MUX/XOR    ✘

2019

CycSAT-unresolvable

Gate-level  MUX/XOR-based  ✘

Dynamic-EFF      Gate-level    

MUX/LFSR-based     ✘

2020

CASLock   Gate-level   

XOR-based      ✘

SRCLock     Gate-level  

MUX/XOR-based     ✘

R-DFS + SLL     Gate-level    

XOR/MUX-based   ✘

Dot Connection    

Transistor-level  MUX-based   ✘

Cross-Lock  Layout-level  

MUX-based      ✘

InterLock 

Gate/Transistor-level   

MUX-based    ✘

2021

mR-DFS + RLL    Gate-level    

XOR/MUX      ✘

G-AntiSAT   Gate-level   

XOR-based    ✘

2022

JANUS/HD      Gate-level    

XOR/MUX-based      

SFLL-HLS

HLS    XOR/LUT-based   ✘

eFPGA-based IP protection

Gate  LUT/MUX      

Primitive Locking Point Function Locking Combinational Cyclic Locking LUT and Routing Locking

Scan Blockage/Locking High-level Locking Sequential Locking

Timing-based (Clock) Locking

eFPGA IP redaction

O’Clock

RTL/Gate-level   XOR/MUX-based       

DOSC    Gate-level    XOR/

LFSR/MUX-based 

Logic Locking (Defenses)

LeGO     Gate-level  

XOR/MUX-based  

D-MUX        Gate-level  MUX-based  SARO

Gate-level  XOR-based  
UNSAIL   Gate-level  XOR-based  

Against ML-based Attacks ML-based Locking

Truly RLL           ✘ (if alone)

Gate-level   XOR-based    

Strong-AntiSAT

Gate-level   XOR-based       ✘
And-Tree Insertion

Gate-level   XOR-based       ✘

2005

Lock and Key    Gate-level    

XOR/MUX-based     ✘

Fig. 7: Logic Locking Techniques.

existing successful attacks, we will briefly review the main
specification of each logic locking category.

3.1 Primitive Logic Locking

The first group of countermeasures on combinational cir-
cuits is primitive techniques, including EPIC a.k.a. random
logic locking (RLL) [11], strong (interference-based) logic
locking (SLL) [12], and fault-based logic locking (FLL) [44].
For example, in EPIC (RLL), as its name implies, XOR-
based key gates will be inserted at some arbitrarily chosen
points in the circuit. All primitive techniques are XOR-
based and implemented at the gate level. Since a locked
circuit initiated with an incorrect key corrupts the PO by
propagating errors at POs, in SLL and FLL, some features of
automatic test pattern generation (ATPG) tools and testabil-
ity specification, such as controllability/observability, and
faults propagation/masking have been used for selecting
the location of XOR-based key gates. For instance, in SLL
[12], specifications like key-gates exclusion, isolation, cas-
cading (running), mutability, and convergence have been
examined, thereby by forming an interference graph of key
gates, the best candidates are selected for key gate insertion,
helping to enhance the strength of the logic locking against
testing-based attacks (in comparison with RLL). However,
using these features results in a notable reduction of cor-
ruptibility in SLL and FLL compared to that of RLL. In
addition, in [42], a truly RLL has been defined that relies on
XOR/XNOR insertion around inverters or buffers that is for
randomly locking of signal polarities. Table 2 summarizes
the specification of this breed of logic locking, showing
that all are attacked by the Boolean satisfiability (SAT) attack,
discussed in §4.1.2.

3.2 Point Function Logic Locking

The main aim of point function techniques is to minimize
the number of available input patterns showing that a

TABLE 2: Specification of Primitive Logic Locking Techniques.

Logic Locking Mechanism Overhead Corrupt Attacked by

RLL [11] Insertion of XOR key gates
at random places

■□□□□ ■■■ ATPG:§4.1.1,
SAT:§4.1.2

FLL [12] Insertion of XOR key gates
at lower testable points

■■□□□ ■■□ SAT:§4.1.2

SLL [44] Interference-based key gate
insertion (non-mutuable,
non-isolated, etc.)

■□□□□ ■■□ SAT:§4.1.2

TRLL∗1 [42] Insertion of XOR key gates
at buffers and inverters

■□□□□ ■■■ SAT:§4.1.2

∗1 Here TRLL is evaluated as an individual locking technique.

specific key is incorrect6. This breed was the first attempt
against the Boolean satisfiability (SAT) attack, which can
prune the keyspace by ruling out the incorrect keys in a fast-
convergence approach [45], [46]. In the literature, this group
of logic locking techniques is known as provably logic lock-
ing techniques. A logic locking technique is provably secure
once they are algorithmically resilient (cannot be broken)
against any type of I/O query-based attacks. SARLock and
Anti-SAT are the very first logic locking techniques in this
category [47], [48]. As demonstrated in Fig. 8(a), the main
structure of point function techniques relies on a flipping
(corrupting) circuitry that flips (corrupts) the limited PO(s)
only for a very limited number of input patterns (e.g., 1)
per each incorrect key. Also, a masking/restore (correcting)
circuitry has been engaged in point function techniques
to re-flip the impact of flipping circuitry, guaranteeing the
correct functionality when the correct key is applied.

Point function techniques could be applied on the
function-modified (stripped) version of the circuit, known
as stripped function logic locking [51]. In such techniques,
the original part is modified, and in at least one minterm, the
(affected) POs are ALWAYS flipped/corrupted. This is done

6. The best case is ONE input pattern per each incorrect key.
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TABLE 3: Specification of Point-Function Logic Locking Techniques.

Logic Locking Mechanism Overhead Corrupt Attacked∗1 by

SARLock [47] Adding flipping circuit to corrupt only ONE input pattern per
each incorrect key + masking circuit for correct key

■□□□□ ■□□ Removal:§4.1.3.1,
Approximate:§4.1.2.2, EDA-
based:§4.1.3.5, Bypass:§4.1.2.3

AntiSAT [48] Merging of ANDed two toggled functions (g & ḡ) as the flip-
ping+masking circuitry together

■□□□□ ■□□ SPS/Removal:§4.1.3.2,
Approximate:§4.1.2.2, EDA-
based:§4.1.3.5, Bypass:§4.1.2.3,

And-Tree [49] hard-coded AND trees as flipping circuitry + a generic masking
circuitry

■□□□□ ■□□ CASUnlock:§4.1.3.4, EDA-
based:§4.1.3.5

TTLock [50] SARLock + Stripping original circuit for one minterm ■■□□□ ■□□ EDA-based:§4.1.3.5,
GNNUnlock:§4.3.3,
FALL:§4.1.3.3

SFLL-HD [51] SARLock + Stripping original circuit for d = kCh minterms (h:
HD and k: key size)

■■□□□ variant (w.r.t. h) EDA-based:§4.1.3.5,
GNNUnlock:§4.3.3,
FALL:§4.1.3.3

SFLL-flex [51] Adding the flexibility of protecting user-defined input patterns
in a point-function manner + LUT-based restore circuitry

variant (w.r.t. user-
defined list)

variant (w.r.t. user-
defined list)

EDA-based:§4.1.3.5

SFLL-rem [52] removing logic for creating the corruption based on fault inser-
tion + a generic restore circuitry

■□□□□ variant (w.r.t. s-a fault
location)

EDA-based:§4.1.3.5

G-AntiSAT [53] Merging of ANDed two toggled functions (f & g) as the flip-
ping+masking circuitry together

■■□□□ variant (w.r.t. specs of
f & g)

EDA-based:§4.1.3.5

S-AntiSAT [54] App-level input pattern protection + generic restore circuitry variant (w.r.t. input
patterns list)

variant (w.r.t. input
patterns list)

EDA-based:§4.1.3.5

CAS-Lock [55] Variant AND-OR tree as variant corruptible circuitry ■■□□□ variant (w.r.t. OR gates) EDA-based:§4.1.3.5,
CASUnlock:§4.1.3.4

∗1 Per each logic locking technique, there might be more successful attacks than the ones listed here, and we listed the most notable ones directly applicable to.
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Fig. 8: The Structure of Point Function Techniques.

using cube stripper module as demonstrated in Fig. 8(b). The
restore unit builds the flipping and masking circuitry. In the
stripped function techniques, for each incorrect key, there
exists a very limited number of input patterns (e.g. 1) plus
one extra input pattern (caused by the stripped function)
that corrupts the POs (double point corruption). In fact,
approaches with no stripping accomplish the flipping at one
point (one input pattern per an incorrect key), while others
with enabled stripping do the flipping at two points.

Point function techniques could be categorized as XOR-
based techniques. In SFLL-flex [51], LUTs are also en-
gaged for minterm generations of corruption/correcting
sub-circuits. Except for SFLL-HLS [56] that is implemented
at the high-level (HLS), all techniques in this category are
implemented at the gate level (post-synthesis). Since the
point function sub-circuitry will be added for a limited (e.g.
1) number of POs and corrupts the PO for a very limited
number of input patterns, the corruptibility of this breed
of obfuscation is very low. However, there also exist more
recent point function techniques that try to overcome the

low corruptibility of such techniques with the introduction
of different flipping (corrupting) circuits [53], [54], [55].
Table 3 summarizes the main specification of point function
techniques. As shown, two new studies, i.e., sparse prime
implication and Valkyrie (EDA-based) break all the variants
in this group, showing the big structural issue behind this
breed of logic locking.

3.2.1 Compound Logic Locking
The point function logic locking limits the corruption per
each incorrect key to (i) a very little set of input patterns,
and (ii) observable at a very little set of POs7. Hence, this
breed suffers from a very low output corruption that sig-
nificantly undermines its strength. Hence, a new paradigm
was first introduced after point function techniques, in
which the composition of different logic locking has been
discussed, known as compound logic locking techniques. In
compound logic locking, two or more different logic locking
techniques can be used and applied simultaneously to a
circuit if and only if none of them weaken the other ones. For
instance, since the locking parts of the point function tech-
niques are completely decoupled from the original part, as
demonstrated in Fig. 8, and since the primitive logic locking
techniques provides high corruptibility, as demonstrated in
Fig. 9, these two can easily be combined to mitigate the low-
corruptibility issue of point function techniques, and also
getting the benefit of high resiliency from point function
techniques.

The concept of compound logic locking can be used for
any feasible combination. For instance, in [57], a bilateral
logic encryption has been introduced in which where a

7. The best case (in terms of enhancing the security) is that ONE
input pattern can only rule out ONE incorrect key, and the corruption
per each incorrect key can be witnessed at only ONE PO.
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Fig. 9: The Structure of Compound Logic Locking Techniques.

TABLE 4: Specification of Compound Logic Locking Techniques∗1.

Logic
Locking

Mechanism Overhead Corrupt Attacked by

X+Y Combination of prim-
itive + point function

■■□□□ ■■■ compound
attacks:§4.1.2.4,
Approximate: §4.1.2.2

∗1: This table is only for primitive + point function techniques.
X: Any primitive logic locking technique
Y: Any point-function logic locking technique

low-corruption logic locking technique and a routing-based
approach have been integrated to show the effectiveness of
compound logic locking against a wider range of attacks.
Table 4 shows general definition of compound techniques.

3.3 Cyclic-based Logic Locking
As its name implies and as shown in Fig. 10, cyclic logic
locking will add key gates that control the possibility
of adding/removing combinational cycles into the circuit.
Having combinational cycles will add difficulties for the
CAD tools (like synthesis and timing analysis) to deal with
such circuits. Many CAD tools do not allow the designers
to have combinational cycles in the circuit. However, the
designer would be able to handle the combinational cyclic
paths during the physical design in a manual manner, like
adding constraints for false paths. Hence, combinational
cycles are used commonly as a means of logic locking
recently. In cyclic-based logic locking, different approaches
are considered through different studies:
(i) Adding false cycles: In this case, similar to examples
demonstrated in Fig. 10, some combinational cycles have
been added into the design that should not be remained
once the circuit is unlocked [58]. Having such cycles in the
design creates uncertainty, glitches, and malfunction while
the correct key is not provided.
(ii) Adding misguiding combinational cycles: Since the design
must have no combinational cycles by itself, some ap-
proaches engage a set of valid misguiding combinational
cycles, such as Rivest circuits [59] as shown in Fig. 11, to
violate such basic assumption [60], [61], in which cycles
are part of the original functionality. However, template-
based logic sub-circuits will be used for building this kind
of cycle in a design that makes them vulnerable to structural
analysis.
(iii) Exponential increase of cycles: To increase the complexity
of cyclic-based logic locking, some studies have been eval-
uated the possibility and techniques that can be applied
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Fig. 11: Rivest Sub-circuit as Decoy-based Cyclic Logic Locking.

to exponentially increase the number of cycles w.r.t. the
number of feedbacks [60], [62]. Exponentially increasing the
number of cycles, will exponentially enhance the complexity
of cyclic analysis. However, the existing approaches will
also raise the area overhead significantly.

We are also witnessing some other studies that are using
other techniques for increasing the complexity of cyclic-
based logic locking, such as the implementation of cyclic-
locking using memristor-CMOS logic circuits, and inserting
cycle pairs (duplicating sub-circuits), which are useful for
hiding and misguiding the adversary for any kind of analy-
sis on added/inserted cycles [63], [64], [65].

TABLE 5: Specification of Cyclic Logic Locking Techniques.

Logic Lock-
ing

Mechanism Overhead Corrupt Attacked by

Cyclic [58] adding false combinational
cycles into the circuit

■■□□□ ■■■ CycSAT:§4.1.2.5

SRCLock
[60]

exponentially increasing
false combinational cycles
w.r.t. the number of
feedbacks

■■■□□ ■■■ CP&SAT:§4.1.2.7

memristor-
based cyclic
[63]

unresolvable combina-
tional cycles + memristor
cells for camouflaging
cycles

■■□□□ ■■■ iCySAT:§4.1.2.5

CycSAT-
Unresolvable
[61]

unresolvable combina-
tional cycles

■■□□□ ■■■ iCySAT:§4.1.2.5,
BeSAT:§4.1.2.5

SAT-hard
cyclic [62]

exponentially increasing
false combinational cycles
w.r.t. the number of
feedbacks + rivest cycles +
non-occuring cycles

■■■□□ ■■■

NONE

LOOPLock
[64]

creating pairs of cycles that
increasing the complexity
of cycle analysis

■■□□□ ■■■

NONE

In general, since re-routing is required to generate the
combinational cycles, all cyclic logic locking techniques use
key-based MUX gates at different levels of abstraction. Also,
in some cases, key-based XOR gates are used to build
the model. All existing cyclic logic locking techniques are
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implemented at the gate level or transistor level. Since re-
routing increases the correlation of wiring in different logic
cones of the circuit, the corruptibility of this group of logic
locking would be high. Table 5 shows the main specification
of this breed of logic locking. Although some of these
techniques are not broken so far, they are not considered
as a mainstream in logic locking since it results in challeng-
ing industry adoption specifically in implementation and
physical based EDA tools.

3.4 LUT/Routing-based Logic Locking

Some logic locking techniques derive the benefit from the
full configurability of look-up-tables (LUTs). Relying on the
fact that a u-input LUT can build all 22

u

possible functions,
as demonstrated in Fig. 4, in existing LUT-based logic
locking techniques, some actual logic gates of the original
design are replaced with LUTs (same size or larger LUTs),
and the initialization (configuration) values of the LUTs
is considered as the secret (key) and would be initiated
after the fabrication. In existing LUT-based logic locking,
the followings have been investigated as the crucial factors
[66], [67], [68], [69]:
(i) Size of LUTs: A point-to-point LUT-based replacement has
been implemented in the existing LUT-based techniques, in
which each selected gate will be replaced by a same-size
(LUT2x1, LUT2x2 in Fig. 12) or larger (LUT3x1, LUT4x1,
and LUT4x2 in Fig. 12) LUTs. Enlarging LUTs (Increasing
the number of inputs) will exponentially increase the com-
plexity of the logic locked circuit, however, it also increase
the area/power overhead exponentially. In enlarged LUTs,
the extra (unused) inputs can be used as the key to expand
the complexity space (e.g., k0:2 in Fig. 12).
(ii) Number of LUTs: The number of gates selected to be
replaced with same-size/larger LUTs directly affects the
complexity of the logic locked circuit, either functionally or
structurally. However, similar to the side-effect of LUT size,
using more LUTs will significantly increase the overhead of
the logic locking approach.
(iii) Replacement strategy: The location of replacement in
LUT-based logic locking plays a crucial role in making
the resultant circuit more complex in the domain of logic
locking. The work LUT-lock [67] has investigated how a
good replacement strategy can render a higher grade of
complexity while a heuristic approach has been used.

In general, although LUT-based logic locking can pro-
vide more reliable resilience against existing attacks, it ex-
tremely suffers from incurred overhead, which limits the
application of this breed of logic locking. The Existing LUT-
based techniques are all implemented at the gate level or
transistor level and based on the placement strategies used
for LUT insertion, the corruptibility of these techniques is
also high.

Similar to LUT-based logic locking, which can be built
using a MUX-based (tree of MUXes) structure, numerous
studies have exploited the concept of MUXes for another
breed of logic locking, known as routing-based locking.
In routing-based locking, false/decoy/invalid paths could
be added using re-routing modules in different levels of
abstraction. For instance, at the gate level of abstraction,
MUXes could be used for re-routing, and at layout-level,
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Fig. 12: LUT-based Logic Locking Technique.
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Fig. 13: Routing-based Locking Technique.

metal-insulator-metal (MIM) could be used for re-routing
between metal layers as a means of logic locking.

Dealing with the complexity of the routing modules has
been evaluated for a long time as a part of physical P&R in
both FPGAs/ASICs [70], [71], [72]. Hence, this complexity
is borrowed here as a means of locking in these techniques.
But the concept of routing-based locking was firstly derived
from the usage of wiring/connection concealment in split-
manufacturing techniques [73], [74], [75]. In these tech-
niques, different forms of re-routing, such as perturbation,
lifting nets, etc., have been engaged to hide the connections
between BEOL and FEOL. Hence, a similar approach has
been used in a circuit for locking purposes. For instance, Fig.
13 shows two different routing-based techniques, i.e. Cross-
lock [76] and full-lock [77]. As demonstrated, in routing-
based locking, some wires of the design will be selected and
the routing module, whose configuration is the locking key,
will conceal the connection between sources and sinks.

Unlike point function techniques that decrease the prun-
ing power of the existing I/O query-based attacks (e.g.,
the SAT attack) by exponentially increasing the required
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number of I/O pairs, routing-based techniques show how
a routing module can extremely increase the complexity of
design per each stimulus [77]. Routing-based locking tech-
niques have investigated different factors that significantly
affect the outcome of this breed of locking solutions as listed
here:

(i) Abstraction Layer of Implementation: Routing modules can
be implemented at different layers of abstraction. Mov-
ing towards lower levels (e.g., layout) significantly in-
creases the implementation efforts and challenges, however,
if implemented correctly at lower levels, it incurs con-
siderably lower overhead. Techniques like Cross-lock and
interconnect-based locking are implemented at the layout
level [76], [78]. Full-lock implements routing module at the
gate level [77]. An extension on Full-lock is also imple-
mented at gate-level [79], and Interlock is also implemented
at both gate level and transistor-level [80].

(iii) Topology of Routing Modules: Once a routing module is
in place, the topology of interconnections is a determining
characteristic. Hence, in routing-based locking techniques,
different topologies have been used, such as crossbar in
[76], [78], logarithmic networks in [77], [79], [80], [81], and
irregular [82]. The type of topology can directly affect the re-
siliency of the countermeasure against different attacks. For
instance, logarithmic networks with deeper layers can ex-
tremely increase the complexity of the model in any graph-
based and routing-based analysis. However, the topology
can negatively affect the overhead, particularly delay of
timing paths selected for routing locking.

(ii) Cycle-involvement in Routing-based Locking: Based on the
wire selection in routing-based locking techniques, cycles
might be created once an incorrect key will be applied.
For instance, as shown in Fig. 13, the output of g2/LUT22
is back and connected to the input of routing module.
Although the creation of cycles will increase the complexity
of locking techniques, to avoid any design/implementation
flow challenges dealing with cycles, in more recent tech-
niques [79], [80], since actual timing paths of the design are
embedded into routing modules, there exists no possibility
of cycle creation.

(iv) Logic Embedding in Routing Module: To increase the com-
plexity of routing modules, recent works [77], [79], [80] have
investigated the embedding of logic gates into (switch) lay-
ers of routing module. For instance, switch boxes of LogNet
in Fig. 13(b) provides configurable inversion. Hence, Gates
like g1 and g5 is toggled (stripped) and the LogNet will
recover the correct logic values. Hence, in these techniques,
with the full configuration capability, stripping the func-
tionality of the original circuit would be an extra available
option.

Table 6 summarizes the specification of routing-based
locking countermeasures. In comparison with other breeds,
routing-based locking will incur higher overhead. However,
more recent studies, such as coarse-grained eFPGA-based IP
redaction (§3.9) show that this form of locking that inherits
full reconfigurability for locking purposes still has signifi-
cant potential as a means of logic locking. As demonstrated,
all existing routing-based locking solutions are broken,
mostly by very recent ML-based attacks described in 4.3.3.

TABLE 6: Specification of Routing-based Locking Techniques.

Logic Locking Mechanism Overhead Corrupt Attacked by

Cross-Lock
[76]

Insertion of key-based
layout-level cross-bar with
combinational cycles

■■□□□ ■■■ CP&SAT,
NNgSAT:
§4.1.2.7

Dot Connec-
tion [78]

Insertion of key-based
layout-level cross-bar with
combinational cycles

■■□□□ ■■■ CP&SAT,
NNgSAT:
§4.1.2.7

Full-Lock [67] Insertion of gate-level key-
based logarithmic routing
modules with inversion
stripping

■■■■■ ■■■ CP&SAT,
NNgSAT:
§4.1.2.7

Modeling
routing [67]

Insertion of gate-level key-
based logarithmic routing
modules with logic embed-
ded

■■■■■ ■■■ Untangle:
§4.3.3

InterLock [67] Insertion of gate or
transistor-level key-
based logarithmic routing
modules with logic
embedded + stripping

■■■□□ ■■■ Untangle:
§4.3.3

3.5 Scan Chain Logic Locking/Blocking

Providing the access to the internal parts of the circuit
for test/debug purposes is almost inevitable in mod-
ern/complex ICs. As discussed previously in §2.2, design-
for-testability (DFT)-based synthesis in ASIC design flow
provides this capability for the designers by adding scan
(register) chain structures into the circuit. The DFT-based
scan chain architecture has been widely used in most mod-
ern ICs. Even in cryptographic circuits, which have very
sensitive information, such as encryption key, to have a
high fault coverage, the test/debug step requires access to
the scan chain to control and observe the internal states of
the design-under-test (DUT). The full controllability and ob-
servability requirement in DFT-based (scan-based) testing,
however, might pose security threats to ICs with security
assets, such as locked circuits that keep their own secret,
i.e., the unlocking key. Hence, DFT access allows the ad-
versary to split and divide the bigger problem into a set of
independent smaller problems by splitting the whole circuit
into c smaller and only combinational logic parts, whose
access to their register elements are available via scan chains
(e.g., CL1 and CL2 of Fig. 6 through {SI1,SE1,SO1} and
{SI2,SE2,SO2}, respectively). We further demonstrate that
scan chain access availability is one of the main assumptions
of the SAT attack, discussed in §4.1.2.1.

Since restricting the scan chain access can enlarge the
problem space domain from small combinational sub-
circuits to a whole large sequential circuit, a breed of logic
locking techniques focus on different methodologies that
only and primarily target the locking of the scan chain
architecture, known as scan-based logic locking techniques
[83], [84], [85], [86], [87], [88]. By using these techniques,
the scan chain pins, i.e. scan-enable (SE), scan-in (SI), and
particularly scan-out (SO) would be limited/restricted for
any unauthorized access, and these approaches do not allow
the adversary to get the benefit these pins, and they lose
the chance of direct/independent controlling/observing the
combinational parts of the circuit. Similar to scan-based
logic locking techniques, some approaches BLOCK the ac-
cess to the scan chain pins, particularly SO [36], [37], [38],
[40], [42], called scan blockage techniques. The scan block-
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(b) Scan Blockage

Fig. 14: Scan Chain Locking/Blocking Technique.

age will happen based on a sequence of specific operations
in the scan chain structure. For example, assuming that
(part of) the key is loaded into the scan chain after acti-
vation, switching SE to 1 (enabling shift mode) might be
perilous. Hence, shift operation would be limited after the
activation. Fig. 14 shows the top view of both scan locking
and scan blockage techniques. Compared to the scan-based
logic locking techniques, the scan blockage techniques incur
less area overhead. However, they have some limitations
during the test phase, such as limiting the functional test
and increasing the test time and complexity.

The following describes the main specifications and prin-
ciples of scan chain locking/blockage techniques:
(i) Combination with Functional Logic Locking: Scan chain
locking/blockage is orthogonal to other functional logic
locking techniques. In fact, the scan-based logic locking
techniques only lock the scan structure. So, even while an
incorrect key is initiated in the circuit, it only affects the scan
chain functionality and has no impact on the functionality
of the circuit. Hence, these techniques need to be combined
with one of the other discussed combinational logic locking
techniques, and the existing techniques mostly use one of
the primitive logic locking techniques. Some techniques
use RLL [37], some other techniques use SLL [38], [83],
[89], and one scan blockage technique is combined with
truly-RLL (TRLL) [42]. Hence, the corruptibility of these
approaches is dependent on the engaged functional logic
locking techniques.
(ii) Implementation Abstraction Layer: Since scan chain lock-
ing/blockage techniques must be applied to the scan
chain structure, they only could be done after design-for-
testability (DFT) synthesis. So, these techniques could be
implemented at the gate level, the transistor level, or the
layout level. All the existing techniques are implemented at
the gate level.
(iii) Test Coverage/Overhead: Scan chain locking/blockage can
negatively affect the testability metrics, e.g., test coverage,
resulting in the reduction of reliability of the circuits. Hence,
one crucial criterion in this breed is to keep the test coverage
as close as possible to that of the original circuit before scan
locking/blocking. Additionally, in some of the blockage
techniques, extra test pins have been added to support high
testability coverage and efficient resiliency [36], [37], [38],
[40]. However, adding extra pins can extremely increase the
die size of the manufactured chip.

TABLE 7: Specification of Scan-based Locking/Blocking Techniques.

Logic Locking Type Mechanism Overhead Attacked by

DOS [83], [89] Locking
by PRNG

Dynamic LFSR-based Shuf-
fling and Toggling with
Shadow Scan Insertion

■■□□□ ScanSAT:
§4.2.3.1

Encrypt-FF
[84]

Locking
by XOR

XOR-based key gate inser-
tion within the scan chain

■□□□□ ScanSAT:
§4.2.3.1

Robust design
for security
(R-DFS) [40]

Blockage A custom secure DFF for
key storage + SO blockage
circuitry for post-activation

■■□□□ shift&leak:
§4.2.3.3

dynamic-EFF
[85]

Locking
by PRNG

Adding PRNG and mal-
functioning by PRNG for
incorrect keys

■■□□□ DynUnlock:
§4.2.3.2

Extended
R-DFS [37]

Blockage A custom secure DFF for
key storage + SO blockage
circuitry for post-activation

■■□□□ shift&leak:
§4.2.3.3

seql [86] Locking
by XOR

XOR-based key gate in-
sertion between functional
and scan chain paths

■□□□□ ScanSAT:
§4.2.3.1

kt-DFS [38] Blockage A custom secure DFF for
key storage + SO blockage
circuitry for post-activation

■■□□□

NONE

DisORC [42] Blockage SO Blockage circuitry with
full shift disable after acti-
vation + disabling shift +
oracle dishonesty

■■□□□

NONE

DOSC [88] Locking
by PRNG
+ counter

Dynamic LFSR-based Shuf-
fling and Toggling with
Shadow Scan Insertion

■■□□□

NONE

(iv) Locking Operation Method: In scan chain locking, the
locking part can operate statically or dynamically. In the dy-
namic approach, components like LFSR and/or PRNG have
been engaged that changes the configuration at run-time
[83], [85], [88], [89]. However, in techniques with statically
scan chain locking [84], [86], the configuration is always
fixed. The dynamicity -if implemented correctly- is always
a huge bar for the adversary, specifically, once they rely
on I/O query-based attacks, and dynamicity invalidates all
learned information acquired on previous acts and enforces
the adversary to restart the process.
(v) The Security of Scan Chain Architecture: Scan chain lock-
ing/blocking brings some modification into the structure
of scan chain(s). This modification particularly comes from
scan blockage techniques. For instance, with a more robust
scan chain architecture, the designer might integrate all
regular FFs and key-dedicated FFs into a common scan
chain. However, this can undermine the security of the
logic locking key, regardless of locking techniques, if a
leakage possibility could be found through the modified
scan chain structure or cells. So, the security of the scan
chain must be evaluated and guaranteed while scan chain
locking/blockage is applied to the circuit.

Table 7 summarizes the main specification of existing
scan-based locking/blocking techniques. At the moment, a
combination of one scan-based logic locking or scan block-
age with functional logic locking techniques shows high
resiliency and received significant attention. Scan-based
protection extremely increases the size and complexity of
formulation for any attacking model on logic locking. We
further discuss that this type of locking is an integral part
of reliable and security-guaranteed logic locking techniques
against all existing threats.
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3.6 FSM/Sequential Logic Locking

One basic assumption in all previously discussed logic lock-
ing techniques’ threat model is that the availability of the
scan chain is NOT restricted. However, in a notable portion
of real ICs/SoCs, this availability is blocked for critical secu-
rity reasons. Assuming that the scan chain access is already
limited/restricted, some logic locking techniques focus on
locking the whole circuit, which could be considered as
sequential logic locking techniques. Most of them focus on
the locking of the state (FSM) of the circuit. In existing
FSM locking techniques [13], [14], [90], [91], [92], [93], [94],
[95], the original FSM has been targeted and altered in
different ways, as demonstrated in Fig. 15: (i) adding few
extra sets (modes) of states to the original state transition
graph (STG), such as locking/authentication mode states,
(ii) adding traps such as black hole, (iii) altering the deepest
states of the circuit that makes the timing analysis longer
and more complex, (iv) adding shadow states which acts
like decoy states, and (v) making the FSM combinational
fan-in-cone sub-circuitry key-dependent.

In the primitive FSM-based logic locking techniques,
there exists no dedicated port/pin/wiring for key val-
ues, and the traversal sequence of these extra added
states (sequence of input patterns), like traversal of lock-
ing/authentication modes, is the locking/authentication
key, and a correct traversal allows the user to reach and
traverse the original part of the FSM. Hence, unlike all
other logic locking techniques, key inputs are implicitly
added, and we can consider this form of logic locking as
key-less logic locking. Also, the output generated by the
correct traversal of authentication states serves as a water-
mark. In addition to these groups, a set of studies evaluate
FSM locking without adding any extra state. However, the
complexity and overhead (area) of this approach is higher
compared to other schemes [92]. More recent FSM-based
logic locking studies also evaluate the combination of state
traversal and key-based logic locking [93], [94], [95]. Table
8 summarizes the main specifications of existing FSM-based
logic locking techniques.

3.7 Behavioral Timing-based Locking

Unlike all previous techniques that focus on the function-
ality of the design, some logic locking techniques went
one step further and lock the behavioral properties of the
circuit, such as timing. For example, DLL [15] introduces
a custom tunable delay and logic gate, demonstrated in
Fig. 16(a) which could have different delays based on the
value of the key. Since most of the CAD tools are dealing
with Boolean nature, it would be hard for the adversary
to deal with this form of ambiguity. Some more recent
techniques use multi-cycle paths, key-controlled clock han-
dling, and latch-based structure, in which the timing of
the circuit would be changed in an asynchronous/clock-
gated manner [97], [98], [99], [100], [101]. For instance, in
latch-based and asynchronous-based techniques [99], [100],
the time of storage of data in the FFs are asynchronized
and controlled with the key. More particularly in data flow
obfuscation [100], as demonstrated in Fig. 16(c), key-based c-
element of asynchronous circuits has been used to control
the timing/flow of data within the design. So, without
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(a) HARPOON [13]
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(b) Dynamic State Deflection [91]
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(c) Hardware Active Metering [90]
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(d) Interlocking Obfuscation [14]

Fig. 15: FSM Locking Technique.

TABLE 8: Specification of FSM-based Logic Locking Techniques.

Logic Locking Mechanism Overhead Corrupt Attacked by

HARPOON
[13]

Adding extra authenti-
cation and obfuscation
states before the origi-
nal initial state

variant
(w.r.t. size
of added
states)

High at new
extra states

RANE:4.2.2.2,
Fun-SAT:
4.2.2.3

FSM
Interlocking
[14]

Adding traps per each
original state for incor-
rect key or sequence

■■□□□ ■■■ Fun-SAT:
4.2.2.3

Active Meter-
ing [90]

Adding extra obfusca-
tion states + black holes
for specific transitions

variant
(w.r.t. size
of added
states)

High at new
extra states

Fun-SAT:
4.2.2.3

Dynamic De-
flection [91]

Inserting code-word
transitions based on
input pattern + extra
states before initial state

variant
(w.r.t. size
of added
states)

High at new
extra states

Fun-SAT:
4.2.2.3

FSM reconfig
[96]

reconfigurable logic for
FSM circuitry (Only on
FPGA)

■■■□□ ■■■

NONE

DFSSD [93] Adding faults at deep
states using counter +
point function

■□□□□ ■□□

NONE∗1

JANUS/HD
[94], [95]

Concealment of State
transition circuitry us-
ing a configurable con-
trol unit

■■□□□ ■■■

NONE

∗1: It could be vulnerable to structural-based removal attack, if no camouflaging
is in place for some locking gates.

having the correct key, the flow of data movement will be
changed within the circuit, which consequently corrupts the
functionality and may result in appearing some halt in the
circuit.

The timing-based and latch-based technique shows
promising results against different adversary’ actions. How-
ever, due to the lack of full EDA (electronic design au-
tomation) tool support for asynchronous designs, replacing
the flip-flops with latches and implementing asynchronous
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Fig. 16: Behavioral Timing-based Locking: (a) Delay-based Locking
[15], (b) Latch-based Locking [99], (c) Asynchronous Locking [100], (d)
Clock-gated Locking [101].

TABLE 9: Specification of Timing-based Logic Locking Techniques.

Logic Locking Mechanism Overhead Corrupt Attacked by

Delay Locking
[15]

Insertion of tunable delay
buffers that control both
function and delay of key
gates

■■□□□ ■■■ SMT:§4.1.2.6

Latch-based
[99]

adding key-based latches +
decoy-based latch insertion

■■□□□ ■■■

NONE

Data-flow
[100]

controlling the data flow
using asynchronicity + de-
coy latches + decoy logic

■■□□□ ■■■

NONE

O’Clock [101] locking the clock gating
circuitry + transition-based
stripping functionality

■□□□□ ■■■

NONE

∗: Dependent to Logic Locking Technique Selected for Functional Locking

latch-based designs raise burdensome challenges in the IC
design process, and it makes the usage of asynchronic-
ity almost impractical for complex SoCs. A very recent
study, called O’clock, relies on widely-used clock-gating
techniques and targets the clock-gating enabling circuitry
for obfuscation purposes with full EDA-based support. One
of the main features of these timing-based techniques is that
they control and manipulate the time of data capturing at
storage elements, i.e., at FFs. Hence, the adversary cannot
track and follow the exact and correct timing of data captur-
ing, and there is no additional benefit for the design team
to restrict/block the scan chain. So, unlike the scan locking
or blockage, they can keep scan chain available (imperative
to perform in-field debug and test but exploited by SAT
attack [45]) to the untrusted foundry and end-users while
resisting a wider range of I/O query-based attacks, like
SAT-based attacks. Table 9 summarizes the main specifica-
tions of existing timing-based logic locking techniques. As
demonstrated, except for delay locking that is broken using
a theory-based I/O query-based attack, called SMT attack
[102], all others are not broken, showing the robustness of
this breed of logic locking.

3.7.1 beyond-CMOS and Mixed-Signal Logic Locking
In comparison to CMOS technology, emerging technolo-
gies, such as spintronics, memristors, FinFet, CNTFETs, and
NWFETs, which are also compatible to be integrated with
CMOS technology, promise and provide unique properties
that can be engaged for security purposes, features like
variability/randomness, run-time reconfigurability or poly-
morphic behavior. The utilization of these features can help
to obtain resilience against reverse engineering, to build
unique PUF/TRN generation units, to protect IPs, and to
build masking against side-channel leakage [103]. Hence,
a set of existing logic locking (and more on camouflaging)
techniques have used such technologies. Many of these ap-
proaches utilize these technologies to achieve (i) reconfigura-
bility/dynamicity that helps to invalidate continuous analysis
on the locked circuit (requires frequent restart), (ii) resiliency
against reverse engineering that helps against diverse acts by
the adversary for revealing the secrets, such as probing or
retrieving the unlocking key, or retrieving the netlist by the
untrusted foundry. The utilization of emerging technologies
for IP protection through logic locking can be summarized
as follow:
(i) Spintronic-based: With a non-volatile switching mecha-
nism and other related concepts like spin-transfer torque,
spin electronics technology can provide both computation
and storage/memory capabilities (STT) [104], [105], [106].
All-spin logic (ASL) for camouflaging [107], spintronics-
based reconfigurable LUTs [68], [108], [109], [110], fully
programmable polymorphism based on giant spin-Hall ef-
fect (GSHE) [111], [112] are some approaches that leverage
this technology for locking+camouflaging at lower overhead
compared to CMOS-based counterparts.
(ii) Memristor-based: Memristor-based (memory-resistor)
cells are basically able to retain their internal resistive state
w.r.t. the voltage/current applied, which can be used for
building Boolean logic [113], [114]. In [63], [115], the concept
of reconfigurable (polymorphic) cyclic logic locking has
been proposed in which the memristor cell(s) has been
used to protect against adversaries in the foundries and test
facilities.
(iii) FET-based: Tunnel field-effect transistors, carbon nan-
otube field-effect transistors (CNTFET), and Nanowire FETs
(NWFETs) are other leading emerging technology candi-
dates to replace CMOS FinFET and DRAM technologies,
which are compatible with CMOS technology [116], [117],
[118], [119], [120]. Similarly, these technologies could be
used for implementing polymorphic gates (PLG) as a means
of locking+camouflaging [121], [122], [123], [124]. In [123],
silicon nanowire (SiNW) FETs are utilized to implement
different PLGs for making the locking part less traceable.
The authors of [121] propose silicon NWFETs for camouflag-
ing+locking, by using controlled ambipolarity of NWFETs,
helping to build primitives like NAND, NOR, XOR, and
XNOR functions.

Apart from beyond-CMOS technologies, some ap-
proaches also investigated the applicability and application
of logic locking in analog and mixed-signal (AMS) circuits,
which is a large subclass of analog ICs, including data
converters, phase-locked-loops (PLLs), radio frequency (RF)
transceivers, etc. [125], [126], [127], [128], [129], [130], [131].
Many of these approaches consider the locking of digital
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Fig. 17: High Level Logic Locking Technique.

parts that directly or indirectly affects the analog side [125],
[126], [131]. However, to expand the locking over both ana-
log as well as digital sections, other approaches target mod-
ules like analog-to-digital or digital-to-analog (ADC/DAC)
converters [127]. Another study uses chaotic computing and
proposes a mixed-signal locking by adopting chaogate [132]
to get two important advantages of this mechanism, i.e. (1)
Ability to build all 22

2

functions of a 2-input Boolean gate
using a single chaotic element (like LUT but at lower over-
head), and (2) Dynamic function update capability [130].
At the layout level, few studies also investigate the sizing
and hiding as a camouflaging approach by means of fake
contacts in the active geometry of the layout components
[129].

3.8 High-level Logic Locking

Although a high portion of existing logic locking techniques
is implemented at the gate level (or even transistor/layout
level), they may be incapable of targeting all semantic
information (defined and described in higher level, e.g.,
RTL or HLS) since logic synthesis and optimizations will
convert/simplify/twist much of it into the netlist. Hence, to
(1) be able to directly target any algorithmic and semantic
of the design for locking purposes, and (2) to get the benefit
of synthesis and conversion done by the optimizations for
twisting logic locking part into the original part(s), a bunch
of recent studies utilizes new methodologies for locking at
a higher level of abstractions [56], [133], [134], [135], [136],
[137], [138], [139], [140].

Another advantage of high-level logic locking tech-
niques is that they can potentially protect the design against
a wider range of untrusted entities. As shown in Fig. 2, with
the notion of insider threats (e.g., a rogue employee at the
design house), high-level locking allows the design team to
have the IP locked and protected from far earlier stages of IC
design flow. As demonstrated in Fig. 17, high-level locking
can be categorized into the following groups. Also, Table 10
covers the main specification of existing countermeasures in
this breed of logic locking.
(i) High-level Locking before Synthesis/Transition: Some of the
approaches apply the logic locking at the highest level
(e.g., C/C++) code before synthesizing the design through
the HLS steps [136]. In such cases, the HLL code pro-
vided to the HLS tool is already locked, and conver-
sion/absorption/transformation on locked semantic will
happen through (i) the HLS intermediate steps, including

allocation, scheduling, and binding, as well as (ii) RTL
synthesis.
(ii) High-level Locking+Synthesis (HLS extension): Some stud-
ies implement and integrate locking with the intermedi-
ate steps of the HLS engine [56], [133], [135], [140]. Such
approaches analyze intermediate representations (IRs) gen-
erated through the HLS flow and will extend these IRs
by applying the locking part. In these approaches, the
HLL code is not locked, but the RTL generated by the
HLS tool is locked, and the locked RTL will face conver-
sion/absorption/transformation through RTL synthesis
(iii) Register-Transfer Locking (post-HLS or direct RTL): Tech-
niques in this sub-group apply logic locking at RTL level, ei-
ther on the output of the HLS engine, i.e. the RTL generated
by the HLS tool [134], [138] or RTL designed/developed
directly by the designers [139]. This group analyzes the
specification of RTL (like abstract syntax tree) or other
graph-based representation to find the best candidates for
selection and locking, and then the locked RTL will go
through the RTL synthesis.
(iv) Compound Locking (High level + Gate level): We also wit-
ness a compound form of logic locking in which RTL locking
and gate-level have been engaged as a single countermea-
sure. In [137], RTL locking is combined with a scan-based
logic locking to thwart threats induced by both untrusted
foundry and malicious users.

Moving from gate level to higher levels allows the de-
signers to target higher order elements, such as semantic
information: (1) Constants: Sensitive hard-coded information
through the computation (e.g., filter coefficients, encryp-
tion IVs, etc.). (2) Arithmetic Operation: Critically determin-
ing functional arithmetic operation (e.g., multiplications,
shifting, adding, subtraction, etc.). (3) Conditional Branches:
Branches defining the execution flow (based on the control
flow graph). (4) Function Calls: Important function calls that
build the main hierarchy of the design. (5) Memory Access:
Address, read, and write for the memory blocks with sen-
sitive information. Based on these elements targeted for
locking, all high-level logic locking techniques can provide
high corruptibility. Table 10 summarizes the specification of
existing logic locking at higher level.

3.9 eFPGA-based IP-level Locking

Some recent studies have investigated a coarse-grain form of
logic locking, in which redaction by the usage of embedded
FPGA (eFPGA) has been done at SoC-level [141], [142],
[143], [144]. In this case, after selecting specific (targeted)
module(s), they will be replaced with fully reconfigurable
soft embedded eFPGA or ready-made eFPGA hard macro.
So, the eFPGA, with configurable logic blocks (CLBs) con-
taining look-up tables (LUTs), flip-flops, and routing logic,
can be fabricated and programmed to realize the desired
functionality. In this case, the secret of the design would be
the bitstream that determines the functionality of eFGPA,
and the adversary must recover the complete bitstream to
implement the correct functionality in each eFPGA.

The eFPGA-based IP redaction can be considered as a
superset of LUT/routing-based logic locking, as described
in §3.4. Because of the symmetric structure and uniform
CLB/LUT distribution, structural attacks are difficult to be
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TABLE 10: Specification of High-Level Locking Techniques.

Logic Locking Type Mechanism Overhead Attacked by

TAO [133] within
HLS

Targeting loops, constants,
branches, and manipula-
tion of HLS scheduling

variant
(w.r.t.)
features

SMT: §4.1.2.6

SFLL-HLS
[56]

within
HLS

point function locking
through HLS flow

■□□□□ SPI: §4.1.3.5

ASSURE [134] at RTL Targeting branches, con-
stants, and arithmetic oper-
ations

■■■□□ SMT: §4.1.2.6

HOST [138] at RTL creating RTL with numer-
ous abstraction behavior +
building FSM-based SMT-
hard instance

■■□□□

NONE

HLock [136] at HLL Targeting function calls,
control flow, arithmetic op-
eration, constants + ILP op-
timization

■□□□□

NONE

Fortifying
RTL [137]

at RTL &
Gate-level

Targeting branches, con-
stants, and arithmetic op-
erations + gate-level scan
blockage

■□□□□

NONE

∗: This group is combination of locking and camouflaging techniques.

applied. From the functionality point-of-view, fully config-
urability and growth of bitstream size result in a significant
enhancement of resiliency against I/O query-based attacks.
A recent exploration has investigated eFPGA Parameters
For IP Redaction, in which it is shown that similar to
routing-based locking, coarse-grained eFPGA IP redaction
is an SAT-hard instance that cannot be broken using any of
the existing I/O query-based attacks. However, compared to
LUT/routing-based logic locking, their incurred overhead is
even getting worse [144].

4 LOGIC LOCKING: ATTACKS

This section provides a more comprehensive evaluation of
the existing successful attacks introduced so far on logic
locking. Based on the models and assumptions previously
discussed in Section 2.2, all attacks on logic locking could
be categorized into different groups as demonstrated in
Fig. 18. The categorization of attacks on logic locking is
heavily dependent on the availability of the target chip in
activated/unlocked mode (oracle). The availability of oracle
will help the adversary to build up more algorithmic attacks.
Most of the oracle-guided attacks could be also known as
algorithmic attacks, in each, a systematic flow has been
proposed that results in the exposure of either logic locking
key or the correct functionality of the locked circuit. Almost
all attacks in this category could be considered as (weak)
invasive, and they require to have access to the netlist of
the locked circuit. Based on the applicability, they could
be categorized into attacks on combinational circuits (when
scan access is available) or sequential circuits (when scan
access is NOT available). However, oracle-less attacks, on the
other hand, mostly rely on CAD tools such as synthesis
tools, or physical attributes of the circuit such as side-
channel information to accomplish the attack flow. Based
on the structure/mechanism, there exists three main sub-
categories of oracle-less attacks, which is structural, tampering,
and probing attacks. Fig. 19 illustrates almost all existing
attacks on logic locking and their categorizations. In the

Oracle-Guided

Oracle-Less

Attacks on Logic Locking

StructuralProbing Tampering

Combinational Sequential

Fig. 18: The General Categorization of the Attacks on Logic Locking.

following of this survey paper, we thoroughly evaluate the
members of each sub-group of this hierarchy, and we will
cover the following crucial information per each sub-group:
(1) A uniform assessment on each attack algorithm based on
their proposed mechanism.
(2) The main purpose of each attack, the capability as well as
applicability of each attack on the existing countermeasures.
(3) The challenges and limitations of each attack in terms
of implementation effort/feasibility, applicability, design
time/complexity, overhead, etc.
(4) Existing or potential countermeasures that could break
each attack.

4.1 Oracle-Guided (OG) on Combinational Circuits

The name of each category used in Fig. 18 represents the
attack model used for that category. Here the oracle-guided
(OG) attacks on combinational circuits show that the de-
obfuscation attacks of this category have been introduced
based on the following assumptions:
It is oracle-guided: The attacker requires to have access to one
additional activated/unlocked version of the chip (oracle).
It is on combinational circuits: Since almost 100% of real appli-
cation ICs are sequential, it implies that having access to the
DFT structure, i.e. scan chain pins, is available to provide
the access to each combinational part (CL) of the circuit.
It is invasive8: The attacker requires to have access to the
netlist of the locked circuit (locked GDSII at the foundry or
reverse-engineered of chip acquired from the field/market).

4.1.1 OG Combinational ATPG-based Attacks
Once the logic locking key is incorrect, function corrup-
tion will happen, and since the propagation of corrupted
signal(s) resembles fault propagation flow, the possibil-
ity of using testability and fault analysis attributes was
firstly investigated as a means of attack on logic lock-
ing. These de-obfuscation attacks exploit almost the same
techniques/algorithms that are widely used for automatic
test pattern generation (ATPG), such as exhaustive testing,
randomness used with algorithmic methods for testing and
debug, symbolic difference check, and path sensitization
methods [145].
4.1.1.1 Sensitization Attack: Similar to the logic-level path
sensitization in ATPGs with three main steps, i.e. (1) fault
sensitization, (2) fault propagation, and (3) line justification,
the sensitization attack [12] consists of the same steps. In the
sensitization attack, each key bit at any arbitrary gate will
be treated as a stuck-at fault. Then, it will be propagated to

8. Except for one preliminary de-obfuscation attack, called hill-
climbing, all other oracle-guided de-obfuscation attacks on combina-
tional circuits require access to the netlist.
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2019

Satisfiability Modulo Theory (SMT)

(Weak) Invasive           

2017

Hill Climbing

Non-invasive           

2015

Boolean Satisfiability 

(SAT)     (Weak) Invasive

Sensitization

(Weak) Invasive           

2012

Approximate-based SAT (AppSAT)

(Weak) Invasive           

Double-Discriminating 

(Double-DIP)    (Weak) Invasive           

Bypass Attack

(Weak) Invasive           

Cyclic-based SAT (CycSAT I/II)

(Weak) Invasive           

2020

Func-Analysis (FALL) 

(Weak) Invasive           

Behavioral SAT on Cyclic (BeSAT)

(Weak) Invasive           

SURF

(Weak) Invasive           

SAT-based Bit-flipping

(Weak) Invasive           

2018

Canonical Pruning & SAT 

(CP&SAT)   (Weak) Invasive           

Modeling Logic Locking  

(Weak) Invasive           
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Fig. 19: Attacks on Logic Locking Techniques.

TABLE 11: Classification of Key Gates in Sensitization Attack [12].

Term Description Strategy used by attacker

Runs of KGs Back-to-Back KGs Replacing by a Single KG

Isolated KGs No Path between KGs Finding Unique Pattern
per KG (Golden Pattern
(GP))

Dominating
KGs

k1 is on Every Path between
k0 and POs

Muting k0, Sensitizing
k1

Concurrently
Mutable
Convergent
KGs

Convergent at a Third Gate,
Both can be Propagated to
POs

Muting k0/k1, Sensitiz-
ing k1/k0

Sequentially
Mutable
Convergent
KGs

Convergent at a Third Gate,
One can be Propagated to
POs

Determining k1 by GP,
Update the Netlist, Target
k0

Non-Mutable
Convergent
KGs

Convergent at a Third Gate,
None can be Propagated to
POs

Brute Force Attack

the primary/scan output (PO/SO) using (1) fault sensitiza-
tion and (2) fault propagation. After determining the input
pattern (state) that propagates the value of the key to the
PO/SO, the attacker applies the same input pattern (state) to
the oracle and since the correct key value is already loaded
in the oracle, the correct key value will be propagated to the
PO/SO. Then, the attacker could observe and record this
output as the value of the sensitized key.
The main purpose of the sensitization attack is to break
RLL [11] as a member of primitive logic locking solutions
described at §3.1. The attack results on RLL show that the
sensitization attack could determine individual key values
of the RLL-locked circuit in a time linear with respect to the
size of the key. It should be noted that, in the sensitization
attack, the propagation of a key bit to the PO/SO is heavily
dependent on the location of the key. Hence, they classify
key gates based on their location and discuss corresponding
attack strategies for each case. The summary of strategies
and techniques used in the sensitization attack is reflected

in Table 11.

There exist some limitations/challenges in the sensitization
attack: (1) Similar to path sensitization in ATPGs, it is only
applicable for acyclic combinational circuits. In the presence
of feedback, it faces an infinite loop. (2) The efficiency of
this attack would be low if the key gates are located at
non-synthesizable points. Thus, in SLL, as another member
of primitive logic locking solutions [12], non-synthesizable
points have been widely exploited, to introduce a counter-
measure against this attack.

4.1.1.2 Random-based Hill-Climbing Attack: In [146], an-
other ATPG-based attack has been introduced that finds
specific test patterns to apply them to the locked circuit
and by observing the responses, it can lead the preliminary
guessed (random) key values to the correct ones. Unlike
the sensitization attack [12] and all other OG attacks on
combinational logic locking, the hill-climbing attack does
not require netlist access and could be considered as a non-
invasive attack. It uses a randomized local key-searching
algorithm to search the key that can satisfy a subset of
correct input/output patterns. It first selects a random key
value and then at each iteration, the key bits that are selected
randomly, are toggled one by one. The target is to minimize
the frequency of differences between the observed and
expected responses. Hence, a random key candidate is grad-
ually improved based on the observed test responses. When
there is no solution at one iteration, the algorithm resets
the key to a new random key value. The main purpose of
this attack is to break the very first logic locking technique,
i.e. RLL [11]. However, in many cases, it faces a very long
execution time with no results. This happens for two main
reasons which significantly undermine the success rate of
this attack: (1) The key will be initiated randomly, and (2)
The complexity of the attack will be increased drastically,
particularly when the key size is large or the key bits are
correlated.
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Fig. 20: The SAT Attack Iterative Flow [45], [46]: (a) building miter
(double circuit), (b) finding DIP + eval matching with the Oracle, (c)
Validating DIPs at Iteration i for all previously found DIPs, (d) SAT
circuit (SATC) at iteration i.

4.1.2 OG Combinational Algorithmic (SAT)-based Attacks

Solving a Boolean satisfiability problem is the process of find-
ing the satisfying assignment for a Boolean expression or
equation. Many ATPG tools use Boolean satisfiability solver,
SAT solver, for generating test patterns, and currently, it is
one of the fastest ATPG algorithms, particularly for large-
size circuits. In 2015, Subramanyan et al. [45] propose a
new and powerful attack on logic locking that still gets the
benefit of the SAT solver, which is widely used in ATPGs.
The engagement of the SAT solver as a means for attacking
the locked circuits has got the most attention in recent
years for some important reasons, such as the strength, the
performance of the attack, and the scalability. As shown
in Fig. 19, the SAT-based attacks on logic locking, either
combinational or sequential, are the largest by count. In this
section, we will review the SAT-based attacks that focus on
combinational locked netlist.
4.1.2.1 Conventional SAT Attack: The SAT attack was first
introduced by Subramanyan et al. [45]. At the same time, El
Massad et al. proposed the same technique, in which a SAT
solver is engaged for attacking the combination logic locked
netlist [46]. Getting inspired by the miter (distinguisher)
circuit that is widely used for formal verification, The SAT
attack uses a specific duplication mechanism to break the
logic locked netlists. The main steps of the SAT attack have
been demonstrated in Fig. 20.
As shown in Fig. 20(a), in the SAT attack, the attacker first
duplicates the locked circuit and builds a double circuit
(miter). The miter is used for finding an input (x) that
for two different key values, i.e. k1 and k2, this input
generates two different outputs (y1 and y2 is XORed). The
key values (k1 and k2) and the primary input pattern x,
will be found by a SAT solver query. Such input is referred
to as the discriminating/distinguishing input pattern (DIP).
Each DIP (xd[i]) will be checked by the oracle (eval by

applying xd[i] to co), as shown in Fig. 20(b), assuring that
for a previously found DIP, two different keys generate the
same output value (part of the correct key pool for current
iteration). Each iteration of the SAT attack finds a new DIP
and each adds a new eval check to the whole problem. All
eval checks are then ANDed together, as shown in Fig. 20(c),
expanding the constraint to all previously found DIPs. In
each iteration, the SAT solver tries to find a new DIP and
two key values that satisfy the miter and the all aggregated
(ANDed) eval constraints as shown in Fig. 20(d). This iter-
ative process continues until the SAT solver cannot find a
new DIP. At this point, any key that generates the correct
output for the set of previously found xds is the correct key.
Algorithm 1 provides an algorithmic representation of the
SAT attack and its iterative structure for finding all DIPs.

Algorithm 1 SAT-based Attack Algorithm [45]

1: function SAT ATTACK(Circuit CL, Circuit CO)
2: i← 0;
3: F0 ← CL(x, k1, y1) ∧ CL(x, k2, y2);
4: while SAT(Fi ∧ (y1 ̸= y2)) do
5: xd[i]← sat assign(Fi∧(y1 ̸= y2));
6: yd[i]← CO(xd[i]);
7: Fi+1 ← Fi ∧ CL(xd[i], k1, yd[i]) ∧ CL(xd[i], k2, yd[i]);
8: i← i+1;
9: kc ← sat assign(Fi);

The main purpose of the SAT attack was to break the
primitive logic obfuscation techniques, including RLL [11],
SLL [12], and FLL [44], as described in §3.1. For all these
locking techniques, the SAT attack was able to rule out
a significant number of key values at each iteration (by
finding each DIP), and it was able to break them within
a few minutes.
The traditional SAT attack has received significant attention
in recent years, and numerous studies demonstrated the
limitations/challenges of this powerful attack. Point func-
tion techniques (§3.2) show how the strength of DIPs could
be reduced to minimize its pruning power. Cyclic locking
techniques (§3.3) show the weakness of the SAT attack while
combinational cycles are engaged as a means of logic lock-
ing. Routing-based locking techniques (§3.4) and eFPGA
IP-level redaction techniques (§3.9) show the effectiveness
of complex structures as some fully configurable universal
models that could be resilient against the SAT attack and
its derivatives. Behavioral timing-based techniques (§3.7),
such as delay-based logic locking, show how non-Boolean
logic locking techniques cannot be modeled using the SAT
attack. Scan-based (§3.5) and FSM-based (§3.6) countermea-
sures also demonstrate how the limiting access to the DFT
structure and sequence-based locking can be engaged to
break the SAT attack. Also, other behavioral timing-based
techniques, like latch-based and clock-gating locking (§3.7),
show how capturing time of scan chain cells can be manip-
ulated that conceal exact read/write of the scan chain for
applying the SAT attack. However, since the introduction
of the SAT attack, we witness a cat-and-mouse game in
this domain, where each defense (attack) is trying to break
another attack (defense) by revealing their vulnerabilities.
4.1.2.2 Approximate-based SAT Attack: Point function
logic locking techniques are the first group of countermea-
sures that are resilient against the SAT attack. As shown in
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Fig. 8, these techniques will corrupt only a few (e.g. one)
PO when the key is incorrect, and the output corruptibility
happens for only a limited number of input patterns. Hence,
for a limited number of POs (e.g. one PO), the circuit works
as the original circuit, and for a rare set of input patterns, the
output would be corrupted at rare POs. However, for a wide
range of applications, such as image processing engines, this
quite low output correction could be ignored at outputs
(e.g. missing a few pixels). Hence, unlike the traditional
SAT attacks, in which the exactness of the extracted key
is guaranteed, in [147], [148], AppSAT and Double-DIP
have been proposed, respectively, in which by relaxing this
constraint, it is demonstrated that finding an approximated
key values could minimize the error rate when the circuit is
locked using point function techniques.
The overall flow of the AppSAT is demonstrated in Algo-
rithm 2, which is implemented based on the SAT attack and
random testing. AppSAT [147] uses the probably-approximate-
correct (PAC) model for formulating approximate learning
problems. Unlike the traditional SAT attack whose termi-
nation condition is when no more DIPs could be found by
the SAT solver, the AppSAT termination condition is based
on the output error rate of a set of stimuli. AppSAT will
be ended in any early step in which the error falls below a
certain limit for a randomly selected set of stimuli. If this
condition happens, the key value that satisfies the current
set of constraints will be recognized as an approximated
key with a specified error rate. Some heuristic methods
are used in AppSAT for (1) estimating the error of large
functions, to avoid any computation complexity, and (2)
finding the minimal set of DIPs that lead to the targeted
approximated key with the satisfied error. These methods
play an important role in terms of the performance of the
AppSAT attack.
AppSAT works perfectly fine on the logic locking techniques
with low output corruption. Hence, some studies evaluate
the robustness of point function techniques when they are
combined with the primitive techniques, called compound
techniques (§3.2.1). The compound logic locking techniques
provide the most benefit of both categories, i.e. the high
output corruption achieved by the primitive techniques, as
well as the SAT resiliency achieved by the point function
techniques. In such cases, AppSAT guarantees that the key
of the primitive techniques will be extracted correctly, and
the key related to the point function techniques is approxi-
mated that meets the error rate requirement.
Double-DIP [148] is an extension of the AppSAT attack
in which during each iteration, the discriminating input
should eliminate at least two sets of wrong keys. The reason
for finding two incorrect sets of keys is for distinguishing
between the keys that corresponded to the primitive tech-
nique from that of the point function technique. Since point
function techniques corrupt the POs for a few input patterns
(e.g. ONE) when an incorrect key corrupts the POs for more
than one set of keys, it corresponds to the primitive logic
locking. Otherwise, it corresponds to the point function
technique. The overall flow of the Double-DIP attack has
been illustrated in Algorithm 3.
The effectiveness of the Double-DIP attack has been illus-
trated on the SARLock+SSL, which represents an attack on
a compound of point function and primitive techniques. The

Algorithm 2 AppSAT Attack Algorithm [147]

1: function APPSAT ATTACK(Circuit CL, Circuit CO)
2: i← 0;
3: F0 ← CL(x, k1, y1) ∧ CL(x, k2, y2);
4: while SAT(Fi ∧ (y1 ̸= y2)) do
5: xd[i]← sat assign(Fi∧(y1 ̸=y2));
6: yd[i]← CO(xd[i]);
7: Fi+1 ← Fi ∧ CL(xd[i], k1, yd[i]) ∧ CL(xd[i], k2, yd[i]);
8: i← i+1;
9: every n rounds do

10: for each (x ∈ Random Patterns) do
11: if CL(x, k1, y) ̸= CO(x) then
12: FailedPatterns← FailedPatterns + 1;
13: Fi+1 ← Fi+1 ∧ (CL(x, k1, y) = CO(x));
14: i← i+1;
15: if error ¡ ErrorThreshold then
16: return k1 as an approximate key
17: kc ← sat assign(Fi);

output result of the Double-DIP attack is an approximated
key, in which the key of the primitive technique (SSL) is
guaranteed to be correct, and the key of the point function
technique (SARLock) is an approximated key that meets the
error rate requirement.
In general, considering the exactness of the attack, and
assuming that compound logic locking is in place, since
approximate-based attacks only guarantee the key corre-
sponding to the primitive logic locking, these attacks could
reduce the problem from the compound technique to a
single point function technique with an approximated key.

Algorithm 3 Double-DIP Attack Algorithm [148]

1: function DOUBLEDIP ATTACK(Circuit CL, Circuit CO)
2: i← 0;
3: F0 ← CL(x, k1, y1) ∧ CL(x, k2, y2) ∧ CL(x, k3, y1) ∧ CL(x, k4, y2) ;
4: while SAT(Fi ∧ (y1 ̸= y2)) ∧ (k1 ̸= k3)) ∧ (k2 ̸= k4)) do
5: xd[i]← sat assign(Fi∧(y1 ̸=y2)) ∧ (k1 ̸= k3)) ∧ (k2 ̸= k4));
6: yd[i]← CO(xd[i]);
7: Fi+1 ← Fi

∧4
j=1 CL(xd[i], kj , yd[i]);

8: i← i+1;
9: kc ← sat assign(Fi);

4.1.2.3 Bypass Attack: The bypass attack [149] is another
attack that gets the benefit of low corruptibility in point
function techniques when they are not mixed with the prim-
itive logic locking techniques. The bypass attack instantiates
two copies of the obfuscated netlist using two randomly
selected keys and builds a miter circuit that evaluates to 1
only when the output of two circuits is different. The miter
circuit is then fed to a SAT solver looking for such inputs.
The SAT returns with a minimum of two inputs for which
the outputs are different. These input patterns are tested
using an activated IC (oracle) validating the correct output.
Then, a bypass circuit is constructed using a comparator
that is stitched to the primary output of the netlist which
is unlocked using the selected random key, to retrieve the
correct functionality if that input pattern is applied. The
Bypass attack works well when the SAT-hard solution is not
mixed with the traditional logic locking mechanism since
its overhead increases very quickly as output corruption of
logic locking increases.
4.1.2.4 Other Attacks on Compound Logic Locking: Due
to the robustness of compound logic locking techniques,
they received significant attention for a short time after
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Algorithm 4 Bit-flipping Attack Algorithm [150]

1: function BITFLIPPING ATTACK(Circuit CL, Circuit CO)
2: for each j < Fixed-iteration do
3: kA ← a random key;
4: for each bit b ∈ kA do
5: kB ← kA while bit b flipped;
6: i← 0; F0 ← CL(x, kA, yA) ∧ CL(x, kB , yB);
7: while SAT(Fi ∧ (yA ̸= yB)) do
8: xd[i]← sat assign(Fi∧(yA ̸=yB));
9: Fi+1 ← Fi ∧ (x ̸= xd[i]);

10: i← i+1;
11: if HD > Threshold then
12: b is in k1,
13: break;

j ← j + 1;
14: k2 ← all key bits / k1; ▷ Separation is Done. Fixing k2.
15: k1 ← SAT ATTACK (CL, CO); ▷ Find Primitive Keys by SAT.
16: C∗

L ← update netlist(CL — k1)
17: return (BYPASS ATTACK(C∗

L);

their introduction. Similar to the Double-DIP attack, many
studies try to reveal the security vulnerabilities of the com-
pound logic locking techniques. In [150], the bit-flipping
attack has been introduced which relies on the fact that keys
corresponding to primitive technique could be separated
from the keys of point function technique. This could be
achieved based on the hamming distances of outputs of the
double circuit. The bit-flipping attack is motivated by the
output corruption observation, which shows in primitive
techniques, an incorrect key causes substantial corruption
at POs. However, the output corruption of point function
techniques is very small (e.g. with hamming distance equals
with ONE). Hence, the calculation of the hamming distance
(HD) of the double circuit’s output could help to distinguish
between two sets of keys. The overall structure of the bit-
flipping attack has been described in Algorithm 4. First, for
each key bit, some DIPs will be found by the SAT solver,
and by checking the HD at the double circuit outputs,
the usage (primitive or point function) of the key could
be determined. Then, after the separation of the keys into
two groups, the bit-flipping attack fixes point function keys,
as a random number, and uses a SAT solver to find the
correct key values used for the primitive technique. After
finding keys of the primitive technique, similar to Double-
DIP, the problem from the compound technique is reduced
to a single point function technique that could be evaluated
using approximate-based attacks for an approximated key,
or as described in §4.1.2.3, bypass attack can recover the
correct functionality using a bypass circuitry.
AppSAT guided removal (AGR) attack is another attack
that targets compound logic locking techniques, particularly
Anti-SAT as the part of point function [151]. As its name
implies, the AGR attack merges the AppSAT attack with
a simple structural analysis on the locked netlist (as a
post-processing step). However, unlike AppSAT, the AGR
attack recovers the exact correct key. In the AGR attack,
the AppSAT is first used to find the approximated key, in
which the correctness of the primitive technique keys is
guaranteed. Then, AGR targets the remaining key bits that
belong to the point function logic locking, such as the Anti-
SAT block, through a simple structural analysis.
As demonstrated in Fig. 8, one of the main weaknesses of the
point function techniques, when they are neither combined

with the primitive techniques nor stripped, is that the lock-
ing part of the circuit, i.e. flipping and masking circuitry,
is fully decoupled from the original parts of the circuit.
Hence, a simple structural analysis can recognize the added
macros and gates for locking purposes. This is what is called
the possibility of removal attack on logic locking discussed
in §4.1.3.1. In AGR, as shown in Algorithm 5, in its post-
processing steps, AGR finds the gate (G) at which the keys
corresponded to point function are converged (decoupled
point function locking part), located at the transitive fanout
of these keys. AGR identifies the candidates for gate G by
using structural analysis for all gates in the circuit and then
sort these candidates based on the number of key inputs that
converge at a gate and pick the gate G from all candidates,
which has the most number of key inputs converge to that
gate. Then since the G gate would be the output of the
flipping/masking circuitry in the point function techniques,
it should have no impact on the functionality when the key
is correct. So, the attacker re-synthesizes the design with the
constant value for the output of G gate (removing all fan-in
cone) and retrieves the correct functionality.
Fault-aided SAT-based attack [152] is another approach
working on a specific compound logic locking in which
a routing-based locking is combined with a point-function
technique [57]. In this attack, faults will be inserted at some
fault locations in the locked netlist, and then by applying
the SAT attack with a tight timeout, the SAT solver helps to
find the key while the fault insertion led to a SAT problem
size reduction.
4.1.2.5 SAT-based Attacks on Cyclic Locking: In §3.3, we
showed the complexity/challenges behind the usage of
combinational cycles in the circuit as a means of logic lock-
ing [58], [60], [61], [62], [63], [64], [65]. SAT attack input must
be in directed acyclic graph (DAG) format. Hence, adding
cycles will violate this assumption. The incapability of the
SAT attack for dealing with combinational cycles is the
main motivation behind these techniques, which results in
breaking the SAT attack either by (1) trapping it in an infinite
loop, or (2) forcing it to exit with a wrong key depending on
whether the introduced cycles make the circuit stateful or
oscillating.
Numerous studies have evaluated the resiliency of these
techniques, thereby introducing new attacks on cyclic logic
locking [153], [154], [155]. In CycSAT [153], the key combina-
tions that result in the formation of cycles are found in a pre-
processing step. These conditions are then translated into
problem augmenting CNF formulas, denoted as cycle avoid-
ance clauses, the satisfaction of which guarantees no cycle

Algorithm 5 AGR Attack Algorithm [151]

1: function AGR ATTACK(Circuit CL, Circuit CO)
2: #Cand← num gates(CL)
3: while (#Cand ¿ 1 and !Timeout) do
4: AppSAT Attack(); ▷ 4 times
5: Candidates← {};
6: for each gate ∈ CL do
7: if gatei has the selected property then
8: Candidates← Candidates + 1;
9: G← Find Max key count(Candidates);

10: CLock ← remove TFI(CL, G); ▷ remove Transitive FanIn of G
11: return CLock ; ▷ CLock : CL after removing Anti SAT block
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Algorithm 6 CycSAT Attack on Cyclic Locked Circuits [58]
1: function CYCSAT ATTACK(Circuit CL, Circuit CO)
2: W = (w0, w1, ...wm)← FindFeedback(CL);
3: for each (wi ∈ W ) do
4: F (wi, w

′
i)← no structural path(wi);

5: i← 0; NC(k)=∧m
i=0F (wi, w

′
i)

6: C∗
L(x, k, y)← CL(x, k, y) ∧ NC(k);

7: F0 ← C∗
L(x, k1, y1) ∧ C∗

L(x, k2, y2);
8: while SAT(Fi ∧ (y1 ̸= y2)) do
9: xd[i]← sat assign(Fi∧(y1 ̸=y2));

10: yd[i]← CO(xd[i]);
11: Fi+1 ← Fi ∧ CL(xd[i], K1, yd[i]) ∧ CL(xd[i], k2, yd[i]);
12: i← i+1;
13: k∗ ← sat assign(Fi);

in the netlist. The cycle avoidance clauses are then added to
the original SAT circuit CNF and the SAT attack is invoked.
CycSAT has been introduced in two variants: (i) CycSAT-I,
as shown in Algorithm 6, for the cases whose original circuit
is acyclic, and (ii) CycSAT-II on a weaker assumption that
the original circuit might be cyclic. However, the complexity
that CycSAT-II might deal with is much higher making this
variant less effective. Also, since all cyclic-based operations
are based on structural analysis on circuits, it still faces
exponential complexity when the number of cycles grows
exponentially w.r.t. the number of feedbacks.
The lack of scalability to assess all cycles in the pre-
possessing of the CycSAT attack [153] leads to building
incorrect pre-processed circuits, which might keep different
types of the cycle even after pre-processing. It results in
trapping the SAT attack invoked after the pre-processing
step. Hence, the more advanced version of cyclic-based
SAT attacks was introduced [154], [155] to remedy such
shortcoming(s). In BeSAT [154], with a run-time behavioral
analysis at each iteration, as demonstrated in Algorithm 7, it
detects repeated DIPs when the SAT is trapped in an infinite
loop. Also, when SAT solver cannot find any new DIP, a
ternary-based SAT is used to verify the returned key as a
correct one, preventing the SAT from exiting with an invalid
key. icySAT [155] also can produce non-cyclic conditions in
polynomial time w.r.t. the size of the circuit, avoiding the
potentially exponential runtime still witnessed in BeSAT.
Also, icySAT improves the attacks on cyclic logic locking
techniques for cases whether the original circuit is cyclic if
the feedback dependencies are re-convergent, or whenever
the types of the cycles are oscillating.
4.1.2.6 Theory-based SAT Attack: Since the SAT attack re-
ceives the input in conjunctive normal form (CNF), it (or any
of its derivatives as described previously) works perfectly
fine if the logic locking is of Boolean nature. Hence, a set of
recent studies lock the properties of the circuit, which cannot
be translated to CNF, such as timing-based or non-CMOS or
mixed-signal logic locking as all demonstrated in §3.7.
Azar et al. opens a new attack category on behavioral logic
locking, which relies on the capability of modeling different
theories in satisfiability modulo theory (SMT) solver [102].
The SMT solvers, as the superset of the SAT solvers, can
combine the SAT solver with one or more theory solvers,
and theory solvers, based on their specification, with richer
language sets, can model beyond Boolean nature as well. As
a case study, to demonstrate the benefit of the SMT solver
as a richer means of attack on logic locking, a graph theory
solver has been engaged in the SMT attack, showing how

delay-based logic locking could be formulated and broken.
Based on the structure of SMT solvers, the attack shows how
theory solvers could be engaged as a pre-processor (eager
approach) or as a co-processor (lazy approach) to assess and
break the problem. One mode known as the lazy mode of
this attack is illustrated in Algorithm 8. As demonstrated,
function GenTCE is used and invoked to generate the timing
constraints (key-based hold/setup constraints) based on the
graph theory solver.
Although the SMT attack demonstrates a general model for
attacking behavioral logic locking techniques, Chakraborty
et al. also proposes TimingSAT that shows a mechanism for
modeling delay-based logic locking [156] using the pure
SAT solvers. TimingSAT demonstrates the possibility of
converting a non-Boolean logic locking problem into its
Boolean counterpart. Hence, it consists of two main steps:
(1) using a pre-processing mechanism for circuit unrolling
approach that helps to capture the timing information in
the form of Boolean functions. (2) Then, the locked circuit
with captured timing information in Boolean form could be
solved using the SAT solver. TimingSAT could be catego-
rized as a simplified formulation of eager approach in SMT,
in which with no theory solver, the capture of timing has
been accomplished with more challenges using a Boolean-
based remapped representation.
The usage of a few theory solvers is investigated in the
SMT attack on another side to show the extensibility and
richness of the SMT attack on some logic locking techniques,
such as compound and cyclic logic locking. Also, further
studies on SMT show its capability on other breeds of logic
locking as well [157], [158]. In [157], a new SMT attack has
been introduced on analog circuits, in which based on SMT
formulations, it takes polynomial time (irrespective of the
key size) for breaking the analog locking, and it is applicable
to the ubiquitous presence in wireless communication net-
works: Gm-C BPF, LC oscillator, quadrature oscillator, and
class-D amplifier, as well as a memristor-based protection
technique. Similarly, [158] utilizes SMT-based formulation

Algorithm 7 BeSAT Attack on Cyclic Locked Circuits [154]

1: function BESAT ATTACK(Circuit CL, Circuit CO)
2: W = (w0, w1, ...wm)← FindFeedback(CL);
3: for each (wi ∈W ) do
4: F (wi, w

′
i)← no structural path(wi);

5: i← 0;
6: NC(k)=∧mi=0F (wi, w

′
i)

7: C∗
L(x, k, y)← CL(x, k, y) ∧ NC(k);

8: F0 ← C∗
L(x k1, y1) ∧ C∗

L(x, k2, y2);
9: while SAT(Fi ∧ (y1 ̸= y2)) do

10: xd[i]← sat assign(Fi∧(y1 ̸=y2));
11: yd[i]← CO(xd[i]);
12: Fi+1 ← Fi ∧ CL(xd[i], k1, yd[i]) ∧ CL(xd[i], k2, yd[i]);
13: if (xd[i] in DIP) and (CL(xd[i], k1) ̸= yd[i])) then
14: Fi+1 ← Fi+1 ∧ (k1 ̸= k̂1) ∧ (k2 ̸= k̂1);
15: else if (xd[i] in DIP) and (CL(xd[i], k2) ̸= yd[i]) then
16: Fi+1 ← Fi+1 ∧ (k1 ̸= k̂2) ∧ (k2 ̸= k̂2);
17: i← i+1;
18: while SATk1

(Fi) do ▷ Correct Key: k̂c

19: if Ternary SAT(Fi, kc) then
20: Fi ← Fi ∧ (k1 ̸= k̂c)
21: else
22: k∗ ← k̂c;
23: break;
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Algorithm 8 SMT Attack on DLL (Lazy Approach) [102]
1: function SMTLAZY ATTACK(Circuit CL, Circuit CO)
2: C∗

L ← toBOOLEAN(CL); ▷ Replace TDK with Buffer
3: i← 0; F← C∗

L(x, k1, y1) ∧ C∗
L(x, k2, y2);

4: G∗
L ← toGRAPH(CL); ▷ Wires = Edges, Gates = Vertices

5: FT ← GenTCE(G∗
L) ▷ Theory Learned Clauses

6: FSMT ← F ∧ FT ; ▷ SMT Clauses
7: while SMT(FSMT ) do ▷ xd[i], k1, k2, CC
8: yd[i]← CO(xd[i]);
9: F← F ∧ C∗

L(xd[i], k1, yd[i]) ∧ C∗
L(xd[i], k2, yd[i]);

10: FSMT ← F ∧ CC; i← i+1;
11: k∗ ← smt assign(FSMT );

1: function GENTCE(Graph G∗
L)

2: Inputs← find start points(G∗
L);

3: Outputs← find end points(G∗
L);

4: TCE(k)← [];
5: for each ((Sp, Ep) ∈ (Inputs, outputs) do
6: Upper(Sp,Ep)(k)← !(distance leq(Sp, Ep, tcd)); ▷ Hold
7: Lower(Sp,Ep)(k)← distance leq(Sp, Ep, tp); ▷ Setup
8: R(Sp,Ep)(k)← Lower(Sp,Ep)(k) ∧ Upper(Sp,Ep)(k);
9: TCE(k)← TCE(k) ∪ R(Sp,Ep)(k);

10: return TCE(k)

and algorithm to break RTL-level logic locking. The algo-
rithm models an RTL design as an RTL finite state machine
with datapath (RTL-FSMD), and then it is abstracted out the
details of the hardware into a behavioral program on which
SMT solving has been invoked.
4.1.2.7 SAT-based Attacks on LUT/Routing Locking:
LUT-based and specifically routing-based locking, as
described in §3.4, significantly increase the complexity of
inner calculations of the SAT solver leading to an extremely
long runtime per each iteration of the SAT attack [76],
[77], [78]. These techniques rely on building symmetric
interconnection into the locked portion of the circuit,
extremely increasing the depth of the SAT search tree. The
building block of the existing solutions in this category
are the key-programmable routing blocks, each has its
topology, such as crossbar or permutation (logarithmic)
network. Having such structures sends the corresponded
CNF far away being under/over constrained, and when the
SAT problem is a medium-length CNF, it brings difficulties
for the SAT solver.
However, some recent studies introduce some SAT-based
attacks that narrowly work effectively on this breed of
locking [79], [80], [159]. In [80], the authors propose a
canonical prune-and-SAT (CP&SAT) attack, which exploits
a bounded variable addition (BVA) pre-processing step to
reduce the size and complexity of the CNF representation
of the key-programmable routing blocks used for routing-
based obfuscation. After reduction using the BVA, the re-
duced CNFs (corresponded to numerical bound problems)
will be merged again with the circuit’s CNF, and the SAT
solver could be executed on the reduced CNF version. The
main steps of the CP&SAT attack are: (1) It first models
routing blocks as the most special case of numerical bound
problems9; (2) Then by using BVA on the numerical bound
problems, helping to reduce the size of the routing blocks
as the input to the SAT solver; (3) The reduced problem
will be solved by the SAT attack. The approach in [79]
proposes the same mechanism with an extension on key-

9. most special case of numerical bounds is when among p variable
only ONE variable is true, called at-most-1 constraint. It resembles the
routing blocks in which for each output, it could be connected to only
one of the routing block’s input.

based LUTs. Although these attacks work perfectly fine on
routing blocks, their efficiency will be drastically mitigated
when routing blocks are twisted with extra logic [80].
In [159], a neural-network-guided SAT attack (NNgSAT)
has been introduced that examines the capability and ef-
fectiveness of a message-passing neural network (MPNN)
for solving different types of complex structures, e.g., big
multipliers, large routing networks, or big tree structures.
In NNgSAT, as demonstrated in Fig. 21, MPNN has been
engaged and trained on the specific SAT problems to be
used as a guide for the SAT solver within the SAT attack. The
MPNN-based SAT solver is called in parallel with the actual
SAT solver per each SAT iteration. Based on a pre-defined
threshold time, if the actual SAT solver could find the
satisfying assignment before the time threshold, the MPNN-
based SAT solver will be skipped, and for the next step,
both solvers will be called again. However, in those cases
that the SAT solver could not find the satisfying assignment
before the time threshold, a part of the predicted satisfying
assignment by the MPNN-based SAT solver, which has the
highest literal votes, will be extracted as a new (guiding)
learned constraint, to help the actual SAT solver for finding
the precise satisfying assignment.

4.1.3 OG Combinational Structural/Functional Attacks

The oracle-guided test-based and SAT-based attacks on
combinational logic locking are completely designated for
evaluating and revealing the vulnerabilities of the logic
locking techniques using the functional attributes of the
circuit. However, there exists another set of de-obfuscation
attacks that try to concentrate on both structural and/or
functional properties of the logic locking to break the ex-
isting countermeasures. This group of attacks reveals that to
have a well-designed and robust logic locking technique, it
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needs to be evaluated through different forms of analysis,
e.g. functional and structural analysis.
4.1.3.1 Removal Attack: As shown in Fig 8, for implemen-
tation of flipping circuit in point function techniques, the
locking circuitry is completely decoupled from the original
circuit. A removal attack could identify and remove/bypass
the locking circuitry to retrieve the original circuit and to
remove dependence on key values [151]. The removal attack
was first presented to detect and remove SARLock [47]. In
the presence of removal attack, different studies investigated
the SAT-resistant solutions that are hard to be detected and
removed (preventing removal by pure structural analysis),
one of the examples of which was Anti-SAT [48].
As we discussed previously, some SAT-based attacks on
compound logic locking techniques, such as Bit-flipping and
approximate-based attacks (§4.1.2.2, §4.1.2.4), can reduce the
logic locking problem to a point function problem. Now
with the introduction of the removal attack, such attacks
could be integrated with the removal attack to completely
break the compound logic locking techniques. For instance,
the AGR attack discussed in Section 4.1.2.4 integrates App-
SAT with removal to break compound logic locking tech-
niques.
4.1.3.2 Signal Probability Skew (SPS) Attack: The Signal
Probability Skew (SPS) attack [160] leverages the structural
traces to identify and isolate the Anti-SAT block as a point
function technique [48]. Signal probability skew (SPS) of a
signal x is defined as s = Pr[x = 1]− 0.5, where Pr[x = 1]
indicates the probability that signal x is 1. The range of s
is [−0.5, 0.5]. If the SPS of signal x is closer to zero, an
attacker has a lower chance of guessing the signal value
by random. For a 2-input gate, the signal probability skew
is the difference between the signal probability of its input
wires. In Anti-SAT, the flipping-circuit is constructed using
two complementary circuits, g and g, in which the number
of input vectors that make the function g equal to 1 (p) is
either close to 1 or 2n−1. These two complementary circuits
converge at an AND gate G. Considering this structure,
and the definition of SPS, the absolute difference of the signal
probability skew (ADS) of the inputs of gate G is quite large,
noting that the SAT resilience is ensured by this skewed
p. After detecting the gate G, removal can be applied.
Algorithm 9 shows the SPS attack flow, which identifies the
Anti-SAT block’s output by computing signal probabilities
and searching for the skew(s) of arriving signals to a gate in
a given netlist.

Algorithm 9 SPS Attack Algorithm [160]
1: function SPS ATTACK(Circuit CL)
2: ADSarr ← {};
3: for each gate ∈ CL do
4: ADSarr(gatei)← Compute ADS(CL, gatei);
5: G← Find Maximum(ADSarr);
6: Y ← Find value from skew(G); ▷ Correct value of Anti SAT output
7: CLock ← remove TFI(CL, G, Y ); ▷ Transitive FanIn of the gate G
8: return CLock ▷ CLock : CL after removing Anti SAT block

4.1.3.3 Functional Analysis (FALL) Attack: Since point
function techniques are revealed to be vulnerable against
structural-based attacks, the stripping functionality (SFLL)
is used to invalidate the circuit after removal, as described
in §3.2. SFLL is an extended version of point function
techniques, in which the original circuit is modified for at

least one input pattern (cube) using a cube stripping unit,
demonstrated in Fig. 8(b). As shown, Yfs is the output of
the stripped circuit, in which the output corresponding to
at least one input pattern is corrupted. The restore unit not
only generates the flip signal for one input pattern per each
wrong key, but it also restores the stripped output to recover
the correct functionality on Y . Note that applying removal
attack on restore unit recovers Yfs, which is not the correct
functionality. In addition, SFLL-HD is able to protect

(k
h

)
input patterns that are of HD h from the k-bit secret key,
and accordingly uses HD checker as a restore unit.
The main aim of the FALL attack is to exploit the resiliency
of the SFLL technique [161]. In this attack model, the adver-
sary is assumed to be a malicious foundry that knows the
locking algorithm (SFLL) and its parameters (h) in SFLL-
HD. The FALL attack is carried out in three main stages and
relies on structural and functional analyses to determine the
potential key values of a locked circuit:
(i) Detection of comparator: The FALL attack tries to find
all nodes which are the results of comparing an input
value with key input. It is done by using a comparator
identification check. Such nodes (nodesRU ), which contains
these particular comparators, are very likely to be part of
the functionality restoration unit. The set of all inputs that
appear in these comparators, should be in the fan-in cone of
the cube stripping unit. Then, it finds a set of all gates whose
fan-in-cone is identical to the members of nodesRU . This set
of gates must contain the output of the cube stripping unit.
(ii) Functional analysis of candidate nodes: The attacker applies
functional analysis on the candidate nodes suggested by
and collected from step (i) to identify suspected key values.
Broadly speaking, the attacker uses functional properties of
the cube stripping function used in SFLL, to determine the
values of the keys. Based on the author’s view, this function
has three specific properties. So, per each property, they
have proposed a specific attack algorithm. So, three attack
algorithms exploit the unateness and hamming distance
properties of the cube stripping functions. The input of
these algorithms is circuit node c, computed from the first
stage, and the algorithm checks if c behaves as a hamming
distance calculator in the cube stripping unit of SFLL-HD.
If the attack is successful, the return value is the protected
cube.
(iii) SAT-based key confirmation: They have proposed a SAT-
based key confirmation algorithm using a list of suspected
key values and I/O oracle access, that verifies whether one
of the suspected key values computed from the second
stage, is correct.
4.1.3.4 CASUnlock Attack: CASUnlcok [162] is another
structural-based attack that is specifically proposed to ex-
ploit cascaded logic locking, a.k.a. CASLock [55]. CASLock
is a point function technique that proposes a variant cas-
caded AND-OR tree that builds variant corruptibility for
a point function technique, and it is resilient against all
previously discussed attacks. This attack works in two ways:
(i) By relying on structural traces left after the synthesis
process, this attack shows how the flipping circuitry in
CASLock can be pinpointed after re-synthesis allowing the
adversary to recover the original IP. Similar to FALL, it also
traces the fan-out of all key inputs, and then pinpoints the
convergent gate that is the output of the flip signal. (2) it



FUTURE HARDWARE SECURITY RESEARCH SERIES 23

exploits the connectivity of key inputs, thereby enabling the
SAT attack to decipher the secret key with only a polynomial
number of queries.
4.1.3.5 EDA-based (SPI/Valkyrie) Attack: Sparse prime
implicant (SPI) attack is another synthesis-based (EDA-
based) mechanism that reveals the structural vulnerability
in point function techniques [163]. In almost all point func-
tion techniques, the approach is relying on the assump-
tion that the underlying EDA synthesis tool used by the
semiconductor industry can effectively conceal the struc-
ture of flipping/masking/stripping circuitry in the DUT.
However, in SPI, a comprehensive exploration has been
done through different industrial/academic synthesis tools,
including Cadence Genus, Synopsys Design Compiler, Syn-
opsys Synplify, Xilinx Vivado, Mentor Graphics Precision
RTL, and ABC, invalidating this assumption. So, similar
to what was witnessed in CASUnLock, SPI also confirms
that the structural traces left through the EDA tool can be
exploited for breaking all point function techniques. SPI
is specifically relying on the notion of prime implicants
that is the underlying elements in logic optimization and
redundancy reduction once the sum of products (SOP)
format has been engaged for the circuit representation.
In SPI, different specifications and properties have been
defined and exploited around this notion to show how
protected input patterns in the point function can be re-
vealed. Valkyrie [164] almost follows the same direction, in
which a security diagnostic tool has been introduced that
checks for structural vulnerabilities. Also, they propose a
circuit-recovery attack that shows how an adversary can
exploit identified vulnerabilities by the diagnosis tool to
recover the original functionality. Similar to the SPI attack,
the analysis by Valkyrie invalidates the assumption that the
design team can rely on the synthesis tool for absorbing the
point function sub-circuitry into the original part.

4.1.4 Summary of OG Combinational Attacks

As shown in Fig. 7, the first four logic locking sub-groups,
i.e. the primitive, the point function, the cyclic-based, and
the LUT/routing-based, assume that the scan access for the
adversary could be OPEN. Hence, the adversary has the
capability of targeting each combinational part (CL) directly.
This is the main motivation of all functional-oriented oracle-
guided attacks on combinational circuits, which rely on
I/O query-based techniques. On another side, analysis of
the locked designs based on the structural traces reveals
that many of the logic locking techniques suffer from this
form of vulnerability, as demonstrated by the more recent
structural attacks on point function techniques [163], [164].
As reviewed in this Section, many of the logic locking tech-
niques in the first four logic locking sub-groups have been
broken using these attacks. Table 12 reflects the current sta-
tus of oracle-guided combinational attacks. For each attack,
Table 12 tries to concisely answer to these four questions:
(1) How the attack flow works; (2) Which logic locking
techniques could be broken using the attack; (3) What is
the limitation and challenges of the attack; and (4) What is
the existing/potential countermeasure against the attack?

4.2 Oracle-Guided (OG) on Sequential Circuits

Since the availability of the scan chain undermines the
robustness of many logic locking techniques once one of
the oracle-guided attacks is in place, as demonstrated in
Fig. 7, there exist other sub-groups, such as scan-based
logic locking, scan blockage, and sequential logic locking,
in which the availability of the scan chain is targeted to
be restricted/blocked. In such scenarios, assuming that the
oracle is still available, the adversary access would be lim-
ited to the PI/PO of the oracle. Therefore, all of the pre-
viously discussed functional-oriented I/O query-based de-
obfuscation attacks will fail to evaluate and break the locked
circuits with limited scan chain access. However, further
studies on logic locking show that restricting access still
cannot guarantee robustness against state-of-the-art threats.
In this Section, we will holistically review the attacks that
follow such assumptions, and we call them oracle-guided
de-obfuscation attacks on sequential circuits. This group of
attacks follows these assumptions:
It is oracle-guided: The attacker requires to have access to one
additional activated/unlocked version of the chip (oracle).
It is on sequential circuits: It implies that having access
to the DFT structure, i.e. scan chain pins, is lim-
ited/blocked/locked, and the adversary access is limited to
PI/PO of the oracle.
It is invasive: The attacker requires to have access to the
netlist of the locked circuit (locked GDSII at the foundry or
reverse-engineered of chip acquired from the field/market).

4.2.1 OG Sequential Unrolling-based Attacks

In an unrolling-based attack, a derivative of the SAT attack
that works on sequential circuits has been engaged to evalu-
ate the robustness of logic locking techniques with restricted
scan access. The preliminary version of the SAT-based se-
quential de-obfuscation attack was first introduced in [165].
The sequential SAT attack shows how the SAT solver could
still be engaged to break the logic-locked circuits with
limited scan chain access while unrolling is used as a pre-
processing step. The sequential SAT attack uses an iterative
method to prune the search space, similar to the SAT attack.
Due to the limited access to internal registers, instead of
seeking a DIP in each iteration, it instead finds a sequence
of input patterns X denoted as discriminating input sequence
(XDIS) that can produce two separate outputs for two
different keys. To build the sequence using the SAT attack,
the sequential SAT gets the benefit of unrolling/unfolding
to create a combinational equivalent circuit. Then, the SAT
solver will be used for a specific depth to generate the DIS.
For instance, Fig. 22, shows a sequential circuit unrolled
for τ clock cycles. In this case, the SAT could be invoked
to return a DIS with a length of τ . In comparison with
combinational SAT attack, Fig. 23 shows the main steps of
the SAT-based sequential de-obfuscation, in which unrolling
determines the length of DISes.
In an unrolling-based SAT attack, the generation of unrolled
instances per clock cycle (as a query) can be also done by
a bounded-model-checker (BMC). Hence, some studies also
refer to this group of attacks as BMC attacks on sequential
logic locking. So, to accomplish the unrolling step, with de-
termining the boundary, the BMC engine could be invoked
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TABLE 12: Overview of Oracle-guided Attacks on Combinational Circuits.

Attack Mechanism Applicable to∗1 Limitation & Challenges Countermeasures

Sensitization
[12]

(1) Each key bit is considered as a stuck-at fault, (2) applying fault
sensitization, (3) Finding a test pattern that propagates fault to PO/SO,
(4) Applying test pattern to the oracle to observe the correct key

some RLL [11] Only applicable to acyclic combina-
tional circuits, (2) very limited w.r.t.
key size and key location

SLL [12], FLL [44]

SAT [45],
[46]

(1) Building Double (Miter) Circuit, (2) Finding DIP using SAT solver
for two sets of keys, (3) Comparing with Oracle (ruling out wrong
Key(s)), (4) Finding all DIPs, (5) Finding correct key using all DIPs

RLL [11], FLL
[44], SLL [12],
Lut-based [66]

Circuit must (1) be only acyclic, (2)
have open scan access, (3) be only
Boolean, (4) have no complex arith-
metic units

All except primitive

AppSAT
[147],
Double-
DIP [148]

(1) Running the SAT attack for u iterations, (2) Checking the output
error rate for a set of input patterns after u iterations, (3) Returning the
key if error rate is below a threshold, (4) Otherwise go back to step 1

Point Function,
Point Function
+ Primitive

(1) Finding the minimal set of input
patterns which excite the error, (2)
Error rate analysis

G-AntiSAT [53], S-
AntiSAT [54], CASLock
[55], SFLL-felx/rem
[51], [52]

Bit-Flipping
[150]

(1) Decoupling keys (point function vs. primitive) based on POs’
hamming distance per each DIP, (2) Fixing point-function keys, (3)
Finding primitive keys using SAT, (4) Applying Bypass attack for
point-function keys

Point Function
+ Primitive

(1) Not applicable if keys of primitive
and point function is twisted, (2) Not
applicable if function is stripped

TTLock [50], G-AntiSAT
[53], S-AntiSAT [54],
CASLock [55], SFLL-
felx/rem [51], [52]

CycSAT
[153],
BeSAT [154],
icySAT [155]

(1) Adding cyclic-based constraints to the SAT circuit before invoking
the SAT attack (as a pre-processing step), (2) running the SAT attack
on a cyclic-defused SAT circuit, (3) Recording/modifying some con-
straints to avoid infinite loops

cyclic [58], [63] (1) Adding cycles exponentially w.r.t.
the number of feedbacks, (2) Adding
stateful/oscillating cycles, (3) asyn-
chronous circuits

SAT-hard cyclic [60],
[61], [62], Cross-lock
[76], Full-lock [77], DF
obfuscation [100]

Bypass [149] (1) Selecting a random key for the obfuscated netlist, (2) Using SAT to
find DIPs based on the selected key, (3) Applying DIPs to the Oracle,
(4) Adding an extra circuit at the POs to re-flip the incorrect outputs
(Bypassing)

Point Function
(only low cor-
ruptible

(1) The selected random key might
have numerous DIPs, (2) Needs to
find all DIPs to consider the attack
as an accurate one

TTLock [50], G-AntiSAT
[53], S-AntiSAT [54],
CASLock [55], SFLL-
felx/rem [51], [52]

SMT [102] (1) Modeling behavioral obfuscation using one theory solver (like
graph for timing or RTL (FSMD) or BitVector for hamming distance),
(2) Integrating theory solvers with the Boolean SAT solver, (2) Co-
solving using theory+SAT solvers

DLL [15] (1) Theory solvers are limited, (2)
theory is hard to be modeled in some
behavioral obfuscation techniques

Complex models

NNgSAT
[159]

(1) Using message-passing neural network as a classifier to predict the
satisfiability, (2) Guiding the actual SAT solver based on the output
(prediction) of the message-passing neural network

Cross-lock [76],
Full-lock [77],
Interconnect
[78]

(1) Misguide rate could be high if
trained on small set of benchmarks,
(2) Accuracy could be low when dy-
namicity is in place

——-

CP&SAT
[80]

(1) Simplifying the routing modules using cardinality constraint as a
pre-processor, (2) Run the SAT attack on simplified locked netlist

Interconnect
[78], Cross-lock
[76], Full-lock
[77]

Inefficient optimization on strongly
twisted logic and routing locking

Interlock [80]

Removal
[151]

(1) Finding the obfuscation module (wrapper one) using structural
analysis, (2) Extracting the original circuit wrapped by isolated ob-
fuscation module

Anti-SAT [48],
SARLock [47]

(1) Inefficient if obfuscation module
and original design is twisted using
fake (irremovable) logic, (2) When
the function is stripped

TTLock [50], G-AntiSAT
[53], S-AntiSAT [54],
CASLock [55], SFLL-
felx/rem [51], [52]

SPS [160] (1) Computing absolute signal probability skew for each gate, (2)
finding the gate which has the maximum skew, (3) determining the
correct output based on the location of the selected gate, (4) Revealing
the key based on the correct output

Anti-SAT [48] Inefficient if the sub-circuits of flip-
ping circuitry is (1) not complement
of each other, (2) built using LUTs

TTLock [50], G-AntiSAT
[53], S-AntiSAT [54],
CASLock [55], SFLL-
felx/rem [51], [52]

FALL [161] (1) Finding comparator of flipping circuitry using structural analysis,
(2) Finding sub-circuit of restoration unit and cube stripping, (3)
finding the suspected key values based on the selected sub-circuit
using functional analysis, (4) Verify the key using SAT solver

TTLock [50],
SFLL [51]

(1) Hard to find the units through
structural analysis when re-synthesis
is applied, (2) Hard (almost impossi-
ble) if camouflaged gates are used

CASLock [55], SFLL-
felx/rem [51], [52]

EDA-based
[163], [164]

Analysis of structural traces happening through EDA tools, like syn-
thesis flow

All point func-
tions ——- ——-

∗1 is able to break

to model the locked circuit as an FSM, and the specification
could be formalized by temporal logic properties. So, the
BMC could be exploited as an alternative approach to do
the symbolic model checking before invoking the SAT pro-
cedure. Algorithm 10 demonstrates the overall procedure
of the primitive sequential SAT attack, once the unrolling
is done using the BMC engine. C(x, k, y) indicates the
locked circuit generating output sequence y using input
sequence x and the key value k, and CBlackBox(x) refers
to the output sequence of the oracle for the same input
sequence. After building the model from the locked circuit,
the attack instantiates a BMC to find the xDIS . Then, the
model would be updated with a new constraint to guarantee
that the next pair of keys, which will be discovered in the
subsequent attack iterations, produce the same output for

previously discovered xDIS . The iterations continue until
no further xDIS is found within the boundary of b. After
reaching the boundary, if the algorithm passes three criteria,
the key could be found with one more SAT instantiation.
The boundary could be extended if termination conditions
are not met. The primitive sequential SAT attack in [165]
specified three main termination conditions for this attack:
(1) Unique Completion (UC): This condition verifies that the
key generated by the algorithm is unique. The attack is
successfully ended, and the key is the correct one if there
is only one key that meets all previous DISes.
(2) Combinational Equivalence (CE): If there is more than one
key for all previously found DISes (non-unique key), the at-
tack checks the combinational equivalency of the remaining
keys. In this step, the D/Q of FFs are considered as pseudo
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PO/PI allowing the attacker to treat the circuit as combina-
tional. The resulting circuit is subjected to a SAT attack, and
if the SAT solver fails to find a different output or next state
for two different keys, it concludes that all remaining keys
are correct and the attack terminates successfully.
(3) Unbounded Model Check (UMC): If both UC and CE fail,
the attack checks the existence of a DIS for the remaining
keys using an unbounded model checker. This is an exhaus-
tive search with no limitation on bound (or the number of
unrolls). If no DIS is discovered, the existing set of DIS is
a complete set, and the attack terminates. Otherwise, the
bound is increased and previous steps are repeated.

Algorithm 10 Sequential Attack on Obfuscated Circuits
[165]

1: b = initial boundary, Terminated = False;
2: Model = C(x, k1, y1) ∧ C(x, k2, y2) ∧ (y1 ̸= y2);
3: while not Terminated do
4: while (xDIS , k1, k2)← BMC(Model, b) = T do
5: yf ← CBlackBox(xDIS);
6: Model = ∧ C(xDIS , k1, yf ) ∧ C(xDIS , k2, yf );
7: if UC(Model, b) ∨ CE(Model, b) ∨UMC(Model) then
8: Terminated;
9: b = b+ boundary step;

As demonstrated in Fig. 23, the SAT circuit (SATC) requires
an update per each iteration, in which the newly learned
clauses will be added to the list of previously found clauses.
Hence, with more iteration, the size of the SAT problem
will be increased drastically. In sequential SAT, it gets worse
because the SAT problem will be expanded in two dimen-
sions, i.e. iterations and unrolling. Hence, sequential SAT
attack runs into the scalability issues as it relies on two sub-
routines which are in PSPACE and NP, thereby, failing to
terminate for even moderately small circuits, which contain
only a few thousand gates. Hence, some more recent stud-
ies investigate different possibilities to mitigate this issue.
Shamsi et al. propose a fast sequential de-obfuscation at-
tack, called KC2 [166], which implements different dynamic
optimization tweaks, such as incremental SAT-solving, key-
condition sweeping, negative key-condition compression,
etc., to improve and accelerate primitive sequential SAT
attack. More recently, the open-source toolset RANE [167]
has offered a unified framework with unique interfaces
and can take advantage of the capabilities (like scalability)
of commercial formal verification tools such as Cadence
JasperGold and Synopsys Formality for de-obfuscation at
different stages with fewer difficulties. Although these ap-
proaches show significant improvement, more studies still
show the lack of scalability induced by the de-obfuscation
process, especially, for large circuits, e.g., micro-controllers
and processors. Another recent study has also explored the
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effectiveness of different SAT/BMC-related guiding mecha-
nisms, such as restart and initialization, on the scalability
of this breed of attacks [168]. In this study, warming up
the BMC before its invocation has been investigated. The
exploration shows that for a significant part of the experi-
ence, warm-up as an initialization guide can improve the
performance of this type of attack.

4.2.2 OG/OL Sequential on FSM Locking

When FSM locking is in place [13], [14], [91], [93], [94],
[95], unlike all other logic locking techniques, there might
exist no wiring, input, or logic, as the explicit declaration of
the key (or key gate). Hence, none of the above-mentioned
attacks work on FSM locking, where all these attacks as-
sumptions rely on some formulation around key or key
gates.
4.2.2.1 2-stage (OL/OG) Attack on FSM Locking: To as-
sess the strength of FSM locking techniques with the above-
mentioned specification, however, different studies evalu-
ated the possibility of deploying a 2-stage attack on locked
FSMs [92], [96]. Algorithm 11 shows the overall flow of 2-
stage attacks on FSM locking that is composed of three main
steps:
(i) topological/structural analysis: (described in line 2-13 of
Algorithm 11), which is a detection algorithm to find FFs
that are responsible for storing the state values (separat-
ing them from datapath FFs). The topological analysis is
mostly derived from [169], which identifies FFs whose input
contains a combinational feedback path from their output.
Then, it reduces the set of possible state FFs by (a) grouping
the FFs controlled by the same set of signals, and (b) finding
strongly connected components (SCC) using Tarjan’s algo-
rithm [92], [96], [170], [171].
(ii) functional analysis: (described in line 14-21 of Algorithm
11) that finds the state transition graph (STG) based on the
list of FFs found in step 1. In the functional analysis stage
(stage 2), the attacker attempts to re-calculate and extract
the STG. This is done by first attempting to find the initial
state, and then identifying the reachable states by creating
a reduced binary decision diagram (BDD) or using a SAT
solver.
(iii) Matching/Extracting Original FSM: In this case, based
on the extracted STG, the original part of FSM will be
retrieved based on some behavioral specifications. In most
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Algorithm 11 2-stage on FSM Locking [92], [96]

1: function FSM EXTRACT(Circuit CL)
2: SFF← []; ▷ State Flip Flops
3: RS← classify(FFs); ▷ Classifying FFs into Register Sets
4: for each set ∈ RS do
5: set← set - notSCC(set); ▷ Keeps Strongly Connected

Components
6: if is splittable(set) then
7: RS← {RS - set} ∪ split(set);
8: CLFP← find feedback circuits(CL, Reg Sets);
9: for each set ∈ RS do

10: set← set - notInfDep(set); ▷ Keeps Intersected
Influence/Dependence

11: set← set - InputIndependt(set); ▷ Check Control Metrics
12: update(CLFP);
13: SFF← SFF ∪ set;
14: S0 ← initial state(state regs); SQ← []; ▷ State Queue
15: SQ← SQ ∪ S0; STF← []; ▷ State Transition Table
16: while SQ ̸= [] do
17: state← SQ.dequeue();
18: for each DIP do ▷ DIP found by SAT
19: if eval(state regs, DIP, state) /∈ SQ then
20: SQ.enqueue(nx state);
21: STF← STF ∪ {state, DIP, nx state, PO}

return SQ, S0, STF; ▷ States, Initial, Transition Func.

FSM locking solutions, the adversary can readily distinguish
the original part of the FSM from either extra added states
or extra state transitions, leading to extracting the original
FSM. In this step, for complex cases that are hard to distin-
guish between original and extra states, some random-based
stimuli will be matched with the oracle.
In this attack, topological analysis is a crucial factor as
the success rate of this attack. Because for cases that the
topological analysis cannot retrieve a correct set of FFs as
the state holders, the returning set might have a sub-set
of actual state FFs with some data FFs, and in this case,
behavioral analysis on re-calculated STG might lead to an
incorrect FSM.
4.2.2.2 RANE Attack on FSM Locking: API-based invoca-
tion of different solvers and formal verification tools in
RANE attack allows this framework to formulate multiple
threat models and attack flows [167]. Hence, a specific
model of FSM locking, i.e., HARPOON-based FSM locking,
has been modeled by the RANE attack that shows more
scalability versus the 2-stage attacks on FSM. In this model,
the initial state has been formulated as the secret (unknown
parameter or key variable), and the formal tool has been
invoked to find this secret. Then, the formal tool has been
called once more to find the unlocking sequence reaching
to the initial state. By using these two steps, RANE shows
how FSM locking could be still modeled using a similar
approach as defined for the primitive sequential SAT attack
with a dedicated key variable. Algorithm 12 shows how
this attack has been formulated in the RANE framework.
Although this new model could provide better scalability
compared to 2-stage attacks on FSM, since it is BMC-based
(expansion through two dimensions) their experiments still
show the scalability issue for larger circuits.
4.2.2.3 Functional Corruptibility-Guided on FSM Locking:
In [172], another derivation of SAT-based attack has been
studied that is applicable to key-less FSM-based sequential
logic locking, called Fun-SAT. In Fun-SAT, the minimum
number of unrollings needed to find the correct secret

(here the unlocking sequence) will be estimated that will
allow the attack to directly jump to the depth close to
the final satisfying assignment(s). This method has been
realized using bounded-depth function corruptibility (FC)
analysis, and the whole attack consists of two major steps,
which are FC analysis and SAT solving. Bypassing the
gradual unrolling in Fun-SAT can improve the attack
performance by up to 90x, showing how the conventional
BMC/unrolling suffers from the scalability issue.
4.2.2.4 ORACALL on Cellular Automata guided Locking:
In [173], a new attack on a specific FSM locking has been
introduced, in which the locking of the FSM has been done
using cellular automata cells [174], and each FSM transition
is protected using a secret key that resembles black holes in
traditional FSM locking techniques [14]. The overall flow
of ORACALL is also similar to other unrolling-based and
FSM-based attacks, in which a specific sequence of the
pattern will be applied to the circuit as the pre-processing
step, and then SAT attack will be called to retrieve the
correct key related to each transition.

4.2.3 OG Sequential Scan/Leakage-based Attacks

Similar to attacks described in §4.2.1 and §4.2.2, since a
sub-set of defenses target scan locking or blockage (§3.5),
a sub-set of studies eventually evaluated and revealed the
vulnerabilities of this breed of locking.
4.2.3.1 ScanSAT on Scan Locking: ScanSAT aims to break
the scan-based logic locking techniques. In scan-based logic
locking, since the availability of scan is locked, the adversary
has only access to the PI/PO. Hence, similar to the primitive
sequential SAT attack, KC2, and RANE, ScanSAT [175] is
based on the fact that the complex τ -cycle transformation
of scan-based locking could be modeled by generating an
unfolded/unrolled combinational equivalent counterpart of
the scan-locked circuit. In this case, the locking parts added
into the scan path become part of the resultant combina-
tional circuit. Hence, the adversary faces a combinational
(unrolled) locked circuit with key gates at the pseudo-
primary I/Os of the circuit. The combinational equivalent of
a locked circuit in Fig. 24(a) is provided in Fig. 24(b), where
the locking on the stimulus and the response are modeled
separately as combinational blocks driven by the same scan
locking key. In general, ScanSAT models the locked scan
chains as a logic-locked combinational circuit, paving the
way for the application of the combinational SAT attack to

Algorithm 12 RANE Attack Model on FSM Locking

—————– Finding Secret 1 (init state) —————–
1: Model← Cseq(x, sinit1, y1) ∧ Cseq(x,sinit2, y2);
2: while !UC(Model) ∧ !CE(Model) ∧ !UMC(Model) do
3: DISi ← Formal(Model ∧ (y1 ̸= y2));
4: yi ← CBlackBox(DISi);
5: Model ∧ = Cseq(DISi, Sinit1, yi) ∧ Cseq(DISi, Sinit2, yi);

—————– Finding Secret 2 (unlocking sequence) —————–
6: Model ∧ = CE0

u(us0, srst, yUS0, sus1);
7: i← 1;
8: while Formal(Model ∧ (susi = ŝinit))→ Fail do
9: Model ∧ = CEi

u(usi, susi, yi, susi+1 );
10: i← i+ 1;
11: return Formal(Model ∧ (susi = ŝinit)) ▷ {init state, unlocking

sequence}
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reveal the key (sequence of unrolled), unlocking the scan
chains, and thus, restoring access to the oracle.
In addition to de-obfuscating the statically scan-locked cir-
cuit, ScanSAT is also able to be applied on the dynamically
scan-locked circuit that is locked by DOS architecture [83].
In DOS architecture, an LFSR has been engaged to generate
runtime dynamic keys. In oracle-guided attacks, since the
output of the netlist evaluation, such as DIPs and DISes, are
continuously checked with the oracle, dynamically change
of the configuration in the oracle will corrupt this oracle-
oriented evaluation, and results in failure of such attacks.
In ScanSAT, it is assumed that after successfully reverse
engineering, the LFSR structure, and consequently its poly-
nomial is known to the adversary. Hence, finding the seed
of LFSR and the update frequency parameter (p as the time
interval of updating the key based on the LFSR output),
which is the only secret in DOS architecture, would lead to
deriving all the keys that are dynamically generated on the
chip.
A simple method to identify p is to apply the same stimulus
pattern repeatedly from the SI and observe the response
through the SO. The point is that after p capture operations,
by repeatedly applying the same stimulus, the response
would be different because of the updated key; thus, most
likely, there will be a noticeable change in the observed
response, helping detect the update operation on the key.
After finding p, the same approach that was used for static
scan obfuscation would be used in this case. The difference
now is that the SAT attack could be executed for at most p
iterations (after p iterations, the key is updated). If more than
p DIPs are required to identify a dynamic key, the SAT attack
needs to be terminated prematurely upon p DIPs. Another
SAT attack must be executed subsequently to identify the
next dynamic key in the sequence still within p iteration.
Since the updated key is generated by the LFSR whose
polynomial is known for the adversary, independent SAT
attack runs on each dynamic key reveals partial information
of the seed; thus, the information from independent SAT
attack runs by gradually gathering information about the
seed in every run, and finally, by incorporating into the
ScanSAT model, the relationship between the seed and the
keys would be revealed.
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Fig. 24: Converting a Locked Scan Chain to its Combinational Counter-
part [175].
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4.2.3.2 DynUnlock on a Specific Dynamic Scan Locking:
As a countermeasure against ScanSAT attack, dynamic en-
crypt flip-flop (EFF-Dyn) [85] combines scan locking ap-
proach from EFF [84] and a PRNG, to introduce dynamicity
in the design. In EFF-Dyn, based on the value of scan con-
trolling signal, i.e. scan enable (SE), the source of the key to
the circuit would be changed. In the test mode, the test key
must be provided externally, and in case of a mismatch with
the locking key embedded in the circuit, there exists a PRNG
that updates the key in every clock cycle, thereby controlling
the key gates dynamically. However, similar to LFSR, the
structure of PRNG and its polynomial would be known for
the adversary after successfully reverse engineering. Hence,
DynUnlock [176] proposes a similar approach to find the
seed of the PRNG in EFF-Dyn.
Assuming that the structure of PRNG is similar to an LFSR,
in DynUnlock [176], as demonstrated in Fig. 25, it first
starts by reverse-engineering the LFSR circuit and obtaining
the equations corresponding to each clock cycle. Next, it
determines the location of key gates inserted between the
SFFs. Then it models this sequential logic circuit into a
combinational circuit with SFFs replaced with inputs and
outputs. Once modeling is complete the combinational ob-
fuscated counterpart circuit, with seed bits acting as primary
key inputs, is fed to a SAT solver, which provides a DIP and
its corresponding output pattern. In [176], the authors carry
out the attack for just one capture cycle. To recover more
bits, they restart the LFSR circuit and obtain a new DIP and
its corresponding output pattern from the SAT solver, and
recover more seed bits. they repeat the restart step until all
the seed bits have been recovered, or the remaining seed bits
can be brute-forced.
4.2.3.3 Leakage-based Attacks on Scan Blockage: Due to
the failure of scan obfuscation architectures against sequen-
tial SAT attacks, more recent studies evaluate and reveal
the effectiveness of the scan chain blockage after activation
of the obfuscated circuit. However, the structure of the
augmented scan chain and the infrastructure used around
them for protection might lead to a different form of security
leakage. For instance, the first scan blockage architecture
called R-DFS was first introduced in [40], in which the ob-
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fuscation key is stored in a custom-designed scan (storage)
cell. Based on the value of the SE pin and the new pin
called Test, the key values could be loaded into SCs either
directly from TPM or through SI, and the SO will be blocked
after activation to avoid any secret leakage. However, the
shift-and-leak attack [37] breaks the R-DFS by exploiting the
availability of the shift-in process through the SI, and the
capability of reading out the PO through the chip pin-outs
in the functional mode.
To remedy the leakage issue, the authors in [37] proposed
modification to the R-DFS (mR-DFS), which blocks any shift
operation after the obfuscation key is loaded from the TPM,
removing the ability of an adversary to apply the shift-and-
leak attack. However, the work in [38] illustrates how the
architectural drawbacks of the modified infrastructure can
lead to another glitch-based shift-and-leak attack, which al-
lows an adversary to still leak the logic locking key through
the PO even if the shift operation was disabled.

4.2.4 Summary of OG Sequential Attacks
The oracle-guided attacks on sequential circuits mostly rely
on three different models to successfully break logic locking
techniques: (1) unrolling mechanism that still allows the
adversary to get the benefit of satisfiability, and it can be
done manually or by using BMC. (2) structural/functional
analysis of the locked netlist particularly for FSM-based
logic locking, and (3) leakage possibility while the scan
chain structure is manipulated. In general, compared to
combinational attacks, the biggest shortcoming of sequential
attacks is the scalability issue of the attack particularly on
large circuits. This is when unrolling or BMC is in place,
or some structural/functional analysis has been done, or
leakage scenarios are targeted to be modeled. Table 13 tries
to concisely answer to these four questions for attacks on
sequential circuits: (1) How the attack flow works; (2) Which
logic locking techniques could be broken using the attack;
(3) What is the limitation and challenges of the attack; and
(4) What is the existing/potential countermeasure against
the attack?

4.3 Oracle-Less (OL) Attacks

Unlike almost all previous attacks, where access to oracle is
one of the basic assumptions in threat modeling, realizing
such scenarios might be hard or even impossible in so many
cases. For instance, a malicious end-user has stolen one
activated chip from the field, and no other copy of the chip
is available to the public. Given such scenarios, a significant
portion of attacks, which are known as oracle-less attacks,
are those assuming there is no/hard possibility for the
adversary to get access to an additional activated (unlocked)
chip, and the threat model has been defined in a way that
the adversary has access to (i) only the reverse-engineered
netlist of the chip (locked GDSII at foundry), or (2) only one
packaged chip (unlocked/activated) that can go through
physical reverse-engineering if needed (malicious end-user).
Although this group of attacks can be more promising as
they do not need the oracle, since there is no reference
model, we witness the notion of key guessing/prediction
because there is no explicit way of confirming the recovered
key. Additionally, many of these approaches recover the key

partially. So, unlike oracle-guided attacks in which time of
the attack is important, here the key coverage percentage
is a pivotal metric for the evaluation of the success rate of
the attack. Hence, some of these attacks suggest that having
an unlocked system is recommended to perform functional
tests and to verify the correctness of the extracted key [177].
Based on the structure of oracle-less attacks, they can be cat-
egorized into three main sub-categories: (i) structural, which
could be (a) synthesis-based, (b) ATPG-based, or (c) ML-
based, (ii) tampering-based, and (iii) probing-based. In the
following, these sub-groups will be discovered holistically.

4.3.1 OL Structural Synthesis-based Attacks
Some attack approaches exploit the structural changes in-
duced through the synthesis process. These attacks trace
the changes through the synthesis process once the design
is fed by different (guessed) key vectors. This breed of
attack reveals structure-based shortcomings of logic locking
techniques, and the main goal of them is to show that
once incorrect (or a specific) key value will be applied
to the design, the re-synthesis process on the new design
is constrained by the key value reveals some information
(based on structural analysis) about the correctness of the
applied key values.
4.3.1.1 Desynhtesis Attack: As its name implies, the main
aim of the desynthesis attack is to eliminate incorrect keys
by desynthesizing the locked netlist [178]. In this attack, a
hill-climbing approach has been engaged to re-synthesize
the locked netlist for different key guesses. The key guess
that yields the maximum similarity between the locked
netlist and its resynthesized versions are considered as the
correct key. Fig. 26 shows a simple example of how the
desynthesis attack works based on similarity factor after re-
synthesis constrained by key value. Ideally, the best scenario
that guarantees 100% key recovery is brute-force key testing
(exhaustively applying all key combinations followed by re-
synthesis). But, even if the attacker exhaustively tests all
key values, for two major reasons, the success rate of such
an attack would be very low: (1) The attack uses a heuristic
dis-similarity factor, and eliminate keys with the smallest
dis-similarity (as the incorrect keys). Hence, the efficiency of
the algorithm used for checking the dis-similarity crucially
affects the success rate. (2) Randomness and imperfection
of the commercial synthesis tool per each invocation can be
misguiding in different cases, thereby reducing the success
rate of this attack.
4.3.1.2 SWEEP Attack: In SWEEP [177], which is a
constant-propagation attack, the basic idea of the attack
is very similar to the desynthesis attack, which is to as-
sign a constant key-value to one key input and synthesize
the obfuscated design with that key value. Based on the
synthesis report, the attack identifies any structural design
features that are correlated to the correct key values. Finally,
the correct value of the analyzed key input is identified
by comparing them to the synthesis report of the original
obfuscated design using a scoring algorithm. SWEEP uses
machine learning for the detection and tracing of the fea-
tures related to the correct key and can be a member of
OL structural ML-based attack (§4.3.3) as well. The main
steps of the SWEEP attack are (1) training phase and dataset
generation, (2) constant propagation, synthesis, and feature
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TABLE 13: Overview of Oracle-Guided Attacks on Sequential Circuits.

Attack Mechanism Applicable to∗1 Limitation & Challenges Countermeasures

Unroll/BMC
[165], [166],
[167], static
scanSAT [175]

(1) Unrolling the sequential circuit (FFs are pivot) for u times (u-
cycle combinational counterpart), (2) Apply the SAT attack on u-
time unrolled circuit, (3) Finding DIPs and unroll more if there is no
more DIP in u-time unrolled circuit, (4) Stop based on termination
strategies (UC, CE, or UMC)

sequential lock,
Encrypt-FF [84],
seql [86]

(1) scalability is low (large number of unrolling
and/or large circuit), (2) complexity of un-
rolling is high in multi-clock and clock-gated
designs

DOS [83],
dyn-EFF [85],
latch/clock-
based [99], [100],
[101]

dynamic
scanSAT [175]

(1) Identify the key update frequency by applying the same stimu-
lus pattern, and observing the response, (2) Extracting the secret
seed by applying SAT on unrolled circuit with known update
frequency (with updated keys), (3) Extracting original functionality
by knowing seed and update frequency

DOS [83] (1) Hard to apply if different keys generate the
partial same response, (2) Impractical for dy-
namic seed (changing the seed over the time),
(3) Impractical if LFSR is replaced with TRNG

Dynamic EFF
[85], DisORC
[42], DOSC [88]

2-stage [92],
[96]

(1) Decoupling state FFs from datapath FFs using structural analy-
sis, (2) Extracting the state transition graph of FSM(s) based on the
list of FFs found in step 1, (3) Revealing the original parts of the
FSMs

FSM Locking
[13], [14], [91]

(1) Hard to apply when datapath and state
FFs are strongly connected, (2) Challenging if
unreachable states used as trap, (3) Impractical
if part of the logic is locked (compound)

DFSSD [93],
JANUS/HD [94],
[95]

RANE FSM
[167], Fun-
SAT [172]

(1) setting the initial state of FSM locking as the key, (2) Unrolling
the circuit for a specific number of cycles that required to reach
initial state, (3) use SAT/BMC to find initial state as well as number
of cycles required (unlocking sequence)

FSM Locking
[13], [14], [91]

(1) Inapplicable if intermediate states are
locked, like adding black holes for intermedi-
ate states, (2) Inapplicable if FSM is generated
at the run-time

JANUS/HD [94],
[95]

DynUnlock
[176]

(1) Finding the LFSR/PRNG equations corresponding to each clock
cycle, (2) Finding the location of key gates inserted between the
SFFs, (3) Replacing SFFs with PIs/POs (de-sequencing), (4) Apply-
ing the SAT attack

Dynamic-EFF
[85]

(1) Impractical for dynamic seed (changing
the seed over the time), (3) Impractical if
LFSR/PRNG is replaced with TRNG

——-

Shift-and-
Leak [37]

(1) Finding leaky SFFs which are synthesizable/propagatable, (2)
Shifting in state/key into cells, (3) Moving the key into the leaky
SFF using shift mode, (4) Observing the key at PO by applying a
ATPG-generated pattern

FORTIS [36], R-
DFS [40]

(1) Hard to leak the keys if leaky SFFs are
very limited (based on the topological sort of
the gates), (2) Not applicable if all key storage
are placed and mapped ahead of SFFs in the
chains

mR-DFS [37],
kt-DFS [38],
DisORC [42]

∗1 is able to break
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Fig. 26: How Key-Constrained Desynthesis Works [178].

extraction from the constrained designs, (3) key correlation
analysis that determines feature weighting algorithm, and
how the decision will be made, and finally (4) test time
which generate the initial predicted key.
4.3.1.3 Redundancy Attack: The work in [179] proposes a
redundancy attack, which is based on the observation that
an incorrect key often results in a circuit with significantly
more logic redundancy compared to the correct circuit. The
redundancy attack determines the likely value of key bits
individually by comparing the levels of logic redundancy
for each logic value. In the first step, all the key bits are
initialized as unspecified until their values are determined.
Then the logic value of one key bit is enumerated, and a
redundancy identification tool will extract untestable faults
for each logic value assignment. The attack assesses the

likelihood of a key bit by comparing the changes to the
number of untestable faults for a key-bit value of zero and
a key-bit value of one. The authors of [179] showed that
this attack can recover more than half of the key bits in
both RLL and SLL. Similar to previous structural synthesis-
based attacks this attack uses key guessing and reduction
after constraining. However, they rely on the fact that an
incorrect key can modify the circuit’s structure in a way
that may reduce the manufacturing test coverage. But this
reduction should not happen in the original design, and
consequently narrow down the key space based on the
number of untestable faults per each constraint. Hence, since
it is a combination of structural and test-based analysis,
it can also be a member of structural ATPG-based attacks
(§4.3.2).

4.3.1.4 Topology-Guided Attack: Topology-Guided Attack
(TGA) [180], [181] relies on identifying repeated functions
for determining the value of a key bit. The attack is based
on the observation that the basic functions in a logic cone
are generally repeated multiple times in a circuit, such as
basic arithmetic function units, shift registers, counters, etc.
These functions are denoted as function units. If one or more
key gates are placed in an instance of repeated function unit
(FU) during the locking of a circuit, the original netlist can be
recovered by searching the equivalent function units (EFUs)
with all hypothesis keys. For finding the EFUs in a locked
netlist, this attack uses an efficient depth-first search (DFS).
If a match is found in the netlist, the hypothesis key becomes
the actual key bit. For example, in a four-bit ripple carry
adder that consists of eight identical one-bit half adders
(HA), HA can be treated as a FU. If one of these HA is
locked using an XOR gate, an adversary only needs to find
an original HA, and then match this with the locked HA to
recover the key value.
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4.3.2 OL Structural ATPG-based Attacks
ATPG-based attacks are mostly inspired by test concepts to
discover the logic locking key values. It is shown that ATPG
is a reliable choice for discovering the key values since it is
readily available from multiple commercial vendors and it
is able to handle large circuits due to its development over
the last 50 years. Redundancy attack described previously
in §4.3.1.3 is one of the attacks in this sub-group that tries to
guess the incorrect key while the manufacturing (stuck-at)
test coverage for a constrained re-synthesized netlist is high.
4.3.2.1 Differential Fault Analysis Attack: The differential
fault analysis (DFA) attack [182] is an ATPG-guided stuck-
at fault-based attack, showing how an adversary can de-
termine the logic locking key by injecting faults at the
key registers, which hold the key value during normal
operation. In this attack model, the first step is to select
an input pattern, that produces complementary results for
both fault-free and faulty circuits. The faulty circuit is the
same chip, only with a particular fault inject to keep all the
key registers or interconnects to faulty value. Note that the
selected input pattern must sensitize only one key bit to the
primary output(s). To obtain the specific input test patterns,
their method relies on stuck-at faults based on constrained
ATPG. Then, the input pattern will be applied to (1) fault-
free and (2) faulty circuits, and the responses of them will
be gathered. The output responses are XORed to find any
mismatch and based on the output of the XOR gate the key
value can be predicted. The authors of [182] showed that
at most |K| test patterns are required to recover the entire
secret key of size |K|.
4.3.2.2 CLIC: CLIC-A [183], [184] also uses commercial
ATPG to recover key-input values in locked combinational
and sequential circuits. There are four methods currently
included in CLIC-A. The third and fourth methods are
oracle-less, meaning they only require the netlist, which
will be discussed in this section. The third method, which
is applicable to combinational locking and targeting key-
dependent faults [183], targets faults that require multiple
key inputs for sensitization. To find these faults, ATPG is
first performed on the locked netlist with the unsolved key
inputs all constrained to do-not-care values (X). Faults that
require the key inputs for detection will be reported as an
ATPG failure. Each fault in this set of key-dependent faults
is targeted using the second round of ATPG. If a test is
found, the generated test is stored, along with the fault
to be further analyzed for the key value. The test analysis
method used for the generated tests differs depending on
the lock type. The fourth method included in CLIC-A solves
a key sequence from a sequentially locked circuit [184]. The
insight used in the fourth method is that there must exist
numerous faults that require the key sequence for detection
through sequential ATPG. In this method, the sequential
circuit ATPG is typically accomplished by first unrolling the
circuit to form a combinational mode. Then CLIC-A targets
single stuck-at faults on one combinational frame at a time.
This method is specifically effective at solving a key from a
circuit locked with an entrance FSM (e.g., [13]).

4.3.3 OL Structural ML-based Attacks
A more recent trend has been opened in the area of logic
locking that evaluates the utilization of machine-learning

(ML) for both defensive and attacking sides. From the
attacking point-of-view, in many of these ML-based attacks,
unlike seeking for functional recovery, structural analysis
through ML has been done aiming to either find the (correct)
key that corresponded to the correct structure or retrieve the
original structure by removing the transformations intro-
duced by locking [22], [177], [185], [186], [187], [188], [189],
[190], [191].
Structural attacks, such as SAIL [185], GNNUnlock [187],
and Snapshot [22] aim at discovering the design intent using
machine learning. The authors of [185], were motivated
based on this observation that obfuscation introduces sparse
and local structural changes in a design and the changes are
very deterministic. Hence, they proposed the SAIL attack
[185], which exposes a vulnerability in logic locking by
learning the predictable, localized structural changes that
are introduced by the obfuscation process and uses machine
learning to learn the deterministic rules applied by com-
mercial CAD tools during synthesis. More precisely, in the
SAIL attack, the Pre- and post-resynthesized locked designs
are provided as training data to train the Change Prediction
Model (CPM) and the Reconstruction Model (RM). Given a
netlist subgraph (considering netlist as a graph) extracted
near the selected key input, CPM predicts whether a struc-
tural change has occurred. If a change is predicted, RM is
utilized to locally revert the structural changes after the
re-synthesis. SAIL attack is applicable to traditional logic
locking techniques (e.g., RLL, FLL, and SLL).
SnapShot [22] is another structural analysis attack on logic
locking, which utilizes artificial neural networks to directly
predict a key bit value from a locked synthesized gate-
level netlist. The authors in [22] claim that SnapShot can be
applied to a wider range of schemes, such as a MUX-based
locking scheme. Another example of machine learning-
based attack is GNNUnlock [187], which leverage graph
neural networks (GNNs) that learn the common structural
features of the protection logic added by point function
techniques, such as SFLL-HD [51], TTLock [50], and Anti-
SAT [48]. GNNUnlock employs the following techniques:
1) netlist-to-graph transformation to capture each gate’s
functionality and connectivity in the gate-level netlist, 2)
GNN learning on locked circuits, and 3) Post-processing
rectification procedure to rectify any potential misclassifi-
cations to enhance the accuracy further and remove the
identified protection logic effectively.
More recently, some ML-based structural attacks targeted
routing-based locking techniques [190], [191]. In [190], the
key-extraction has been formulated as a link prediction
problem, and the prediction has been done using a graph
neural network (GNN). Link prediction is a generic prob-
lem that can be modeled using GNN, and in this attack,
since routing locking will hide the connectivity/wiring, this
missing connections are modeled as missing link problems.
Then by enclosing subgraph extraction, GNN-based link
prediction has been performed. Similar approach has been
used in [191], in which another MUX-based routing locking
is targeted [192], called D-MUX. Although D-MUX is in-
troduced as a MUX-based routing locking resilient against
ML-based attack, the work in [191] still shows that link
prediction modeling can break this countermeasure as well.
The generality of the link prediction model allows the
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adversary to formulate different logic locking techniques.
For routing-based locking, the target links are connections
around MUXes, and for other techniques, it could be either
gates or other connections.

4.3.4 OL Tampering Attacks
In the IC supply chain, there are potential adversaries who
have the capability and access to insert Hardware Trojans
into the IC design, which is called tampering attacks. Hard-
ware Trojans, are malicious modifications to the original
circuitry inserted by adversaries to exploit secret key infor-
mation of the design, such as logic locking key. The TAAL
attack [193] is based on implanting a hardware Trojan in the
netlist. In [193], the authors showed that any logic locking
techniques that rely on the stored secret key can be broken
by inserting a hardware Trojan. The attacking approach of
the TAAL attack is to tamper the locked netlist to extract
the secret key information and leak the secret key to an
adversary once activated. The authors of [193] present three
types of TAAL attacks that extract the secret key differently
using hardware Trojans placed at different locations in the
netlist. In T1 type TAAL attack, an adversary can extract
the key from a locked netlist without knowing the details of
the logic locking technique used to protect the circuit as it
directly leaks the secret key from the tamper-proof memory.
In this attack model, the trigger is constructed using a 3-
input AND gate along with an inverter placed before one
of the AND gate inputs, and the payload is delivered to the
primary output of the circuit using a 2-input MUX. Under
normal operation, the multiplexer propagates the correct
circuit functionality at the output. Once the Trojan gets
activated, the output of AND gate becomes 1, which leads
to the extraction of the secret key through the multiplexer
at the output. T2 type and T3 type TAAL attacks rely on the
activation and propagation of the secret key to the primary
output and improve the complexity of detecting an attack.

4.3.5 OL Probing Attacks
Physical attacks, such as electrical probing attacks and
optical probing attacks can impose the threat of exposing
security-sensitive information to an adversary. For example,
the electrical probing attack directly accesses the internal
wires of a security-critical module and extracts sensitive in-
formation in electronic format. Therefore, electrical probing
is considered as a contact-based method. Electrical probing
attacks can be classified into front-side probing, which is
carried out through the upper metal layers, and back-side
probing, which is mounted through the silicon substrate.
Attackers usually deploy focused ion beam (FIB) for probing
attacks. FIBs use ions at high beam currents to mill a narrow
cavity, and get access to the target wire. Active shielding
could be considered as a countermeasure against front-side
probing attack, in which a shield that carries signals is
placed on the top-most metal layer to detect holes milled
by FIB; however, it has its limitations [194].
On the other hand, optical probing techniques are often used
in back-side probing to capture photon-emission phenom-
ena during transistor switching. By passively receiving and
analyzing the photons emitted from a specific transistor, the
signal processed by that transistor can be inferred. In ad-
dition to photon emission analysis, laser voltage technique

(LVX), or electro-optical frequency modulation (EOFM), are
also used during back-side attacks. These techniques illu-
minate the switching transistors and observe the reflected
light. The work in [20] shows that optical probing is a threat
for logic locking as this method can extract the locking key
in a contact-less manner; without using invasive methods,
like FIBing or circuit edit, and contact-based method, like
electrical probing. With that in mind, security against optical
analysis mostly concerns protecting the backside of the chip,
such as adding a backside polishing detector [194].

4.3.6 Summary of Oracle-Less (OL) Attacks
Oracle-less attacks on logic locking mostly focus on the
evaluation of design specifications after purposefully ma-
nipulating the logic locking part. The Manipulating of the
logic locking part can be done using different mechanisms:
one can apply the constraining of the key value (synthesis-
based and ATPG-based), one can insert malicious behavior
(tampering-based), on can injecting faults, etc. Also, the
specification mostly is related to structural specification,
testability specification, or ML-based feature extraction. So,
in this breed of attacks, the adversary applies the manip-
ulation, gathers the information about the targeted specifi-
cations, and decides/calculates/predicts the key value. On
the other side, probing attacks, either electrical or optical,
can be done on a design while the key is loaded (or going
to be loaded), and no modification or manipulation for
observing the logic locking key is required, which makes
this model of attack a real threat against all existing logic
locking techniques. With the introduction of ML-based and
probing-based attacks in recent years, current directions of
logic locking faced some changes to be responsive against
these tighter and harder threat models. In the following,
we will cover some of these directions that require more
investigation w.r.t. the existing attack models. Table 14 tries
to concisely answer to these four questions for oracle-less
attacks: (1) How the attack flow works; (2) Which logic
locking techniques could be broken using the attack; (3)
What is the limitation and challenges of the attack; and (4)
What is the existing/potential countermeasure against the
attack?

5 WHAT TO EXPECT FROM FUTURE STUDIES

Unlike the very first experiment(s) on logic locking that
promise the security of design against reverse-engineering,
IP piracy, and IC overproduction, we just demonstrate
through this survey paper that this proactive countermea-
sure, regardless of its potential, has been challenged contin-
uously for almost two decades, thereby we are witnessing a
non-stop cat-and-mouse game between logic locking coun-
termeasures (defenses) as well as de-obfuscation approaches
(attacks). Considering multiple factors, including but not
limited to (i) all threats introduced so far on logic locking,
(ii) the shortcoming and architectural drawbacks of existing
approaches, (iii) getting the benefit of cutting-edge science
and technologies applicable at this domain, and (iv) further
modernization happening in semiconductor industries, it
seems that the introduction of a standalone but comprehen-
sive solution for addressing all the vulnerabilities in logic
locking is almost beyond the bounds of possibility.
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TABLE 14: Overview of Oracle-Less Attacks.

Attack Mechanism Applicable to∗1 Limitation & Challenges Countermeasures

Desynthesis
[178]

(1) Applying a random key to the netlist, (2) Re-synthesizing the netlist
constrained with the random key, (3) Comparing (structural) the re-
synthesized netlist with the raw locked netlist, (4) Guessing the correct
key based on the (structural) similarity ratio

RLL [11], FLL
[44], SLL [12]

(1) Hard to apply if original gates are
combined/twisted with key gates, (2) De-
pending on the optimizations used in Re-
synthesis, it might lead to an incorrect key

Interlock [80],
TRLL [42],
eFPGA [141],
[142]

SWEEP
[177],
SCOPE
[195]

(1) Assigning a key value (0/1) to one key bit, (2) synthesizing w.r.t. the
assigned key value, (3) Analyzing the re-synthesized netlist for any design
features that are correlated to the correct key value, (4) Indicating the
correct key value based on a feature scoring algorithm

Random MUX-
based Locking

(1) Low accuracy for large number of
key gates (strongly connected MUX-based
paths), (3) Complex training phase for
larger circuits.

Shielding [196],
UNSAIL [197],
eFPGA [141],
[142]

DFA [182] (1) Building miter using fault-free circuit and laser-based faulty circuit
(fault at key-registers), (2) Finding a DIP using ATPG (sensitize one bit of
key), (3) Guessing the key based on the response

Any Locking
Technique

(1) Hard to inject fault when backside of
die is obstacled using metal coating, (2)
More than one laser source is required

——-

CLIC-A
comb [183]

(1) Finding key-dependent faults via ATPG constrained to don’t care
values, (2) Targeting each key-dependent fault by ATPG, (3) Analyzing
the test generated corresponded to faults for guessing the key value

Primitives
(§3.1), point
function (§3.2)

(1) Nonscalable for high number of key-
dependent faults per cone, (2) Dependent
to The availability of don’t care

——-

CLIC-A seq
[184]

(1) Unrolling the netlist to build combinational counterpart for u cycles,
(2) Finding the faults and guessing the keys as described in CLIC-A comb

FSM locking
[13], [14], [91]

(1) Hard to be scalable for large circuit, (2)
Not scalable for faults at deep sequence

DFSSD [93]

Redundancy
[179]

(1) Assuming all key values as unspecified, (2) Enumerating logic value
of one key bit, (3) Extracting untestable faults for each logic value, (4)
Indicating the key bit value based on the number of untestable faults

RLL [11], SLL
[12], Point
Function +
Primitive

(1) Hard to apply if original gates are
twisted with key gates, (2) Not applicable
to MUX-based and LUT-based locking

Interlock [80],
TRLL [42],
Shielding [196]

TGA [180] (1) constructing unit functions (repeated) corresponding to the hypothesis
key, (2) match unit functions with exisitng unit functions, (3) guessing the
key based on the constructed topology

Primitive lock-
ing techniques

(1) Low success rate if unique modules
are locked, (2) Highly dependent to the
topology and structure of the circuit

MUX/LUT lock-
ing, eFPGA [141],
[142]

SAIL [185] (1) Train a {change prediction Model} and {reconstruction} model using
pre- and post-resynthesized locked designs, (2) Predicting the changes
occurred using the trained ML

XOR-based
logic locking

Unsuccessful (1) if parts of logic locking
is added manually (post-synthesis), (2) on
MUX-based and LUT-based locking

eFPGA [141],
[142], UNSAIL
[197]

GNNUnlock
[187]

(1) Generating a dataset on targeted locking technique, (2) Translating
dataset to graph (netlist to graph), (3) Training the graphNN, (4) Testing
on targeted netlist using trained graphNN

Point Function (1) Training set and test set must be iden-
tical, (2) Unsuccessful against dynamic
nature (re-configurability)

——-

Utangle,
MuxLink
[190], [191]

(1) Formulating the key-extraction as a link prediction problem, (2) Ap-
plying the link prediction using GNN, (3) A post-processing to determine
correct vs. false links

InterLock [80],
D-MUX [192]

Low success rate if (1) the location of
locked paths are distributed, (2) paths are
less co-dependent

——-

TAAL [193] (1) Inserting T1/2/3 Trojan into the netlist for extracting/propagating the
key, (2) Enabling the Trojan after activation

Any locking
technique

(1) Hard to insert Trojan if keys are added
with no leakage to outputs, (2) Might be
detectable by Trojan detection algorithms

——-

Probing [20],
[194]

(1) Determining the clock frequency, (2) Localizing key-gate regis-
ters/storage, (3) Acquiring optical access for probing, (4) Identifying the
key loading period, (5) Extracting key value from EOFM/EOP

Any locking
technique

(1) Not applicable if randomness is used
during initialization, (2) Localising and
simultaneous probing is hard to achieve

Nanopyramid
[198], Differential
Logic [199]

∗1 is able to break

5.1 Vulnerabilities/Requirements of Logic Locking

In the following, we first describe state-of-the-art yet most
concerning issues around logic locking showing why logic
locking has its own certain critical setbacks. Then, we list
some of the possible directions that might provide appro-
priate answers to the existing vulnerabilities. The major
questions, yet with no answer, are as follows:
(i) Lack of Formal Model: The concept of logic locking with
locking/unlocking key resembles that of cryptographic
primitives with encryption/decryption key. However, since
the introduction of logic locking, there exists no formal
definition or formulation as the reference showing what
exactly a logic locking countermeasure must approach to
be considered (provably) secure. For instance, the point
function techniques (§3.2) use the notion of provably secure.
However, it is only against the SAT attack, and all of them
are already broken by exploiting structural specification(s)
(§4.1.3.5). Similarly, configurable logic and routing tech-
niques (§3.4) propose SAT-hard instances that implicitly
build provable resiliency with exponential complexity in
terms of BDD analysis. However, few recent studies show
their vulnerabilities against other structural specification(s)
exploited by machine learning (§4.3.3). It is undeniably clear
that formalizing the security of logic locking, and defining

the logic locking construction that meets the formal model,
has been completely elusive, which results in the intro-
duction and evolution of numerous groups but completely
independent and in an insular way.
(ii) Dynamic/Expanding Nature of Threat Modeling: The appli-
cability of logic locking, as well as the success of the
proposed approaches, are heavily dependent on the correct
and accurate definition of the threat model. From oracle-
guided to oracle-less, from scan-available to scan-protected,
from invasive to non-invasive, and from untrusted foundry
to the malicious user at market/field, are some of the
notable bullets in the definition of threat model against logic
locking. However, over time, the definition10 might face
significant changes that result in invalidating all previous
studies. For instance, the notion of insider threats, e.g., a
rogue employee at a design house, from the design team
to verification, integration, etc., or nearly any individual
working within any trusted entity but as a malicious ac-
tor, can completely invalidate the applicability of existing
logic locking techniques, that mostly done at gate-level. In
addition, unlike almost all attacks that have been done at the
gate-level, with having this insider threat notion, there exists

10. Here it is all definitions related to IC lifecycle. i.e., from IC
specification to disposal.
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a possibility of emerging a new thread of attacks on logic
locking that have been accomplished at the RTL level, whose
main aim is to get the benefit of circuit specification(s) at
RTL or any high-level pre-synthesis representation for de-
obfuscation purposes. This shows the lack of generality
and applicability of many existing logic locking techniques,
which makes them discredited in the short term with a new
backdoor(s) revealed in the new threat model(s).
(iii) Cutting-edge Technologies/Devices against Logic Locking:
As described in §4.3.5, an adversary such as a high-end
untrusted foundry with cutting-edge technologies and
devices, e.g., microprobing station, scanning electron
microscope (SEM), and laser scanning microscope (LSM),
should be more than capable of extracting the unlocking
key from a chip by contact-based electrical or contactless
optical probing. This form of attack is not only limited to
logic locking, even cryptographic primitives with proven
guarantees are subjected to such attacks. In this case,
regardless of the logic locking techniques, with having
the information of key management infrastructure (§2.2),
the adversary can raid it using either FIB and electrical
contact-based probing or contactless optical probing from
the backside of the chip, and most modern chips do not
have any protection mechanism for the backside of the
substrate. Although probing-based attacks on logic locking
completely undermine the protection/security promised
by logic locking, the security of the key management
infrastructure has not been evaluated meticulously, and
most of the approaches left this part non-investigated by
just relying on the assumption of having TPM as a reliable
solution with no further details.
(iv) Machine Learning and its Evolution: Since 2018, the appli-
cation of machine learning, specifically graph-based neu-
ral networks (GNN), has been drastically increased in the
domain of logic locking. These approaches rely on some
feature extraction that is more related to the structural
specification(s) of the logic-locked circuit. Then, a training
model will help to tune the ML (NN) for the specific logic
locking targeted for de-obfuscation. Currently, many of the
existing logic locking techniques have been broken by a set
of ML-based attack models (§4.3.3). These attack models
clearly reveal the flaws of existing logic locking techniques,
particularly in terms of structural specification(s). Addi-
tionally, expanding the threat models and opening new
backdoor(s) can also raise the usage of this model of attacks.
For instance, assuming the notion of insider threats, and
having access to higher abstract(s) of the design, as well as
graph-based NN feature extraction can also be done at these
higher abstractions making the existing approaches even
more prone to another set of ML-based structural analysis.

5.2 Possible Research Opportunities in Logic Locking

Following is some of the possible directions that have been
already taken with some shallow investigation. However, to
get the highest benefit of logic locking, these items must be
considered meticulously:
(i) Security Evaluation using Formal Models: Considering that
the logic locking research domain is getting bigger, the need
for a formal security definition has become inevitable. Some
recent studies have evaluated the possibility of defining

some security metrics using formalizing the model [51],
[200]. However, these models are very limited to the con-
struction of only a specific category (specific threat model),
which is combinational construction(s) against the SAT or
approximated-based SAT. However, such definitions require
more generality and applicability at different threat models
and assumptions. Hence, studies that accomplish formal
analysis on logic locking that will be followed by the def-
inition of generic and comprehensive security metrics are
completely missing, which still needs significant attention
by the community. Please note that this process has already
been taken in cryptographic primitives, which results in
introducing metrics like the indiscernibility of the block
ciphers. Although realizing the formalism in logic locking
requires a precise definition for what exactly secure logic
locking is, which is hard to achieve, it can still help the
designers and researchers in the community to pave the
road towards what necessarily needs to be focused on.
(ii) Multi-layer Logic Locking: This should not come as a sur-
prise, there is no single standalone solution for addressing
all the above-mentioned vulnerabilities, meeting all require-
ments, and addressing all challenges in logic locking. Hence,
having a methodology that spans over different stages or
layers of design and implementation is one valid solution
against all threats. One recent study has shown a multi-
layer of security countermeasures against different threats,
known as defense-in-depth [194]. The layers can be a de-
fense against (1) existing attacks on logic locking, (2) attacks
around design-for-test infrastructure, and (3) contact-based
and contactless probing. The notion of multi-layer security
can be used for logic locking individually. For instance, the
notion of compound logic locking (§3.2.1), or combination
of higher-level logic locking with gate-level logic locking
(§3.8) are some of the examples of multi-layer logic locking
that have been engaged for enhanced security. However,
since these compound techniques are introduced to cover
and break more attacks (or applicable for a wider range of
threat models), they might still suffer from analyses that
can lead to breaking them, e.g., compound attacks. So, the
Composition of multiple logic locking techniques requires
algorithmic procedures about the inter-locking correlation
helping the designers to build a more comprehensive multi-
layer or compound countermeasures. One intuitive solution
for this case is when a primitive logic locking is com-
bined with a scan chain locking/blockage technique, which
pushes the complexity towards a two-dimension unrolling-
based problem, and the attacker will be limited to only
the BMC-based attacks, that hugely suffer from scalability
issues in large circuits. But note that, these techniques might
reduce the testability coverage. Additionally, over time, with
the advances in formal methods and verification tools, the
scalability issue might be mitigated in BMC-based attacks.
(iii) Logic Locking vs. Zero Knowledge Computation: The dy-
namic nature of threat modeling due to ever-expanding
the threats we face through the IC lifecycle weakens the
robustness and resiliency promised by the existing logic
locking techniques. For instance, the notion of the insider
threats and considering even any individual existing within
the design house as an untrusted party reminds the concept
of zero-knowledge-proof (ZKP) in cryptographic protocols be-
tween two parties, in which a prover and a verifier work on a
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statement without leaking any extra information that might
expose their belongings related to that statement [201]. In
logic locking, this is when the designer wants to send the
logic-locked design to the integration team, and the designer
has no intent to share any information about the design
and the logic locking part. In this case, one solution can
be enabling logic locking to also serve as a ZKP system.
To do this, some requirements must be met: (1) Similar to
cryptographic primitives, it requires to support fully indis-
cernibility, which means that for any individual at any stage
of the design, the logic locked design should not provide
any additional information compared to the original one.
Many of the existing logic locking techniques do not meet
these requirements, and they are broken because the locked
design, in different ways, can provide hints and additional
information to the adversary. One big example is all point-
function techniques that have already broken via some
structural analyses. Or another example is the high success
rate of ML-based attacks that rely more on structural-based
feature extractions. So, indiscernibility would be a crucial
characteristic of a secure logic locking technique, and if
the logic locking meets the indiscernibility, none of the
structural analyses can be applicable to it. (2) Logic locking
must be implemented as early as possible in the design flow,
which is at higher levels of abstraction, i.e., RTL or HLS, to
cover a wider range of possible threats. Some recent studies
propose high-level logic locking (§3.8), however, they just
show how logic locking can be migrated from structural
gate-level to behavioral and semantic-level, which can be
more helpful for protecting the assets in the design. But,
they still leak additional information, which results in being
vulnerable to newer attacks, such as SMT [158]. Although
the composition of high-level logic locking with some gate-
level techniques can also provide robustness against wider
threats, there is still the possibility for the adversary to
open numerous ways at the higher-level representation of
the design to break the logic locking. (3) The logic locking
part(s) must be fine-grained: for reducing overhead, uni-
formly distributed: to eliminate any analysis or reduction,
and with no dependency with other locked/original part(s)
of the design to guarantee that it is not location-dependent.
Some of the existing logic locking techniques meet part(s)
of these requirements, but there is still no logic locking that
can meet all. For instance, configurable logic and routing
techniques add some form of universality that meet these
requirements (§3.4), but they still have no full indiscernibil-
ity (violating item 1). Also, they are mostly implemented at
transistor- or layout-level (violating item 2). eFPGA-based
IP redaction, which can be considered as the superset of
LUT-based and routing-based techniques, is another group
that meets item 1 (and partially item 2), but they still
violate item 3, because they are implemented fully coarse-
grained with prohibited overhead (∼ 1.5x-3x for even SoC-
size circuits).

6 CONCLUSION

For more than a decade, logic locking has been evalu-
ated tremendously as a proactive IP protection technique
against different hardware security threats, specifically IP
piracy and IC overproduction. In this survey paper, we

holistically reviewed all activities around logic locking, on
both defensive and attacking sides. By reviewing the major
pros/cons of all logic locking techniques proposed so far,
this survey paper can help all researchers, IP vendors,
and SoC designers, interested in logic locking to quickly
navigate and identify the state-of-the-art in all breeds, either
countermeasures or attacks.
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