149,804 research outputs found

    General stationary charged black holes as charged particle accelerators

    Full text link
    We study the possibility of getting infinite energy in the center of mass frame of colliding charged particles in a general stationary charged black hole. For black holes with two-fold degenerate horizon, it is found that arbitrary high center-of-mass energy can be attained, provided that one of the particle has critical angular momentum or critical charge, and the remained parameters of particles and black holes satisfy certain restriction. For black holes with multiple-fold degenerate event horizons, the restriction is released. For non-degenerate black holes, the ultra-high center-of-mass is possible to be reached by invoking the multiple scattering mechanism. We obtain a condition for the existence of innermost stable circular orbit with critical angular momentum or charge on any-fold degenerate horizons, which is essential to get ultra-high center-of-mass energy without fine-tuning problem. We also discuss the proper time spending by the particle to reach the horizon and the duality between frame dragging effect and electromagnetic interaction. Some of these general results are applied to braneworld small black holes.Comment: 23 pages, no figures, revised version accepted for publication in Phys. Rev.

    Number and Amplitude of Limit Cycles emerging from {\it Topologically Equivalent} Perturbed Centers

    Full text link
    We consider three examples of weekly perturbed centers which do not have {\it geometrical equivalence}: a linear center, a degenerate center and a non-hamiltonian center. In each case the number and amplitude of the limit cycles emerging from the period annulus are calculated following the same strategy: we reduce of all of them to locally equivalent perturbed integrable systems of the form: dH(x,y)+ϵ(f(x,y)dyg(x,y)dx)=0dH(x,y)+\epsilon(f(x,y)dy-g(x,y)dx)=0, with H(x,y)=1/2(x2+y2)H(x,y)={1/2}(x^2+y^2). This reduction allows us to find the Melnikov function, M(h)=H=hfdygdxM(h)=\int_{H=h}fdy-gdx, associated to each particular problem. We obtain the information on the bifurcation curves of the limit cycles by solving explicitly the equation M(h)=0M(h)=0 in each case.Comment: 17 pages, 0 figure

    Numerical model for the determination of the soil retention curve from global characteristics obtained via a centrifuge

    Get PDF
    A novel centrifuge set-up for the study of unsaturated flow characteri\-stics in porous media is examined. In this set-up, simple boundary conditions can be used, but a free moving boundary between unsaturated-saturated flow arises. A precise and numerically efficient approximation is presented for the mathematical model based on Richards' nonlinear and degenerate equation expressed in terms of effective saturation using the Van Genuchten-Mualem approach for the soil parameters in the unsaturated zone. Sensitivity of the measurable quantities (rotational moment, center of gravity and time period to achieve quasi steady state) on the soil parameters is investigated in several numerical experiments. They show that the set-up is suitable for the determination of the soil parameters via the solution of an inverse problem in an iterative way

    Dark matter concentration in the galactic center

    Get PDF
    It is shown that the matter concentration observed through stellar motion at the galactic center (Eckart & Genzel, 1997, MNRAS, 284, 576 and Genzel et al., 1996, ApJ, 472, 153) is consistent with a supermassive object of 2.5×1062.5 \times 10^6 solar masses composed of self-gravitating, degenerate heavy neutrinos, as an alternative to the black hole interpretation. According to the observational data, the lower bounds on possible neutrino masses are mν12.0m_\nu \geq 12.0 keV/c2/c^2 for g=2g=2 or mν14.3m_\nu \geq 14.3 keV/c2/c^2 for g=1g=1, where gg is the spin degeneracy factor. The advantage of this scenario is that it could naturally explain the low X-ray and gamma ray activity of Sgr A^*, i.e. the so called "blackness problem" of the galactic center.Comment: ApJ, 500, 591 (1998), AASTEX, aasms4.sty, v2 reference adde

    The self-consistent general relativistic solution for a system of degenerate neutrons, protons and electrons in beta-equilibrium

    Full text link
    We present the self-consistent treatment of the simplest, nontrivial, self-gravitating system of degenerate neutrons, protons and electrons in β\beta-equilibrium within relativistic quantum statistics and the Einstein-Maxwell equations. The impossibility of imposing the condition of local charge neutrality on such systems is proved, consequently overcoming the traditional Tolman-Oppenheimer-Volkoff treatment. We emphasize the crucial role of imposing the constancy of the generalized Fermi energies. A new approach based on the coupled system of the general relativistic Thomas-Fermi-Einstein-Maxwell equations is presented and solved. We obtain an explicit solution fulfilling global and not local charge neutrality by solving a sophisticated eigenvalue problem of the general relativistic Thomas-Fermi equation. The value of the Coulomb potential at the center of the configuration is eV(0)mπc2eV(0)\simeq m_\pi c^2 and the system is intrinsically stable against Coulomb repulsion in the proton component. This approach is necessary, but not sufficient, when strong interactions are introduced.Comment: Letter in press, Physics Letters B (2011

    Mapping Class Group Actions on Quantum Doubles

    Full text link
    We study representations of the mapping class group of the punctured torus on the double of a finite dimensional possibly non-semisimple Hopf algebra that arise in the construction of universal, extended topological field theories. We discuss how for doubles the degeneracy problem of TQFT's is circumvented. We find compact formulae for the S±1{\cal S}^{\pm 1}-matrices using the canonical, non degenerate forms of Hopf algebras and the bicrossed structure of doubles rather than monodromy matrices. A rigorous proof of the modular relations and the computation of the projective phases is supplied using Radford's relations between the canonical forms and the moduli of integrals. We analyze the projective SL(2,Z)SL(2, Z)-action on the center of Uq(sl2)U_q(sl_2) for qq an l=2m+1l=2m+1-st root of unity. It appears that the 3m+13m+1-dimensional representation decomposes into an m+1m+1-dimensional finite representation and a 2m2m-dimensional, irreducible representation. The latter is the tensor product of the two dimensional, standard representation of SL(2,Z)SL(2, Z) and the finite, mm-dimensional representation, obtained from the truncated TQFT of the semisimplified representation category of Uq(sl2)U_q(sl_2)\,.Comment: 45 page

    A Subdivision Method for Computing Nearest Gcd with Certification

    Get PDF
    International audienceA new subdivision method for computing the nearest univariate gcd is described and analyzed. It is based on an exclusion test and an inclusion test. The xclusion test in a cell exploits Taylor expansion of the polynomial at the center of the cell. The inclusion test uses Smale's alpha-theorems to certify the existence and unicity of a solution in a cell. Under the condition of simple roots for the distance minimization problem, we analyze the complexity of the algorithm in terms of a condition number, which is the inverse of the distance to the set of degenerate systems. We report on some experimentation on representative examples to illustrate the behavior of the algorithm
    corecore