1,677 research outputs found

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint

    Full text link
    Inspired by ideas taken from the machine learning literature, new regularization techniques have been recently introduced in linear system identification. In particular, all the adopted estimators solve a regularized least squares problem, differing in the nature of the penalty term assigned to the impulse response. Popular choices include atomic and nuclear norms (applied to Hankel matrices) as well as norms induced by the so called stable spline kernels. In this paper, a comparative study of estimators based on these different types of regularizers is reported. Our findings reveal that stable spline kernels outperform approaches based on atomic and nuclear norms since they suitably embed information on impulse response stability and smoothness. This point is illustrated using the Bayesian interpretation of regularization. We also design a new class of regularizers defined by "integral" versions of stable spline/TC kernels. Under quite realistic experimental conditions, the new estimators outperform classical prediction error methods also when the latter are equipped with an oracle for model order selection

    Model reduction of controlled Fokker--Planck and Liouville-von Neumann equations

    Full text link
    Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples

    Model order reduction of time-delay systems using a laguerre expansion technique

    Get PDF
    The demands for miniature sized circuits with higher operating speeds have increased the complexity of the circuit, while at high frequencies it is known that effects such as crosstalk, attenuation and delay can have adverse effects on signal integrity. To capture these high speed effects a very large number of system equations is normally required and hence model order reduction techniques are required to make the simulation of the circuits computationally feasible. This paper proposes a higher order Krylov subspace algorithm for model order reduction of time-delay systems based on a Laguerre expansion technique. The proposed technique consists of three sections i.e., first the delays are approximated using the recursive relation of Laguerre polynomials, then in the second part, the reduced order is estimated for the time-delay system using a delay truncation in the Laguerre domain and in the third part, a higher order Krylov technique using Laguerre expansion is computed for obtaining the reduced order time-delay system. The proposed technique is validated by means of real world numerical examples

    Stable super-resolution limit and smallest singular value of restricted Fourier matrices

    Full text link
    Super-resolution refers to the process of recovering the locations and amplitudes of a collection of point sources, represented as a discrete measure, given M+1M+1 of its noisy low-frequency Fourier coefficients. The recovery process is highly sensitive to noise whenever the distance Δ\Delta between the two closest point sources is less than 1/M1/M. This paper studies the {\it fundamental difficulty of super-resolution} and the {\it performance guarantees of a subspace method called MUSIC} in the regime that Δ<1/M\Delta<1/M. The most important quantity in our theory is the minimum singular value of the Vandermonde matrix whose nodes are specified by the source locations. Under the assumption that the nodes are closely spaced within several well-separated clumps, we derive a sharp and non-asymptotic lower bound for this quantity. Our estimate is given as a weighted ℓ2\ell^2 sum, where each term only depends on the configuration of each individual clump. This implies that, as the noise increases, the super-resolution capability of MUSIC degrades according to a power law where the exponent depends on the cardinality of the largest clump. Numerical experiments validate our theoretical bounds for the minimum singular value and the resolution limit of MUSIC. When there are SS point sources located on a grid with spacing 1/N1/N, the fundamental difficulty of super-resolution can be quantitatively characterized by a min-max error, which is the reconstruction error incurred by the best possible algorithm in the worst-case scenario. We show that the min-max error is closely related to the minimum singular value of Vandermonde matrices, and we provide a non-asymptotic and sharp estimate for the min-max error, where the dominant term is (N/M)2S−1(N/M)^{2S-1}.Comment: 47 pages, 8 figure
    • …
    corecore