Model reduction methods for bilinear control systems are compared by means of
practical examples of Liouville-von Neumann and Fokker--Planck type. Methods
based on balancing generalized system Gramians and on minimizing an H2-type
cost functional are considered. The focus is on the numerical implementation
and a thorough comparison of the methods. Structure and stability preservation
are investigated, and the competitiveness of the approaches is shown for
practically relevant, large-scale examples