49 research outputs found

    Dual-polarized feed for mmWave lens antennas

    Get PDF
    The fact of being bulky and not very cost-efficient made lens antennas not to be taken much into account in the past. Nowadays, this kind of antennas has attracted more attention due to the increasing demand of higher frequencies in 5G, where lenses become considerably smaller. Moreover, the advances achieved in manufacturing techniques such as 3D printing have reduced the costs to a great extent. Lenses can be used to transform the \ac{EM} waves coming from a source into any desired radiation pattern. For example, a directive beam in any specific direction could counteract the higher path losses at the new frequency bands used in 5G. In order to feed the lens, a transition from a coaxial cable to a waveguide or horn antenna working at the desired frequency band has been used as the source. However, most of the time, these feeds are only able to support a single polarization, thus not exploiting the capabilities, such as the increase in capacity, of using \ac{PDM}. In this thesis, a system composed of a dual-polarized array feed and a Gutman lens operating at the frequency band of 28 GHz is designed and simulated in order to analyze its performance. Commercial software CST Microwave Studio is used for that purpose. Some prototype ideas to be manufactured in the future are also analyzed

    Multi-band and dual-polarised ultra-wide band horn antenna for landmine detection using ground penetrating radar technique

    Get PDF
    Anti-Personnel (AP) and Anti-Vehicle (AV) landmines are considered as a problem of global proportions and it is estimated that about 60-70 million landmines are scattered within at least 70 countries all over the world. Many of the landmines are made with minimum metal content so that certain detection methods, such as metal detectors, often tend to fail. A promising concept for the detection of buried non-metallic objects is Ground Penetrating Radar (GPR). Although GPR has shown some promising results, the diversity and complexity of the problem inflict certain challenges on the operation of GPR systems. The investigations discussed in this thesis cover important aspects of GPR with particular focus on design of a new Ultra-Wideband (UWB) antenna. A systematic approach is adopted to show the GPR modelling process, and understanding the fundamental principles of GPR technology. The resolution of GPR highlights the importance of operating bandwidth. RF characterisation of materials is another aspect of GPR that will be addressed by the measurement of the relative permittivity of the materials. A novel multifunctional, multi-channel antenna design is proposed to enable the investigation of multiband imaging technique in GPR. The antenna is fabricated and the experimental measurements verify the performance of the designed antenna. The GPR results of 3D printed landmine models and real landmines in various environmental conditions have confirmed, the detection capability of the designed antenna. The GPR results of the landmines have also been investigated to study characteristic signatures of the landmines under certain system parameters

    Antennas for low-cost Ka-band ground terminal devices

    Get PDF
    The ever-growing demand for high-speed data links together with the increasing congestion in the traditional microwave spectrum are pushing for the exploitation of higher microwave and millimeter-wave (mm-wave) frequencies, including the so-called Ka band. Major investments came along, especially in the satellite communications industry, raising the technological con-straints imposed on electronic equipment, mainly concerning performance, compactness and both reduced cost and weight. The great antenna size reduction achieved at Ka band has boosted the research towards satel-lite-on-the-move applications (SOTM), aiming the development of ground terminal antennas for both commercial and personal use. Such antennas must work simultaneously at downlink and uplink Ka bands with circular polarization and also have beam steering capabilities to keep a steady connection with the satellite. In addition, the target is also achieving a cost-effective low-profile antenna. The present thesis is focused on the design of feed antennas to be integrated in mechanical beam steering systems for the aforementioned application. Three different designs are here proposed and discussed. The first one, a wideband ridged horn antenna, was tested standalone and with a dielectric lens antenna. Once good results were achieved in both sce-narios, reducing its height would be the next goal. Thus, the second design is a cavity backed patch antenna. A comparison between both feed antennas is performed, highlighting the pros and cons of both solutions, either standalone or with the same dielectric lens antenna. Here, the first studies with a planar lens antenna are shown. Finally, the third device consists of a ridged cavity antenna with a cross-slot on its top aperture. This time, the feed was successful-ly tested with a transmitarray which allows achieving a more compact antenna system than the first one here presented. This thesis also analyzes two different manufacturing techniques, traditional milling technique and an innovative additive manufacturing (AM) technique based on metallized polymers called stereolithography (SLA). The present AM-SLA prototypes clearly illustrate the strong potential of this technology and pushes for its further assessment

    Analysis and design of antennas and radiometers for radio astronomy applications in microwave, Mm-wave, and THz Bands

    Get PDF
    Mención Internacional en el título de doctorWe are living in interesting times for astronomy science, since the birth of the radio astronomy field in the 20th century by Karl Jansky, the availability of new and better radio astronomy receivers is in increasing demand to push the human understanding of the universe. In this thesis, various components (antennas, baluns, antenna-arrays, and radiometers) are proposed for radio astronomy receivers. The proposed designs are belonging to three receiver topologies (direct detection, down-conversion, and up-conversion) that operate at different frequency bands from MHz up to a few of THz. Also, to demonstrate that the same proposed design is capable of working efficiently at different operating frequencies, multiple adjusted designs are presented for several practical radio astronomy and space applications. Firstly, a receiver based on the direct detection of the Electromagnetic (EM) radiation through a radio telescope working on cryogenic cooling conditions. In this part, the focus is on designing conical log-spiral antennas and baluns (balanced to unbalanced transformers) to be used as feeds for VLBI Global Observing System (VGOS) ground-based radio telescopes. The feeds cover the Ultrawideband (UWB) from 2 GHz to 14 GHz with Circular Polarization (CP) radiation and stable radiation patterns. After integration of the feeds to the radio telescope, the whole system operates with high aperture efficiency and high System Equivalent Flux Density (SEFD) over the whole required wide range. The fabrication, assembly, and measurements for single-element and four-elements array are provided for achieving the requirements for single CP and dual CP operation. Also, in the same first part, the proposed single-element feed (antenna + balun) is readjusted for being used for CryoRad spaceborne Earth observations. This feed has a single CP over low-frequency UWB from 400MHz to 2 GHz with low weight and physical size compared to standard horn feeds. The second part of the thesis is dedicated to a THz source to be used as a local oscillator for heterodyne radio astronomy THz receivers in which the down-conversion of the THz radiation to a lower frequency occurs. The source is based on an array of self-complementary bow-tie antennas and photomixers that lies on a dielectric lens. The source can be scaled easily to cover different UWB ranges, three ranges are analyzed from 200 GHz to 2 THz, 100 GHz to 1 THz, and 50 GHz to 0.5 THz. Additionally, in this part, a complete study for the effects of metal losses on such THz planar antennas is performed which are not well-investigated in literature yet, the physical explanations behind such effects are also provided. Although these proposed THz sources themselves can work at room temperature, the receiver probably still needs the cooling for the other receiver components (such as the mixer) to work efficiently at such high frequencies. This is the motivation for the third part of this thesis which presents a different type of radio astronomy receiver that is completely able to work without cooling. The third receiver is based on the nonlinear up-converting of the microwave radiation into the optical domain using Whispering Gallery Mode (WGM) resonators which can work at room temperature efficiently. For such advantage and since this concept is naturally narrow-band, it can be a proper candidate for Cosmic Microwave Background (CMB) spectroscopy and space applications. The system design and its performance are analyzed for Ku band at 12 GHz with proposing a novel microwave coupling scheme for enhancing the up-conversion photonic efficiency which is the main limitation for such upconversion systems. Likewise, several high gain 3D-printed Dielectric Resonator Antenna (DRA)s are proposed in both isolated and array configurations to have a direct coupling of the microwave radiation to the proposed scheme. Another practical application for such receiver is presented for CubeSat missions at the mm-wave band (183 GHz) for climate change forecasting. It is clear here that removing the cryogenic cooling conditions decreases satellite weight and cost, which in turn significantly increases its lifetime. Also, it is worth noting that besides the radio astronomy applications, the proposed receivers (and/or their antenna/components) can be used for many other applications. For example, the UWB antennas in the first part can be used as wideband scalable probes for EM compatibility testing or other wireless systems that require single or dual CP such as radar and military applications. This is because the solutions provide constant beam characteristics with good CP polarization purity and stable performance over the operating UWB. In the same way, the proposed THz source in the second part can be used in several THz applications such as very high-speed wireless communications, highresolution imaging for medical and security purposes. This is because of its key benefits as decade bandwidth, compact size, low noise, low power demand, high tunability, and the ability to work at room temperature. For the up-conversion scheme proposed in the third part, due to its high photonic efficiency, low noise level which enables it to work at room temperature, and its scalability from a few GHz up to several THz, it is suitable for low-cost and high sensitivity applications. Specifically, the ones that need to get rid of the hard cryogenic cooling conditions, or at least, relax them and allow the system to work efficiently at higher temperatures. For instance, portable mm-wave and THz systems for quality control, security, and biochemistry. Finally, in this part, the proposed DRA elements and arrays, due to their low cost, high gain, and low losses, can be used for sensing applications and 5G base station antennas.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Raed Shubair.- Secretario: Adrián Amor Martín.- Vocal: José Manuel Fernández Gonzále

    Miniaturization Techniques of Substrate Integrated Waveguide Based on Multilayered Printed Circuit Board Platform

    Get PDF
    RESUMÉ Le guide d'ondes intégrées au substrat (GIS) est une structure à ondes guidées qui présente des avantages avec un facteur de qualité Q élevé et une excellente isolation ligne à ligne. La technique GIS a été largement utilisé dans la construction de composants passifs, tels que coupleurs, diviseurs, filtres, et déphaseurs. Certains dispositifs actifs ont également été développés avec facteur Q élevé et résonateurs en technologie GIS. En comparant à d'autres types de lignes de transmission planaire, le facteur de qualité Q important du GIS est une embouchure pour son intégration avec d'autres circuits classiques. Les techniques de miniaturisation du SIW sont donc devenues une urgence. Le travail dans cette thèse commence par l'examen et la discussion des techniques de miniaturisation existantes pour GIS, y compris les (ridge substrate integrated waveguide, RSIW), intégrés sur substrat à demi-mode (HMSIW) et les (folded substrata integrated waveguide, FSIW). L'impédance et la constante de propagation des lignes basées sur ces techniques de miniaturisation sont calculées en utilisant la méthode de résonance transversale (transverse resonant method, CRT). Bien que ces paramètres puissent être obtenus par des méthodes de simulation EM, un calcul rapide sera utile pour l’optimisation de la conception en utilisant l'analyse paramétrique. Une préoccupation particulière est axée sur la relation entre la constant d’atténuation et les paramètres géométriques. Les dimensions optimisées de chaque GIS miniaturisés sont proposés en se basant sur l'analyse paramétrique. Les paramètres de transmission de ces lignes de SIW miniaturisés peuvent être extraire en utilisant la méthode à double ligne. Sauf HMSIW, toutes les autres techniques de miniaturisation mentionnées ci-dessus pour la mise en œuvre de la plateforme multicouche. Parmi les techniques de fabrication diverses qui sont en mesure de fournir des substrats multicouches, le circuit imprimé multicouche est utilisé dans la conception des circuits rapportés dans cette thèse.---------- ABSTRACT Substrate integrated waveguide (SIW) is a guided-wave structure that enjoys the benefits of a high Q-factor and an excellent line-to-line isolation. SIW technique has been widely used in building passive components, such as couplers, dividers, filters, and phase shifters. Some active devices have also been developed with high Q-factor SIW resonators. Comparing to other types of planar transmission lines, the big form factor of SIW is a bottleneck for its integration with other conventional integrated circuits. Miniaturization techniques for SIW therefore become very urgent. The work in this dissertation starts with the review and discussion of existing miniaturization techniques for SIW, including ridge substrate integrated waveguide (RSIW), half-mode substrate integrated waveguide (HMSIW) and folded substrata integrated waveguide (FSIW). The impedance and propagation constant of the transmission lines based on these miniaturization techniques are calculated using transverse resonant method (TRM). Although these parameters can be extracted from full wave EM simulations, a fast computation be helpful in design optimization by using parametric analysis. One particular concern focuses on the relationship between attenuation constant and geometric parameters. Optimized dimensions of each miniaturized SIW are suggested based on the parametric analysis. The transmission line parameters of these miniaturized SIW transmission lines can be extracted using dual-line method. Except HMSIW, all other miniaturized techniques mentioned above need multilayer platform for implementation. Among various fabrication techniques which are able to provide multilayered substrate, multilayer printed circuit board is used in the design of the circuits reported in this dissertation. It is believed that the advantages of SIW circuit are important in millimeter wave applications, although the design might limit the operating frequency. Specifically, Rogers substrate R6002 is used in all our designs for proving the concepts investigated in this work. One principal step for using the SIW technology is to develop high-performance transitions and interconnects between substrate integrated circuits (SICs) and other types of transmission lines or circuits embedded in or surface mounted on the multilayer substrates. In this work, a novel transition between a microstrip line and an SIW in a multilayer substrate design environment is presented

    Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber

    Full text link
    Continuous and accurate sensing of water content in soil is an essential and useful measure in the agriculture industry. Traditional sensors developed to perform this task suffer from limited lifetime and also need to be calibrated regularly. Further, maintenance, support, and deployment of these sensors in remote environments provide additional challenges to the use of conventional soil moisture sensors. In this paper, a metamaterial perfect absorber (MPA) based soil moisture sensor is introduced. The ability of MPAs to absorb electromagnetic signals with near 100% efficiency facilitates the design of highly accurate and low-profile radio frequency passive sensors. MPA based sensor can be fabricated from highly durable materials and can therefore be made more resilient than traditional sensors. High resolution sensing is achieved through the creation of physical channels in the substrate integrated waveguide (SIW) cavity. The proposed sensor does not require connection for both electromagnetic signals or for adding a testing sample. Importantly, an external power supply is not needed, making the MPA based sensor the perfect solution for remote and passive sensing in modern agriculture. The proposed MPA based sensor has three absorption bands due to the various resonance modes of the SIW cavity. By changing the soil moisture level, the absorption peak shifts by 10 MHz, 23.3 MHz, and 60 MHz, which is correlated with the water content percentage at the first, second and third absorption bands, respectively. Finally, a 6Ă—6 cell array with a total size of 312mmĂ—312mm has been fabricated and tested. A strong correlation between measurement and simulation results validates the design procedure

    Concept Demonstrator for MeerKAT Operation from 14.5 to 20 GHz

    Get PDF
    In this thesis, a proof of concept receiver system operating from 14.5 to 20 GHz for the MeerKAT Radio Telescope is presented. MeerKAT is a 64 element telescope antenna array consisting of offset-fed Gregorian reflector antennas with a 13.5 m main reflector and 3.8 m sub-reflector. Currently, the MeerKAT is planned to operate up to 14.5 GHz. However, the reflector surface accuracy of 0.6 mm RMS achieved for the MeerKAT potentially allows it to operate at much higher frequencies. The system design consists of a feed horn antenna and front-end down conversion receiver ready for integration with back-end digital signal processing. The antenna design was carried out using electromagnetic simulation software and system level simulation software was used for the front-end receiver. A single polarization wide-axially corrugated horn with low side-lobes and cross-polarization has been designed for the proof of concept with a predicted aperture efficiency of 60% including surface accuracy loss when illuminating the MeerKAT reflector. The measured results for the antenna show a return loss better than 15 dB in the operational band and boresight gain of 12 dB. The measured E- and H-plane cross-polarization for the antenna is lower than -40 dB. The measured edge taper at the halfsubtended angle of the sub-reflector is between -11.8 dB and -13.2 dB. The front-end receiver was designed to use a single down-conversion stage to a 4.5 GHz IF with an instantaneous bandwidth of 2.5 GHz to be bandpass sampled at 6 Giga-samples per second (GSPS). The receiver was designed using off-the-shelf connectorized modules and custom designed microstrip filters for image rejection and anti-aliasing. Laboratory measurements of the receiver show a maximum gain of 76 dB, 40 dB image rejection and 27 dB spurious free dynamic range (SFDR). The simulated noise figure of the system using the measured noise figure of the LNA is 1.74 dB. The measured gain flatness of the receiver is ±7 dB due to poor performance of one of the amplifier modules used in the system

    Analysis and Design of Low-Cost Waveguide Filters for Wireless Communications

    Get PDF
    The area of research of this thesis is built around advanced waveguide filter structures. Waveguide filters and the waveguide technology in general are renowned for high power capacity, low losses and excellent electromagnetic shielding. Waveguide filters are important components in fixed wireless communications as well as in satellite and radar systems. Furthermore, their advantages and utilization become even greater with increase in frequency, which is a trend in modern communication systems because upper frequency bands offer larger channel capacities. However, waveguide filters are relatively bulky and expensive. To comply with more and more demanding miniaturization and cost-cutting requirements, compactness and economical design represent some of the main contemporary focuses of interest. Approaches that are used to achieve this include use of planar inserts to build waveguide discontinuities, additive manufacturing and substrate integration. At the same time, waveguide filters still need to satisfy opposed stringent requirements like small insertion loss, high selectivity and multiband operation. Another difficulty that metal waveguide components face is integration with other circuitry, especially important when solid-state active devices are included. Thus, improvements of interconnections between waveguide and other transmission interfaces are addressed too. The thesis elaborates the following aspects of work: Further analysis and improved explanations regarding advanced waveguide filters with E-plane inserts developed by the Wireless Communications Research Group, using both cross coupled resonators and extracted pole sections (Experiments with higher filter orders, use of tuning screws, degrees of freedom in design, etc. Thorough performance comparison with competing filter technologies) - Proposing novel E-plane filter sections with I-shaped insets - Extension of the E-plane filtering structures with metal fins to new compact dual band filters with high frequency selectivity and miniaturized diplexers. - Introduction of easy-to-build waveguide filters with polymer insert frames and high-performance low-profile cavity filters, taking advantage of enhanced fabrication capabilities when using additive manufacturing - Developing new substrate integrated filters, as well as circuits used to transfer signals between different interfaces Namely, these are substrate integrated waveguide to metal waveguide planar transitions that do not require any modifications of the metal waveguides. Such novel transitions have been designed both for single and orthogonal signal polarizations
    corecore