48,469 research outputs found

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    Higher order finite difference schemes for the magnetic induction equations

    Get PDF
    We describe high order accurate and stable finite difference schemes for the initial-boundary value problem associated with the magnetic induction equations. These equations model the evolution of a magnetic field due to a given velocity field. The finite difference schemes are based on Summation by Parts (SBP) operators for spatial derivatives and a Simultaneous Approximation Term (SAT) technique for imposing boundary conditions. We present various numerical experiments that demonstrate both the stability as well as high order of accuracy of the schemes.Comment: 20 page

    Convergence of summation-by-parts finite difference methods for the wave equation

    Full text link
    In this paper, we consider finite difference approximations of the second order wave equation. We use finite difference operators satisfying the summation-by-parts property to discretize the equation in space. Boundary conditions and grid interface conditions are imposed by the simultaneous-approximation-term technique. Typically, the truncation error is larger at the grid points near a boundary or grid interface than that in the interior. Normal mode analysis can be used to analyze how the large truncation error affects the convergence rate of the underlying stable numerical scheme. If the semi-discretized equation satisfies a determinant condition, two orders are gained from the large truncation error. However, many interesting second order equations do not satisfy the determinant condition. We then carefully analyze the solution of the boundary system to derive a sharp estimate for the error in the solution and acquire the gain in convergence rate. The result shows that stability does not automatically yield a gain of two orders in convergence rate. The accuracy analysis is verified by numerical experiments.Comment: In version 2, we have added a new section on the convergence analysis of the Neumann problem, and have improved formulations in many place

    On discretely entropy conservative and entropy stable discontinuous Galerkin methods

    Full text link
    High order methods based on diagonal-norm summation by parts operators can be shown to satisfy a discrete conservation or dissipation of entropy for nonlinear systems of hyperbolic PDEs. These methods can also be interpreted as nodal discontinuous Galerkin methods with diagonal mass matrices. In this work, we describe how use flux differencing, quadrature-based projections, and SBP-like operators to construct discretely entropy conservative schemes for DG methods under more arbitrary choices of volume and surface quadrature rules. The resulting methods are semi-discretely entropy conservative or entropy stable with respect to the volume quadrature rule used. Numerical experiments confirm the stability and high order accuracy of the proposed methods for the compressible Euler equations in one and two dimensions
    corecore