1,788 research outputs found

    On the Lattice Distortion Problem

    Get PDF
    We introduce and study the \emph{Lattice Distortion Problem} (LDP). LDP asks how "similar" two lattices are. I.e., what is the minimal distortion of a linear bijection between the two lattices? LDP generalizes the Lattice Isomorphism Problem (the lattice analogue of Graph Isomorphism), which simply asks whether the minimal distortion is one. As our first contribution, we show that the distortion between any two lattices is approximated up to a nO(logn)n^{O(\log n)} factor by a simple function of their successive minima. Our methods are constructive, allowing us to compute low-distortion mappings that are within a 2O(nloglogn/logn)2^{O(n \log \log n/\log n)} factor of optimal in polynomial time and within a nO(logn)n^{O(\log n)} factor of optimal in singly exponential time. Our algorithms rely on a notion of basis reduction introduced by Seysen (Combinatorica 1993), which we show is intimately related to lattice distortion. Lastly, we show that LDP is NP-hard to approximate to within any constant factor (under randomized reductions), by a reduction from the Shortest Vector Problem.Comment: This is the full version of a paper that appeared in ESA 201

    Revisiting the hexagonal lattice: on optimal lattice circle packing

    Full text link
    In this note we give a simple proof of the classical fact that the hexagonal lattice gives the highest density circle packing among all lattices in R2R^2. With the benefit of hindsight, we show that the problem can be restricted to the important class of well-rounded lattices, on which the density function takes a particularly simple form. Our proof emphasizes the role of well-rounded lattices for discrete optimization problems.Comment: 8 pages, 1 figure; to appear in Elemente der Mathemati

    Bounds for solid angles of lattices of rank three

    Get PDF
    We find sharp absolute constants C1C_1 and C2C_2 with the following property: every well-rounded lattice of rank 3 in a Euclidean space has a minimal basis so that the solid angle spanned by these basis vectors lies in the interval [C1,C2][C_1,C_2]. In fact, we show that these absolute bounds hold for a larger class of lattices than just well-rounded, and the upper bound holds for all. We state a technical condition on the lattice that may prevent it from satisfying the absolute lower bound on the solid angle, in which case we derive a lower bound in terms of the ratios of successive minima of the lattice. We use this result to show that among all spherical triangles on the unit sphere in RN\mathbb R^N with vertices on the minimal vectors of a lattice, the smallest possible area is achieved by a configuration of minimal vectors of the (normalized) face centered cubic lattice in R3\mathbb R^3. Such spherical configurations come up in connection with the kissing number problem.Comment: 12 pages; to appear in the Journal of Combinatorial Theory

    Tensor-based trapdoors for CVP and their application to public key cryptography

    Get PDF
    We propose two trapdoors for the Closest-Vector-Problem in lattices (CVP) related to the lattice tensor product. Using these trapdoors we set up a lattice-based cryptosystem which resembles to the McEliece scheme

    Solving the Closest Vector Problem in 2n2^n Time--- The Discrete Gaussian Strikes Again!

    Get PDF
    We give a 2n+o(n)2^{n+o(n)}-time and space randomized algorithm for solving the exact Closest Vector Problem (CVP) on nn-dimensional Euclidean lattices. This improves on the previous fastest algorithm, the deterministic O~(4n)\widetilde{O}(4^{n})-time and O~(2n)\widetilde{O}(2^{n})-space algorithm of Micciancio and Voulgaris. We achieve our main result in three steps. First, we show how to modify the sampling algorithm from [ADRS15] to solve the problem of discrete Gaussian sampling over lattice shifts, LtL- t, with very low parameters. While the actual algorithm is a natural generalization of [ADRS15], the analysis uses substantial new ideas. This yields a 2n+o(n)2^{n+o(n)}-time algorithm for approximate CVP for any approximation factor γ=1+2o(n/logn)\gamma = 1+2^{-o(n/\log n)}. Second, we show that the approximate closest vectors to a target vector tt can be grouped into "lower-dimensional clusters," and we use this to obtain a recursive reduction from exact CVP to a variant of approximate CVP that "behaves well with these clusters." Third, we show that our discrete Gaussian sampling algorithm can be used to solve this variant of approximate CVP. The analysis depends crucially on some new properties of the discrete Gaussian distribution and approximate closest vectors, which might be of independent interest

    Splitting full matrix algebras over algebraic number fields

    Full text link
    Let K be an algebraic number field of degree d and discriminant D over Q. Let A be an associative algebra over K given by structure constants such that A is isomorphic to the algebra M_n(K) of n by n matrices over K for some positive integer n. Suppose that d, n and D are bounded. Then an isomorphism of A with M_n(K) can be constructed by a polynomial time ff-algorithm. (An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields.) As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K.Comment: 15 pages; Theorem 2 and Lemma 8 correcte

    On the Geometry of Cyclic Lattices

    Get PDF
    Cyclic lattices are sublattices of ZN that are preserved under the rotational shift operator. Cyclic lattices were introduced by D.~Micciancio and their properties were studied in the recent years by several authors due to their importance in cryptography. In particular, Peikert and Rosen showed that on cyclic lattices in prime dimensions, the shortest independent vectors problem SIVP reduces to the shortest vector problem SVP with a particularly small loss in approximation factor, as compared to general lattices. In this paper, we further investigate geometric properties of cyclic lattices. Our main result is a counting estimate for the number of well-rounded cyclic lattices, indicating that well-rounded lattices are more common among cyclic lattices than generically. We also show that SVP is equivalent to SIVP on a positive proportion of Minkowskian well-rounded cyclic lattices in every dimension. As an example, we demonstrate an explicit construction of a family of such lattices on which this equivalence holds. To conclude, we introduce a class of sublattices of ZN closed under the action of subgroups of the permutation group SN, which are a natural generalization of cyclic lattices, and show that our results extend to all such lattices closed under the action of any N-cycle
    corecore