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We find sharp absolute constants C1 and C2 with the following
property: every well-rounded lattice of rank 3 in a Euclidean
space has a minimal basis so that the solid angle spanned by
these basis vectors lies in the interval [C1, C2]. In fact, we show
that these absolute bounds hold for a larger class of lattices than
just well-rounded, and the upper bound holds for all. We state
a technical condition on the lattice that may prevent it from
satisfying the absolute lower bound on the solid angle, in which
case we derive a lower bound in terms of the ratios of successive
minima of the lattice. We use this result to show that among
all spherical triangles on the unit sphere in R

N with vertices
on the minimal vectors of a lattice, the smallest possible area is
achieved by a configuration of minimal vectors of the (normalized)
face centered cubic lattice in R

3. Such spherical configurations
come up in connection with the kissing number problem.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Given an integer N � 2, let R
N be the Euclidean space with the usual norm ‖ ‖ on it. The kiss-

ing number problem in dimension N asks for the maximal number of non-overlapping unit balls in
R

N that touch another unit ball. The answer to this problem is currently only known in dimensions
N = 2,3,4,8,24 (see [1,4,11,12]). In fact, in dimension 3 this was the subject of a famous argument
between Isaac Newton and David Gregory, where Newton claimed that the kissing number is 12 while
Gregory believed it was 13; two different proofs that this number is 12 finally appeared in the 1950s,
by Schütte and van der Waerden [14] and by Leech [8] (see also [4,7] for details, including an exten-
sive bibliography), although there were previous unsuccessful and incomplete attempts. The kissing
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number problem can be reformulated as follows: find the maximal configuration of points on the unit
sphere in R

N such that the angular separation between any pair of these points is at least π/3; by
angular separation between two points we mean the smallest angle between the vectors connecting
these two points to the origin in the plane spanned by these vectors. Such configurations are often
expected to come from sets of minimal vectors (i.e. vectors of smallest nonzero norm) of lattices, at
least this is the case in all dimensions where the kissing number is known. For example, in dimension
three an optimal configuration of 12 points is given by the set of minimal vectors of the (normalized)
face centered cubic lattice A3. Define a spherical lattice-minimal triangle to be a non-degenerate spher-
ical triangle with vertices at the endpoints of minimal vectors of a lattice; as we will discuss below,
the minimality condition forces the angular separation between every pair of these points to be at
least π/3. The above consideration raises the following naturally related question.

Question 1. Given a spherical lattice-minimal triangle on a unit sphere in R
N , what is the minimal

possible two-dimensional spherical area it can have?

In other words, although minimal vectors of the normalized lattice A3 form the largest (with
respect to cardinality) configuration of points on the unit sphere with angular separation at least
π/3, and hence produce spherical triangles of small area (at least on the average), could it be that
minimal vectors of some other lattice form some spherical triangle of even smaller area? Our first
result answers this question.

Theorem 1.1. Any spherical lattice-minimal triangle on a unit sphere in R
N has area at least

0.551285598 . . . = 4π × 0.043869914 . . . , (1)

which is precisely the area of the spherical triangle formed by the vectors( 1/
√

2
1/

√
2

0

)
,

( 0
1/

√
2

1/
√

2

)
,

(1/
√

2
0

1/
√

2

)
(2)

on the unit sphere in R
3 . These are precisely minimal basis vectors of the face centered cubic lattice A3 , nor-

malized to lie on the unit sphere.

To prove Theorem 1.1, we use a somewhat more general and technical result, which we present
next. We start with some basic notation. Let B N be a unit ball in R

N . Given a lattice Λ ⊂ R
N of

rank r, we define its successive minima

0 < λ1 � · · · � λr

by

λi = inf{λ ∈ R>0: Λ ∩ λBN contains i linearly independent vectors}.
There exists a collection of linearly independent vectors x1, . . . , xr in Λ such that ‖xi‖ = λi for each
1 � i � r; we will refer to them as vectors corresponding to successive minima. When r � 4, these
vectors form a basis for Λ, which is precisely a minimal basis; this is not necessarily true for r � 5
(see for instance [13]). Let us also write

S(Λ) = {
x ∈ Λ: ‖x‖ = λ1

}
for the set of all minimal vectors of Λ. In the special case when S(Λ) contains r linearly independent
vectors, i.e. when

λ1 = · · · = λr,
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Λ is called a well-rounded lattice, abbreviated WR. WR lattices and configurations of their minimal
vectors play an important role in discrete optimization problems (see [10,4,7]). In particular, spherical
configurations which give good kissing numbers always come from WR lattices.

We will say that a basis x1, . . . , xr for a lattice Λ ⊂ R
N of rank r is minimal (often re-

ferred to as Minkowski reduced in the literature – see for instance [6]) if x1 ∈ S(Λ) and for
each 2 � i � r, xi ∈ Λ is a shortest vector such that the collection of vectors x1, . . . , xi is ex-
tendable to a basis in Λ. Minimal bases for lattices are extensively studied for their impor-
tance in number theory and discrete geometry, as well as in computer science and engineer-
ing applications (see [13,3,2]). In particular, if a lattice happens to have an orthogonal basis, it
is easy to prove that this basis must be minimal. In fact, it turns out that even suitably de-
fined “near-orthogonality” of the basis vectors is sufficient for a basis to be minimal (or “almost
minimal” – here we mean reduced vs Minkowski reduced). This idea has been successfully ex-
ploited by the famous LLL algorithm [9]. It should be mentioned that in addition to the notion
of Minkowski reduction that we are using here other basis reduction procedures exist, most no-
tably the Hermite–Korkine–Zolotareff reduction (see for instance [10] for details); the common
general principle behind various reduction procedures is the minimization of the orthogonality de-
fect.

In the reverse direction, one can ask how “close” to orthogonal does a minimal basis have to be?
When r = 2, the answer is classical: if x1, x2 is a minimal basis for a lattice Λ ⊂ R

N of rank two,
then the (normalized) angle between these vectors has to lie in the interval [1/6,1/3]; moreover, for
every such lattice there exists a minimal basis with the (normalized) angle between vectors lying in
the interval [1/6,1/4] (since we will use this result, we include its proof in Section 2 to make our
presentation self-contained). It is natural to ask for analogues of this statement for lattices of higher
rank, starting with r = 3 as follows.

Question 2. Do there exist absolute constants C1 and C2 such that every lattice of rank three has a
minimal basis that spans a solid angle in the interval [C1, C2]?

Notice that when Λ is a WR lattice of rank three in R
N , then S(Λ) contains a minimal basis.

In fact, by scaling if necessary, we can assume that λ1 = λ2 = λ3 = 1, and then any three linearly
independent vectors in S(Λ) form a minimal basis and span a spherical lattice-minimal triangle on
the unit sphere centered at the origin in R

N . On the other hand, vertices of a spherical lattice-minimal
triangle on the unit sphere centered at the origin in R

N form a minimal basis for a WR lattice of rank
three with λ1 = λ2 = λ3 = 1. Since the solid angle in question is equal to the normalized spherical
area of the corresponding spherical triangle, there is a direct connection between Question 2 restricted
to just WR lattices and Question 1. In this note, we answer Question 2 completely for a wide class
of lattices including all WR lattices and provide a partial answer (with the constant C1 depending on
the lattice) for all the remaining lattices. We then use this result, along with our method, to answer
Question 1.

Let Λ be a lattice of rank 3 in R
N and let x1, x2, x3 be a fixed minimal basis for Λ, corresponding

to successive minima λ1, λ2, λ3, respectively. We will write θi j for the angle between the vectors xi
and x j , 1 � i < j � 3, and will refer to θ12, θ13, θ23 as the vertex angles corresponding to this minimal
basis. We also define the ratios of successive minima

K12 = λ1

λ2
, K23 = λ2

λ3
, K13 = λ1

λ3
= K12 K23. (3)

Then clearly max{K12, K23} � 1, and min{K12, K23} < 1 if and only if Λ is not WR. Let us also define

ν := 1

4
cos−1

(
1

2

(
2K12 K23 cos θ12 + 2K12 cos θ13 − K 2

12 K23 − K23
))

<
π

6
. (4)

Remark 1.1. Our measure of three-dimensional solid angles is always normalized to be between 0
and 1, i.e. we divide by 4π , the maximal possible solid angle which corresponds to the full sphere
in R

3.
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We can now state our next result.

Theorem 1.2. Let Λ ⊂ R
N be a lattice of rank 3. Then there exists a minimal basis x1, x2, x3 for Λ such that

π/3 � θ12, θ13 � π/2, π/3 � θ23 � 2π/3. (5)

Fix any minimal basis x1, x2, x3 for Λ satisfying (5), and let Ω be the solid angle formed by these vectors. Then
Ω � 0.125. If in addition

θ23 � cos−1(cos θ12 + cos θ13 − 1), (6)

then Ω � 0.043869914 . . . . The above condition is satisfied in particular by every WR lattice, and the bounds
on Ω are sharp as demonstrated in Remark 3.1 below. On the other hand, if

cos−1(cos θ12 + cos θ13 − 1) < θ23 � 2π/3,

then in fact

θ23 � cos−1
(

1

2

(
2K12 K23 cos θ12 + 2K12 cos θ13 − K 2

12 K23 − K23
))

<
2π

3
,

and

Ω � 1

π
tan−1

(
tanν

√
1 − 3 tan2 ν

3 − tan2 ν

)
> 0,

where ν is as in (4).

In Section 2 we discuss some basic two-dimensional lemmas, which will be later used in our main
argument. Theorem 1.2 is proved in Section 3: it follows immediately by combining Lemmas 3.1, 3.2,
3.4, Corollary 3.3, and Remark 3.1. In Section 4, we use the techniques developed in Section 3 to prove
Theorem 1.1. We are now ready to proceed.

2. Preliminary two-dimensional lemmas

We start with some basic lemmas about the angles between minimal basis vectors for lattices of
rank 2, which we will use in our argument for lattices of rank 3.

Lemma 2.1. Let x1 and x2 be nonzero vectors in R
N so that the angle θ between them satisfies either 0 < θ < π

3
or 2π

3 < θ < π . Then

min
{‖x1 − x2‖,‖x1 + x2‖

}
< max

{‖x1‖,‖x2‖
}
.

Proof. Notice that either

1

2
< cos θ = xt

1x2

‖x1‖‖x2‖ < 1, or − 1 < cos θ = xt
1x2

‖x1‖‖x2‖ < −1

2
.

In the first case:

‖x1 − x2‖2 = (x1 − x2)
t(x1 − x2) = ‖x1‖2 + ‖x2‖2 − 2xt

1x2

< ‖x1‖2 + ‖x2‖2 − ‖x1‖‖x2‖ < max
{‖x1‖,‖x2‖

}2
.

In the second case:

‖x1 + x2‖2 = (x1 + x2)
t(x1 + x2) = ‖x1‖2 + ‖x2‖2 + 2xt

1x2

< ‖x1‖2 + ‖x2‖2 − ‖x1‖‖x2‖ < max
{‖x1‖,‖x2‖

}2
. �
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Lemma 2.2. Let Λ ⊂ R
N be a lattice of rank 2 with successive minima λ1 � λ2 , and let x1, x2 be vectors in Λ

corresponding to λ1, λ2 , respectively. Let θ be the angle between x1 and x2 . Then

π/3 � θ � 2π/3.

Proof. Clearly θ ∈ (0,π). Assume that either 0 < θ < π/3 or 2π
3 < θ < π , then Lemma 2.1 implies

that

min
{‖x1 − x2‖,‖x1 + x2‖

}
< ‖x2‖ = λ2,

which contradicts the definition of λ2 since the vectors x1 and x1 ± x2 are linearly independent. �
Lemma 2.3. Let Λ ⊂ R

N be a lattice of full rank with successive minima

0 < λ1 � · · · � λN ,

and vectors x1, . . . , xN corresponding to these successive minima, respectively, chosen in such a way that all
of them lie in the half-space xN � 0. For every pair of indices 1 � i < j � N, let θi j be the angle between the
vectors xi and x j . Then

π/3 � θi j � 2π/3.

Proof. Let Λi j = spanZ{xi, x j}, then the successive minima μ1,μ2 of Λi j are

μ1 = λi � μ2 = λ j .

Indeed, it is clear that μ1 � μ2 and μ1 � λi , μ2 � λ j , so suppose for instance that μ1 < λi . Then
there exists a vector y = aixi + a jx j , such that 0 �= ai,a j ∈ Z and

‖y‖ = μ1 < λi . (7)

Then the collection of vectors

x1, . . . , xi−1, y, xi+1, . . . , xN (8)

must be linearly independent in Λ, and so by definition of successive minima, μ1 � λi , which is a
contradiction. If, on the other hand, we assume that μ2 < λ j , then we can apply the same argu-
ment as above replacing μ1 with μ2 in (7) and inserting y for x j instead of xi in (8) to reach the
same contradiction. Therefore λi, λ j are the successive minima of Λi j , and hence xi, x j are vectors
corresponding to successive minima. Now the conclusion follows by Lemma 2.2 above. �
3. Bounds for solid angles: proof of Theorem 1.2

In this section we prove a collection of lemmas, which together comprise the result of Theorem 1.2.
First we need to fix our choice of a minimal basis for a lattice of rank 3, which is accomplished by
the following lemma.

Lemma 3.1. Let Λ ⊂ R
N be a lattice of rank 3. Then there exists a minimal basis x1, x2, x3 for Λ such that

π/3 � θ12, θ13 � π/2, π/3 � θ23 � 2π/3, (9)

where θi j is the angle between vectors xi and x j for all 1 � i < j � 3.

Proof. Let

0 < λ1 � λ2 � λ3
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be successive minima of Λ, and let x1, x2, x3 be the vectors corresponding to λ1, λ2, λ3 respectively.
Then Lemma 2.3 implies that π/3 � θi j � 2π/3. In fact, if θ12 > π/2, replace x2 with −x2, and if
θ13 > π/2, replace x3 with −x3. Then x1, x2, x3 is a minimal basis satisfying (9), as required. �

In what follows, the measure of three-dimensional solid angles is normalized as specified in
Remark 1.1, however we assume it is converted back to steradians when we compute values of
trigonometric functions of Ω .

Lemma 3.2. Let Λ ⊂ R
N be a lattice of rank 3, and let x1, x2, x3 be a minimal basis for Λ guaranteed by

Lemma 3.1. Let Ω be the solid angle formed by these vectors. Then Ω � 0.125. If in addition

θ23 � cos−1(cos θ12 + cos θ13 − 1), (10)

then Ω � 0.043869914 . . . .

Proof. With our choice of the basis x1, x2, x3, we have

π/3 � θ12, θ13 � π/2, π/3 � θ23 � 2π/3. (11)

Now make the choice of ±x3 that makes θ23 as small as possible for (11) to hold; notice in particular
that if θ13 = π/2, then ±x3 can be chosen to ensure that π/3 � θ23 � π/2. From now on we will
always assume this choice of x1, x2, x3. Let

α = θ12 + θ13

4
, β = θ12 − θ13

4
, c = θ23

4
, (12)

and so

π

6
� α � π

4
, − π

24
� β � π

24
,

π

12
� c � π

6
. (13)

Let Ω be the solid angle spanned by the vectors x1, x2, x3, then L’Huilier’s theorem (see, for in-
stance [5]) implies that

tan

(
Ω

4

)2

= tan(α + c) tan(α − c) tan(c + β) tan(c − β), (14)

when Ω is measured in steradians. Notice that for each c ∈ (−π/4,π/4),

tan(c + β) tan(c − β) = tan2 c − tan2 β

1 − tan2 c tan2 β
(15)

is a decreasing function of |β|, and so (15) is minimized when β is as large as possible, and maxi-
mized when β = 0.

To produce an upper bound for Ω , let us write

x1 = π/2 − θ12, x2 = π/2 − θ13, y = θ23 − π/2, and x = x1 + x2, (16)

so that

α = π

4
− x

4
, c = π

8
+ y

4
, where 0 � x � π

3
, −π

6
� y � π

6
, (17)

and y is as small as possible for (17) to hold. Then (14), along with the fact that (15) is maximized
when β = 0, implies that

tan

(
Ω

4

)2

� tan

(
3π

8
− x

4
+ y

4

)
tan

(
π

8
− x

4
− y

4

)
tan

(
π

8
+ y

4

)2

. (18)
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It is not difficult to observe that with the constraints of (17) satisfied, the right-hand side of (18) is a
decreasing function of x, so to maximize it we can assume that x = 0, meaning that θ12 = θ13 = π/2.
In this case π/3 � θ23 � π/2, meaning that −π/6 � y � 0, and

tan

(
Ω

4

)2

� tan

(
3π

8
+ y

4

)
tan

(
π

8
− y

4

)
tan

(
π

8
+ y

4

)2

, (19)

where the right-hand side of (19) is an increasing function of y. Therefore

tan

(
Ω

4

)2

� tan

(
3π

8

)
tan

(
π

8

)3

,

and the upper bound for Ω follows.
Next we produce a lower bound for Ω . Assume that in addition to (11), the inequality (10) is also

satisfied. Then

π/3 � θ12, θ13 � π/2, π/3 � θ23 � min
{

cos−1(cos θ12 + cos θ13 − 1),2π/3
}
, (20)

and x1, x2, x3 is chosen so that θ23 is as small as possible for (20) to hold. Then

π

6
� α � π

4
, − π

24
� β � π

24
,

π

12
� c � min

{
1

4
cos−1(2 cos 2α cos 2β − 1),

π

6

}
. (21)

The right-hand side of (14) is easily checked to be an increasing function of c when the constraints of
(21) are satisfied (we use Sage mathematical software package [15] – see illustration in Appendix A).
Therefore for each fixed pair of values of α and β ,

tan

(
α + π

12

)
tan

(
α − π

12

)
tan

(
π

12
+ β

)
tan

(
π

12
− β

)
� tan

(
Ω

4

)2

, (22)

when (10) holds. Since θ12, θ13 � π/3, it follows that

4|β| = |θ12 − θ13| � 4α − 2π/3,

and so (15) is minimized when β = min{α − π/6,π/24}. We can also assume without loss of gener-
ality that 0 < Ω < 1/2 (i.e. the measure of Ω in steradians is between 0 and 2π ), and so tan(Ω

4 )2 is
an increasing function of Ω .

First assume that α − π/6 � π/24, then α � 5π/24 and the above observations combined
with (22) imply that

tan

(
Ω

4

)2

� tan

(
α + π

12

)
tan

(
α − π

12

)2

tan

(
π

4
− α

)
� tan

(
π

12

)3

. (23)

Next assume that α − π/6 � π/24, then α � 5π/24 and the above observations combined with
(22) imply that

tan

(
Ω

4

)2

� tan

(
α + π

12

)
tan

(
α − π

12

)
tan

(
π

8

)
tan

(
π

24

)

� tan

(
7π

24

)
tan

(
π

8

)2

tan

(
π

24

)
> tan

(
π

12

)3

. (24)

The lower bound for Ω now follows in the case when (10) is satisfied. �
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Corollary 3.3. Let Λ ⊂ R
N be a well-rounded lattice of rank 3, and let x1, x2, x3 be a minimal basis for Λ

guaranteed by Lemma 3.1. Then (10) is satisfied, and so

0.043869914 . . . � Ω � 0.125,

by Lemma 3.2.

Proof. Let λ be the common value of successive minima of Λ, and notice that

‖x1 − x2 − x3‖2 = λ2(3 + 2(− cos θ12 − cos θ13 + cos θ23)
)
� λ2,

which means that − cos θ12 − cos θ13 + cos θ23 � −1. �
Remark 3.1. The bounds of Lemma 3.2 are sharp. The lower bound is achieved by the fcc (face cen-
tered cubic) lattice A3 (same as D3) in R

3 with the choice of a minimal basis

x1 =
(1

1
0

)
, x2 =

( 0
1
1

)
, x3 =

(1
0
1

)
,

so that the angles between these vectors are

θ12 = θ13 = θ23 = π/3.

The upper bound is achieved by the integer lattice Z
3 in R

3 with the standard choice of a minimal
basis

x1 =
(1

0
0

)
, x2 =

( 0
1
0

)
, x3 =

( 0
0
1

)
,

so that the angles between these vectors are

θ12 = θ13 = θ23 = π/2.

Notice that both of these lattices are well-rounded, and so in fact the bounds of Corollary 3.3 are
sharp.

Next we consider the situation when (10) is not satisfied, in which case we can derive a lower
bound for the solid angle formed by the minimal basis vectors of a lattice depending on the ratios of
successive minima.

Lemma 3.4. Let Λ ⊂ R
N be a lattice of rank 3, let x1, x2, x3 be a minimal basis for Λ, corresponding to

successive minima λ1, λ2, λ3 , as guaranteed by Lemma 3.1, and let Ω be the solid angle formed by these
vectors. By (11), we can assume that

π/3 � θ12, θ13 � π/2, π/3 � θ23 � 2π/3,

and θ23 is as small as possible for these inequalities to hold. Suppose in addition that

cos−1(cos θ12 + cos θ13 − 1) < θ23 � 2π/3. (25)

Let K12 , K13 , and K23 be as in (3), then min{K12, K23} < 1 and

Ω � 1

π
tan−1

(
tanν

√
1 − 3 tan2 ν

3 − tan2 ν

)
> 0, (26)

where

ν = 1

4
cos−1

(
1

2

(
2K12 K23 cos θ12 + 2K12 cos θ13 − K 2

12 K23 − K23
))

<
π

6
. (27)
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Proof. We use the notation from the proof of Lemma 3.2. The first implication of (25) is that − 1
2 �

cos θ23 < −1 + cos θ12 + cos θ13, so in particular cos θ12 + cos θ13 � 1/2. Combining this observation
with (11), we obtain

π

3
� θ12 � π

2
,

π

3
� θ13 � cos−1

(
1

2
− cos θ12

)
, (28)

in addition to (25).
Another implication of (25) is that Λ cannot be well-rounded, by Corollary 3.3. Therefore

min{K12, K23} < 1, and thus K13 < 1. Notice that the vectors x1, x2, x1 − x2 − x3 are linearly inde-
pendent, and hence

λ2
3 � ‖x1 − x2 − x3‖2

= λ2
3

(
1 + K 2

13 + K 2
23 − 2K13 K23 cos θ12 − 2K13 cos θ13 + 2K23 cos θ23

)
.

Therefore, since cos θ13 � 1/2 − cos θ12, cos θ12 � 1/2, and K13 = K12 K23,

cos θ23 � − 1

2K23

(
K 2

13 + K 2
23 − 2K13 K23 cos θ12 − 2K13 cos θ13

)
= −1

2

(
K 2

12 K23 + K23 − 2K12 K23 cos θ12 − 2K12 cos θ13
)

� −1

2

(
K 2

12 K23 + K23 − K12 + 2K12(1 − K23) cos θ12
)

� − K23

2

(
K 2

12 − K12 + 1
)
> −1

2
,

since min{K12, K23} < 1 and max{K12, K23} � 1. Therefore

θ23 � cos−1
(

1

2

(
2K12 K23 cos θ12 + 2K12 cos θ13 − K 2

12 K23 − K23
))

<
2π

3
. (29)

Let now ν be as in (27). It can now be easily checked that the right-hand side of (14) is a de-
creasing function of c when the constraints of (25) and (28) are satisfied (we use Sage mathematical
software package [15] – see illustration in Appendix A), and c � ν < π/6 by (29). Therefore for each
fixed pair of values of α and β ,

tan(α + ν) tan(α − ν) tan(ν + β) tan(ν − β) � tan

(
Ω

4

)2

, (30)

when (25) holds. The left-hand side of (30) is now minimized when α is as small as possible. Notice
that

4α � 2π/3 + 4|β|,
and hence

tan

(
Ω

4

)2

� tan

(
π

6
+ |β| + ν

)
tan

(
π

6
+ |β| − ν

)
tan(ν + β) tan(ν − β), (31)

where 0 � |β| � π/24. The right-hand side of (31) is easily checked to be an increasing function
of |β|, so to minimize take |β| = 0, therefore

tan

(
Ω

4

)2

�
(

1 − 3 tan2 ν

3 − tan2 ν

)
tan2 ν, (32)

and (26) now follows from (32), since the left-hand side of (32) is an increasing function of Ω , as
was indicated in the proof of Lemma 3.2. �
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4. Area of spherical triangles: proof of Theorem 1.1

In this section we prove Theorem 1.1. Consider a spherical lattice-minimal triangle T on the unit
sphere centered at the origin in R

N , and let x1, x2, x3 be minimal vectors of some lattice L cor-
responding to the vertices of this triangle. Let Ω be the three-dimensional solid angle spanned by
x1, x2, x3, measured in steradians (i.e. not normalized as in Remark 1.1), then the measure of Ω is
precisely the spherical two-dimensional area of T . Hence we want to show that Ω is greater or equal
than the number in (1).

Let Λ = spanZ{x1, x2, x3}. Then x1, x2, x3 are minimal vectors in Λ, since they are minimal vectors
in L and Λ ⊆ L, and

‖x1‖ = ‖x2‖ = ‖x3‖ = 1.

Since these vectors form a spherical triangle, they must be linearly independent, and so they form a
minimal basis for Λ with solid angle Ω , in particular Λ is WR with all the successive minima equal
to 1. If the vertex angles θ12, θ13, θ23 corresponding to these vectors satisfy (5), then Theorem 1.2
implies the result with equality precisely in the case described in (2), which is a minimal basis for
the normalized fcc lattice (see Remark 3.1).

Now assume that the vertex angles do not satisfy (5). This means that at least two of the angles
θ12, θ13, θ23 must lie in the interval (π/2,2π/3]. Since Λ is WR we can reindex the three vectors as
necessary, and so we can assume without loss of generality that

π/2 < θ12 � θ23 � 2π/3, π/3 � θ13 � θ12.

Let α, β , and c be as in (12), then

5π

24
< α � π

3
, 0 � β � π

12
,

π

8
� c � π

6
. (33)

Now Ω is given by (14), and since it is proportional to the spherical area of our triangle, we want
to understand how small can it be. The right-hand side of (14) is easily checked to be an increasing
function of c when the constraints of (33) are satisfied (we use Sage mathematical software pack-
age [15] – see illustration in Appendix A); also, as discussed in the proof of Lemma 3.2, to minimize
Ω we need to maximize |β|, so we can take β = π/12. Therefore for each fixed value of α and β ,

tan

(
Ω

4

)2

� tan

(
α + π

8

)
tan

(
α − π

8

)
tan

(
π

8
+ β

)
tan

(
π

8
− β

)

� tan

(
α + π

8

)
tan

(
α − π

8

)
tan

(
5π

24

)
tan

(
π

24

)

> tan

(
π

3

)
tan

(
5π

24

)
tan

(
π

12

)
tan

(
π

24

)
> tan

(
π

12

)3

, (34)

which means that Ω is greater than the number in (1), and hence finishes the proof of the theorem.
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Appendix A. Sage code

Here we present the Sage code illustrating the increasing/decreasing behavior of functions used in
the arguments above. Here is the code corresponding to the proof of Lemma 3.2:
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#auto
@interact
def plotter(x = slider(pi/3,pi/2), y = slider(pi/3,pi/2)):

z = var(‘z’)
a, b, c = (x+y)/4, (x-y)/4, z/4
expression(z) = tan(a+c)*tan(a-c)*tan(c+b)*tan(c-b)
zmin, zmax = pi/3, min(2*pi/3,arccos(cos(x)+cos(y)-1))
color = (1,.25,0)
plot(expression, z, zmin, zmax, rgbcolor=color)

.show(xmin=pi/2,xmax=2*pi/3,ymin=0,ymax=0.3)

Here is the code corresponding to the proof of Lemma 3.4:

#auto
@interact
def plotter(x = slider(pi/3,pi/2), y = slider(pi/3,pi/2)):

if arccos(-1+cos(x)+cos(y)) <= 2*pi/3:
z = var(’z’)
a, b, c = (x+y)/4, (x-y)/4, z/4
expression(z) = tan(a+c)*tan(a-c)*tan(c+b)*tan(c-b)
zmin, zmax = arccos(-1+cos(x)+cos(y)), 2*pi/3
color = (1,.25,0)
plot(expression, z, zmin, zmax, rgbcolor=color)

.show(xmin=pi/3,xmax=2*pi/3,ymin=0,ymax=.1)
else:

print ’Bad Domain’

Here is the code corresponding to the proof of Theorem 1.1:

#auto
@interact
def plotter(x = slider(pi/2,2*pi/3), y = slider(pi/3,2*pi/3)):

if y <= x:
z = var(’z’)
a, b, c = (x+y)/4, (x-y)/4, z/4
expression(z) = tan(a+c)*tan(a-c)*tan(c+b)*tan(c-b)
zmin, zmax = x, 2*pi/3
color = (1,.25,0)
plot(expression, z, zmin, zmax, rgbcolor=color)

.show(xmin=pi/3,xmax=2*pi/3,ymin=0,ymax=.5)
else:

print ’Bad Domain’

References

[1] C. Bachoc, F. Vallentin, New upper bounds for kissing numbers from semidefinite programmings, J. Amer. Math. Soc. 21 (3)
(2008) 909–924.

[2] A.H. Banihashemi, A.K. Khandani, On the complexity of decoding lattices using the Korkin–Zolotarev reduced basis, IEEE
Trans. Inform. Theory 44 (1) (1998) 162–171.

[3] R. Baraniuk, S. Dash, R. Neelamani, On nearly orthogonal lattice bases, SIAM J. Discrete Math. 21 (1) (2007) 199–219.
[4] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and Groups, third ed., Springer-Verlag, 1999.
[5] J.D.H. Donnay, Spherical Trigonometry, Church Press, 2007.
[6] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, North-Holland Publishing Company, 1987.
[7] W.Y. Hsiang, Least Action Principle of Crystal Formation of Dense Packing Type and Kepler’s Conjecture, World Scientific

Publishing Company, 2002.



L. Fukshansky, S. Robins / Journal of Combinatorial Theory, Series A 118 (2011) 690–701 701
[8] J. Leech, The problem of the thirteen spheres, Math. Gaz. 40 (1956) 22–23.
[9] A.K. Lenstra, H.W. Lenstra Jr., L. Lovasz, Factoring polynomials with rational coefficients, Math. Ann. 261 (4) (1982) 515–534.

[10] J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, 2003.
[11] O.R. Musin, The kissing number in four dimensions, Ann. of Math. (2) 168 (1) (2008) 1–32.
[12] A.M. Odlyzko, N.J.A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in n dimensions,

J. Combin. Theory Ser. A 26 (2) (1979) 210–214.
[13] M. Pohst, On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications,

Technical report.
[14] K. Schutte, B.L. van der Waerden, Das problem der dreizehn Kugeln, Math. Ann. 125 (1953) 325–334.
[15] W. Stein, et al., Sage: Open source mathematics software, http://www.sagemath.org.

http://www.sagemath.org

	Bounds for solid angles of lattices of rank three
	Introduction
	Preliminary two-dimensional lemmas
	Bounds for solid angles: proof of Theorem 1.2
	Area of spherical triangles: proof of Theorem 1.1
	Acknowledgments
	Sage code
	References


