24,491 research outputs found

    Searching of gapped repeats and subrepetitions in a word

    Full text link
    A gapped repeat is a factor of the form uvuuvu where uu and vv are nonempty words. The period of the gapped repeat is defined as u+v|u|+|v|. The gapped repeat is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its period. The gapped repeat is called α\alpha-gapped if its period is not greater than αv\alpha |v|. A δ\delta-subrepetition is a factor which exponent is less than 2 but is not less than 1+δ1+\delta (the exponent of the factor is the quotient of the length and the minimal period of the factor). The δ\delta-subrepetition is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its minimal period. We reveal a close relation between maximal gapped repeats and maximal subrepetitions. Moreover, we show that in a word of length nn the number of maximal α\alpha-gapped repeats is bounded by O(α2n)O(\alpha^2n) and the number of maximal δ\delta-subrepetitions is bounded by O(n/δ2)O(n/\delta^2). Using the obtained upper bounds, we propose algorithms for finding all maximal α\alpha-gapped repeats and all maximal δ\delta-subrepetitions in a word of length nn. The algorithm for finding all maximal α\alpha-gapped repeats has O(α2n)O(\alpha^2n) time complexity for the case of constant alphabet size and O(nlogn+α2n)O(n\log n + \alpha^2n) time complexity for the general case. For finding all maximal δ\delta-subrepetitions we propose two algorithms. The first algorithm has O(nloglognδ2)O(\frac{n\log\log n}{\delta^2}) time complexity for the case of constant alphabet size and O(nlogn+nloglognδ2)O(n\log n +\frac{n\log\log n}{\delta^2}) time complexity for the general case. The second algorithm has O(nlogn+nδ2log1δ)O(n\log n+\frac{n}{\delta^2}\log \frac{1}{\delta}) expected time complexity

    Variants of Constrained Longest Common Subsequence

    Full text link
    In this work, we consider a variant of the classical Longest Common Subsequence problem called Doubly-Constrained Longest Common Subsequence (DC-LCS). Given two strings s1 and s2 over an alphabet A, a set C_s of strings, and a function Co from A to N, the DC-LCS problem consists in finding the longest subsequence s of s1 and s2 such that s is a supersequence of all the strings in Cs and such that the number of occurrences in s of each symbol a in A is upper bounded by Co(a). The DC-LCS problem provides a clear mathematical formulation of a sequence comparison problem in Computational Biology and generalizes two other constrained variants of the LCS problem: the Constrained LCS and the Repetition-Free LCS. We present two results for the DC-LCS problem. First, we illustrate a fixed-parameter algorithm where the parameter is the length of the solution. Secondly, we prove a parameterized hardness result for the Constrained LCS problem when the parameter is the number of the constraint strings and the size of the alphabet A. This hardness result also implies the parameterized hardness of the DC-LCS problem (with the same parameters) and its NP-hardness when the size of the alphabet is constant

    Repetition Detection in a Dynamic String

    Get PDF
    A string UU for a non-empty string U is called a square. Squares have been well-studied both from a combinatorial and an algorithmic perspective. In this paper, we are the first to consider the problem of maintaining a representation of the squares in a dynamic string S of length at most n. We present an algorithm that updates this representation in n^o(1) time. This representation allows us to report a longest square-substring of S in O(1) time and all square-substrings of S in O(output) time. We achieve this by introducing a novel tool - maintaining prefix-suffix matches of two dynamic strings. We extend the above result to address the problem of maintaining a representation of all runs (maximal repetitions) of the string. Runs are known to capture the periodic structure of a string, and, as an application, we show that our representation of runs allows us to efficiently answer periodicity queries for substrings of a dynamic string. These queries have proven useful in static pattern matching problems and our techniques have the potential of offering solutions to these problems in a dynamic text setting

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Algorithmic Complexity for Short Binary Strings Applied to Psychology: A Primer

    Full text link
    Since human randomness production has been studied and widely used to assess executive functions (especially inhibition), many measures have been suggested to assess the degree to which a sequence is random-like. However, each of them focuses on one feature of randomness, leading authors to have to use multiple measures. Here we describe and advocate for the use of the accepted universal measure for randomness based on algorithmic complexity, by means of a novel previously presented technique using the the definition of algorithmic probability. A re-analysis of the classical Radio Zenith data in the light of the proposed measure and methodology is provided as a study case of an application.Comment: To appear in Behavior Research Method
    corecore