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Abstract
A string UU for a non-empty string U is called a square. Squares have been well-studied both from a
combinatorial and an algorithmic perspective. In this paper, we are the first to consider the problem
of maintaining a representation of the squares in a dynamic string S of length at most n. We present
an algorithm that updates this representation in no(1) time. This representation allows us to report
a longest square-substring of S in O(1) time and all square-substrings of S in O(output) time. We
achieve this by introducing a novel tool – maintaining prefix-suffix matches of two dynamic strings.

We extend the above result to address the problem of maintaining a representation of all runs
(maximal repetitions) of the string. Runs are known to capture the periodic structure of a string,
and, as an application, we show that our representation of runs allows us to efficiently answer
periodicity queries for substrings of a dynamic string. These queries have proven useful in static
pattern matching problems and our techniques have the potential of offering solutions to these
problems in a dynamic text setting.
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1 Introduction

A string UU , where U is not empty, is called a square or a tandem repeat. Squares are a
fundamental construct in word combinatorics, and algorithms for finding all squares have
been sought as early as the 1980’s [15, 10, 37]. The problem turned out to be central in
computational biology causing much algorithmic work to have taken place since then [12, 27].
The approximate version is also of great interest [36, 19, 41, 40].

A run is a periodic fragment of the text that cannot be extended to either direction
without increasing its period. Kolpakov and Kucherov, in their seminal paper [35], showed
that there are O(n) runs in a text of length n, and presented an algorithm to compute them
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5:2 Repetition Detection in a Dynamic String

in O(n) time. After a long line of research, the breakthrough result of Bannai et al. [11]
showed that a string of length n can have at most n runs. Runs have been used as an
algorithmic tool, for example, for extracting the k-powers in a string (note that a square is a
2-power) and for efficient computation of the periods of substrings of a string [17, 33, 34].

Due to the importance, both theoretical and practical, of squares and runs, it is surprising
that the problem of computing or maintaining them in a dynamic text has not been studied.
Of course, one can re-run a square/run detection algorithm after every change in the text,
but this is clearly a very inefficient way of handling the problem.

In the 1990’s the active field of dynamic graph algorithms was started, with the motive
of answering questions on graphs that dynamically change over time. For an overview
see [18]. Recently, there has been a growing interest in dynamic pattern matching. This
natural interest grew from the fact that the biggest digital library in the world - the web - is
constantly changing, as well as from the fact that other big digital libraries - genomes and
astrophysical data, are also subject to change through mutation and time, respectively.

Historically, there has been much interest in dynamic string matching algorithms. Amir
and Farach [7] introduced dynamic dictionary matching, which was later improved by Amir et
al. [8]. Idury and Scheffer [29] introduced an automaton-based dynamic dictionary algorithm.
Gu et al. [26] and Sahinalp and Vishkin [39] developed a dynamic indexing algorithm, where a
dynamic text is indexed. Further progress in dynamic indexing and dictionary matching was
achieved by Ferragina et al. [20, 21] and Mehlhorn et al. [38]. Pattern matching algorithms
where the text is dynamic and the text is static were also considered [2, 9].

In the last few years there was a resurgence of interest in dynamic string matching. In
2017 a theory began to develop with its nascent set of tools. Bille et al. [13] investigated
dynamic relative compression and dynamic partial sums. Amir et al. [5] considered the
longest common factor (LCF) problem in the case of one revertible edit (see also [1]). Special
cases of the dynamic LCF problem were discussed by Amir and Boneh [3]. An algorithm
for the fully dynamic LCF problem was presented by Amir et al. [6]. (A similar line of
work has taken place for the problem of maintaining a longest palindrome in a dynamic
string [23, 24, 6, 4].) Gawrychowski et al. [25] settled the complexity of maintaining a
dynamic collection of strings under operations: concatenate, split, makestring, lexicographic
comparison, and finding the longest common prefix of two strings.

We continue this line of work by considering squares and runs in a dynamic string. We
present our algorithms for the case where the allowed update operations are substitutions.
We first show our techniques in the setting of the following problem.

Dynamic Longest Square
Input: A string S.
Query: For given index i (and character α), set S[i] = α and compute LS(S).

Our contributions. We make a step forward in the exciting area of dynamic pattern
matching. We give efficient dynamic solutions for a number of important problems:
1. Fully dynamic pattern matching in a text and pattern where the text length is twice the

pattern length. In fact, to our knowledge, this is the first known algorithm that does not
require Ω(occ) time to report all pattern occurrences, i.e. it may report them in time
smaller than their number, by reporting occurrences via an arithmetic progression.

2. Dynamic maintenance of the longest square in a text in no(1) time per string update,
after an Õ(n)-time preprocessing and using Õ(n) space. 1

1 The Õ(·) notation suppresses logO(1) n factors.
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3. Dynamic maintenance of all runs in a text within the same complexities. It is noteworthy
that although a single substitution can destroy/create Ω(n) squares/runs, we can maintain
a compact representation of them in subpolynomial time.

4. We conclude by showing that our representation of runs can be employed to efficiently
maintain k-powers in a dynamic text and answer queries about periodicity of substrings,
adapting the static solutions of Crochemore et al. [17]. Detecting internal periodicities has
proven useful in several static string matching applications, thus our dynamic algorithm
can potentially help the dynamic version of such problems. An overview of the literature
for internal queries in static texts can be found in [32].

We introduce a new technique, which we expect will be a powerful tool in other dynamic
string matching problems, that of dynamically maintaining prefix-suffix matches. This
enabled us to efficiently maintain all runs in a dynamic string, which, in turn, enabled the
applications presented in this paper.

2 Preliminaries

We begin with basic definitions and notation generally following [16]. Let S = S[1]S[2] · · ·S[n]
be a string of length |S| = n over an integer alphabet Σ. For two positions i and j on S,
we denote by S[i . . j] = S[i] · · ·S[j] the fragment of S that starts at position i and ends at
position j (it is the empty string ε if j < i). A string Y , of length m with 0 < m ≤ n, is a
substring of S if there exists a position i in S such that Y = S[i . . i+m− 1]. In this case
we say that there exists an occurrence of Y in S, or, more simply, that Y occurs in S at
(starting) position i. A substring is called proper if it is shorter than the whole string. A
fragment S[1 . . j], j < n, is called a prefix of S, and, analogously, a fragment S[i . . n], i > 1,
is called a suffix. A fragment of S that is neither a prefix nor a suffix of S is called an infix.
A string B that occurs both as a proper prefix and a proper suffix of S is called a border
of S. A positive integer p is called a period of S if S[i] = S[i + p] for all i = 1, . . . , n − p.
String S has a period p if and only if it has a border of length n− p. We refer to the smallest
period per(S) of S as the period of the string and, analogously, to the longest border as the
border of the string. A string S is periodic if per(S) ≤ |S|/2.

By ST and Sk we denote the concatenation of strings S and T and k copies of the string
S, respectively. A string of the form S2 for some S ∈ Σ+ is called a square and a string of
the form Sk is called a k-power.

A run (also known as maximal repetition) is a periodic fragment R = S[a . . b] which
cannot be extended to the left nor to the right without increasing the period p = per(R),
that is, S[a− 1] 6= S[a+ p− 1] and S[b− p+ 1] 6= S[b+ 1]. The number of runs in a string
of length n is at most n [11] and all runs can be computed in O(n) time [35].

By lcpstring(S, T ) we denote the longest common prefix of S and T , by lcp(S, T ) we denote
|lcpstring(S, T )|, and by lcp(r, t) we denote lcp(S[r . . n], S[t . . n]). The longest common suffix
lcs is defined analogously. We refer to queries returning lcp(r, s) or lcs(r, s) as longest common
extension queries (LCE queries).

It is known that by maintaining Karp-Rabin fingerprints [31] for the substrings of length
2j starting at a positions i = 1 (mod 2j) for all 1 ≤ j ≤ logn one can obtain the following
lemma. (More involved solutions with better complexities in the O-notation can be obtained
by applying for instance the results of [25], cf. [6].)

I Lemma 1. A dynamic string can be maintained with Õ(1)-time per edit operation so that
LCE queries can be answered in Õ(1) time, using Õ(n) space.

ESA 2019
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3 An Õ(n2/3)-time algorithm

In this section we present an algorithm that reports a longest square LS(S) in time Õ(n2/3)
after each substitution operation. We actually present two algorithms, one for each of the
cases of LS(S) being short or long. Let m, which is to be chosen later, be the distinguishing
threshold between those cases. We can assume that m is a power of 2.

Main idea. In order to handle the case of LS(S) being short, we split our text into O(n/m)
overlapping fragments of length 2m. Each substitution operation affects only two of these
fragments, and we thus just recompute the longest square in them in O(m) time. As for
the case that the LS(S) UU is long, we note that the first occurrence of U must contain a
fragment of length m/4 for some i = 1 (mod m/4). The idea is to use such fragments as
anchors and maintain all of their occurrences in the string using dynamic renaming. Then
for every such fragment and every occurrence of it we would like to check whether there is
any square UU that contains them “aligned” in the two occurrences of U . We show how to
process fragments that have many occurrences efficiently by exploiting periodicity.

3.1 |LS(S)| ≤ m

Preprocessing. We split the string S into overlapping fragments, each of length 2m, starting
at positions i = 1 + j ·m for j = 0, 1, . . . dn/me. (Note that the last two fragments could be
shorter than 2m.) We use a linear-time algorithm ([17, 28]) to compute all squares in each
of these fragments, requiring time O(m · n/m) = O(n) in total. For each fragment, we will
maintain a representative longest square-substring, which is chosen arbitrarily in case of ties.
We store the representatives of all fragments in a max heap, with their lengths being the
keys. The max heap can be built in time O(n).

Query. Every position of the string is contained in at most two fragments. After each
substitution operation we use a linear-time algorithm to recompute all squares in the affected
fragments, requiring time O(m). We then update the heap in time O(logn) by deleting
the previous representatives (to which we have stored pointers) and inserting the new ones.
We then simply retrieve the longest element in the max heap in O(1) time. The overall
query-time complexity is O(m+ logn).

Correctness. The correctness of the described algorithm follows directly from the observa-
tion that each substring of S of length at most m is fully contained in at least one of the
O(n/m) 2m-length fragments.

3.2 |LS(S)| ≥ m = 4k

Let us start with an observation.

I Observation 2. In a square-substring UU of S, with |U | ≥ 2k, the first occurrence of U
contains S[i . . i+ k − 1] for some i = 1 (mod k).

This observation guarantees that long square-substrings of S can be identified using
the O(n/k) fragments starting at positions i = 1 (mod k) as anchors. To this end, we
maintain names for all k-length fragments of the string, such that two fragments of S have
the same name if and only if they are equal. We first briefly describe the renaming technique,
originating from [30], and then show how to use it in the dynamic setting.
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The renaming technique. We recursively (consistently) rename pairs of letters of a string
S. Let us consider the original string S = S0 as the string at level 0 and the resulting
string Sλ after λ iterations of renaming as the string at level λ. At level λ, the letter of
Sλ at position i corresponds to S[i . . i+ 2λ − 1]; in other words Sλ[i] = Sλ[j] if and only if
S[i . . i+ 2λ − 1] = S[j . . j + 2λ − 1].

Given string Sλ we rename as follows. We consider the multiset V of all pairs pλ(i) =
(Sλ[i], Sλ[i+ 2λ − 1]) and radix sort them in O(n) time. We then assign a distinct integer
identifier f(v) from {1, . . . , n} to each distinct element of V . Finally, we set Sλ+1[i] = f(pλ(i)).
This process terminates after logn iterations and thus requires time O(n logn) in total.

Dynamic renaming. We only maintain log k levels of renaming, i.e. strings S0, . . . , Slog k.
We maintain the different pairs of letters at each level λ in a balanced binary search tree
(bBST) Bλ; each node of Bλ stores the name given to this pair and a counter of its occurrences
in the string. We also maintain a bBST Cλ storing the letters from {1, . . . , n} that are not
currently used to rename pairs at this level. Each substitution affects at most k k-length
fragments. We update their names in a bottom up manner in time O(k logn) as follows. For
each affected pair of letters at a level λ that changed, for example, from (a, b) to (a, c), we
search for (a, b) in Bλ and decrement its counter. In addition, if the counter reaches 0, the
name given to this letter is now free and we update Cλ accordingly. We then search for (a, c)
in Bλ and, (a) if we find it, we increment the counter and use the stored name, (b) else we
insert (a, c) to Bλ and assign to this pair of letters the smallest element of Cλ.

In addition, for each name a of a k-length fragment (i.e. letter at level λ = log k) we
store the positions of its occurrences in Sλ in a predecessor data (bBST) structure Pa. We
can perform insertions and deletions as well as perform predecessor/successor queries in
Pa in O(logn) time each. Below, after a brief discussion on periodicity, we will present a
modification on Pa in order to compactly store the occurrences of a.

Computing squares. We would like to pair each of the k-length fragments starting at a
position i = 1 (mod k), with name a, with all of its other occurrences in S, which can be
retrieved from the predecessor structure Pa. Let j 6= i be the position of such an occurrence,
and denote such a pair as (i, j). We can assume without loss of generality that i < j; the
other case is symmetric. For each pair, we want to check whether a square S[a . . b] = UU ,
such that a ≤ i < j ≤ b and j − i = |U |, exists. We call each such square an (i, j)-square.
Observation 2 guarantees that every square of length at least m = 4k will be identified in
this manner. The following lemma shows how to perform the described check efficiently.

I Lemma 3. Given two positions i < j, we can check whether an (i, j)-square exists and
report all (i, j)-squares compactly in time Õ(1).

Proof. The following observation essentially reduces computing all (i, j)-squares to answering
two LCE queries. Inspect Figure 1 for an illustration.

I Observation 4. An (i, j)-square UU , where i is the t-th letter of the first occurrence of U
exists if and only if lcs(i, j) ≥ t and lcp(i, j) ≥ |U | − t+ 1.

Now 1 ≤ t ≤ |U | and t = i − a + 1, where a is the starting position of such a square.
Hence a = i + 1 − t for 1 ≤ t ≤ |U | such that lcs(i, j) ≥ t and lcp(i, j) ≥ |U | − t + 1 are
the starting positions of all (i, j)-squares. Equivalently, the (i, j)-squares are the fragments
S[a . . a + 2|U | − 1], for i + 1 − min{lcs(i, j), |U |} ≤ a ≤ min{i + lcp(i, j) − |U |, i}. We
employ Lemma 1 to efficiently answer LCE queries. J

ESA 2019
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S
a i j b

lcs(i, j) lcp(i, j)

Figure 1 The setting in the proof of Lemma 3. The two occurrences of U in an (i, j)-square UU

are denoted by dashed rectangles. The two equal k-length fragments starting at positions i and j

are denoted by gray rectangles.

Aperiodic k-length substrings. If the k-length fragment S[i . . i+ k − 1] to be processed is
aperiodic, it occurs O(n/k) times in S. We can thus afford to employ Lemma 3 for each pair
(i, j), where j 6= i is a position where S[i . . i+ k − 1] occurs. The time required to process
S[i . . i+ k − 1] is thus Õ(n/k).

Periodic k-length substrings. If the k-length substring is periodic then we cannot process
each pair individually as there could be Ω(n) of them. To overcome this, we exploit periodicity
to process the pairs in batches. The lemma below follows directly from the periodicity lemma,
which states that if a string has a period p and a period q, such that p+ q ≤ n+ gcd(p, q),
then gcd(p, q) is also a period of this string [22].

I Fact 5. The distance between the starting positions of two consecutive occurrences of a
periodic string Y with period p in a string S is either p or greater than |Y |/2.

We now present an algorithm to process a k-length substring Y with period p that occurs
more than 3n/k times in S. We can treat periodic substrings that occur fewer than 3n/k
times with the algorithm for the aperiodic ones. Note that this is in fact necessary, as we
cannot afford to compute the period of each relevant substring. Instead, we identify periodic
substrings that occur frequently as follows. Remember that we have stored the positions
where a k-length fragment Y with name a occurs in a predecessor data structure Pa. Then,
in light of Fact 5, if Y occurs more than 3n/k times, two of its occurrences will have to be
at distance per(Y ). We will identify this by checking the distance of each newly inserted
element in the predecessor data structure with its predecessor and successor. If it happens
to be below |Y |/2, we store this distance, which is per(Y ), as satellite information in Pa.

We call a set of positions A = {j + t · p|t = 0, . . . , r} a p-cluster of Y in S if p = per(Y ),
S[a . . a+ k− 1] = Y for all a ∈ A and S[j − p . . j − p+ k− 1] 6= Y 6= S[j + (t+ 1)p . . j + (t+
1)p+ k − 1]. It follows directly from Fact 5 that there are O(n/k) p-clusters of Y in S. We
maintain these p-clusters by storing p-cluster A as an arithmetic progression (minA, p, |A|)
with key minA in Pa. We merge p-clusters if needed by using predecessor/successor queries
in Pa upon insertions, and similarly split p-clusters if needed upon deletions.

I Observation 6. Let Y be a periodic string. An occurrence of Y in S is a fragment of
exactly one run R with per(R) = per(Y ). We say that R extends Y . The p-cluster containing
this occurrence of Y corresponds to the occurrences of Y in R.

I Lemma 7. Given a periodic fragment Y and p = per(Y ), the run R that extends Y can be
computed using a constant number of LCE queries. R = S[i− a+ 1 . . i+ p+ b− 1], where
a = lcs(i, i+ p) and b = lcp(i, i+ p).

We next show how to process the pairs yielded by each of the p-clusters in Õ(1) time.

I Theorem 8. Given a position i in S, where Y occurs, and a p-cluster A of Y in S, we can
compute a longest (i, j)-square over all j ∈ A in time Õ(1). In particular, if i 6∈ A, we return
a superset of all (i, j)-squares for j ∈ A that are of length at least 4k in a compact form.
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S
i je1 e2

Figure 2 An illustration of the setting in Case 1 in the proof of Theorem 8. As before, the two
occurrences of U in an (i, j)-square UU are denoted by dashed rectangles and the two equal k-length
fragments starting at positions i and j are denoted by gray rectangles.

Proof. If it so happens that i ∈ A, then the longest (i, j)-square can be easily retrieved as it
must lie entirely within the run R = S[a . . b] corresponding to A. Let r = b− a (mod 2p). It
can be readily verified that either S[a+ r . . b] or S[a . . b− r] is a longest (i, j)-square over all
j ∈ A. (See also [17].)

In the other case, that is i 6∈ A, we first compute the unique run R1 = S[s1 . . e1] that
extends the occurrence of Y at position i, and similarly the run R2 = S[s2 . . e2] corresponding
to the occurrences of Y in A. This can be done in time Õ(1) by performing a constant
number of LCE queries, cf. Lemmas 7 and 1.

Our assumption that i < j implies that s1 < s2. Let UU be an (i, j)-square with j ∈ A.
We have the following cases for the occurrence of U in which S[e1 + 1] lies.

1. The first occurrence, in which case the endpoints S[e1] and S[e2] of the two runs must be
aligned (i.e. be at distance |U |), since lcp(i, j) > e1 + 2 − i. In other words, S[e1] and
S[e2] must both occur as the t-th letter of an occurrence of U in the square for some t –
inspect Figure 2 for an illustration. In this case we compute the longest (e1, e2)-square
(or all (e1, e2)-squares) in Õ(1) time using Lemma 3.

2. The second occurrence, in which case, the situation is more interesting. We have the
following two subcases.
a. If e1 + 1 < s2, by an argument symmetric to that for the first case, the starting

points S[s1] and S[s2] of the two runs must be aligned – one can think of Figure 2
reversed. As in Case 1, we can compute the longest (all) (s1, s2)-square(s) in Õ(1)
time using Lemma 3.

b. Else, we have that the first and second occurrences of U are fragments of runs R1 and
R2, respectively.

We now look into the structure yielded by the condition in Case 2b and show how to
compute and represent all (possibly many) squares that satisfy it, and are essentially defined
by runs R1 and R2, efficiently.

I Definition 9. For two runs R1 and R2, with period per(R1) = per(R2) = p that overlap,
we define sq(R1, R2) to be the set of squares UU of length at least 4p such that the first and
second occurrences of U lie entirely within R1 and R2, respectively.

In what follows, we show how to compute sq(R1, R2), which is a superset of the (i, j)-
squares of length at least k for j ∈ A since 4p ≤ 4k/2 ≤ 2k. We obtain a constant number of
arithmetic progressions that represent all such squares. Let us start with an example that
captures the structure of sq(R1, R2).

I Example 10. Consider string (baa)4a(baa)3. There are two runs with period p = 3,
namely R1 = S[1 . . 12] and R2 = S[12 . . 22]. See Figure 3 for an illustration and for the
squares that satisfy the condition of Case 2b. One can see that we can get Ω(n) such squares
for a string of length O(n), by extending this paradigm and considering string (baa)na(baa)n.
This example shows that a single substitution can create/destroy Ω(n) squares; think of first
setting S[n+ 1] := c and then S[n+ 1] := a.

ESA 2019
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b a a b a a b a a b a a a b a a b a a b a a

Figure 3 The two runs with period 3 are represented by black. The squares UU of length at
least 4p, such that the two occurrences of U are fully contained in the two runs are shown in red
and blue, partitioned with respect to the first letter of the second occurrence of U .

B Claim 11. Let us suppose that we are given two runs R1 = S[s1 . . e1] and R2 = S2[s2 . . e2],
with per(R1) = per(R2) = p, such that R1[f . . f + p − 1] = R2[1 . . p − 1] for some given
f ≤ s1 + p − 1 and such that s1 ≤ s2 ≤ e1 ≤ e2. We can compute a representation of
sq(R1, R2) in O(1) time.

Proof. The following fact implies that Example 10 resembles the structure of the problem.

I Fact 12 ([32]). Two runs with period p cannot overlap by more than p− 1 positions.

Due to the condition that the first and second occurrences of U must be fragments of
runs R1 and R2, respectively, we have that the second occurrence of U can only start at one
of the positions in C = {s2, . . . , e1 + 1}, where |C| ≤ p by Fact 12. Let us consider some
c ∈ C and characterize all squares S[a . . b] = UU with c = a+ |U | and |U | ≥ 2p.

S[c − p . . c − 1] is a rotation of S[c . . c + p − 1], i.e. there exists some δ < p such that
S[c− p . . c− 1] = S[c+ δ . . c+ p− 1]S[c . . c+ δ − 1]. In particular, δ = s2 − f (mod p).
|U | must equal t · p+ δ in order for the two occurrences of U to start at the same offset

mod p from f and s2; this is necessary, since otherwise we would have two different rotations
of R2[1 . . p−1] matching, which is impossible as it would imply that per(R2) < p. In addition,
all |U |’s of the form t · p + δ for t ≥ 2 and for which the two occurrences of U lie entirely
within runs R1 and R2, respectively, define valid squares. We can thus compute all these
squares in O(1) time and represent them as an arithmetic progression with respect to |U |.

I Example 13 (Continued.). For position 12 of (baa)4a(baa)3, the blue a in Figure 3, we
have δ = 1 and hence the squares UU that we obtain with this as starting position of the
second occurrence of U are for |U | = 1 + 3t, for t = 2, 3.

Iterating over c ∈ C in increasing order, we only have to (a) shift all squares by 1 position
each time, and (b) identify the – at most two – shifts that yield an increment/decrement
in the length of the arithmetic progression due to one more/less square being allowed after
the shift. We can infer the values of c for which we must increment/decrement in O(1) time
from the endpoints of the two runs and δ. These values, p, and the arithmetic progression
for c = s2 are our representation of sq(R1, R2). C

We can straightforwardly extract the longest (i, j)-square for j ∈ A if it is of length at
least k from this representation, and this concludes the proof of the theorem. J

To summarize, we spend Õ(k) time for the dynamic renaming and then process each of
the O(n/k) fragments starting at positions i = 1 (mod k) in time Õ(n/k), using Lemma 3
and Theorem 8. The overall time complexity of this algorithm is thus Õ(n2/k2 + k).
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Wrap-up. By setting m = 4k = n2/3 and combining the algorithms for LS(S) ≤ m and
LS(S) ≥ m we obtain the following result.

I Theorem 14. Dynamic Longest Square queries can be answered in time Õ(n2/3),
using Õ(n) space, after an Õ(n)-time preprocessing.

4 An no(1)-time algorithm

Main Idea. If we manage to get rid of the O(m) time dedicated to renaming in the algorithm
for computing long squares, we can then recursively obtain faster algorithms. This can be
achieved by using our fastest o(m) query-time dynamic algorithm for each updated 2m-length
fragment for the case that LS(S) ≤ m instead of recomputing them in O(m) time using the
static algorithm. We would then obtain a faster algorithm, and could plug this in turn for
the case that LS(S) ≤ m; and so on.

Towards the goal of getting rid of renaming, we first observe that it is wasteful to keep
track of the occurrences of all k-length substrings of S. It would be sufficient to keep track
of the occurrences of each k-length substring that occurs at a position i = 1 (mod k). This
could be solved by maintaining O(n/m) instances of dynamic pattern matching with pattern
S[i . . i+ k − 1], for each i = 1 (mod k), and text S. (Note that both the pattern and the
text would have to be dynamic.) The main complication stems from the need to maintain
p-clusters efficiently. To the best of our knowledge, the known pattern matching algorithms
in the dynamic setting require Ω(occ) time to report the occ occurrences of the pattern in
the text after each update, which is unsatisfactory in our case.

2-1 Dynamic Pattern Matching. A further observation, is that we can reduce the problem
to an even easier one by applying the standard trick as follows. For every substring of length
k occurring at a position i = 1 (mod k), we maintain a dynamic pattern matching instance
with every substring of length 2k starting at a position i = 1 (mod k). Note that every
possible occurrence of the k-length fragments of interest is contained in one (and at most
two) of these 2k-length fragments. At first glance, it may seem like this partition will be less
efficient to maintain because now instead of O(n/k) instances of dynamic pattern matching
we have O((n/k)2) instances of 2-1 Dynamic Pattern Matching – to be formally defined
soon. However, this is actually lossless, since every change in S only affects O(n/k) such
instances. Let us formally define the problem in scope.

2-1 Dynamic Pattern Matching
Given two strings P and T with |T | = 2|P | = 2n, return all occurrences of P in T after
each substitution operation on either of P , T .

We want to exploit the constant ratio between the lengths of the pattern and the text to
obtain an efficient algorithm for 2-1 Dynamic Pattern Matching. We further reduce this
problem to another, simpler one. A partition of the text T to its n-length prefix and suffix,
analogously partitions any occurrence of P at some position i. Specifically, this occurrence is
partitioned to the prefix P [1 . .m] of P , corresponding to the suffix T [i . . n] of T [1 . . 2n] and
the suffix P [m+ 1 . . n] of P , corresponding to the prefix T [n+ 1 . . i+ n− 1] of T [n+ 1 . . 2n].
Thus, if we know all the prefixes of P that are suffixes of T [1 . . n], we can extend each of
them in order to compute all the occurrences of P in T . (This will be a bit more involved as
they will be given as arithmetic progressions, see Lemma 20.) We call a prefix of P that is a
suffix of T a prefix-suffix match of P and T .
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4.1 Dynamic Prefix-Suffix
We now focus on the following problem.

Dynamic Prefix-Suffix
Given two strings P and S of the same length n, report all the prefixes of P that are
suffixes of S, after each substitution operation on either of P , S.
We partition each of P and S to bn/mc m-length fragments and possibly an extra shorter

fragment. Specifically, we partition P to P1, P2, . . . , Pdn/me with P = P1P2 · · ·Pdn/me and S
to Sdn/me, Sdn/me−1, . . . , S1 with S = Sdn/meSdn/me−1 · · ·S1. Fragments Pdn/me and Sdn/me
are allowed to be of length less than m.

I Observation 15. Let X be a prefix of P that is also a suffix of S. Let x = d|X|/me
and r = |X| (mod m). Every pair of fragments (Pi, Sj) that satisfies i + j − 1 = x, will
satisfy that the prefix of length r of Pi will be equal to the suffix of the same length of Sj.
(Inspect Figure 4 for an illustration.)

r|X|

P1 P2 P3 P4 P5 P6
P

S6 S5 S4 S3 S2 S1

S

Figure 4 An illustration of the setting in Observation 15 with x = 5.

Algorithm. Relying on Observation 15, we design a recursive algorithm. For every 1 ≤ x ≤
dn/me we will maintain an instance of Dynamic Prefix-Suffix between some pair (Pi, Sj)
that satisfies i + j − 1 = x. Namely, for a given x, we will consider the pair (Pdye, Sbyc),
where y = (x+ 1)/2. It can be readily verified that dye+ byc − 1 = x. Note that each Pi, Sj
is in at most two of the considered pairs. Hence, each update in P or S results in no more
than 2 such pairs being affected.

The prefix-suffix matches of each pair (Si, Pj) are witnesses for possible prefix-suffix
matches between P and S. All O(|Si|) = O(m) witnesses of a given pair can be confirmed
with a logarithmic number of LCE queries, exploiting periodicity – the details are omitted
due to space constraints.

We efficiently maintain the prefix-suffix matches for all relevant pairs using predecessor
structures, analogously to how we maintained all starting positions of the occurrences of a
substring corresponding to some name in Section 3, relying on the following lemma.

I Lemma 16 (cf. [34, 6]). The prefixes of a string P that are suffixes of a string S, with
|P |, |S| = O(n), of lengths between 2j and 2j+1 − 1 form an arithmetic progression. If it
has at least three elements, all these prefix-suffix matches have the same period, equal to the
difference of the progression.

Given a change, we recursively update the witnesses for the two affected pairs. At each
level of the recursion, we confirm all witnesses. This is necessary since a witness that was
not affected by the last substitution and was not an instance of a prefix-suffix match between
P and S may have just become a prefix-suffix match between P and S due to the last
substitution. The opposite case is possible as well.
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After obtaining all the prefix-suffix matches we iterate over them to merge consistent
periodic clusters as follows. For every j ∈ {1, . . . , dlogne}, we group the prefix-suffix matches
of lengths s ∈ [2j−1, . . . , 2j − 1] and represent them as an arithmetic progression, relying on
Lemma 16. The merging is necessary for the output of the algorithm to be in a compact form
at every level of the recursion. It should also then be clear that the arithmetic progressions
the algorithm returns are non-overlapping, as there is a unique such progression for the
elements of length between 2j−1 and 2j − 1 for each j.

Complexity. The time complexity is T (n) = 2T (m) + Õ(dn/me) = 2T (bn/kc) + Õ(k) for
k = dn/me. 2T (m) for updating the two affected pairs and Õ(n/m) for confirming and
merging all witnesses. We omit the proof of the following fact.

I Fact 17. If T (n) = 2T (bn/kc) + c1k logc2 k for all n ≥ N0, where k =
⌈
2
√

logn
⌉
, c1, c2

are constants, and T (C) = O(1) for all C = O(1), then T (n) = no(1).

We arrive at the following theorem for Dynamic Prefix-Suffix.

I Theorem 18. A representation of all prefix-suffix matches as O(logn) arithmetic progres-
sions of their ending positions in P can be maintained with no(1) time per substitution.

By maintaining a Dynamic Prefix-Suffix instance for S = P we obtain the following
corollary, as prefix-suffix matches correspond to borders of S.

I Corollary 19. The period of a string |S| can be maintained with |S|o(1) time per substitution.

4.2 Wrap-up and complexity
The proof of the following lemma, which uses Theorem 18 as a black box, is omitted due to
space constraints.

I Lemma 20. 2-1 Dynamic Pattern Matching can be solved with no(1) time per substitu-
tion, reporting the starting positions of all occurrences of P in T as an arithmetic progression.

For the computation of long squares, after each substitution we proceed as follows.
1. We update each of the O(n/k) affected 2-1 Dynamic Pattern Matching instances in

f(k) = ko(1) time, employing Lemma 20.
2. We apply Lemma 3 and Theorem 8 a total of O(n2/k2) times.

The Õ(n2/k2) term dominates the time complexity if n/k ≥ f(k). We note that f is an
increasing function and hence it suffices to have k ≤ n/f(n).

Let us express the complexity of our best algorithm for Dynamic Longest Square as
nαf(n) logβ n, for α < 1 with nα ≥ (f(n))2 and for β being the maximum of the powers of
logn hidden by the Õ(·) notation in Lemma 3 and Theorems 8 and 14. (Thus Theorem 14
shows an O(n2/3 logβ n)-time algorithm.) Then, for k = (n2/f(n))1/(α+2), we have that

O(n2/k2 logβ n+ kαf(k) logβ n) = Õ(n2α/(α+2)((f(n))2/α+2 + (f(n))α+1/α+2) logβ n) =

Õ(n2α/(α+2)f(n) logβ n).

Note that this k satisfies the condition k ≤ n/f(n), since

k = (n2/f(n))1/(α+2) ≤ n/f(n)⇐⇒ f(n) ≤ nα/(α+1),

and the latter holds due to our assumptions on the value of α.
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One can show by induction that g(2t)(1) = 1/t for g(x) = 2x/(2+x); note that g(1) = 2/3.
We can thus construct an algorithm requiring time arbitrarily close to Õ((f(n))3) = no(1)

time per update, recursively, since we can obtain an Õ(ngt+1(1)f(n))-time algorithm by using
the Õ(ngt(1)f(n))-time algorithm for short squares. We thus arrive at the following result.

I Theorem 21. Dynamic Longest Square queries can be answered in time no(1), using
Õ(n) space, after an Õ(n)-time preprocessing.

5 Maintaining all runs and applications

In this section, we first discuss how to modify the algorithm to maintain all runs instead of
computing the longest square. Afterwards, by adapting the solutions of [17] for the static
setting, we show several types of queries that can be answered with our representation of
runs. In particular, we show how to maintain the number of all k-powers in no(1) time and
report the longest k-power in S for some fixed k within the same time complexity. All –
possibly Θ(n2) – k-powers can be reported in a compact way in Õ(runs) time, where runs
denotes the number of runs in S. Finally, we show how to answer the following queries in
Õ(1) time: given a fragment determine if it is periodic, and, if so, compute its period.

We start by describing how to maintain all runs in the Õ(n2/3)-time solution.
For short runs, we use the O(m)-time algorithm of [35]. For each 2m-length fragment,

we only maintain runs that do not touch its endpoints, as we do not want to maintain a
run that may extend to other fragments. (We only waive this restriction for runs that are
suffixes/prefixes of S and are of length smaller than m.) This is sufficient as every run R such
that |R| < m will be fully contained in one (and at most two) of the 2m-length fragments.
Upon a substitution we just recompute the runs for the two affected fragments.

As for runs of length at least m = 4k, we recompute all of them. Let us first amend
Observation 2 as follows.

I Lemma 22. A run R = S[a . . b], of length at least 4k, contains a fragment S[i . . i+ k− 1],
for some i = 1 (mod k), that also occurs at position i+ per(R).

Proof. The first 2k-length fragment of the run must appear again somewhere in the run
(otherwise it is not even a square). This fragment, being of length 2k, must contain a
fragment S[i . . i + k − 1] with i = 0 (mod k) and i ≤ a + k − 1. S[i . . i + k − 1] will
certainly occur at position i+ per(R), since i+ per(R) + k− 1 ≤ a+ k− 1 + |R|/2 + k− 1 ≤
a+ |R|/4− 1 + |R|/2 + |R|/4− 1 ≤ b. J

We then proceed as in Section 3. We first define the (i,j)-run to be the unique run R
containing S[i . . j], in which the difference between i and j is consistent with the period of the
run; formally, j = i (mod p), where p = per(R). Now observe that every run R that is longer
than 4k is an (i, j)-run for some i = 0 (mod k) and some j for which S[i . . i+k] = S[j . . j+k]
due to Lemma 22; in particular, the smallest such j is j = i+ per(R).

Observation 4 can be modified analogously as follows.

I Observation 23. An (i, j)-run R, exists if and only if lcs(i, j) + lcp(i, j) ≥ |j − i|+ 1. If
R exists it is S[i− lcs(i, j) + 1 . . j + lcp(i, j)− 1].

The above observation allows us to efficiently process names with less than 3n/k occur-
rences in S. As for names corresponding to k-length substrings with more occurrences, the
proof of Theorem 8 shows that we can process the k-length substring S[i . . i+ k − 1] with a
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p-cluster A of its occurrences as follows. If i ∈ A we are done as we simply report the run
with period p corresponding to A. Otherwise, using the notation of the proof of Theorem 8,
we compute the (e1, e2)-run and the (s1, s2)-run if we are in Case 1 or 2a.

Note that a run S[a . . b] may be identified multiple times. We remove duplicates and
store S[a . . b] as (a, b, p), where p is the minimum j − i for which this run was obtained as
the (i, j)-run; by Lemma 22 we have that p = per(S[a . . b]).

Case 2b is again more tricky. We adapt our solution for squares (see Theorem 8) in order
to compute and maintain such runs compactly using arithmetic progressions.

I Observation 24. All elements of sq(R1, R2) of equal length are extended by the same run.

We denote the elements of sq(R1, R2) of length 2|U | by G|U |.

I Lemma 25. If the minimum starting position among the elements of G|U | is u > s1 and
the maximum ending position is v < e2, then the run extending the elements of G|U | is
R = S[u . . v] and per(R) = |U |.

Proof. We have u+ |U | = s2 since u > s1. If the run extending the squares of G|U | started
at some position smaller than u, this would imply S[u− 1 . . s2− 2] = S[s2− 1 . . s2 + |U | − 2],
which in turn would imply that the right hand side of the equation is a string with period p.
This would contradict R2 being a run. The argument for the other side is symmetric.

As for arguing that per(R) = |U |, let us assume for the sake of contradiction that it has
a period q < |U |. Then, as |U | is also a period of R, the periodicity lemma implies that
q′ = gcd(|U |, q) ≤ |U |/2 is also a period of R.

We can apply the periodicity lemma again, since p is also a period of U and p+ q′ ≤ |U |.
We then have that p′ = gcd(p, q′) < |p|/2 is a period of S[s2 . . s2 + |U | − 1] and a divisor of
p. This is a contradiction as S[s2 . . s2 + p− 1] is a primitive string, i.e. is not of the form T k

for a string T and k > 1, since otherwise p′ < p would also be a period of R2. J

We maintain all such runs runs(R1, R2) compactly as a constant number of arithmetic
progressions with respect to |U |; one for each of the at most three distinct group sizes.

Only two groups of squares may contain a square that starts in the first position of R1 or
ends in the last position of R2. These groups of squares are the only ones such that the run
extending them may not be fully contained in S[s1 . . e2]. This could be the case for example
if we had a run R3 with the same period and appropriate overlap with R2. We compute the
run extending a square of each of the at most two relevant groups using LCE queries and
maintain these runs explicitly.

All (explicitly or compactly represented) runs are stored in a way that allows for efficient
deletion, using a key with respect to their origin, i.e. the substring at some level of the
recursion for which they were computed. After each substitution, the algorithm computes a
all the relevant runs for the substring that contains the updated position at each level of
the recursion from scratch. Thus, for every substring for which we recompute runs, we first
delete all runs that have this substring as key.

I Theorem 26. We can maintain all runs R = S[a . . b] of a string of length n, as triplets
(a, b, per(R)) and arithmetic progressions with no(1) time per operation, using Õ(n) space,
after Õ(n)-time preprocessing.
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5.1 Application I: k-powers
Let us recall that a k-power is a string of the form Uk for some non-empty string U . The
authors of [17] show that given a run R as (a, b, p), one can compute in O(1) time:
1. a longest substring Uk of R with per(R) | |U |;
2. the number of all fragments S[a . . b] = V k, with per(R) | |V |, that lie entirely within R.

For any fixed k ≥ 3, we can maintain the longest k-power by storing a heap keeping the
longest that each explicitly stored run contributes and maintain the count on the number
of k-powers (not distinct) in S within the time complexities of Theorem 26. Note that
by Lemma 25 and the fact that v − u ≤ 2|U |+ p and |U | ≥ 2p, where u, v, p and |U | are
as in the statement of that lemma, we have that the runs stored as arithmetic progressions
do not contribute any k-powers for k ≥ 3. Finally, we can extract all – possibly Θ(n2) –
non-distinct k-powers in Õ(runs) time in a compact form from the runs [17].
I Remark 27. As for maintaining the O(n) distinct k-powers efficiently, we should first be
able to group runs by their Lyndon roots (the Lyndon root of a run R is the lexicographically
smallest rotation of a per(R)-length substring of R). It is not clear how to amend our solution
to maintain the runs in this way.

5.2 Application II: 2-Period Queries

2-Period Queries
Given a fragment S[i . . j] of S, decide whether S[i . . j] is periodic and, if so, compute its
period.

2-Period Queries in a static string. 2-Period Queries were introduced in [17], while
general internal period queries were intoduced in [33]. The authors of [34] showed how to
optimally answer 2-Period Queries in O(1) time after O(n)-time preprocessing. In these
works, it is shown, that in order to answer the query for S[i . . j] it suffices to find the run R
that extends S[i . . j], or conclude that there is no such run. In other words, it suffices to
find the run R with the smallest period among the runs fully containing S[i . . j]. Then, if
per(R) < (j − i)/2, the fragment is periodic with period per(R) and otherwise it is not.

To the best of our knowledge there is no prior work on answering internal period queries
in a dynamic string. In what follows we sketch the proof of the following result – the details
are omitted due to space constraints.

I Theorem 28. 2-Period Queries can be answered in Õ(1) time in a string S of length n,
with each substitution operation processed in time no(1), after an Õ(n)-time preprocessing.
The required space is Õ(n).

In order to compute the run with the smallest period that contains S[i . . j], the authors
of [17] show that it is enough to be able to answer orthogonal range minimum queries in
2-d, over the following collection of points: for each run (a, b, p) we have point (a, b) with
weight p. The desired run then corresponds to the point with minimum weight in the
rectangle [1, i]× [j, n]. A restricted version of the main result of [14], is that one can maintain
a collection of O(n) points in [n]d, for any constant d, with Õ(1) time per update, such
that orthogonal range emptiness queries can be answered in Õ(1) time. We note that 2-d
orthogonal range minimum queries reduce to 3-d orthogonal range emptiness queries via
binary search. We maintain this data structure over the runs that are maintained explicitly,
see Theorem 26. The above discussion covers the case that the run extending S[i . . j] has
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been stored explicitly. In particular, following our discussion in Section 5.1, we are already
able to answer 3-Period Queries, i.e. whether a substring S[i . . j] has period at most
|j − i|/3, and if so, return this period.

As for 2-Period Queries, we now provide the intuition for handling the case that the
run of minimum period that contains S[i . . j] is stored implicitly. We want to check all runs
extending some square UU ∈ sq(R1, R2) that is a prefix of S[i . . j], for some runs R1, R2.
Note that our definition of sq(R1, R2) implies that per(U) = per(R1) ≤ |U |/2; i.e. R1 extends
U . The following lemma implies that we can only have a logarithmic number of such squares.

I Lemma 29 ([32, Corollary 5.1.3]). Let U1, U2, U3 be periodic fragments of a text T , all
starting at the same position, and being extended by runs R1, R2 and R3, respectively. If
blog |U1|c = blog |U2|c = blog |U3|c, then the three runs R1, R2 and R3 cannot be all distinct.

For every set runs(R1, R2), we add the point (s1, e2, p) in an initially empty 3-d grid – we
use the same notation as above. We report all relevant points using 3-d dynamic orthogonal
range reporting queries, again employing [14]. In particular, we first retrieve the points in
the range [1, i]× [j, n]× [1, |j − i|/4]. There are O(logn) of them due to the above lemma.
Then, for each point, corresponding say to runs(R1, R2), we compute in Õ(1) time the run of
smallest period in runs(R1, R2) containing S[i . . j]. In particular it is the run of minimum
length in runs(R1, R2) containing S[i . . j] by Lemma 25.

6 Concluding remarks

We believe that, with due care, our algorithm can be adapted to handle insertions and
deletions – the details are omitted due to space constraints. We leave open the questions
of whether the runs of a string (or other information sufficient for answering 2-Period
Queries in Õ(1) time) can be maintained with Õ(1) time per update and whether period
queries for aperiodic substrings can be answered efficiently in a dynamic string.
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