35 research outputs found

    Public projects, Boolean functions and the borders of Border's theorem

    Full text link
    Border's theorem gives an intuitive linear characterization of the feasible interim allocation rules of a Bayesian single-item environment, and it has several applications in economic and algorithmic mechanism design. All known generalizations of Border's theorem either restrict attention to relatively simple settings, or resort to approximation. This paper identifies a complexity-theoretic barrier that indicates, assuming standard complexity class separations, that Border's theorem cannot be extended significantly beyond the state-of-the-art. We also identify a surprisingly tight connection between Myerson's optimal auction theory, when applied to public project settings, and some fundamental results in the analysis of Boolean functions.Comment: Accepted to ACM EC 201

    Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits

    Full text link
    In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. \bullet We prove that for all ϵlog(n)/n\epsilon\gg \sqrt{\log(n)/n}, the linear-time computable Andreev's function cannot be computed on a (1/2+ϵ)(1/2+\epsilon)-fraction of nn-bit inputs by depth-two linear threshold circuits of o(ϵ3n3/2/log3n)o(\epsilon^3 n^{3/2}/\log^3 n) gates, nor can it be computed with o(ϵ3n5/2/log7/2n)o(\epsilon^{3} n^{5/2}/\log^{7/2} n) wires. This establishes an average-case ``size hierarchy'' for threshold circuits, as Andreev's function is computable by uniform depth-two circuits of o(n3)o(n^3) linear threshold gates, and by uniform depth-three circuits of O(n)O(n) majority gates. \bullet We present a new function in PP based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two linear threshold circuits with o(n3/2/log3n)o(n^{3/2}/\log^3 n) gates, nor with o(n5/2/log7/2n)o(n^{5/2}/\log^{7/2}n) wires. \bullet We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new random restriction lemma for linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics

    Measuring satisfaction in societies with opinion leaders and mediators

    Get PDF
    An opinion leader-follower model (OLF) is a two-action collective decision-making model for societies, in which three kinds of actors are considered:Preprin

    The Inverse Shapley Value Problem

    Full text link
    For ff a weighted voting scheme used by nn voters to choose between two candidates, the nn \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of ff provide a measure of how much control each voter can exert over the overall outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice theory as a measure of the "influence" of voters. The \emph{Inverse Shapley Value Problem} is the problem of designing a weighted voting scheme which (approximately) achieves a desired input vector of values for the Shapley-Shubik indices. Despite much interest in this problem no provably correct and efficient algorithm was known prior to our work. We give the first efficient algorithm with provable performance guarantees for the Inverse Shapley Value Problem. For any constant \eps > 0 our algorithm runs in fixed poly(n)(n) time (the degree of the polynomial is independent of \eps) and has the following performance guarantee: given as input a vector of desired Shapley values, if any "reasonable" weighted voting scheme (roughly, one in which the threshold is not too skewed) approximately matches the desired vector of values to within some small error, then our algorithm explicitly outputs a weighted voting scheme that achieves this vector of Shapley values to within error \eps. If there is a "reasonable" voting scheme in which all voting weights are integers at most \poly(n) that approximately achieves the desired Shapley values, then our algorithm runs in time \poly(n) and outputs a weighted voting scheme that achieves the target vector of Shapley values to within error $\eps=n^{-1/8}.

    Testing (subclasses of) halfspaces

    Get PDF
    We address the problem of testing whether a Boolean-valued function f is a halfspace, i.e. a function of the form f(x) = sgn(w . x − θ). We consider halfspaces over the continuous domain R n (endowed with the standard multivariate Gaussian distribution) as well as halfspaces over the Boolean cube { − 1,1} n (endowed with the uniform distribution). In both cases we give an algorithm that distinguishes halfspaces from functions that are ε-far from any halfspace using only poly(1) queries, independent of the dimension n. In contrast to the case of general halfspaces, we show that testing natural subclasses of halfspaces can be markedly harder; for the class of { − 1,1}-weight halfspaces, we show that a tester must make at least Ω(logn) queries. We complement this lower bound with an upper bound showing that O(√n) queries suffice.National Basic Research Program of China (grant 2007CB807900)National Basic Research Program of China (grant 2007CB807901)National Natural Science Foundation (China) (grant 60553001

    Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces

    Get PDF
    The \emph{Chow parameters} of a Boolean function f:{1,1}n{1,1}f: \{-1,1\}^n \to \{-1,1\} are its n+1n+1 degree-0 and degree-1 Fourier coefficients. It has been known since 1961 (Chow, Tannenbaum) that the (exact values of the) Chow parameters of any linear threshold function ff uniquely specify ff within the space of all Boolean functions, but until recently (O'Donnell and Servedio) nothing was known about efficient algorithms for \emph{reconstructing} ff (exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this reconstruction problem as the \emph{Chow Parameters Problem.} Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently accurate approximations to) the Chow parameters of any linear threshold function ff, runs in time \tilde{O}(n^2)\cdot (1/\eps)^{O(\log^2(1/\eps))} and with high probability outputs a representation of an LTF ff' that is \eps-close to ff. The only previous algorithm (O'Donnell and Servedio) had running time \poly(n) \cdot 2^{2^{\tilde{O}(1/\eps^2)}}. As a byproduct of our approach, we show that for any linear threshold function ff over {1,1}n\{-1,1\}^n, there is a linear threshold function ff' which is \eps-close to ff and has all weights that are integers at most \sqrt{n} \cdot (1/\eps)^{O(\log^2(1/\eps))}. This significantly improves the best previous result of Diakonikolas and Servedio which gave a \poly(n) \cdot 2^{\tilde{O}(1/\eps^{2/3})} weight bound, and is close to the known lower bound of max{n,\max\{\sqrt{n}, (1/\eps)^{\Omega(\log \log (1/\eps))}\} (Goldberg, Servedio). Our techniques also yield improved algorithms for related problems in learning theory
    corecore