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Abstract. We address the problem of testing whether a Boolean-valued
function f is a halfspace, i.e. a function of the form f(x) = sgn(w ·x−θ).
We consider halfspaces over the continuous domain Rn (endowed with
the standard multivariate Gaussian distribution) as well as halfspaces
over the Boolean cube {−1, 1}n (endowed with the uniform distribution).
In both cases we give an algorithm that distinguishes halfspaces from
functions that are ε-far from any halfspace using only poly( 1

ε
) queries,

independent of the dimension n.
In contrast to the case of general halfspaces, we show that testing natural
subclasses of halfspaces can be markedly harder; for the class of {−1, 1}-
weight halfspaces, we show that a tester must make at least Ω(logn)
queries. We complement this lower bound with an upper bound showing
that O(

√
n) queries suffice.
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This article presents a summary of the results found in [13] and [12] regarding
the testability of halfspaces and certain subclasses of halfspaces.

1 Introduction

A halfspace is a function of the form f(x) = sgn(w1x1 + · · ·+ wnxn − θ) where
w1, ..., wn, θ ∈ R. The wi’s are called “weights,” and θ is called the “threshold.”
The sgn function is 1 on arguments ≥ 0, and −1 otherwise. The inputs to f can
be either Boolean or real. Here we will mainly be concerned with functions over
the Boolean cube, i.e. functions of the form f : {−1, 1}n → {−1, 1}. Halfspaces
are also known as threshold functions or linear threshold functions; for brevity
we shall refer to them here as LTFs.

LTFs are a simple yet powerful class of functions, which for decades have
played an important role complexity theory, optimization, and perhaps especially
machine learning (see e.g. [9, 18, 2, 15, 14, 17]). A lot of attention has been paid
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to the problem of learning LTFs- that is, given examples labeled according to
an unknown LTF (either random examples or queries to the function), find an
LTF that it is ε-close to. However, the question we want to address is that
of testing LTFs. That is, given query access to a function, we would like to
distinguish whether it is an LTF or whether it is ε-far from any LTF. Any proper
learning algorithm can be used as a testing algorithm (see, e.g., the observations
of [8]), but testing potentially requires fewer queries. Indeed, in situations where
query access is available, a query-efficient testing algorithm can be used to check
whether a function is close to an an LTF, before bothering to run a more intensive
algorithm to learn which LTF it is close to.

2 LTFs are testable with poly(1/ε) queries

The main result in [13] is to show that halfspaces can be tested with a number
of queries that is independent of n. In fact the dependence is only polynomial
in 1/ε. We note that any learning algorithm — even one with black-box query
access to f — must make at least Ω(nε ) queries to learn an unknown LTF to
accuracy ε under the uniform distribution on {−1, 1}n (this follows easily from,
e.g., the results of [11]). So at least in terms of relationship to n, our testing
algorithm is a significant improvement over using a learning algorithm. More
formally, our main result is the following:

Theorem 1 ([13]). Let f be a Boolean function f : {−1, 1}n → {−1, 1}, and
(as is standard in property testing) we measure the distance between functions
with respect to the uniform distribution over {−1, 1}n. Then there is an algorithm
with 2-sided error making poly(1

ε ) queries that accepts f with high probability if
it is an LTF, and rejects with high probability if it ε-far from all LTFs.

We remark that the class of halfspaces is qualitatively much different than the
other classes of Boolean functions that we know how to test. Some previous
works have used the method of “implicit learning” to test classes such as s-
term DNF formulas and size-s decision trees [4]. However the implicit learning
technique only works for classes of functions whose members are close to juntas.
This is not the case here, since the class of halfspaces contains, for example, the
majority function, which is not at all close to a junta. Other previous works have
shown how to test classes with some algebraic structure, like parity functions and
low-degree polynomials, but these classes also are quite different from halfspaces.

Characterizations and Techniques.
To prove our results, we establish new structural results about LTFs which

essentially characterize them in terms of their degree-0 and degree-1 Fourier co-
efficients. For functions mapping {−1, 1}n to {−1, 1} it has long been known [3]
that any linear threshold function f is completely specified by the n+ 1 param-
eters consisting of its degree-0 and degree-1 Fourier coefficients (also referred to
as its Chow parameters). While this specification has been used to learn LTFs in
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various contexts [1, 7, 16], it is not clear how it can be used to construct efficient
testers (for one thing this specification involves n+ 1 parameters, and we want
a query complexity independent of n). Intuitively, we get around this difficulty
by giving new characterizations of LTFs as those functions that satisfy a par-
ticular relationship between just two parameters, namely the degree-0 Fourier
coefficient and the sum of the squared degree-1 Fourier coefficients. Moreover,
our characterizations are robust in that if a function approximately satisfies the
relationship, then it must be close to an LTF. This is what makes the charac-
terizations useful for testing.

We first consider functions mapping Rn to {−1, 1} where we view Rn as
endowed with the standard n-dimensional Gaussian distribution. Our character-
ization is particularly clean in this setting and illustrates the essential approach
that also underlies the much more involved Boolean case. On one hand, it is
not hard to show that for every LTF f , the sum of the squares of the degree-1
Hermite coefficients5 of f is equal to a particular function of E[f ] — regardless
of which LTF f is (we call this function W ; it is essentially the square of the
“Gaussian isoperimetric” function).

Conversely, we show that if f : Rn → {−1, 1} is any function for which the
sum of the squares of the degree-1 Hermite coefficients is within ±ε3 of W (E[f ]),
then f must be O(ε)-close to an LTF — in fact to an LTF whose n weights are
the n degree-1 Hermite coefficients of f. The value E[f ] can clearly be estimated
by sampling, and moreover it can be shown that a simple approach of sampling
f on pairs of correlated inputs can be used to obtain an accurate estimate of the
sum of the squares of the degree-1 Hermite coefficients. We thus obtain a simple
and efficient test for LTFs under the Gaussian distribution.

To handle general LTFs over {−1, 1}n, we first develop an analogous char-
acterization and testing algorithm for the class of balanced regular LTFs over
{−1, 1}n; these are LTFs with E[f ] = 0 for which all degree-1 Fourier coef-
ficients are small. The heart of this characterization is a pair of results which
give Boolean-cube analogues of our characterization of Gaussian LTFs. We show
that the sum of the squares of the degree-1 Fourier coefficients of any balanced
regular LTF is approximately W (0) = 2

π . Conversely, we show that any function
f whose degree-1 Fourier coefficients are all small and whose squares sum to
roughly 2

π is in fact close to an LTF — in fact, to one whose weights are the
degree-1 Fourier coefficients of f. Similar to the Gaussian setting, we can esti-
mate E[f ] by uniform sampling and can estimate the sum of squares of degree-1
Fourier coefficients by sampling f on pairs of correlated inputs. (An additional
algorithmic step is also required here, namely checking that all the degree-1
Fourier coefficients of f are indeed small; it turns out that this can be done by
estimating the sum of fourth powers of the degree-1 Fourier coefficients, which
can again be obtained by sampling f on (4-tuples of) correlated inputs.)

The general case of testing arbitrary LTFs over {−1, 1}n is substantially more
complex. Very roughly speaking, the algorithm has three main conceptual steps:

5 These are analogues of the Fourier coefficients for L2 functions over Rn with respect
to the Gaussian measure.
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– First the algorithm implicitly identifies a set of O(1) many variables that
have “large” degree-1 Fourier coefficients. Even a single such variable can-
not be explicitly identified using o(log n) queries; we perform the implicit
identification using O(1) queries by adapting an algorithmic technique from
[6]. This is similar to the ”implicit learning” approach in [4].

– Second, the algorithm analyzes the regular subfunctions that are obtained
by restricting these implicitly identified variables; in particular, it checks
that there is a single set of weights for the unrestricted variables such that
the different restrictions can all be expressed as LTFs with these weights
(but different thresholds) over the unrestricted variables. Roughly speaking,
this is done using a generalized version of the regular LTF test that tests
whether a pair of functions are close to LTFs over the same linear form but
with different thresholds.

– Finally, the algorithm checks that there exists a single set of weights for
the restricted variables that is compatible with the different biases of the
different restricted functions. If this is the case then the overall function is
close to the LTF obtained by combining these two sets of weights for the
unrestricted and restricted variables. (Intuitively, since there are only O(1)
restricted variables there are only O(1) possible sets of weights to check
here.)

3 Testing a natural subclass of halfspaces requires more
queries

Complementing the work in [13], in [12] we consider the problem of testing
whether a function f belongs to a natural subclass of halfspaces, the class of
±1-weight halfspaces. These are functions of the form f(x) = sgn(w1x1 +w2x2 +
· · ·+wnxn) where the weights wi all take values in {−1, 1}. Included in this class
is the majority function on n variables, and all 2n “reorientations” of majority,
where some variables xi are replaced by −xi. Alternatively, this can be viewed as
the subclass of halfspaces where all variables have the same amount of influence
on the outcome of the function, but some variables get a “positive” vote while
others get a “negative” vote.

For the problem of testing ±1-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which
distinguishes ±1-weight halfspaces from functions that are ε-far from ±1-
weight halfspaces must make at least Ω(log n) many queries. By a standard
transformation (see e.g. [5]), this also implies an Ω(log log n) lower bound
for adaptive algorithms. Taken together with [13], this shows that testing
this natural subclass of halfspaces is more query-intensive then testing the
general class of all halfspaces.

2. Upper Bound. We give a nonadaptive algorithm making O(
√
n ·poly(1/ε))

many queries to f , which outputs YES with probability at least 2/3 if f is a
±1-weight halfspace, and NO with probability at least 2/3 if f is ε-far from
any ±1-weight halfspace.
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We note that it follows from [11] that learning the class of ±1-weight halfs-
paces requiresΩ(n/ε) queries. Thus, while some dependence on n is necessary
for testing, our upper bound shows testing ±1-weight halfspaces can still be
done more efficiently than learning.

Although we prove our results specifically for the case of halfspaces with all
weights±1, our methods can be used to obtain similar results for other subclasses
of halfspaces such as {−1, 0, 1}-weight halfspaces (±1-weight halfspaces where
some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved
using Yao’s method. We define two distributions DY ES and DNO over func-
tions, where a draw from DY ES is a randomly chosen ±1-weight halfspace and
a draw from DNO is a halfspace whose coefficients are drawn uniformly from
{+1,−1,+

√
3,−
√

3}. We show that a random draw from DNO is with high
probability Ω(1)-far from every ±1-weight halfspace, but that any set of o(log n)
query strings cannot distinguish between a draw from DY ES and a draw from
DNO.

Our upper bound is achieved by an algorithm which uniformly selects a
small set of variables and checks, for each selected variable xi, that the magni-
tude of the corresponding singleton Fourier coefficient |f̂(i)| is close to to the
right value. We show that any function that passes this test with high proba-
bility must have its degree-1 Fourier coefficients very similar to those of some
±1-weight halfspace, and that any function whose degree-1 Fourier coefficients
have this property must be close to a ±1-weight halfspace. At a high level this
approach is similar to some of what is done in [13], but here we are estimating∑
i |f̂(i)| rather than

∑
i f̂(i)2. In both instances we are checking that the con-

tribution of the degree-1 Fourier coefficients is “large,” but in the second case
we are estimating the coefficients more accurately in order to insure to insure
that we only pass functions close to ±1-weight halfspaces.

4 Open questions

Several questions related to testing halfspaces are still open. Here we point out
a just a few:

– First is the question of whether there is a simpler algorithm for testing the
general class of halfspaces over the Boolean cube. Although our algorithm
makes “only” poly(1/ε) queries, the exponent of the polynomial is something
like 4000. Our algorithm is quite complicated, and hardly seems optimal.
Obviously a more efficient algorithm utilizing new ideas would be preferred.

– Our current approach to testing halfspaces makes two-sided error. It is un-
clear whether this is necessary. In order to get a better handle on testing
halfspaces, we might restrict ourselves to the question of one-sided testing.
Can we devise a one-sided tester, or show that there is none? We conjecture
(albeit without much confidence) that one-sided testing requires a query



6

complexity dependent on n. We make this conjecture based on the fact that
for any constant k, there exist boolean functions which are not halfspaces,
yet are consistent with a halfspace on any set of less than k examples [10].

– Perhaps the most obvious lingering question is whether we can extend our
algorithm for LTFs to test degree-d polynomial threshold functions, or PTFs.
This seems to require a significant amount of extra machinery, for example
in relating the size of the degree-d Fourier coefficients to the weights of the
corresponding terms inside a PTF, and to the bias of the PTF. Although
there are some highly technical obstacles, given all of the recent structural
results on PTFs, there is some hope that a testing algorithm can be achieved.
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