45 research outputs found

    On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms

    Full text link
    We introduce a version of the cavity method for diluted mean-field spin models that allows the computation of thermodynamic quantities similar to the Franz-Parisi quenched potential in sparse random graph models. This method is developed in the particular case of partially decimated random constraint satisfaction problems. This allows to develop a theoretical understanding of a class of algorithms for solving constraint satisfaction problems, in which elementary degrees of freedom are sequentially assigned according to the results of a message passing procedure (belief-propagation). We confront this theoretical analysis to the results of extensive numerical simulations.Comment: 32 pages, 24 figure

    Approaching the Rate-Distortion Limit with Spatial Coupling, Belief propagation and Decimation

    Get PDF
    We investigate an encoding scheme for lossy compression of a binary symmetric source based on simple spatially coupled Low-Density Generator-Matrix codes. The degree of the check nodes is regular and the one of code-bits is Poisson distributed with an average depending on the compression rate. The performance of a low complexity Belief Propagation Guided Decimation algorithm is excellent. The algorithmic rate-distortion curve approaches the optimal curve of the ensemble as the width of the coupling window grows. Moreover, as the check degree grows both curves approach the ultimate Shannon rate-distortion limit. The Belief Propagation Guided Decimation encoder is based on the posterior measure of a binary symmetric test-channel. This measure can be interpreted as a random Gibbs measure at a "temperature" directly related to the "noise level of the test-channel". We investigate the links between the algorithmic performance of the Belief Propagation Guided Decimation encoder and the phase diagram of this Gibbs measure. The phase diagram is investigated thanks to the cavity method of spin glass theory which predicts a number of phase transition thresholds. In particular the dynamical and condensation "phase transition temperatures" (equivalently test-channel noise thresholds) are computed. We observe that: (i) the dynamical temperature of the spatially coupled construction saturates towards the condensation temperature; (ii) for large degrees the condensation temperature approaches the temperature (i.e. noise level) related to the information theoretic Shannon test-channel noise parameter of rate-distortion theory. This provides heuristic insight into the excellent performance of the Belief Propagation Guided Decimation algorithm. The paper contains an introduction to the cavity method

    Analysing Survey Propagation Guided Decimationon Random Formulas

    Get PDF
    Let Φ\varPhi be a uniformly distributed random kk-SAT formula with nn variables and mm clauses. For clauses/variables ratio m/nrk-SAT2kln2m/n \leq r_{k\text{-SAT}} \sim 2^k\ln2 the formula Φ\varPhi is satisfiable with high probability. However, no efficient algorithm is known to provably find a satisfying assignment beyond m/n2kln(k)/km/n \sim 2k \ln(k)/k with a non-vanishing probability. Non-rigorous statistical mechanics work on kk-CNF led to the development of a new efficient "message passing algorithm" called \emph{Survey Propagation Guided Decimation} [M\'ezard et al., Science 2002]. Experiments conducted for k=3,4,5k=3,4,5 suggest that the algorithm finds satisfying assignments close to rk-SATr_{k\text{-SAT}}. However, in the present paper we prove that the basic version of Survey Propagation Guided Decimation fails to solve random kk-SAT formulas efficiently already for m/n=2k(1+εk)ln(k)/km/n=2^k(1+\varepsilon_k)\ln(k)/k with limkεk=0\lim_{k\to\infty}\varepsilon_k= 0 almost a factor kk below rk-SATr_{k\text{-SAT}}.Comment: arXiv admin note: substantial text overlap with arXiv:1007.1328 by other author

    Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems

    Full text link
    We review the understanding of the random constraint satisfaction problems, focusing on the q-coloring of large random graphs, that has been achieved using the cavity method of the physicists. We also discuss the properties of the phase diagram in temperature, the connections with the glass transition phenomenology in physics, and the related algorithmic issues.Comment: 10 pages, Proceedings of the International Workshop on Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200

    The backtracking survey propagation algorithm for solving random K-SAT problems

    Get PDF
    Discrete combinatorial optimization has a central role in many scientific disciplines, however, for hard problems we lack linear time algorithms that would allow us to solve very large instances. Moreover, it is still unclear what are the key features that make a discrete combinatorial optimization problem hard to solve. Here we study random K-satisfiability problems with K=3,4K=3,4, which are known to be very hard close to the SAT-UNSAT threshold, where problems stop having solutions. We show that the backtracking survey propagation algorithm, in a time practically linear in the problem size, is able to find solutions very close to the threshold, in a region unreachable by any other algorithm. All solutions found have no frozen variables, thus supporting the conjecture that only unfrozen solutions can be found in linear time, and that a problem becomes impossible to solve in linear time when all solutions contain frozen variables.Comment: 11 pages, 10 figures. v2: data largely improved and manuscript rewritte

    Reweighted belief propagation and quiet planting for random K-SAT

    Full text link
    We study the random K-satisfiability problem using a partition function where each solution is reweighted according to the number of variables that satisfy every clause. We apply belief propagation and the related cavity method to the reweighted partition function. This allows us to obtain several new results on the properties of random K-satisfiability problem. In particular the reweighting allows to introduce a planted ensemble that generates instances that are, in some region of parameters, equivalent to random instances. We are hence able to generate at the same time a typical random SAT instance and one of its solutions. We study the relation between clustering and belief propagation fixed points and we give a direct evidence for the existence of purely entropic (rather than energetic) barriers between clusters in some region of parameters in the random K-satisfiability problem. We exhibit, in some large planted instances, solutions with a non-trivial whitening core; such solutions were known to exist but were so far never found on very large instances. Finally, we discuss algorithmic hardness of such planted instances and we determine a region of parameters in which planting leads to satisfiable benchmarks that, up to our knowledge, are the hardest known.Comment: 23 pages, 4 figures, revised for readability, stability expression correcte

    The decimation process in random k-SAT

    Full text link
    Let F be a uniformly distributed random k-SAT formula with n variables and m clauses. Non-rigorous statistical mechanics ideas have inspired a message passing algorithm called Belief Propagation Guided Decimation for finding satisfying assignments of F. This algorithm can be viewed as an attempt at implementing a certain thought experiment that we call the Decimation Process. In this paper we identify a variety of phase transitions in the decimation process and link these phase transitions to the performance of the algorithm

    Comparing Beliefs, Surveys and Random Walks

    Full text link
    Survey propagation is a powerful technique from statistical physics that has been applied to solve the 3-SAT problem both in principle and in practice. We give, using only probability arguments, a common derivation of survey propagation, belief propagation and several interesting hybrid methods. We then present numerical experiments which use WSAT (a widely used random-walk based SAT solver) to quantify the complexity of the 3-SAT formulae as a function of their parameters, both as randomly generated and after simplification, guided by survey propagation. Some properties of WSAT which have not previously been reported make it an ideal tool for this purpose -- its mean cost is proportional to the number of variables in the formula (at a fixed ratio of clauses to variables) in the easy-SAT regime and slightly beyond, and its behavior in the hard-SAT regime appears to reflect the underlying structure of the solution space that has been predicted by replica symmetry-breaking arguments. An analysis of the tradeoffs between the various methods of search for satisfying assignments shows WSAT to be far more powerful that has been appreciated, and suggests some interesting new directions for practical algorithm development.Comment: 8 pages, 5 figure
    corecore