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Abstract
Let ~Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. For
clauses/variables ratio m/n ≤ rk-SAT ∼ 2k ln 2 the formula ~Φ is satisfiable with high probability.
However, no efficient algorithm is known to provably find a satisfying assignment beyond m/n ∼
2k ln(k)/k with a non-vanishing probability. Non-rigorous statistical mechanics work on k-CNF
led to the development of a new efficient “message passing algorithm” called Survey Propagation
Guided Decimation [Mézard et al., Science 2002]. Experiments conducted for k = 3, 4, 5 suggest
that the algorithm finds satisfying assignments close to rk-SAT. However, in the present paper
we prove that the basic version of Survey Propagation Guided Decimation fails to solve random
k-SAT formulas efficiently already for m/n = 2k(1 + εk) ln(k)/k with limk→∞ εk = 0 almost a
factor k below rk-SAT.
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1 Introduction

Random k-SAT instances have been known as challenging benchmarks for decades [9, 28, 33].
The simplest and most intensely studied model goes as follows. Let k ≥ 3 be an integer, fix
a density parameter r > 0, let n be a (large) integer and let m = drne. Then Φ = Φk(n,m)
signifies a k-CNF chosen uniformly at random among all (2n)km possible formulas. With k, r
fixed the random formula is said to enjoy a property with high probability if the probability
that the property holds tends to 1 as n→∞.

The conventional wisdom about random k-SAT has been that the problem of finding
a satisfying assignment is computationally most challenging for r below but close to the
satisfiability threshold rk−SAT where the random formula ceases to be satisfiable w.h.p. [28].
Whilst the case k = 3 may be the most accessible from a practical (or experimental) viewpoint,
the picture becomes both clearer and more dramatic for larger values of k. Asymptotically
the k-SAT threshold reads rk−SAT = 2k ln 2− (1 + ln 2)/2 + εk, where εk → 0 in the limit of
large k [14]. However, the best current algorithms are known to find satisfying assignments
in polynomial time merely up to r ∼ 2k ln k/k [11]. In fact, standard heuristics such as Unit
Clause Propagation bite the dust for even smaller densities, namely r = c2k/k for a certain
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absolute constant c > 0 [17]. The same goes (provably) for various DPLL-based solvers
[1, 30]. Hence, there is a factor of about k/ ln k between the algorithmic threshold and the
actual satisfiability threshold.

In the early 2000s physicists put forward a sophisticated but non-rigorous approach
called the cavity method to tackle problems such as random k-SAT both analytically and
algorithmically. In particular, the cavity method yields a precise prediction as to the value
of rk−SAT for any k ≥ 3 [24, 26], which was recently verified rigorously for sufficiently large
values of k [14]. Additionally, the cavity method provided a heuristic explanation for the
demise of simple combinatorial or DPLL-based algorithms well below rk−SAT. Specifically,
the density 2k ln k/k marks the point where the geometry of the set of satisfying assignments
changes from (essentially) a single connected component to a collection of tiny well-separated
clusters [22]. In fact, a typical satisfying assignment belongs to a “frozen” cluster, i.e., there
are extensive long-range correlations between the variables. The cluster decomposition as
well as the freezing prediction have largely been verified rigorously [29, 3] and we begin to
understand the impact of this picture on the performance of algorithms [2].

But perhaps most remarkably, the physics work has led to the development of a new
efficient “message passing algorithm” called Survey Propagation Guided Decimation to
overcome this barrier [6, 21, 27, 31]. More precisely, the algorithm is based on a heuristic
that is designed to find whole frozen clusters not only single satisfying assignments by
identifying each cluster by the variables determined by long-range correlations and locally
“free” variables. Thus, by its very design Survey Propagation Guided Decimation is built to
work at densities where frozen clusters exist. Although the experimental performance for
small k is outstanding this yields no evidence of a relation between the occurrence of frozen
clusters and the success of the algorithm. Yet not even the physics methods lead to a precise
explanation of these empirical results or to a prediction as to the density up to which we
might expect SP to succeed for general values of k. In effect, analysing SP has become one
of the most important challenges in the context of random constraint satisfaction problems.

The present paper furnishes the first rigorous analysis of SPdec (the basic version of)
Survey Propagation Guided Decimation for random k-SAT. We give a precise definition and
detailed explanation below. Before we state the result let us point out that two levels of
randomness are involved: the choice of the random formula ~Φ, and the “coin tosses” of the
randomized algorithm SPdec. For a (fixed, non-random) k-CNF Φ let success(Φ) denote the
probability that SPdec(Φ) outputs a satisfying assignment. Here, of course, “probability”
refers to the coin tosses of the algorithm only. Then, if we apply SPdec to the random
k-CNF ~Φ, the success probability success(~Φ) becomes a random variable. Recall that ~Φ is
unsatisfiable for r > 2k ln 2 w.h.p..

I Theorem 1. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r

satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 we have success(~Φ) ≤ exp(−Ω(n)) w.h.p.

If the success probability is exponential small in n sequentially running SPdec a sub-
exponential number of times will not find a satisfying assignment w.h.p. rejecting the
hypotheses that SPdec solves random k-SAT formulas efficiently for considered clauses/vari-
ables ratio. Thus, Theorem 1 shows that SPdec does not outclass far simpler combinatorial
algorithms for general values of k. Even worse, in spite of being designed for this very purpose,
the SP algorithm does not overcome the barrier where the set of satisfying assignments
decomposes into tiny clusters asymptotically. This is even more astonishing since it is possible
to prove the existence of satisfying assignments up to the satisfiability threshold rigorously
based on the cavity method but algorithms designed by insights of this approach fail far
below that threshold. Nevertheless, let me note that the insights gained from Theorem 1
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is actually in line with some non-rigorous physics work on the SP algorithm. Still, there
is some arguing if there is any connection between the failure of algorithms and either the
clustering or the so called freezing phenomenon. Both, neither the connection to clustering
nor to freezing have been rigorously proven yet.

We are going to describe the SP algorithm in the following section. Let us stress
that Theorem 1 pertains to the “vanilla” version of the algorithm. Unsurprisingly, more
sophisticated variants with better empirical performance have been suggested, even ones
that involve backtracking [23]. Also the first version introduced by Mézard, Parisi and
Zecchina [27] contained a bias towards “frozen” variables for the choice of the variable at each
decimation step. However, the basic version of the SP algorithm analysed in the present paper
arguably (regarding the physicists picture of freezing, correlation decay, replica symmetry
assumption [26]) encompasses all the conceptually important features of the SP algorithm.

The only prior rigorous result on the Survey Propagation algorithm is the work of
Gamarnik and Sudan [19] on the k-NAESAT problem (where the goal is to find a satisfying
assignment whose complement is satisfying as well). However, Gamarnik and Sudan study
a “truncated” variant of the algorithm where only a bounded number of message passing
iterations is performed. The main result of [19] shows that this version of Survey Propagation
fails for densities about a factor of k/ ln2 k below the NAE-satisfiability threshold and about
a factor of ln k above the density where the set of NAE-satisfying assignments shatters into
tiny clusters. Though, experimental data and the conceptional design of the SP algorithm
suggest that it exploits its strength in particular by iterating the message passing iterations
a unbounded number of times that depends on n. In particular, to gather information from
the set of messages they have to converge to a fixed point which turns out to happen only
after a number of iterations of order ln(n).

An in-depth introduction to the cavity method and its impact on combinatorics, informa-
tion theory and computer science can be found in [25, 26].

2 The SPdec algorithm

The proof of Theorem 1 is by extension of the prior analysis [10] of the much simpler Belief
Propagation Guided Decimation algorithm. To outline the proof strategy and to explain the
key differences, we need to discuss the SP algorithm in detail. For a k-CNF Φ on the variables
V = {x1, . . . , xn} we generally represent truth assignments as maps σ : V → {−1, 1}, with
−1 representing “false” and 1 representing “true”. Survey Propagation is an efficient message
passing heuristic on the factor graph G(Φ). The factor graph of Φ is a bipartite graph
representation of Φ where each clause and each variable is represented by a vertex. Two
vertices are incident if the corresponding variable is contained in the corresponding clause
[26].

Before explaining the Survey Propagation heuristic, we explain the simpler Belief Propaga-
tion heuristic and emphasize the main extensions later on. To define the messages involved
we denote the ordered pair (x, a) with x→ a and similarly (a, x) with a→ x for each x ∈ V
and a ∈ N(x), where N(x) denotes the neighborhood in the factor graph G(Φ). The messages
are iteratively sent probability distributions (µx→a(ζ))x∈Vt,a∈N(x),ζ∈{−1,1} over {−1, 1}. In
each iteration messages are sent from variables to adjacent clauses and back. After setting
initial messages due to some initialization rule the messages sent are obtained by applying
a function to the set of incoming messages at each vertex. Both the initialization and the
particular update rules at the vertices are specifying the message passing algorithm. The
messages are updated ω(n) times which may or may not depend on n. A detailed explanation
of the Belief Propagation heuristic can be found in [8, p. 519].

ICALP 2016
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It is well known that the Belief Propagation messages on a tree converge after updating
the messages two times the depth of the tree to a fixed point. Moreover, in this case for
each variable the marginal distribution of the uniform distribution on the set of all satisfying
assignments can be computed by the set of the fixed point messages. Since G(Φ) for constant
clauses/variables ratio contains only a small number of short cycles one may expect that on
the base of the Belief Propagation messages a good estimate of the marginal distribution
of the uniform distribution on the set of all satisfying assignments of Φ could be obtained.
Besides the fact that it is not even clear that the messages converge to a fixed point on
arbitrary graphs this is of course only a weak heuristic explanation which is refuted by
[10]. However, at each decimation step using the Belief Propagation heuristic the Belief
Propagation guided decimation algorithm assigns one variable due to the estimated marginal
distribution to −1 or 1. Simplifying the formula and running Belief Propagation on the
simplified formula and repeating this procedure would lead to a satisfying assignment chosen
uniformly at random for sure if the marginals were correct at each decimation step.

Let us now introduce the Survey Propagation heuristic. As mentioned above the geometry
of the set of satisfying assignments comes as a collection of tiny well-separated clusters above
density 2k ln(k)/k. In that regime a typical solution belongs to a “frozen” cluster. That is all
satisfying assignments in such a frozen cluster agree on a linear number of frozen variables.
Thus, identifying these frozen variables gives a characterization of the whole cluster. Flipping
one of these variables leads to a set of unsatisfied clauses only containing additional frozen
variables. Satisfying one of these clauses leads to further unsatisfied clauses of this kind
ending up in an avalanche of necessary flippings to obtain a satisfying assignment. This ends
only after a linear number of flippings. Given a satisfying assignment with identified frozen
variables each satisfying assignment that disagrees on one of these frozen variables has linear
distance therefore belonging to a different cluster.

This picture inspires the definition of covers as generalized assignments σ ∈ {−1, 0, 1}n
such that

each clause either contains a true literal or two 0 literals and
for each variable x ∈ V that is assigned −1 or 1 exists a clause a ∈ N(x) such that for all
y ∈ N(a) \ {x} we have sign(y, a) · σ(y) = −1.

These two properties mirrors the situation in frozen clusters where assigning a variable to the
value 0 indicates that these variable supposes to be free in the corresponding cluster which is
obtained by only flipping 0 variables to one of the values −1 or 1. However, implementing
the concept of covers, Survey Propagation is a heuristic of computing the marginals over
the set of covers by using the Belief Propagation update rules on covers. This leads to the
equations given by Figure 1. For a more detailed explanation of the freezing phenomenon we
point the reader to [29]. For a deeper discussion on covers we refer to [12].

We are now ready to state the SPdec algorithm.

I Algorithm 2. SPdec(Φ)
Input: A k-CNF Φ on V = {x1, . . . , xn}. Output: An assignment σ : V → {−1, 1}.
0. Let Φ0 = Φ.
1. For t = 0, . . . , n− 1 do
2. Use SP to compute µ[ω]

xt+1 (Φt).
3. Assign

σ(xt+1) =

{
1 with probability µ[ω]

xt+1 (Φt)
−1 with probability 1 − µ

[ω]
xt+1 (Φt).

(7)

4. Obtain a formula Φt+1 from Φt by substituting the value σ(xt+1) for xt+1 and simplifying.
5. Return the assignment σ.
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For real numbers 0 ≤ x, y ≤ 1 such that max{x, y} > 0 we define

ψζ(x, y) =


xy ·Ψ(x, y) if ζ = 0
(1− x)y ·Ψ(x, y) if ζ = 1
(1− y)x ·Ψ(x, y) if ζ = −1

, Ψ(x, y) = (x+ y − xy)−1

If x = y = 0 set ψ0(0) = 0 and ψ±1(0) = 1
2 . Define for all x ∈ Vt, a, b ∈ N(x), ζ ∈ {−1, 0, 1}

and ` ≥ 0

µ[0]
x→a(±1) = 1

2 , µ[0]
x→a(0) = 0, µ

[`]
b→x(0) = 1−

∏
y∈N(b)\{x}

µ
[`]
y→b(−sign(y, b)) (1)

π[`+1]
x→a (±1) =

∏
b∈N(x,±1)\{a}

µ
[`]
b→x(0) (2)

µ[`+1]
x→a (ζ) = (SP (µ[`]))x→a(ζ) = ψζ(π[`]

x→a(1), π[`]
x→a(−1)). (3)

Let ω = ω(k, r, n) ≥ 0 be any integer-valued function. Define

π[ω+1]
x (Φt,±1) =

∏
b∈N(x,±1)

µ
[ω]
b→x(0) (4)

µ[ω]
x (Φt, ζ) = ψζ(π[ω+1]

x (Φt, 1) · π[ω+1]
x (Φt,−1)) (5)

µ[ω]
x (Φt) = µ

[ω]
x (Φt, 1)

µ
[ω]
x (Φt, 1) + µ

[ω]
x (Φt,−1)

= µ[ω]
x (Φt, 1) + 1

2µ
[ω]
x (Φt, 0). (6)

Figure 1 The Survey Propagation equations that are the Belief Propagation equations on covers.

Let us emphasize that the value µ[ω]
xt+1(Φt) in Step 2 of SPdec is the estimated marginal

probability over the set of covers of variable xt+1 in the simplified formula to take the value
1 plus one half the estimated marginal probability over the set of covers in the simplified
formula to take the value 0. This makes sense since by the heuristic explanation a variable
assigned to the value 0 is free to take either value 1 or −1. Thus, our task is to study the
SP operator on the decimated formula Φt.

3 Proof of Theorem 1

The probabilistic framework used in our analysis of SPdec was introduced in [10] for analysing
the Belief Propagation Guided Decimation algorithm. The most important technique in
analysing algorithms on the random formula ~Φ is the ”method of deferred decisions”, which
traces the dynamics of an algorithm by differential equations, martingales, or Markov chains.
It actually applies to algorithms that decide upon the value of a variable x on the basis of the
clauses or variables at small bounded distance from x in the factor graph [5]. Unfortunately,
the SPdec algorithm at step t explores clauses at distance 2ω from xt where ω = ω(n) may
tend to infinity with n. Therefore, the “defered decisions” method does not apply and to
prove Theorem 1 a fundamentally different approach is needed.

We will basically reduce the analysis of SPdec to the problem of analysing the SP operator
on the random formula ~Φt that is obtained from ~Φ by substituting “true” for the first t
variables x1, . . . , xt and simplifying (see Theorem 3 below). In the following sections we
will prove that this decimated formula has a number of simple to verify quasirandomness
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properties with very high probability. Finally, we will show that it is possible to trace the
Survey Propagation algorithm on a formula Φ enjoying this properties.

Applied to a fixed, non-random formula Φ on V = {x1, . . . , xn}, SPdec yields an assign-
ment σ : V → {−1, 1} that may or may not be satisfying. This assignment is random,
because SPdec itself is randomized. Hence, for any fixed Φ running SPdec(Φ) induces a
probability distribution βΦ on {−1, 1}V . With S(Φ) the set of all satisfying assignments of
Φ, the “success probability” of SPdec on Φ is just

success(Φ) = βΦ(S(Φ)). (8)

Thus, to establish Theorem 1 we need to show that in the random formula

success(~Φ) = β~Φ(s(~Φ)) = exp (−Ω(n)) (9)

is exponentially small w.h.p. To this end, we are going to prove that the measure β~Φ is
“rather close” to the uniform distribution on {−1, 1}V w.h.p., of which S(~Φ) constitutes only
an exponentially small fraction. However, to prove Theorem 1 we prove that the entropy of
the distribution β~Φ is large. Let us stress that this is not by Moser’s entropy compression
argument which works up to far smaller clauses/variables ratios [32].

3.1 Lower bounding the entropy
Throughout the paper we let ρk = (1 + εk) ln(k) where (εk)k≥3 is the sequence promised by
Theorem 1 and let r = 2kρ where ρ ≥ ρk.

For a number δ > 0 and an index i > t we say that xi is (δ, t)-biased if∣∣∣∣µ[ω]
xi

(Φt, 1)− 1
2

(
1− µ[ω]

xi
(Φt, 0)

)∣∣∣∣ > δ. (10)

Moreover Φ is (δ, t)-balanced if no more than δ(n− t) variables are (δ, t)-biased.
If ~Φ is (δ, t)-balanced, then by the basic symmetry properties of ~Φ the probability that

xt+1 is (δ, t)-biased is bounded by δ. Furthermore, given that xt+1 is not (δ, t)-biased, the
probability that SPdec will set it to “true” lies in the interval [ 1

2 − δ,
1
2 + δ]. Consequently,∣∣∣∣12 − P

[
σ(xt+1) = 1|~Φ is (δ, t)-balanced

]∣∣∣∣ ≤ 2δ. (11)

Thus, the smaller δ the closer σ(xt+1) comes to being uniformly distributed. Hence, if
(δ, t)-balancedness holds for all t with a “small” δ, then βΦ will be close to the uniform
distribution on {−1, 1}V .

To put this observation to work, let θ = 1− t/n be the fraction of unassigned variables
and define

δt = exp(−cθk), ∆t =
t∑

s=1
δt and t̂ =

(
1− ln(ρ)

c2k

)
n, (12)

where c > 0 is a small enough absolute constant.
The following result provides the key estimate by providing that at any time t up to t̂

with sufficiently high probability ~Φ is (δt, t)-balanced with a sufficiently small δt to finally
prove Theorem 1.

I Proposition 3. For any k, r satisfying 2kρk/k < r ≤ 2k ln 2 there is ξ = ξ(k, r) ∈ [0, 1
k ] so

that for n large enough the following holds. For any 0 ≤ t ≤ t̂ we have

Pr
[
~Φ is (δt, t)-balanced

]
≥ 1− exp [−3ξn− 10∆t] . (13)
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3.2 Tracing the Survey Propagation Operator
To establish Proposition 3 we have to prove that ~Φ is (δt, t)-balanced with probability very
close to one. Thus, our task is to study the SP operator defined in (1) to (3) on ~Φt. Roughly
speaking, Proposition 3 asserts that with probability very close to one, most of the messages
µ

[`]
x→a(±1) are close to 1

2 (1−µ[`]
x→a(0)). To obtain this bound, we are going to proceed in two

steps: we will exhibit a small number of quasirandomness properties and show that these
hold in ~Φt with the required probability. Then, we prove that deterministically any formula
that has these properties is (δt, t)-balanced.

3.2.1 The “typical” value of π[`]
x→a(ζ)

First of all recall that the messages sent from a variable x to a clause a ∈ N(x) are obtained
by

ψζ(π[`]
x→a(1), π[`]

x→a(−1)) for ζ ∈ {−1, 0, 1}. (14)

This in mind, we claim a strong statement that both π[`]
x→a(1) and π[`]

x→a(−1) are very close to
a “typical” value π[`] for most of the variables x ∈ Vt and clauses a ∈ N(x) at any iteration
step ` under the assumption that the set of biased variables is small at time `− 1. Assuming
that

π[`]
x→a(1) = π[`]

x→a(−1) = π[`]

we of course obtain unbiased messages by

µ[`]
x→a(±1) = ψ1(π[`]) = ψ−1(π[`]) = 1

2(1− µ[`]
x→a(0)).

The products π[`]
x→a(ζ) are nothing else but the product of the messages

µ
[`−1]
b→x (0) = 1−

∏
y∈N(b)\{x}

µ
[`−1]
y→b (−sign(y, b))

sent from all clauses b ∈ N(x, ζ) \ {a} to x. Therefore, we define inductively 0 ≤ π[`] ≤ 1 to
be the product of this kind over a “typical” neighborhood. The term “typical” refers to the
expected number of clauses of all lengths that contain at most one additional biased variable.
Focusing on those clauses will suffice to get the tightness result of the biases. Moreover, we
assume that all of the messages µ[`−1]

y→b (−sign(y, b)) sent from variables to clauses in such a
typical neighborhood are ψsign(y,b)(π[`− 1], π[`− 1]) which is claimed to be a good estimation
of most of the messages sent at time `− 1. Additionally, define τ [`] = (1− ψ0(π[`])) as the
estimate of the sum µ

[`]
x→a(1) + µ

[`]
x→a(−1). Let us emphasize that there is no “unique” π[`]

and the way it is obtained in the following is in some sense the canonical and convenient
choice to sufficiently bound the biases for most of the messages.

Generally, let T ⊂ Vt and x ∈ Vt. Then the expected number of clauses of length j that
contain x and at most one other variable from the set T is asymptotically

µj,≤1(T ) = 2jρ · Pr [Bin(k − 1, θ) = j − 1] · Pr
[
Bin

(
j − 1, |T |

θn

)
< 2
]
. (15)

Indeed, the expected number of clauses of ~Φ that x appears in equals km/n = kr = 2kρ.
Furthermore, each of these gives rise to a clause of length j in ~Φt iff exactly j − 1 among
the other k − 1 variables in the clauses are from Vt while the k − j remaining variables are

ICALP 2016
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in V \ Vt and occur with negative signs. (If one of them had a positive sign, the clause
would have been satisfied by setting the corresponding variable to true. It would thus not be
present in ~Φt anymore.) Moreover, at most one of the j − 1 remaining variables is allowed to
be from the set T . The fraction of variables in T in Vt equals |T |θn . Finally, since x appears
with a random sign in each of these clauses the expected number of clauses of length j that
contain x and at most one other variable from the set T is asymptotically µj,≤1(t)/2.

Additionally let 0 ≤ p ≤ 1 and define

τ(p) = 1− ψ0 (p) and π(T, p) =
10θk∏

j=0.1θk

(
1− (2/τ(p))−j+1

)µj,≤1(T )/2
. (16)

Moreover, let

Π(T, p) =
10θk∑

j=0.1θk

µj,≤1(T )
2 · (2/τ(p))−j+1

be the approximated absolute value of the logarithm of π(T, p).
For a fixed variable x ∈ Vt the expected number of clauses that contain more than one

additional variable from a “small” set T for a “typical” clause length 0.1θk ≤ j ≤ 10θk is
very close to the expected number of all clauses of that given length. Thus, the actual size of
T will influence π(T, p) but this impact is small if T is small and the following bounds on
π(T, p) can be achieved.

I Lemma 4. Let T ⊂ Vt of size |T | ≤ δθn and 0 ≤ p ≤ 2 exp(−ρ). Then exp (−2ρ) ≤
π(T, p) ≤ 2 exp (−ρ).

3.2.2 Bias
First of all let us define the bias not only for the 1 and −1 messages but also for the 0
messages. Hence, for ` ≥ 0, x ∈ Vt and a ∈ N(x) let

∆[`]
x→a = µ[`]

x→a(1)− 1
2

(
1− µ[`]

x→a(0)
)

and (17)

E[`]
x→a = 1

2

(
µ[`]
x→a(0)− ψ0(π[`])

)
. (18)

We say that x ∈ Vt is `-biased if

max
a∈N(x)

|∆[`]
x→a| > 0.1δ or max

a∈N(x)
|E[`]
x→a| > 0.1δπ[`] (19)

and `-weighted if

max
a∈N(x)

|E[`]
x→a| > 10π[`]. (20)

Let B[`] be the set of all `-biased variables and B′[`] be the set of all `-weighted variables.
Obviously, by definition, we have B′[`] ⊂ B′[`].

Writing µ[`]
x→a(sign(x, a)) in terms of the biases we obtain

µ[`]
x→a(sign(x, a)) = 1

2(1− ψ0(π[`]))−
(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
= τ [`]/2−

(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
(21)

We are going to prove that |∆[`]
x→a| and |E[`]

x→a| are small for most x and a ∈ N(x). That
is, given the ∆[`]

x→a and E
[`]
x→a we need to prove that the biases ∆[`+1]

x→a and E
[`+1]
x→a do not
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“blow up”. The proof is by induction where the hypothesis is that at most δtθn variables are
`-biased and at most δ2θn variables are `-weighted and our goal is to show that the same
holds true for `+ 1.

3.2.3 The quasirandomness property
We will now exhibit a few simple quasirandomness properties that ~Φt is very likely to possess.
Based only on these graph properties we identify potentially `-biased or `-weighted variables.
In turn, we prove that variables in the complement of these sets are surely not `-biased
resp. `-weighted. Moreover, we show that these sets are small enough with sufficiently high
probability.

To state the quasirandomness properties, fix a k-CNF Φ. Let Φt denote the CNF
obtained from Φ by substituting “true” for x1, . . . , xt and simplifying (1 ≤ t ≤ n). Let
Vt = {xt+1, . . . , xn} be the set of variables of Φt. Let δ = δt. With c > 0 we let k1 =

√
cθk.

For a variable x ∈ Vt, ζ ∈ {1,−1} and a set T ⊂ Vt let

N (x, ζ) = {b ∈ N(x, ζ) : 0.1θk ≤ |N(b)| ≤ 10θk} ,
N≤1(x, T, ζ) = {b ∈ N (x, ζ) : |N(b) ∩ T \ {x}| ≤ 1},
Ni(x, T, ζ) = {b ∈ N (x, ζ) : |N(b) ∩ T \ {x}| = i} for i ∈ {0, 1},
N1(x, T, ζ) = {b ∈ N(x, ζ) : |N(b) \ T | ≥ k1 ∧ |N(b) ∩ T \ {x}| = 1},
N>1(x, T, ζ) = {b ∈ N(x, ζ) : |N(b) \ T | ≥ k1 ∧ |N(b) ∩ T \ {x}| > 1}.

Thus, N≤1(x, T, ζ) is the set of all clauses a that contain x with sign(x, a) = ζ (which may
or may not be in T ) and at most one other variable from T . In addition, there is a condition
on the length |N(b)| of the clauses b in the decimated formula Φt. Having assigned the first t
variables, we should “expect” the average clause length to be θk. The sets Ni(x, T, ζ) are a
partition of N≤1(x, T, ζ) separating clauses that contain exactly one additional variable from
T \ {x} and clauses that contain none.

Q1. No more than 10δθn variables occur in clauses of length less than θk/10 or greater than
10θk in Φt. Moreover, there are at most 10−4δθn variables x ∈ VT such that

(θk)3δ ·
∑

b∈N(x,ζ)

2−|N(b)| > 1.

Q2. For any set T ⊂ Vt of size |T | ≤ sθn such that δ5 ≤ s ≤ 10δ and any p ∈ (0, 1] there are
at most 10−3δ2θn variables x such that for one ζ ∈ {−1, 1} either∣∣∣∣∣∣Π(T, p)−

∑
b∈N≤1(x,T,ζ)

(2/τ(p))1−|N(b)|

∣∣∣∣∣∣ > 2δ/1000 or

∑
b∈N1(x,T,ζ)

2−|N(b)| > 104ρθks or

∑
b∈N≤1(x,T,ζ)

2−|N(b)| > 104ρ.

Q3. If T ⊂ Vt has size |T | ≤ δθn, then there are no more than 10−4δθn variables x such
that at least for one ζ ∈ {−1, 1}∑

b∈N>1(x,T,ζ)

2|N(b)∩T\{x}|−|N(b)| > δ/(θk).

Q4. For any 0.01 ≤ z ≤ 1 and any set T ⊂ Vt of size |T | ≤ 100δθn we have∑
b:|N(b)∩T |≥z|N(b)|

|N(b)| ≤ 1.01
z
|T |+ 10−4δθn.

ICALP 2016
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Q5. For any set T ⊂ Vt of size |T | ≤ 10δθn, any p ∈ (0, 1] and any ζ ∈ {−1, 1} the linear
operator Λ(T, µ, ζ) : RVt → RVt ,

Γ = (Γy)y∈Vt
7→

 ∑
b∈N≤1(x,T,ζ)

∑
y∈N(b)\{x}

(2/τ(p))−|N(b)| sign(y, b)Γy


has norm ‖ Λ(T, µ, ζ) ‖�≤ δ4θn, where for a real b × a matrix Λ we let ‖Λ‖� =
maxζ∈Ra\{0}

‖Λζ‖1
‖ζ‖∞ .

I Definition 5. Let δ > 0. We say that Φ is (δ, t)-quasirandom if Q0-Q5 are satisfied.

Condition Q0 simply bounds the number of redundant clauses and the number of variables
of very high degree; it is well-known to hold for random k-CNFs w.h.p. Apart from a bound
on the number of very short/very long clauses, Q1 provides a bound on the “weight” of
clauses in which variables x ∈ Vt typically occur, where the weight of a clause b is 2−|N(b)|.
Moreover, Q2 and Q3 provide that there is no small set T for which the total weight of
the clauses touching that set is very big. In addition, Q2 (essentially) requires that for
most variables x the weights of the clauses where x occurs positively/negatively should
approximately cancel. Further, Q4 provides a bound on the lengths of clauses that contain
many variables from a small set T . Finally, the most important condition is Q5, providing a
bound on the cut norm of a signed, weighted matrix, representation of Φt.

I Proposition 6. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r
satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 there is ξ = ξ(k, r) ∈ [0, 1

k ] so that for n large and
δt, t̂ as in (12) for any 1 ≤ t ≤ t̂ we have

P [Φ is (δt, t)-quasirandom] ≥ 1− exp (−10(ξn+∆t))

I Theorem 7. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r

satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 and n sufficiently large the following is true.

Let Φ be a k-CNF with n variables and m clauses that is (δt, t)-quasirandom for some
1 ≤ t ≤ t̂. Then Φ is (δt, t)- balanced.

The proof of Proposition 6 is a necessary evil: it is long, complicated and based on
standard arguments. Theorem 7 together with Proposition 6 yields Proposition 3.

3.2.4 Setting up the induction
To prove Theorem 7 we proceed by induction over `. In particular we define sets T [`] and
T ′[`] that contain variables that are potentially `-biased or `-weighted only depending on
the graph structure and the size of the sets T [`− 1] and T ′[`− 1]. The exact definition of
the sets T [`] and T ′[`] which inspired the quasirandomness properties are omitted in this
extended abstract. It actually will turn out that T [`] ⊂ B` and T ′[`] ⊂ B′`. Since we are
going to trace the SP operator on Φt iterated from the initial set of messages µ[0]

x→a(±1) = 1
2

and µ[0]
x→a(0) = 0 for all x ∈ Vt and a ∈ N(x) we set T [`] = T ′[`] = ∅ and π[0] = 0 such that

τ [0] = 1. Now we define inductively

π[`+ 1] = π (T [`], π[`]) , Π[`+ 1] = Π (T [`], π[`]) and τ [`+ 1] = τ (π[`+ 1]) .

I Proposition 8. Assume that π[`] ≤ 2 exp (−ρ). We have B[`] ⊂ T [`] and B′[`] ⊂ T ′[`] for
all ` ≥ 0.
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Furthermore, we establish the following bounds on the size of T [`] and T ′[`]. Since the
sets are defined by graph properties independent from the actual state of the algorithm the
quasirandomness properties suffice to obtain

I Proposition 9. If Φ is (δt, t)-quasirandom, we have T [`] < δθn, T ′[`] < δ2θn and π[`] ≤
2 exp (−ρ) for all ` ≥ 0.

Finally, let us give an idea how this is actually proved. We aim to prove that for most
variables x ∈ Vt for all a ∈ N(x) simultaneously for both ζ ∈ {−1, 1} the values π[`]

x→a(ζ)
are close to a typical value which is estimated by π[`] for each iteration. Let us define for
x ∈ Vt, a ∈ N(x) and ζ ∈ {1,−1}

P
[`+1]
≤1 (x→ a, ζ) =

∏
b∈N≤1(x,T [`],ζ)\{a}

µ
[`]
b→x(0)

P
[`+1]
>1 (x→ a, ζ) =

∏
b∈N(x,ζ)\({a}∪N≤1(x,T [`],ζ))

µ
[`]
b→x(0).

We obtain

π[`]
x→a(ζ) = P

[`]
≤1(x→ a, ζ) · P [`]

>1(x→ a, ζ). (22)

We show that the first factor representing the product over messages sent by clauses of typical
length (regarding the decimation time t) and exposed to at most one additional variable from
T [`] is close to π[`+ 1] simultaneously for ζ ∈ {−1, 1} for all variables x ∈ V \ T ′[`+ 1] and
all a ∈ N(x). Additionally, we prove that the second factor representing the product over
messages sent by clauses of atypical length or exposed to at least two additional variables
from T [`] is close to one simultaneously for ζ ∈ {−1, 1} for all variables x ∈ V \ T [`+ 1] and
all a ∈ N(x).

Acknowledgements I thank my supervisor Amin Coja-Oghlan for supportive conversations
and helpful comments on the final version of this paper.
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