2 research outputs found

    On the calculation of the minimax-converse of the channel coding problem

    Full text link
    A minimax-converse has been suggested for the general channel coding problem by Polyanskiy etal. This converse comes in two flavors. The first flavor is generally used for the analysis of the coding problem with non-vanishing error probability and provides an upper bound on the rate given the error probability. The second flavor fixes the rate and provides a lower bound on the error probability. Both converses are given as a min-max optimization problem of an appropriate binary hypothesis testing problem. The properties of the first converse were studies by Polyanskiy and a saddle point was proved. In this paper we study the properties of the second form and prove that it also admits a saddle point. Moreover, an algorithm for the computation of the saddle point, and hence the bound, is developed. In the DMC case, the algorithm runs in a polynomial time.Comment: Extended version of a submission to ISIT 201

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Via a connection to composite hypothesis testing, a new converse that tightens previously known converses for Slepian-Wolf source coding is established. Asymptotic results include a third-order characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order-optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third-order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders.Comment: 42 pages, 10 figures. Part of this work was presented at ISIT'1
    corecore