research

Random Access Channel Coding in the Finite Blocklength Regime

Abstract

Consider a random access communication scenario over a channel whose operation is defined for any number of possible transmitters. Inspired by the model recently introduced by Polyanskiy for the Multiple Access Channel (MAC) with a fixed, known number of transmitters, we assume that the channel is invariant to permutations on its inputs, and that all active transmitters employ identical encoders. Unlike Polyanskiy, we consider a scenario where neither the transmitters nor the receiver know which transmitters are active. We refer to this agnostic communication setup as the Random Access Channel, or RAC. Scheduled feedback of a finite number of bits is used to synchronize the transmitters. The decoder is tasked with determining from the channel output the number of active transmitters (kk) and their messages but not which transmitter sent which message. The decoding procedure occurs at a time ntn_t depending on the decoder's estimate tt of the number of active transmitters, kk, thereby achieving a rate that varies with the number of active transmitters. Single-bit feedback at each time ni,itn_i, i \leq t, enables all transmitters to determine the end of one coding epoch and the start of the next. The central result of this work demonstrates the achievability on a RAC of performance that is first-order optimal for the MAC in operation during each coding epoch. While prior multiple access schemes for a fixed number of transmitters require 2k12^k - 1 simultaneous threshold rules, the proposed scheme uses a single threshold rule and achieves the same dispersion.Comment: Presented at ISIT18', submitted to IEEE Transactions on Information Theor

    Similar works