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Random Access Channel Coding
in the Finite Blocklength Regime

Recep Can Yavas, Victoria Kostina, and Michelle Effros

Abstract—Consider a random access communication scenario
over a channel whose operation is defined for any number
of possible transmitters. As in the model recently introduced
by Polyanskiy for the Multiple Access Channel (MAC) with a
fixed, known number of transmitters, the channel is assumed
to be invariant to permutations on its inputs, and all active
transmitters employ identical encoders. Unlike the Polyanskiy
model, in the proposed scenario, neither the transmitters nor
the receiver knows which transmitters are active. We refer
to this agnostic communication setup as the Random Access
Channel (RAC). Scheduled feedback of a finite number of bits
is used to synchronize the transmitters. The decoder is tasked
with determining from the channel output the number of active
transmitters, k, and their messages but not which transmitter
sent which message. The decoding procedure occurs at a time nt
depending on the decoder’s estimate, t, of the number of active
transmitters, k, thereby achieving a rate that varies with the
number of active transmitters. Single-bit feedback at each time
ni, i ≤ t, enables all transmitters to determine the end of one
coding epoch and the start of the next. The central result of this
work demonstrates the achievability on a RAC of performance
that is first-order optimal for the MAC in operation during each
coding epoch. While prior multiple access schemes for a fixed
number of transmitters require 2k − 1 simultaneous threshold
rules, the proposed scheme uses a single threshold rule and
achieves the same dispersion.

Index Terms—Channel coding, random access channel, finite
blocklength regime, achievability, second-order asymptotics, rate-
less codes.

I. INTRODUCTION

Access points like WiFi hot spots and cellular base stations
are, for wireless devices, the gateway to the network. Un-
fortunately, access points are also the network’s most critical
bottleneck. As more kinds of devices become network-reliant,
both the number of communicating devices and the diversity of
their communication needs grow. Little is known about how
to code under high variation in the number and variety of
communicators.

Multiple-transmitter single-receiver channels are well under-
stood in information theory when the number and identities
of transmitters are fixed and known. Unfortunately, even in
this known-transmitter regime, information-theoretic solutions
are too complex to implement. As a result, orthogonalization
methods, such as TDMA, FDMA, and orthogonal CDMA, are
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used instead. Orthogonalization strategies simplify coding by
allocating resources (e.g., time slots) among the transmitters,
but applying such methods to discrete memoryless MACs can
at best attain a sum-rate equal to the single-transmitter capacity
of the channel, which is often significantly smaller than the
maximal multi-transmitter sum-rate.

Most random access protocols currently in use rely on col-
lision avoidance, which cannot surpass the single-transmitter
capacity of the channel and may be significantly worse since
the unknown transmitter set makes it difficult to schedule or
coordinate among transmitters. Collision avoidance is achieved
through variations of the legacy (slotted) ALOHA and car-
rier sense multiple access (CSMA) algorithms. ALOHA,
which uses random transmission times and back-off schedules,
achieves only about 37% of the single-transmitter capacity of
the channel [2]. In CSMA, each transmitter tries to avoid col-
lisions by verifying the absence of other traffic before starting
a transmission over the shared channel; when collisions do
occur, all transmissions are aborted, and a jamming signal is
sent to ensure that all transmitters are aware of the collision.
The procedure starts again at a random time, which again
introduces inefficiencies. The state of the art in random access
coding is “treating interference as noise,” which is part of
newer CDMA-based standards. While this strategy can deal
with random access better than ALOHA, it is still far inferior
to the theoretical limits.

Even from a purely theoretical perspective, a satisfactory
solution to random access remains to be found. The MAC
model in which a fixed number, k, out of the total avail-
able K transmitters are active was studied by D’yachkov
and Rykov [3] and Mathys [4] for zero-error coding on a
noiseless adder MAC, and by Bassalygo and Pinsker [5] for
an asynchronous model in which the information is considered
erased if more than one transmitter is active at a time. See [6]
for a more detailed history. Two-layer MAC decoders, with
outer layer codes that work to remove channel noise and inner
layer codes that work to resolve conflicts, are proposed in [7],
[8]. Like the codes in [3]–[5], the codes in [6], [7] are designed
for a predetermined number of transmitters, k; it is not clear
how robust they are to randomness in the transmitters’ arrivals
and departures. In [9], Minero et al. study a random access
model in which the receiver knows the transmitter activity
pattern, and the transmitters opportunistically send data at the
highest possible rate. The receiver recovers only a portion of
the messages sent, depending on the current level of activity
in the channel.
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A. Our Contributions and Related Works

This paper poses the question of whether it is possible, in
a scenario where no one knows how many transmitters are
active, for the receiver to almost always recover the messages
sent by all active transmitters. Surprisingly, we find that not
only is reliable decoding possible in this regime, but, for
the class of permutation-invariant channels considered in [6],
our proposed RAC code performs as well in its capacity
and dispersion terms as the best-known code for a MAC
with the transmitter activity known a priori [10]–[13]. Since
the capacity region of a MAC varies with the number of
transmitters, it is tempting to believe that the transmitters of a
random access system must somehow vary their codebook size
in order to match their transmission rate to the capacity region
of the MAC in operation. Instead, we here allow the decoder
to vary its decoding time depending on the observed channel
output—thereby adjusting the rate at which each transmitter
communicates by changing not the size but the blocklength of
each transmitter’s codebook.

Codes that can accommodate variable decoding times are
called rateless codes. Rateless codes originate with the work of
Burnashev [14], who computed the error exponent of variable-
length coding over a known point-to-point channel. Polyanskiy
et al. [15] provide a dispersion-style analysis of the same
scenario. A practical implementation of rateless codes for an
erasure channel with an unknown erasure probability appears
in [16]. An analysis of rateless coding over an unknown binary
symmetric channel appears in [17] and is extended to an
arbitrary discrete memoryless channel in [18], [19] using a
decoder that tracks Goppa’s empirical mutual information and
decodes once that quantity passes a threshold. In [20], Jeffrey’s
prior is used to weight unknown channels. A rateless code
for noiseless random access communication is described in
[21]; each user transmits replicas of its message in multiple
time slots, possibly colliding with the messages of other
transmitters. At the end of each time slot, the decoder attempts
to apply successive interference cancellation starting with the
messages received without collision and subsequently remov-
ing the associated interference from the time slots in which
replicas are transmitted. The decoder then decides whether to
terminate an epoch or to ask the transmitters to send more
replicas.

Unlike the codes described in [14]–[21], which allow truly
arbitrary decoding times, in this paper we allow decoding
only at a predetermined list of possible times n0, n1, n2, . . ..
This strategy both eases practical implementation and reduces
feedback. In particular, the schemes in [14]–[21] transmit a
single-bit acknowledgment message from the decoder to the
encoder(s) once the decoder completes its decoding process.
Because the decoding time is random, this so-called “single-
bit” feedback forces the transmitter(s) to listen to the channel
constantly, at every time step trying to discern whether or not
a transmission was received. This either requires full-duplex
devices or doubles the effective blocklength and can be quite
expensive. Thus while the receiver technically sends only “one
bit” of feedback, the transmitters receive one bit of feedback
(with the alphabet {“transmission”,“no transmission”}) in ev-

ery time step, giving a feedback rate of 1 bit per channel use
rather than a total of 1 bit. In our framework, acknowledgment
bits are sent only at times n0, n1, n2, . . . , nt, where each
ni is the pre-determined decoding time used if the receiver
believes that i transmitters are active. Thus the transmitters
must listen only at a finite collection of time steps. For
example, when n0 < n1 < · · · < nt, as is assumed here
for simplicity, the total number of feedback bits equals one
plus the receiver’s estimate of the number of transmitters,
a feedback rate approaching 0 bits per channel use as the
blocklength grows.

In the central portion of this paper, we view the random
access channel as a collection of all possible MACs that might
arise as a result of the transmitter activity pattern. Barring
the intricacies of multiuser decoding, the model that views
an unknown channel as a collection of possible channels
without assigning an a priori probability to each is known
as the compound channel model [22]. In the context of
single-transmitter compound channels, it is known that if the
decoding time is fixed, the transmission rate cannot exceed
the capacity of the weakest channel from the collection [22],
though the dispersion may be better (smaller) [23]. With
feedback and a variable decoding time, one can do much better
[17]–[20].

In [6], Polyanskiy argues for removing the transmitter iden-
tification task from the physical layer encoding and decoding
procedures of a MAC. As he points out, such a scenario was
previously discussed by Berger [24] in the context of conflict
resolution. Polyanskiy further suggests studying MACs whose
conditional channel output distributions are insensitive to input
permutations. For such channels, if all transmitters use the
same codebook, then the receiver can at best hope to recover
the messages sent without recovering who transmitted which
message (the transmitter identity). In some networks the trans-
mitter identification task can be insignificant. For example, in
some sensor networks, we might be interested in the collected
measurements but indifferent to the identities of the collecting
sensors. In scenarios where transmitter identity is required, it
can be included in the payload.

In Section IV, we propose a code for a random access com-
munication channel model built from a family of permutation-
invariant MACs. Our code employs identical encoders at
all transmitters and identity-blind decoding at the receiver.
Although not critical for the feasibility of our approach, these
assumptions lead to a number of pleasing simplifications
of both our scheme and its analysis. For example, using
identical encoders at all transmitters simplifies design and
implementation. Further, the collection of MACs comprising
our compound RAC model can be parameterized by the
number of active transmitters rather than by the full transmitter
activity pattern.

We provide a second-order analysis of the rate universally
achieved by our multiuser scheme over all transmitter activity
patterns, taking into account the possibility that the decoder
may misdetect the current activity pattern and decode for
the wrong channel. Leveraging our observation that for a
symmetric MAC, the fair rate point is not a corner point
of the capacity region, we are able to show that a single-
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threshold decoding rule attains the fair rate point. This dif-
fers significantly from traditional MAC analyses, which use
2k − 1 simultaneous threshold rules. In the context of a MAC
with a known number of transmitters, second-order analyses
of multiple-threshold decoding rules are given in [10]–[13]
(finite alphabet MAC) and in [25] (Gaussian MAC). A non-
asymptotic analysis of variable-length coding with “single-bit”
feedback over a (known) Gaussian MAC appears in [26].

Other relevant recent works on the MAC include the fol-
lowing. To account for massive numbers of transmitters, in
[27], [28], Chen and Guo introduce a notion of capacity for
the multiple access scenario in which the maximal number
of transmitters grows with the blocklength and an unknown
subset of transmitters is active at a given time. They show that
time sharing, which achieves the conventional MAC capacity,
is inadequate to achieve capacity in that regime. In [29],
Sarwate and Gastpar show that rate-0 feedback, such as the
feedback in our approach, does not increase the capacity of
the discrete memoryless MAC. In compound MACs, limited
feedback can increase capacity. For example, one strategy
uses a simple training phase to estimate the channel state and
employs feedback to send the state estimate to the transmitter.
Such schemes cannot increase the capacity beyond the rate
achievable when the state is known to the encoders and the
decoder [29].

The sparse recovery problem is identical to a special case
of the RAC problem in which each transmitter sends only its
“signature” to the receiver. Here, the decoder’s only task is
to determine who is active. Active transmitters in this variant
of the RAC problem may correspond to defective items or
positive test outcomes in the sparse recovery problem, and
successful decoding is identified with successfully detecting
the set of defective or confirmed-positive elements. A group
testing problem in which an unknown subset of k defective
items out of K items total is observed through an OR MAC,
is studied in [30]–[34]; this problem is a special case of the
sparse recovery problem. In these works, the decoder reaches
a conclusion about tested items at a fixed blocklength n.
Atia and Saligrama [32] consider a noiseless group testing
scenario in which the number of transmitted elements, k,
does not grow with the total number of elements, K, showing
that the smallest possible number of measurements needed to
detect the defective items is O(k log K

k ). In in [33], Scarlett
and Cevher extend this result to the scenario where k scales
as O(Kθ) for θ ∈ (0, 1). In [34], Scarlett and Cevher
derive the information-theoretic limits of the exact and partial
support recovery problems for general probabilistic models,
where exact recovery refers to detecting all k defective items,
and partial recovery refers to detecting at least s out of k
defective items. While we consider a nonvanishing average
error probability and operate in the central limit theorem
regime, [30]–[34] assume vanishing average error probability
and operate in the large deviations regime. The main difference
between the decoder designs in [30]–[34] and our decoder
design is that [30]–[34] use 2k − 1 simultaneous information
density threshold tests at a single blocklength n, while our
decoder uses a single information density threshold test at
multiple decoding times, allowing successful detection with a

computationally less complex decoder even when the number
of active transmitters to be detected is unknown.

B. Paper Organization

Our system model and proposed communication strategy
are laid out in Section II. The main result, showing that
for a nontrivial class of channels our proposed RAC code
performs as well in terms of capacity and dispersion as the
best-known code for a MAC with the transmitter activity
known a priori, is presented in Section III. The proofs are
presented in Section IV. Section V includes discussions of the
effect of using maximum likelihood decoding, the choice of
an input distribution in the random code design, the difficulties
in proving a converse, an extension of our strategy that
enables transmitter identity decoding, and performance bounds
under the per-user error probability criterion. Interestingly,
the problem of decoding for k ≥ 1 unknown transmitters is
substantially different from the problem of detecting whether
there are any active transmitters at all. In Section VI, we
employ universal hypothesis testing to solve the latter problem.
Section VII concludes the paper with a discussion of our
results and their implications.

II. PROBLEM SETUP

For any positive integers i, j, let [i] = {1, . . . , i} and
[i : j] = {i, . . . , j}, where [i : j] = ∅ when i > j. We denote
an n dimensional vector by xn = (x1, . . . , xn). When the
dimension of a vector xn is clear from the context, we denote
xn by x. All-zero and all-one vectors are denoted by 0 and 1,
respectively. For a collection of length-n vectors xn1 , . . . , x

n
K

and any subset C ⊆ [K], we denote the corresponding sub-
collection of vectors by xnC = (xnc : c ∈ C). For collection of
vectors xnC and index i ∈ [n], xC,i denotes the collection of
scalars obtained by taking i-th coordinate from each vector in
xnC . For any vectors xC and yC , we write xC ≤ yC if xc ≤ yc
for all c ∈ C, xC

π
= yC if there exists a permutation π of yC

such that xC = π(yC), and xC
π

6= yC if xC 6= π(yC) for all
permutations π of yC . For any set A and integer k ≤ |A|,(A
k

)
= {B:B ⊆ A, |B|= k}. For a random variable X , we

write X ∼ PX to specify that X is distributed according to
distribution PX . We use Q(·) to denote the Gaussian com-
plementary cumulative distribution function, giving Q(x) ,

1√
2π

∫∞
x

exp
{
−u2

2

}
du. We employ the standard o(·) and

O(·) notations, giving f(n) = o(g(n)) if limn→∞

∣∣∣ f(n)
g(n)

∣∣∣ = 0

and f(n) = O(g(n)) if lim supn→∞

∣∣∣ f(n)
g(n)

∣∣∣ <∞.
A stationary, memoryless, symmetric, random access chan-

nel (henceforth called simply a RAC) is a memoryless channel
with one receiver and an unknown number of transmitters. It
is described by a family of stationary, memoryless MACs{(

X k, PYk|X[k]
(yk|x[k]),Yk

)}K
k=0

, (1)

each indexed by a number of transmitters, k; the maximal
number of transmitters is K ≤ ∞. When k = 0, no trans-
mitters are active; we discuss this case separately below. For
k ≥ 1, the k-transmitter MAC has input alphabet X k, output
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alphabet Yk, and conditional distribution PYk|X[k]
. When k

transmitters are active, the RAC output is Y = Yk. The input
and output alphabets X and Yk can be abstract.

A. Assumptions on the Channel

We assume that the impact of a channel input on the channel
output is independent of the transmitter from which it comes;
therefore, each channel in (1) is assumed to be permutation-
invariant [6], giving

PYk|X[k]
(yk|x[k]) = PYk|X[k]

(yk|x̂[k]) (2)

for all x̂[k]
π
= x[k] and yk ∈ Yk, k ∈ [K]. We further assume

that for any s < k, an s-transmitter MAC is physically iden-
tical to a k-transmitter MAC operated with s active and k− s
silent transmitters. At each time step of the communication
period, each silent transmitter transmits a silence symbol, here
denoted by 0 ∈ X . This reducibility constraint gives

PYs|X[s]
(y|x[s]) = PYk|X[k]

(y|x[s], 0
k−s) (3)

for all s < k, x[s] ∈ X[s], and y ∈ Ys. An immediate conse-
quence of reducibility is that Ys ⊆ Yk for any s < k. Another
consequence is that when there are no active transmitters,
the MAC

(
X 0, PY0|X[0]

(y|x[0]),Y0

)
satisfies X 0 = {0} and

PY0|X[0]
(y|x[0]) = PYk|X[k]

(y|0k) for all k.

B. RAC Communication Strategy

We here propose a new RAC communication strategy.
In the proposed strategy, communication occurs in epochs,
with each epoch beginning in the time step following the
previous epoch’s end. Each epoch ends when the receiver’s
scheduled broadcast to all transmitters indicates a decoding
event, signaling that the prior transmission can stop and a
new transmission can begin. At this point, each transmitter
decides whether to be active or silent in the new epoch; the
decision is binding for the length of the epoch, meaning that
a transmitter must either actively transmit for all time steps in
the epoch or remain silent for the same period. Thus, while
the total number of transmitters, K, is potentially unlimited
and can change arbitrarily from one epoch to the next, the
number of active transmitters, k, remains constant throughout
each epoch.

Each active transmitter uses the epoch to describe a message
W from the alphabet [M ]. When the active transmitters
are [k], the messages are W[k] ∈ [M ]k, where W[k] are
independent and uniformly distributed. The receiver makes
a decision at each time n0, n1, . . . , nK , choosing to end the
epoch (without decoding) at time n0 if it believes at time
n0 that no transmitters are active, and choosing to decode
at time nt if it believes at time nt that the number of active
transmitters is t. The transmitters are informed of the decoder’s
decision through a single-bit feedback Zs at each time ns with
s ∈ {0, 1, . . . , t}; here Zs = 0 for all s < t and Zt = 1, with
“1” signaling the end of one epoch and the beginning of the
next.

It is important to stress that in this domain each transmitter
knows nothing about the set of active transmitters A ⊂ N

beyond its own membership and what it learns from the
receiver’s feedback, and the receiver knows nothing about
A beyond what it learns from the channel output Y ; we
call this agnostic random access. In addition, since designing
a different encoder for each transmitter is expensive from
the perspective of both code design and code operation, as
in [6], we assume through most of this paper that every
transmitter employs the same encoder; we call this identical
encoding. Under the assumptions of permutation-invariance
and identical encoding, what the transmitters and receiver
can learn about A is quite limited. Together, these properties
imply that the decoder can at best distinguish which messages
were transmitted rather than by whom they were sent. In
practice, transmitter identity could be included in the header
of each logM -bit message or at some other layer of the
stack; transmitter identity is not, however, handled by the RAC
code. Instead, since the channel output statistics depend on
the dimension of the channel input but not the identity of
the active transmitters, the receiver’s task is to decode the
messages transmitted but not the identities of their senders.
We therefore assume without loss of generality that |A|= k
implies A = [k]. Thus the family of k-transmitter MACs in
(2) fully describes the behavior of a RAC.1

The single-bit feedback strategy described above uses rate-
less coding to deal with the agnostic nature of random
access. Specifically, the code design fixes the blocklengths
(n0, n1, . . . , nK), where nt is the decoding blocklength when
the decoder believes that the number of active transmitters
k is equal to t. As we show in Section IV below, with
an appropriately designed decoding rule, correct decoding is
performed at time nk with high probability. Naturally, the
greater the number of active transmitters, the longer it takes
to decode (i.e., n0 < n1 < · · · < nK).2 Since the argument
employed to bound the performance of our proposed code
relies on a random design algorithm, we index the family of
possible codes by the elements of some set U and include
u ∈ U as an argument for both the RAC encoder and the
RAC decoder. We then represent random encoding as the
application of a code indexed by some random variable U ∈ U
chosen independently for each new epoch. Deterministic codes
are represented under this code definition by setting the
distribution on U as P [U = u0] = 1 for some u0 ∈ U . The
following definition formalizes such rateless codes for agnostic
random access.

C. Code Definition

Definition 1. An (M, {(nk, εk)}Kk=0) RAC code comprises a
(rateless) encoding function

f: U × [M ]→ XnK (4)

1Section V-D treats a variant of our RAC communication strategy that
enables decoding of transmitter identity. Mathematically, the variants are quite
similar.

2For small blocklengths, the ordering may depend on the desired error
probabilities (ε0, ε1, . . . , εK). The proposed strategy works for any ordering
of n0, n1, . . . , nK , though the error probability analysis requires mild
modification to accommodate a given ordering.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 05,2021 at 20:12:19 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2020.3047630, IEEE
Transactions on Information Theory

5

and a collection of decoding functions

gk: U × Ynkk → [M ]k ∪ {e}, k = 0, 1, . . . ,K, (5)

where e denotes the erasure symbol, which is the decoder’s
output when it is not ready to decode. At the start of each
epoch, a common randomness random variable U ∈ U , with
U ∼ PU , is generated independently of the transmitter activity
and revealed to the transmitters and the receiver, thereby
initializing the encoders and the decoder. If k transmitters are
active, then with probability at least 1 − εk, the k messages
are correctly decoded at time nk. That is,3

1

Mk

∑
w[k]∈[M ]k

P

[{
gk(U, Y nkk )

π

6= w[k]

}⋃
{
k−1⋃
t=0

{gt(U, Y ntk ) 6= e}

}∣∣∣∣∣ W[k] = w[k]

]
≤ εk, (6)

where W[k] are the independent and equiprobable messages
of transmitters [k], and the given probability is calculated
using the conditional distribution PY nkk |X

nk
[k]

= PnkYk|X[k]
; here

Xnk
i = f(U,Wi)

nk , i = 1, . . . , k. At time ns, the decoder
outputs the erasure symbol “e” if it decides that the number
of active transmitters is not s. If k = 0 transmitters are active,
the unique message “0”, denoted [M ]0 , {0} to simplify the
notation, is decoded at time n0 with probability at least 1−ε0.
That is,

P
[
g0(U, Y n0

0 ) 6= 0|W[0] = 0
]
≤ ε0. (7)

In practice, we can implement a RAC code with random
code choice U using common randomness. Common random-
ness available to the transmitters and the receiver allows all
nodes to choose the same random variable U to specify a
new codebook in each epoch. Operationally, this common
randomness can be implemented by allowing the receiver to
choose random instance U at the start of each epoch and to
broadcast that value to the transmitters just after the feedback
bit that ends the previous epoch. Alternatively, all communica-
tors can use synchronized pseudo-random number generators.
Broadcasting the value of U increases the epoch-ending feed-
back from 1 bit to dlog|U|e + 1 bits; Theorem 8 shows that
|U|≤ K + 1 suffices to achieve the optimal performance. In
Section IV, we employ a general random coding argument
to show that a given error vector (ε0, . . . , εK) is achievable
when averaged over the ensemble of codes. Unfortunately,
this traditional approach does not show the existence of a
deterministic RAC code (i.e., a code with |U|= 1) that achieves
the given error vector (ε0, . . . , εK). The challenge here is
that our proof showing that the random code’s expected error
probability meets each of the K+1 error constraints does not
suffice to show that any of the codes in the ensemble meets
all of our error constraints simultaneously. A similar issue
arises in [15], [35]. For example, in [15], a variable-length
feedback code is designed with the aim of achieving average
error probability no greater than ε and expected decoding time
no greater than `. To design a single code satisfying both

3Recall that π= and
π
6= denote equality and inequality up to a permutation.

constraints, [15] relies on common randomness. Similarly, [35]
describes a variable-length feedback code designed to satisfy
an error exponent criterion for every channel in a continuum
of binary symmetric or Z channels. Their proof that a single,
deterministic code can simultaneously satisfy this continuum
of constraints exploits the ordering among the channels in
the given family. While channel symmetry can sometimes be
leveraged to show the existence of a deterministic code [15, eq.
(29)], the symmetries in a RAC are quite different from those
in point-to-point channels. We leave the question of whether
a single-code solution exists for the RAC to future work.

The code model introduced in Definition 1 employs iden-
tical encoding in addition to common randomness. Under
identical encoding, each transmitter uses the same encoder, f,
to form a codeword of length nK . That codeword is fed into
the channel symbol by symbol. According to Definition 1, if
k transmitters are active, then with probability at least 1− εk,
the decoder recovers the transmitted messages correctly after
observing the first nk channel outputs. As noted previously,
the decoder gk does not attempt to recover transmitter identity;
successful decoding means that the list of messages in the
decoder output coincides with the list of messages sent. The
error event defined in Definition 1 differs from the one in
[6]. Our definition (6) requires that all transmitted messages
are decoded correctly. In contrast, [6] bounds a per-user
probability of error (PUPE), which measures the fraction of
transmitted messages that are missing from the list of decoded
messages. In Section V-E, we discuss the error probability for
our code under the PUPE criterion.

D. Information Density Definitions

The following definitions are useful for the discussion that
follows. When k transmitters are active, the input distribution
is PX[k]

, and the marginal output distribution is PYk . The
information density and conditional information density are
defined4 as

ık(xA; yk) , log
PYk|XA(yk|xA)

PYk(yk)
(8)

ık(xA; yk|xB) , log
PYk|XA,XB(yk|xA, xB)

PYk|XB (yk|xB)
(9)

for any A,B ⊆ [k], xA ∈ XA, xB ∈ XB, and yk ∈ Yk; here
ık(xA; yk|xB) , ık(xA; yk) when B = ∅ and ık(xA; yk|xB) ,
0 when yk /∈ Yk or A = ∅. The corresponding mutual
informations are

Ik(XA;Yk) , E[ık(XA;Yk)] (10)

Ik(XA;Yk|XB) , E[ık(XA;Yk|XB)]. (11)

Throughout the paper, we also denote for brevity

Ik , Ik(X[k];Yk) (12)

Vk , Var
[
ık(X[k];Yk)

]
. (13)

4We here employ notation for discrete alphabets. In the general case, it
can be replaced by the logarithm of the Radon-Nikodym derivative, giving
ık(xA; yk) = log

dPYk|XA=xA

dPYk
(yk).
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The multi-letter information density and conditional informa-
tion densities are defined as

ık(xnA; ynk ) , log
PY nk |XnA(ynk |xnA)

PY nk (ynk )
(14)

ık(xnA; ynk |xnB) , log
PY nk |XnA,XnB (ynk |xnA, xnB)

PY nk |XnB (ynk |xB)
. (15)

E. Assumptions on the Input Distribution

To ensure the existence of codes satisfying the error con-
straints in Definition 1, we assume that there exists a PX such
that when X1, X2, . . . , XK are distributed i.i.d. PX , then the
conditions in (16)–(21) below are satisfied.

The friendliness assumption states that for all s ≤ k ≤ K,

Ik(X[s];Yk|X[s+1:k] = 0k−s) ≥ Ik(X[s];Yk|X[s+1:k]). (16)

Friendliness implies that by remaining silent, inactive transmit-
ters enable communication by the active transmitters at rates
at least as large as those achievable if the inactive transmitters
had actively participated and their codewords were known to
the receiver.

The interference assumption states that for any s and t, X[s]

and X[s+1:t] are conditionally dependent given Yk, giving

PX[t]|Yk 6= PX[s]|Yk PX[s+1:t]|Yk ∀ 1 ≤ s < t ≤ k, ∀k. (17)

Assumption (17) eliminates trivial RACs in which transmitters
do not interfere.

In order for the decoder to be able to distinguish the time-n0

output Y n0
0 that results when no transmitters are active from

the time-n0 output Y n0

k that results when k ≥ 1 transmitters
are active, we assume that there exists a δ0 > 0 such that the
output distributions satisfy

sup
y∈YK

|Fk(y)− F0(y)| ≥ δ0 for all k ∈ [K], (18)

where Fk(y) denotes the cumulative distribution function
(CDF) of PYk for k ∈ {0, . . . ,K}.5 The measure of dis-
crepancy between distributions on the left-hand side of (18)
is known as the Kolmogorov-Smirnov distance. The assump-
tion in (18) is only needed to detect the scenario when no
transmitters are active; the remainder of the code functions
proceed unhampered when (18) fails. When K is finite, (18)
is equivalent to PY0 6= PYk for all k ∈ [K].

Finally, the moment assumptions

Var
[
ık(X[k];Yk)

]
> 0 (19)

E[|ık(X[k];Yk)− Ik(X[k];Yk)|3] <∞ (20)

enable the second-order analysis presented in Theorem 1,
below. In the case when ıt(X[s];Yk) > −∞ almost surely,
we also require

Var
[
ıt(X[s];Yk)

]
<∞ ∀s ≤ t ≤ k. (21)

Moment assumptions like (19)–(21) are common in the finite-
blocklength literature, e.g., [12], [36].

5Although the CDF is defined for real-valued random variables, i.e., Yk ⊆
YK ⊆ R is required, it can be generalized to abstract alphabets by introducing
a partial order ≤ on the set YK . Then Fk(y) , P [Yk ≤ y].

In the discussion that follows, we say that a channel satisfies
our channel assumptions ((2), (3), (16)–(21)) if there exists
an input distribution PX under which those conditions are
satisfied. All discrete memoryless channels (DMCs) satisfy
finite second- and third-moment assumptions (20)–(21) [36,
Lemma 46], as do Gaussian noise channels. Common channel
models from the literature typically satisfy a non-zero second-
moment assumption (19) as well. Example channels that meet
our channel assumptions ((2), (3), and (16)–(21)) include the
Gaussian RAC,

Yk =
k∑
i=1

Xi + Z, (22)

where each Xi ∈ R operates under power constraint P and
Z ∼ N (0, N) for some N > 0, and the adder-erasure RAC
[8],

Yk =

{∑k
i=1Xi, w.p. 1− δ

e w.p. δ,
(23)

where Xi ∈ {0, 1} and Yk ∈ {0, . . . , k} ∪ {e}. In [8], the
adder-erasure RAC (23) is used to model a scenario where
a digital encoder and decoder communicate over an analog
channel using a modulator and demodulator. The modulator
converts the bits into analog signals; the channel output equals
the sum of the transmitted signals plus random noise; the
demodulator quantizes that output, declaring an erasure, e, if
reliable quantization is not possible due to high noise. Thus,
one can view the adder-erasure RAC as a discretization of the
Gaussian RAC.

For the Gaussian RAC, ıt(X[s];Yk) > −∞ almost surely,
and (21) is satisfied. For the adder-erasure RAC, ıt(X[s];Yk) =
−∞ for some channel realizations and user activity patterns,
and (21) is not required.

We conclude this section with a series of lemmas that de-
scribe the natural orderings possessed by RACs that satisfy our
permutation-invariance, reducibility, friendliness, and interfer-
ence constraints ((2), (3), (16), and (17)). These properties
are key to the feasibility of the approach proposed in our
achievability argument in Section III. Proofs are relegated to
Appendix A.

The first lemma shows that the quality of the channel
for each active transmitter deteriorates as the number of
active transmitters grows (even though the sum capacity may
increase).

Lemma 1. Let X1, X2, . . . , Xk ∼ i.i.d. PX . Under
permutation-invariance (2), reducibility (3), friendliness (16),
and interference (17),

Ik
k
<
Is
s

for k > s ≥ 1. (24)

The second lemma shows that a similar relationship holds
even when the number of transmitters is fixed.

Lemma 2. Let X1, X2, . . . , Xk ∼ i.i.d. PX . Under
permutation-invariance (2), reducibility (3) and interference
(17),

1

k
Ik(X[k];Yk) <

1

s
Ik(X[s];Yk|X[s+1:k]) for k > s ≥ 1.

(25)
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Lemma 2 ensures that the equal-rate point of the k-MAC
lies on the sum-rate boundary and away from all the corner
points of the rate region achieved with PX . In their work
on the group testing problem [31, Th. 3], Malyutov and
Mateev prove a non-strict version of (25) for permutation-
invariant channels (2). They use this non-strict version of (25)
to conclude that their achievability and converse results in
[31, Th. 1 and 2] coincide for permutation-invariant channels.
Adding the reducibility (3) and interference (17) assumptions
to the permutation-invariance assumption (2) enables us to
prove the strict inequality in Lemma 2, which in turn enables
the use of a single threshold rule at the decoder, as discussed
in Section IV.

Lemma 3 compares the expected values of the information
densities for different channels.

Lemma 3. Let X1, X2, . . . , Xk ∼ i.i.d. PX . If a RAC is
permutation-invariant (2), reducible (3), friendly (16), and
exhibits interference (17), then for any 1 ≤ s ≤ t < k,

E[ıt(X[s];Yk)] ≤ Ik(X[s];Yk) < It(X[s];Yt). (26)

The orderings in Lemma 1–3 are used in bounding the
performance of our agnostic random access code.

III. MAIN RESULT

A. An Asymptotic Achievability Result

Our main result is the following bound on achievable rates
for the RAC.

Theorem 1. (Achievability) For any RAC{(
X k, PYk|X[k]

(yk|x[k]),Yk
)}K

k=0

satisfying (2) and (3), any K < ∞, and any fixed PX
satisfying (16)–(21), there exists an (M, {(nk, εk)}Kk=0) code
provided that

k logM ≤ nkIk −
√
nkVkQ

−1(εk)− 1

2
log nk +O(1) (27)

for all k ∈ [K], and

n0 ≥ c0 log n1 + o(log n1), (28)

where c0 is a known positive constant. The O(1) term in (27) is
constant with respect to n1; it depends on the number of active
transmitters, k, but not on the total number of transmitters, K.

The code in Theorem 1 assigns equal rates R[k] =

(R, . . . , R), R = logM
nk

, to all active transmitters. The sum-

rate kR converges as O
(

1√
nk

)
to Ik(X[k];Yk) for some input

distribution PX[k]
(x[k]) =

∏k
i=1 PX(xi) for all k. Note that

PX is independent of the number of active transmitters, k.
If the RAC is discrete and memoryless and a single PX
maximizes Ik(X[k];Yk) for every k, then the achievable rate
in (27) not only converges to the symmetrical rate point on the
capacity region of the MAC in operation but also achieves the

best-known second-order term [10]–[13]6 (see Section III-B
for details.)

To better understand Theorem 1, consider a channel satisfy-
ing (16)–(21) for which the same distribution PX maximizes
Ik for all k. For example, for the adder-erasure RAC in (23),
setting PX to be Bernoulli(1/2) maximizes Ik for all k. By
Lemma 1, for M large enough and any ε1, ε2, . . . , εK , one
can pick7 n1 < n2 < . . . < nK so that the gap between
the right and left sides of (27) is O(1) for all k. Therefore,
Theorem 1 certifies that for some channels, rateless codes with
encoders that are, until feedback, agnostic to the transmitter
activity pattern perform as well in both first- and second-
order terms as the best-known scheme [10]–[13] designed
with complete knowledge of transmitter activity. Moreover
for any fixed 0 < ε0 < 1, the probability that at time
n0 ≥ c0 log n1 + o(log n1) the decoder correctly detects the
scenario where no transmitters are active is no smaller than
1 − ε0. Thus, a new epoch can begin very quickly when no
transmitters are active in the current epoch.

The constant c0 in (28) depends on the output distributions
PYk , k = 0, . . . ,K, and on the hypothesis test chosen in
Section VI but not on the target probability of error ε0.
In contrast, the o(log n1) term in (28) depends on ε0. See
Section VI (eq. (151)) for an example where we bound
the dependence of the o(log n1) term on ε0 under the log-
likelihood ratio test.

Our achievability result in Theorem 1 assumes that the
total number of transmitters, K, is constant. The asymp-
totic regime in which K grows with the decoding times,
n1, n2, . . . , nK , seeks to characterize scenarios with massive
numbers of communicators [6], [28], [33]. Understanding the
fundamental limits of random access communications in that
regime presents an interesting challenge for future work.

B. Comparison With the Existing Achievability Results

1) Discrete Memoryless RACs: Our achievable region (The-
orem 1) is consistent with the achievability results for the 2-
transmitter MACs given in [10]–[13]. The proofs in [10]–[12]
use i.i.d. random code design, an approach that we follow in
Theorem 1. In [13], Scarlett et al. use constant-composition
codes. In [10]–[12], the achievable rate region of a discrete
memoryless MAC is expressed as a three-dimensional vector
inequality that relies on a 3×3 dispersion matrix V2 defined in
[12, eq. (48)]; the entry of V2 at location (3, 3) is V2 (13) for
some input distribution (PX1

, PX2
). For rate pairs approaching

interior (i.e., non-corner) points on the sum-rate boundary for
(PX∗1 , PX∗2 ), i.e., rate pairs satisfying

(R1, R2) ∈ {(r1 + o(1), r2 + o(1)):

6Note that we are comparing the RAC achievable rate with rate-0 feedback
to the MAC capacity without feedback. Wagner et al. [37] show that if
a discrete, memoryless, point-to-point channel has at least two capacity-
achieving input distributions and their dispersions V1 (13) are distinct, then
using one-bit feedback improves the achievable second-order term. Although
rate-0 feedback does not change the capacity region of a discrete memoryless
MAC [29], in light of [37] it is plausible that even one-bit feedback can
improve the achievable second-order term for some MACs.

7As noted previously, focusing on scenarios with decoding times ordered
as n1 < n2 < · · · < nK simplifies the exposition but is not critical to the
approach.
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r1 < I2(X∗1 ;Y ∗2 |X∗2 )

r2 < I2(X∗2 ;Y ∗2 |X∗1 )

r1 + r2 = I2(X∗1 , X
∗
2 ;Y ∗2 )}, (29)

the achievable region in [10]–[12] reduces to the scalar in-
equality

R1 +R2 ≤ I∗2 −
√
V ∗2
n
Q−1(ε) +O

(
log n

n

)
, (30)

where

I∗2 , I2(X∗1 , X
∗
2 ;Y ∗2 ) (31)

is the sum-rate capacity and V ∗2 is the dispersion V2 (13)
evaluated using (PX∗1 , PX∗2 ). The bound in (30) implies that
the only component of V2 employed in the second-order
characterization of the region (29) is V ∗2 . The result in (30) is
proved in [38, Prop. 4 case ii)].

In [13, Th. 1], Scarlett et al. use constant-composition
codes to show that the dispersion matrix V2 in the second-
order achievable region can be improved to Ṽ2, defined in
[13, eq. (13)]. Further, they show that Ṽ2 � V2, where �
designates positive semidefinite order. Therefore, the second-
order rate region that is obtained using constant-composition
codes includes that achieved with i.i.d. random coding when
the target error probability satisfies ε < 1

2 . Scarlett et al. [13]
present two examples for which Ṽ2 ≺ V2, demonstrating that
the inclusion can be strict. The (3, 3) component of Ṽ2 is

Ṽ ∗2 = V ∗2 −Var [E [ı2(X∗1 , X
∗
2 ;Y ∗2 )|X∗1 ]]

−Var [E [ı2(X∗1 , X
∗
2 ;Y ∗2 )|X∗2 ]] , (32)

where PX∗1PX∗2PY ∗2 |X∗1 ,X∗2 = PX∗1PX∗2PY2|X1,X2
. The right

side of (30) is achievable with V ∗2 replaced by Ṽ ∗2 . In
Lemma 4, below, we derive a saddle point condition for
general MACs without cost constraints. Lemma 4 implies that

Ṽ ∗2 = V ∗2 . (33)

This means that while constant-composition code design can
yield achievability results with second-order terms superior
to those derived through i.i.d. code design, on the sum-rate
boundary that superior performance is observed only at corner
points. For any rate point approaching an interior point on the
sum-rate boundary, the i.i.d. random code design employed in
this paper achieves first- and second-order performance iden-
tical to that achieved by constant-composition code design.

Lemma 4. Let PY2|X1,X2
be a 2-transmitter MAC with finite

sum-rate capacity. Assume that the σ-algebra on the abstract
input alphabets Xi includes all singletons on Xi, i = 1, 2. Let
(X∗1 , X

∗
2 , Y

∗
2 ) ∼ PX∗1PX∗2PY2|X1,X2

, where (PX∗1 , PX∗2 ) is a
sum-rate capacity achieving input distribution, i.e.,

I∗2 , I2(X∗1 , X
∗
2 ;Y ∗2 ) = sup

PX1
PX2

I2(X1, X2;Y2) <∞. (34)

Then, for i = 1, 2,

E [ı2(X∗1 , X
∗
2 ;Y ∗2 )|X∗i ] = I∗2 , (35)

where (35) holds PX∗i -almost surely.

Proof: See Appendix B.
A version of Lemma 4 for discrete memoryless MACs

appears in [39, Prop. 1]. The result is proved by verifying that
(35) satisfies the Karush-Kuhn-Tucker (KKT) conditions for
the maximization problem in (34) (Although the maximiza-
tion problem in (34) is not convex, it satisfies a regularity
condition ensuring the necessity of the KKT conditions for
optimality [39].) We extend [39, Prop. 1] to general MACs by
demonstrating a saddle point condition for MACs. The saddle
point condition is more general in the sense that it applies to
abstract alphabets.

From (35), we deduce that

Var [E [ı2(X∗1 , X
∗
2 ;Y ∗2 )|X∗i ]] = 0, i = 1, 2. (36)

Substituting (36) into (32), we obtain (33).
The result in (34)–(35) extends the following well-known

properties of point-to-point DMCs to MACs. In [40, Th. 4.5.1],
the KKT conditions in (34)–(35) for point-to-point DMCs are

I∗1 , max
PX1

I1(X1;Y1) (37)

E [ı1(X∗1 ;Y ∗1 )|X∗1 ] = I∗1 if PX∗1 (x1) > 0 (38)

E [ı1(X∗1 ;Y ∗1 )|X∗1 = x1] ≤ I∗1 if PX∗1 (x1) = 0; (39)

these conditions are necessary and sufficient for optimality.
As noted in [36, Lemma 62], (38)–(39) indicate that for a
capacity-achieving input distribution PX∗1 ,

Var [E [ı1(X∗1 ;Y ∗1 )|X∗1 ]] = 0. (40)

From (40) and the law of total variance, it follows that the
unconditional and conditional variances of ı1(X∗1 ;Y ∗1 ) given
X∗1 are equal, i.e.,

V1 = E [Var [ı1(X∗1 ;Y ∗1 )|X∗1 ]] . (41)

For point-to-point DMCs, Moulin [41] shows that the second-
order term Ṽ1 achievable using constant-composition coding
equals the right-hand side of (41), meaning that i.i.d. random
code design and constant-composition random code design
achieve the same fundamental limits for point-to-point DMCs.

2) The Gaussian RAC: While the RAC code definition
(Definition 1) does not impose cost constraints on the code-
words, cost constraints can be added where needed. In the
case of the Gaussian RAC defined in (22), the maximal power
constraint P on the codewords requires that

‖f(u,w)nk‖2 ≤ nkP (42)

for all u ∈ U , w ∈ [M ], and k ∈ [K], where ‖·‖ denotes
the Euclidean norm. If any encoder attempts to transmit a
codeword that does not satisfy (42), we count that event as an
error. Hence, the maximal power constraints add the term

P

 k⋃
j=1

k⋃
i=1

{∥∥Xnj
i

∥∥2
> njP

} (43)

to the error terms in (6).
For the Gaussian k-MAC under maximal power constraints,

drawing codewords i.i.d. according to distribution PX ∼
N (0, P − δnk) for any δnk → 0 as nk → ∞ yields a
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worse second-order performance bound than the one achieved
by drawing codewords uniformly at random from the nk-
dimensional power sphere [25], [42]. MolavianJazi and Lane-
man [25] and Scarlett et al. [13] derive the improved second-
order term for the Gaussian MAC by drawing codewords
uniformly at random over an nk-dimensional power sphere
and by combining constant-composition code design with a
quantization argument, respectively. In [43], for the Gaussian
MAC and RAC, we prove the achievability of the same
second-order term as [13], [25] with an improved third-order
term 1

2 log nk. The proof employs codewords designed by con-
catenating spherically distributed sub-blocks and a maximum
likelihood decoding rule combined with a threshold rule based
on the output power.

C. An Example RAC

The following example investigates rates achievable for the
adder-erasure RAC in (23).

Example 1. For the adder-erasure RAC, the capacity achiev-
ing distribution is the equiprobable (Bernoulli(1/2)) distribu-
tion for all k. (See the proof of Theorem 7 in Appendix
C.) For this channel, one can exactly calculate Ik and Vk
for this channel for every k (labelled “True” in Fig. 1). The
approximating characterizations

Ik = (1− δ)
(

1

2
log

πek

2
− log e

12k2

)
+O(k−3) (44)

Vk = (1− δ)

[
δ

4
log2 πek

2
+

log2 e

2
− log2 e

2k

−

(
log e

2
+
δ log πek

2

12

)
log e

k2

]
+O

(
log k

k3

)
, (45)

which capture the first- and second-order behavior of Ik and
Vk for each k, are, nonetheless, useful since they highlight
how each depends on k and δ. These values, without the O(·)
terms in (44)–(45), are labelled “Approximation” in Fig. 1.
The approximations are quite tight even for small k. Both Ik
and
√
Vk are of order O(log k), indicating that as k grows,

the sum-rate capacity grows, albeit slowly, while the per-user
rate vanishes as O

(
log k
k

)
. The dispersion Vk also grows,

and the speed of approach to the sum-rate capacity is slower.
Interestingly, the dispersion behavior is different for the pure
adder RAC (δ = 0), in which case Vk = 1

2 + O
(

1
k

)
is

almost constant as a function of k. The derivation of (44)
and (45) relies on an approximation for the probability mass
function of the (k, 1/2) Binomial distribution using a higher
order Stirling’s approximation (Appendix C).

Fig. 2 shows the approximate rate per transmitter, Rk =
logM
nk

(neglecting the O(1) term in (27)), achieved by the
proposed scheme as a function of the number of active
transmitters, k, and the choice of blocklength n1 for a fixed
error probability εk = 10−6 for all k. Fixing n1 and εk fixes
the maximum achievable message size, M , according to (27).
The remaining nk for k ≥ 2 are found by choosing the
smallest nk that satisfies (27) using the given M and εk. Each
curve illustrates how the rate per transmitter (Rk) decreases
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Fig. 1: (a) Sum-rate capacity Ik (in bits) and (b) dispersion
Vk (in bits2) for the adder-erasure RAC with δ = 0.2.
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Fig. 2: Capacity and approximate achievable rates (in bits per
user) for the adder-erasure RAC with erasure probability δ =
0.2 are given for the target error probability εk = 10−6 for
all k. For each curve, the message size M is fixed so that
the rates {Rk} are achievable with n1 set to 20, 100, 500, and
2500, respectively.
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as the number of active users k increases. The curves differ
in their choice of blocklength n1 and the resulting changes
in M and n0, n2, . . . , nK . Here n1 is fixed to 20, 100, 500
and 2500. For a fixed k, the points on the same vertical line
demonstrate how the gap between the per-user capacity and
the finite-blocklength achievable rate decreases as blocklength
increases.

D. A Non-asymptotic Achievability Result

Theorem 1 follows from Theorem 2, stated next, which
bounds the error probability of the RAC code defined in Sec-
tion IV. When k transmitters are active, the error probability
εk captures both errors in the estimate t of k and errors in
the reproduction Ŵ[t] of W[k] when t = k. Theorem 2 is
formulated for an arbitrary choice of a statistic h:Yn0 7→ R
used to decide whether any transmitters are active. Possible
choices for h(·) appear in (126) and (133) in Section VI below.

Theorem 2. Fix constants γ0, λks,t ≥ 0, and γt > 0 for all 1 ≤

s ≤ t ≤ k. For any RAC
{(
X k, PYk|X[k]

(yk|x[k]),Yk
)}K

k=0
satisfying (2) and (3), any K ≤ ∞8, and any fixed input
distribution PX , there exists an (M, {(nk, εk)}Kk=0) code such
that

ε0 ≤ P [h(Y n0
0 ) > γ0] , (46)

and for all k ≥ 1,

εk ≤ P[ık(Xnk
[k] ;Y

nk
k ) ≤ log γk] (47a)

+P [h(Y n0

k ) ≤ γ0] (47b)

+
k(k − 1)

2M
(47c)

+
k−1∑
t=1

(
k

t

)
P[ıt(X

nt
[t] ;Y ntk ) > log γt] (47d)

+
k∑
t=1

t−1∑
s=1

(
k

t− s

)
P
[
ıt(X

nt
[s+1:t];Y

nt
k )

> ntE[ıt(X[s+1:t];Yk)] + λks,t

]
(47e)

+
k∑
t=1

t∑
s=1

(
k

t− s

)(
M − k
s

)
P
[
ıt(X̄

nt
[s] ;Y

nt
k |X

nt
[s+1:t])

> log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t
]
, (47f)

where for any n, (Xn
[k], X̄

n
[k], Y

n
k ) is a random

sequence drawn i.i.d. ∼ PX[k]X̄[k]Yk
(x[k], x̄[k], yk) =(∏k

i=1 PX(xi)PX(x̄i)
)
PYk|X[k]

(yk|x[k]).

The operational regime of interest is when ε0, . . . , εk are
constant; that is, εk does not vanish as nk grows. For k = 0,
the error term in (46) is the probability that the decoder does
not correctly determine that the number of active transmitters
is 0 at time n0. For k > 0, (47a) is the probability that the true

8Note that while Theorem 1 requires K <∞, Theorem 2 allows K =∞.
For K = ∞, (47) holds for every finite k, since the bound on εk depends
only on the RAC with at most k active transmitters. The K =∞ case is the
only point in this work where the assumption n0 < n1 < n2 < . . . is not
merely convenient but, in fact, critical.

codeword set produces a low information density. This is the
dominating term in the regime of interest. All remaining terms
are negligible, as shown in the refined asymptotic analysis
of the bound in Theorem 2 (see Section IV-C, below.) The
remaining terms bound the probability that the decoder incor-
rectly estimates the number of active transmitters as 0 (47b),
the probability that two or more transmitters send the same
message (47c),9 the probability that the decoder estimates the
number of active transmitters as t for some 1 ≤ t < k and
decodes those t messages correctly (47d), and the probability
that the decoder estimates the number of active transmitters
as t for some 1 ≤ t ≤ k and decodes the messages from s
of those t transmitters incorrectly and the messages from the
remaining t− s of those transmitters correctly (47e)–(47f).

For k = 1, 2, the expression in (47) particularizes to

ε1 ≤ P[ı1(Xn1
1 ;Y n1

1 ) ≤ log γ1] + P [h(Y n0
1 ) ≤ γ0]

+ (M − 1)P[ı1(X̄n1
1 ;Y n1

1 ) > log γ1 − λ1
1,1] (48)

ε2 ≤ P[ı2(Xn2

[2] ;Y
n2
2 ) ≤ log γ2] + P [h(Y n0

2 ) ≤ γ0]

+
1

M
+ 2P[ı1(Xn1

1 ;Y n1
2 ) > log γ1]

+ 2P[ı2(Xn2
2 ;Y n2

2 ) ≥ n2I2(X2;Y2) + λ2
1,2]

+ (M − 1)P[ı1(X̄n1
1 ;Y n1

2 ) > log γ1 − λ2
1,1]

+ 2(M − 2)P[ı2(X̄n2
1 ;Y n2

2 |X
n2
2 )

> log γ2 − n2I2(X2;Y2)− λ2
1,2]

+
(M − 2)(M − 3)

2
P[ı2(X̄n2

[2] ;Y
n2
2 ) > log γ2 − λ2

2,2].

(49)

For the MAC with K transmitters, i.e., the scenario where
K transmitters are always active, the only decoding time is
nK . The error terms associated with incorrect decoding times
are no longer needed in this case, and the error probability
bound in (47) becomes

εK ≤ P[ıK(XnK
[K] ;Y

nK
K ) ≤ log γK ] +

K(K − 1)

2M
(50a)

+

K−1∑
s=1

(
K

K − s

)
P
[
ıK(XnK

[s+1:K];Y
nK
K )

> nKE[ıK(X[s+1:K];YK)] + λKs,K

]
(50b)

+
K∑
s=1

(
K

K − s

)(
M −K

s

)
P
[
ıK(X̄nK

[s] ;Y nKK |XnK
[s+1:K])

> log γK − nKE[ıK(X[s+1:K];YK)]− λKs,K
]
. (50c)

A description of the proposed RAC code and the proofs of
Theorems 1 and 2 appear in Section IV.

IV. THE RAC CODE AND ITS PERFORMANCE

A. Code Design

We construct the RAC code used in the proofs of Theo-
rems 1 and 2 as follows.

9Given the use of identical encoders, multiple encoders sending the same
message can be beneficial or harmful, depending on the channel. To simplify
the analysis, we treat this (exponentially rare) event as an error.
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Encoder Design: The common randomness random variable
U = (U(1), . . . , U(M)) has distribution

PU , PU(1) × · · · × PU(M), (51)

where PU(w) = PnKX , w = 1, . . . ,M , and PX is a fixed dis-
tribution on alphabet X . Each realization of U defines a code-
book with M i.i.d. vectors U(1), . . . , U(M) of dimension nK
(the codewords). Note that the cardinality of the alphabet U is
|X |MnK . In [15, Th. 19], Polyanskiy et al. use Carathéodory’s
Theorem to show that the common randomness U can be
replaced with common randomness U ′ with cardinality at most
K+2. We reduce this alphabet size to K+1 in Appendix D. As
described in Definition 1, an (M, {(nk, εk)}Kk=0) RAC code
with identical encoders employs the same encoder f(·) at every
transmitter. The encoder f(U, ·) depends on U as

f(U,w) = U(w) for w = 1, . . . ,M. (52)

For brevity, we omit U in the encoding and decoding func-
tions and write f(U,w) = f(w) for w = 1, . . . ,M , and
gk(U, ynk) = gk(ynk) for ynk ∈ YnkK , k ∈ {0, . . . ,K}. Recall
that f(w) is a nK-dimensional vector. We use f(w)nk to denote
the first nk coordinates of vector f(w). For any collection of
messages w[k] ∈ [M ]k, we use f

(
w[k]

)
, (f(w1), . . . , f(wk))

to denote the collection of encoded descriptions produced by
the encoders.

Decoder Design: Upon receiving the first n0 samples of the
channel output Y , the decoder runs the following composite
hypothesis test

g0(yn0) =

{
0 if h(yn0) ≤ γ0

e otherwise (53)

to decide whether there are any active transmitters. Decoder
output 0 signifies that the decoder decides that all transmitters
are silent, sending a feedback bit ‘1’ to all transmitters to
start a new coding epoch. Decoder output e indicates that the
receiver believes that there are active transmitters; the decoder
transmits feedback bit ‘0’ to the transmitters, telling them that
it is not ready to decode, and therefore that transmissions must
continue. Statistic h: Yn0 7→ R is used to decide whether any
transmitters are active.

For each k ≥ 1, decoder gk observes output ynk and
employs a single threshold rule

gk(ynk) =


w[k] if ık(f

(
w[k]

)nk ; ynk) > log γk

and wi < wj ∀ i < j

e otherwise
(54)

for some constant γk chosen before the transmission starts.
Under permutation-invariance (2) and identical encoding (4),
all permutations of the message vector w[k] give the same
information density. We use the ordered permutation specified
in (54) as a representative of the equivalence class with
respect to the binary relation π

=. The choice of a representative
is immaterial since decoding is identity-blind. When there
is more than one ordered w[k] that satisfies the threshold
condition, decoder gk chooses among these options arbitrarily.
All such events are counted as errors in the analysis in
Section IV-B, below. If the decoder output is a message vector

w[k], then the decoder sends feedback bit ‘1’, telling them to
stop transmission. Otherwise, the decoder sends feedback bit
‘0’, and the epoch continues. For k ≥ 1, the decoder gk(ynk)
depends on U through its dependence on the encoding function
f
(
w[k]

)
; for k = 0, g0(yn0) does not depend on U .

The proof of Theorem 2, below, bounds the error probability
for the proposed code.

B. Proof of Theorem 2

In the discussion that follows, we bound the error proba-
bility of the code (f, {gk}Kk=0) defined above. For k = 0, the
only error event is that the received vector at time n0, Y n0

0 ,
fails to pass the test

ε0 ≤ P [g0(Y n0
0 ) 6= 0|W0 = 0] (55)

given in (53). For k > 0, the analysis relies on the inde-
pendence of codewords f(Wi) and f(Wj) from distinct trans-
mitters i and j. Given identical encoders and i.i.d. codeword
design, this assumption is valid provided that Wi 6= Wj ; we
therefore count events of the form Wi = Wj as errors. Let Prep

denote the probability of such a repetition; the union bound
gives

Prep ≤
k(k − 1)

2M
. (56)

The discussion that follows uses w∗[k] = (1, 2, . . . , k) as an
example instance of a message vector w[k] in which wi 6= wj
for all i 6= j. The set W [s] describes all ordered message
vectors that do not share any messages in common with w∗[k],
i.e.,

W [s] , {w[s] ∈ [M ]s:w1 > k,wi < wj ∀i < j}. (57)

Let the components of the vectors (Xnk
[k] , X̄

nk
[k] , Y

nk
k ) be i.i.d.

with joint distribution

PX[k]X̄[k]Yk
(x[k], x̄[k], yk)

= PX[k]
(x[k])PX[k]

(x̄[k])PYk|X[k]
(yk|x[k]). (58)

Recall that the information density ıt(x
nt
[t] ; y

nt
t ) in (14)

is defined with respect to (Xnt
[t] , Y

nt
t ), not with respect to

(X̄nt
[t] , Y

nt
t ). The resulting error bound proceeds as shown in

(59)–(64); here X[k] is the vector of transmitted codewords,
and X̄[s](w[s]) is an i.i.d. copy of X̄[s], which represents
the codeword for a collection of messages w[s] ∈ W [s] that
was not transmitted. Line (60) separates the case where at
least one message is repeated from the case where there are
no repetitions. Lines (61)–(62) enumerate the error events
in the no-repetition case; these include all cases where the
transmitted codeword passes the binary hypothesis test (53)
for “no active transmitters” (61), all cases where a subset
of the transmitted codewords meets the threshold for some
t < k (61), all cases where a codeword that is incorrect in s
dimensions and correct in t−s dimensions meets the threshold
for t ≤ k (62), and all cases where the transmitted codeword
fails to meet the threshold (62). We apply the union bound and
the symmetry of the code design to represent the probability
of each case by the probability of an example instance times
the number of instances. Equations (63)-(64) apply the bound
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εk=
1

Mk

∑
w[k]∈[M ]k

P[{g0(Y n0

k ) 6= e} ∪ {∪k−1
t=1 gt(Y

nt
k ) 6= e} ∪ {gk(Y nkk )

π

6= w[k]}|W[k] = w[k]] (59)

≤ Prep + (1− Prep)P[{g0(Y n0

k ) 6= e} ∪ {∪k−1
t=1 gt(Y

nt
k ) 6= e} ∪ {gk(Y nkk )

π

6= w∗[k]}|W[k] = w∗[k]] (60)

≤ Prep + P[g0(Y n0

k ) 6= e|W[k] = w∗[k]]+
k−1∑
t=1

(
k

t

)
P[gt(Y

nt
k )

π
= w∗[t]|W[k] = w∗[k]] (61)

+
k∑
t=1

t∑
s=1

(
k

t− s

)
P[∪w[s]∈W[s]

{gt(Y ntk )
π
= (w[s], w

∗
[s+1:t])}|W[k] = w∗[k]] + P[gk(Y nkk ) = e|W[k] = w∗[k]] (62)

≤ k(k − 1)

2M
+ P [h(Y n0

k ) ≤ γ0] +
k−1∑
t=1

(
k

t

)
P[ıt(X

nt
[t] ;Y ntk ) > log γt] (63)

+
k∑
t=1

t∑
s=1

(
k

t− s

)
P[∪w[s]∈W[s]

{ıt(X̄nt
[s] (w[s]), X

nt
[s+1:t];Y

nt
k ) > log γt}] + P[ık(Xnk

[k] ;Y
nk
k ) ≤ log γk] (64)

in (56) and replace decoders by the threshold rules in their
definitions.

The delay in applying the union bound to the first probabil-
ity in (64) is deliberate. It allows us to exploit the symmetry
assumptions on the channel and to use a single threshold rule
instead of 2k−1 threshold rules as in [10]–[13]. Applying the
bound

P

[ ⋃
w[s]∈W[s]

{ıt(X̄nt
[s] (w[s]), X

nt
[s+1:t];Y

nt
k ) > log γt}

]
(65)

= P

[ ⋃
w[s]∈W[s]

{ıt(X̄nt
[s] (w[s]), X

nt
[s+1:t];Y

nt
k ) > log γt}

⋂{
ıt(X

nt
[s+1:t];Y

nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λks,t

}]

+P

[ ⋃
w[s]∈W[s]

{ıt(X̄nt
[s] (w[s]), X

nt
[s+1:t];Y

nt
k ) > log γt}

⋂{
ıt(X

nt
[s+1:t];Y

nt
k ) ≤ ntE[ıt(X[s+1:t];Yk)] + λks,t

}]
≤ P

[
ıt(X

nt
[s+1:t];Y

nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λks,t

]
+P

[ ⋃
w[s]∈W[s]

{ıt(X̄nt
[s] (w[s]);Y

nt
k |X

nt
[s+1:t]) >

log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t}

]
(66)

before applying the union bound to the first probability in (64)
yields a tighter bound. Combining (64) and (66) and applying
the union bound to the second probability in (66) completes
the proof.

C. Proof of Theorem 1

We begin by enumerating our choice of parameters. Let

log γk = nkIk − τk
√
nkVk (67)

λks,t =
nt
2

(
It(X[s];Yt|X[s+1:t])−

s

t
It

)
(68)

nk = γ2
k

( e
k

(M − k)
)−2k

(69)

for every 1 ≤ s ≤ t ≤ k, where

τk , Q−1

(
εk −

Bk + Ck√
nk

)
, (70)

Ck is a constant to be chosen in (102),

Bk ,
6Tk

V
3/2
k

(71)

is the Berry-Esseen constant [44, Chapter XVI.5 Th. 2] (which
is finite by the moment assumptions (19) and (20)), and

Tk , E
[
|ık(X[k];Yk)− Ik|3

]
. (72)

The choice of the threshold γk (67) follows the approach es-
tablished for the point-to-point channel in [36]. The constants{
λks,t
}

used in the error probability bound (47e)–(47f) are set
in (68) to ensure that λks,t > 0 when s < t (see Lemma 2) and
that λks,t = 0 when s = t. The blocklengths nk in (69) are
chosen to ensure that for a large enough M , n1 < . . . < nK
(see Lemma 1).

Applying the choices in (67) and (69) and the Taylor series
expansion of Q−1(·), the size of the codebook admits the
following expansion

k logM = nkIk −
√
nkVkQ

−1 (εk)− 1

2
log nk +O(1).

(73)

Therefore, to prove Theorem 1, we need to show that the
probability of decoding error at time nk is bounded by
εk. Towards that end, we sequentially bound the terms in
Theorem 2 using the parameters chosen in (67)–(69).
• (47a): As noted previously, this is the dominant term. Since
ık(Xnk

[k] ;Y
nk
k ) is a sum of nk independent random variables,

by the Berry-Esseen theorem [44, Chapter XVI.5 Th. 2],
(67), (70), and (71),

P
[
ık(Xnk

[k] ;Y
nk
k ) ≤ log γk

]
≤ εk −

Ck√
nk
. (74)
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• (47b): The test statistic h(·) and the threshold γ0 given in
(53) are chosen in Section VI to satisfy

P [h(Y n0

k ) ≤ γ0] ≤ Ek√
nk

(75)

P [h(Y n0
0 ) > γ0] ≤ ε0 (76)

for some constant Ek > 0. Lemma 5, below, bounds the
type-II error in (75) in terms of n0 when the type-I error in
(76) is bounded by ε0.
Lemma 5. Fix ε0 ∈ (0, 1). Assume that (18) holds. Then
there exists a test function h(·) such that (76) is satisfied
and

P [h(Y n0

k ) ≤ γ0] ≤ exp{−n0C
′ + o(n0)} (77)

for some C ′ > 0 depending on the output distributions PYi
for i = 0, . . . ,K.
Proof: See Section VI.
From (73), nk = O (n1) for k ≥ 1. To make (77) behave as
O
(

1√
nk

)
in Lemma 5, we pick n0 as in (28) with c0 = 1

2C′ .

• (47c): According to (69), the upper bound k(k−1)
2M on Prep

in (56) decays exponentially with nk.
• (47d): Define p as

p , P[ıt(X[t];Yk) > −∞]. (78)

We next analyze (47d) for the cases p = 1 and p < 1.
Case 1: p = 1. By Lemma 3 and moment assumption (21),

It − E
[
ıt(X[t];Yk)

]
− τt

√
Vt
nt

> 0 (79)

for sufficiently large nt. Chebyshev’s inequality gives

P[ıt(X
nt
[t] ;Y ntk ) > log γt]

≤
Var[ıt(X[t];Yk)]

nt

(
It − E

[
ıt(X[t];Yk)

]
− τt

√
Vt
nt

)2 . (80)

The right side of (80) behaves as O
(

1
nt

)
.

Case 2: p < 1. Here

P[ıt(X
nt
[t] ;Y ntk ) > log γt]

≤ P[ıt(X
nt
[t] ;Y ntk ) > −∞] (81)

= pnt , (82)

where (82) holds because ıt(X
nt
[t] ;Y ntk ) is the sum of nt

i.i.d. random variables, and that sum is greater than −∞ if
and only if all the summands satisfy the same inequality.
From (80) and (82), (47d) contributes O

(
1
nk

)
to our error

bound.
• (47e): As in the analysis of (47d), we define

q , P[ıt(X[s+1:t];Yk) > −∞], (83)

and treat the cases q = 1 and q < 1 separately. Observe that
for q = 1, Chebyshev’s inequality implies

P
[
ıt(X

nt
[s+1:t];Y

nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λkt,s

]
≤

Var
[
ıt(X[s+1:t];Yk)

]
nt
(

1
2 (It(X[s];Yt|X[s+1:t])− s

t It)
)2 , (84)

which is of order O
(

1
nt

)
by the moment assumption (21)

and Lemma 2.
For q < 1,

P
[
ıt(X

nt
[s+1:t];Y

nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λkt,s

]
≤ qnt .

(85)

Therefore (47e) contributes O
(

1
nk

)
to our error bound.

• (47f): First, consider the case where s < t ≤ k. By Lemma 3
and Chernoff’s bound,

P[ıt(X̄
nt
[s] ;Y

nt
k |X

nt
[s+1:t])

> log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t] (86)

≤ P[ıt(X̄
nt
[s] ;Y

nt
k |X

nt
[s+1:t])

> log γt − ntIt(X[s+1:t];Yt)− λks,t] (87)

≤ E
[
exp

{
ıt

(
X̄nt

[s] ;Y
nt
k |X

nt
[s+1:t]

)}]
· exp {−(log γt − ntIt(X[s+1:t];Yt)− λks,t)} (88)

= exp {−(log γt − ntIt(X[s+1:t];Yt)− λks,t)}. (89)

Using Stirling’s bound(
n

k

)
≤
(en
k

)k
, (90)

we find that for all s ≤ t ≤ k

log

(
M − k
s

)
≤ s log

(
e(M − k)

s

)
(91)

≤ s log

(
e(M − t)

t

)
+ s log

(
t

s

)
(92)

=
s

t

(
log γt −

1

2
log nt

)
+ s log

(
t

s

)
,

(93)

where (93) follows from (69). From (67), (68), (89), and
(93), we have(

M − k
s

)
P[ıt(X̄

nt
[s] ;Y

nt
k |X

nt
[s+1:t])

> log γt − ntIt(X[s+1:t];Yt)− λks,t] (94)

≤ exp

{
− nt

1

2

(
It(X[s];Yt|X[s+1:t])−

s

t
It

)
+
(

1− s

t

)
τt
√
ntVt −

s

2t
log nt + s log

(
t

s

)}
.(95)

Lemma 2 ensures that the exponent in (95) is negative for
nt large enough.
For s = t < k, from (89) and (93) with s = t, we get(

M − k
t

)
P[ıt(X̄

nt
[t] ;Y ntk ) > log γt] ≤

(
M−k
t

)
γt

≤ 1
√
nt
.

(96)

For s = t = k, following the change of measure technique
(e.g., [45, Prop. 17.1]), one can rewrite an expectation with
respect to measure Q as an expectation with respect to
measure P , giving

Q [Z ∈ A] = EP

[(
P [Z]

Q[Z]

)−1

1 {Z ∈ A}

]
. (97)
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Switching to the measure PX[k]
PYk|X[k]

in this way, by (90)
and the parameter choice (69), we write(

M − k
k

)
P[ık(X̄nk

[k] ;Y
nk
k ) > log γk]

≤
( e
k

(M − k)
)k
E
[
exp{−ık(Xnk

[k] ;Y
nk
k )} (98)

· 1{ık(Xnk
[k] ;Y

nk
k ) > log γk}

]
≤ Dk

nk
, (99)

where

Dk , 2

(
log 2√
2πVk

+ 2Bk

)
(100)

and Bk is defined in (71). To justify (99), notice that
ık(Xnk

[k] ;Y
nk
k ) is a sum of i.i.d. random variables; in [36,

Lemma 47], Polyanskiy et al. derive a sharp bound on the
expectation

E

[
exp

(
−

n∑
i=1

Zi

)
1

{
n∑
i=1

Zi > γ

}]
(101)

when the Zi’s are independent. Applying that bound with
Zi = ık(X[k],i;Yk,i) yields (99). Note that Dk is finite
by the moment assumptions (19) and (20). Combining the
bounds for the three cases in (95), (96), and (99), we
conclude that (47f) contributes O

(
1√
nk

)
to the total error.

Finally, we set the constant Ck in (70) to ensure

(47b) + (47c) + (47d) + (47e) + (47f) ≤ Ck√
nk
. (102)

The existence of such a constant is guaranteed by our
analysis above demonstrating that the terms (47b)–(47f) do
not contribute more than O

(
1√
nk

)
to the total.10

Due to (74) and (102), the total probability of making an
error at time nk is bounded by εk, and the proof of Theorem 1
is complete.

V. DISCUSSION OF THE MAIN RESULT

A. Refining the Third-Order Term Using a Maximum Likeli-
hood Decoder

For a RAC that satisfies the conditions in Theorem 1 and
the conditional variance condition

E
[
Var

[
ık(X[k];Yk)|Yk

]]
> 0 ∀s ∈ [k], (103)

we can improve the achievable third-order performance in
(27) from − 1

2 log nk to + 1
2 log nk. Prior work showing the

achievability of the + 1
2 log n third-order term includes [46,

Th. 53] for point-to-point channels satisfying (103) with
k = 1, [47, Th. 1] for the Gaussian point-to-point channel, [48,
Th. 7], [49, Th. 14] for discrete memoryless MACs satisfying
(103), and [43, Th. 2 and 4], [50, Th. 2 and 4] for the Gaussian
MAC and RAC. We can achieve the result here by replacing

10Our bounds on (47b)–(47f) technically depend on γk and therefore on
Ck . However, it is easy to see that their dependence on Ck is weak, and
for large enough nk , it can be eliminated entirely. Thus the choice of Ck
satisfying (102) is possible.

the threshold rule in (54) with a combination of a hypothesis
test and a maximum likelihood decoder, giving

gk(U, ynk) =

arg max
w[k]

ık(f(w[k])
nk ; ynk) if hk(ynk) ≤ γk

e otherwise,
(104)

where the maximum is over the ordered message vectors w[k],
and hk(·) is a suitable test function that allows us to distinguish
PYk from any PYt with t 6= k. As in prior work, the analysis
applies the random coding union bound from [36, Th. 16]. As
discussed in Section VI, suitable test functions hk(·) can be
found provided that PYk 6= PYt for all t 6= k. For instance,
in [43], we use hk(ynk) =

∣∣∣ 1
nk
‖ynk‖2 − (1 + kP )

∣∣∣ for the
Gaussian RAC, where P is the maximal power constraint. The
result does not apply to channels such as the adder-erasure
RAC (23), which does not satisfy the condition in (103).

B. Choosing the Input Distribution PX

Although there are RACs for which a single input distri-
bution PX achieves the capacity for all k-MACs, k ∈ [K],
(e.g., the adder-erasure channel), the permutation-invariance
(2) and reducibility (3) assumptions do not imply that such a
distribution exists for all RACs. In the following, we discuss
how to choose the input distribution when the optimal input
distribution varies with k.

Given a permutation-invariant (2) and reducible (3) RAC,
M , ε = (ε0, . . . , εK), and any PX such that (16)–(21) are
satisfied for the given RAC under input distribution PX , let

R(M, ε, PX) = {(R0, . . . , RK): (27) and (28) hold} (105)

denote the achievable rate region under input distribution PX .
Here

Rk =
logM

nk
for all k ∈ {0, . . . ,K}. (106)

Let

R(M, ε) =
⋃

PX : (16)–(21) hold

R(M, ε, PX) (107)

denote the achievable rate region over all i.i.d. input distri-
butions. A point in this set is called dominant if no other
points in the set are element-wise greater than or equal to that
point. To optimize the achievable rate vector over the allowed
input distributions, we must choose a distribution PX∗ that
achieves a dominant point for the set R(M, ε). Note that for
the dominant points of R(M, ε) corresponding to different
values of PX∗ , there is an O(1) difference between the left
and right sides of the inequalities in (27). If the achievable
rate region R(M, ε) is not convex, it can be improved to its
convex hull using time sharing. For the modifications to the
coding strategy that enable us to incorporate time sharing, see
[10], [12], [13].

To illustrate what happens when different PX∗ values
achieve different dominant points of R(M, ε), we consider
the following example.
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Example 2. Consider a RAC with K = 2, X = Y2 = {0, 1},
and transition probability matrix PY2|X1,X2

Y2 \X1X2 00 01 10 11
0 1− b b b 1− a
1 b 1− b 1− b a

(108)

where a, b ∈ [0, 1]. This RAC is permutation-invariant since
the “01” and the “10” columns are identical. When k = 1,
the channel reduces to the binary symmetric channel with
crossover probability b. Fig. 3 illustrates the set of achievable
rate vectors R(M, ε) (neglecting the O(1) term in (27)) with
logM = 1000 and ε = 10−31 for two choices of parameters
in the channel in (108). In Fig. 3a, a = 0.7, b = 0.11, and
in Fig. 3b, a = b = 0.11; for each, the finite blocklength
and capacity boundaries are demonstrated. In Fig. 3a, the
dominant points are highlighted. The input distribution PX∗ =
(0.65, 0.35) (i.e., the Bernoulli(0.35) distribution) achieves the
dominant point (R1, R2) = (0.400, 0.204); the correspond-
ing region R(M, ε, PX∗) is shown as the region bounded
by the dashed lines. In Fig. 3b, the only dominant point
(0.437, 0.227) is achieved by the input distribution PX∗ =
(0.5, 0.5) (i.e., the Bernoulli(0.5) distribution.) Therefore, for
the channel in Fig. 3b, the achievable rate region R(M, ε)
coincides with R(M, ε, PX∗), and we must choose PX∗ as
our input distribution. For this channel, PX∗ = (0.5, 0.5)
simultaneously maximizes the mutual informations I1 and I2,
and the maxima are I1 = I2 = 0.5.

C. Discussion of the Converse

Even for MACs with only 2 transmitters, the capacity
region for the MAC remains incompletely understood. A brief
summary of related results follows. For any blocklength n and
average error probability ε ∈ (0, 1), let

R(n, ε) =

{(
logM1

n
,

logM2

n

)
:∃ an (n,M1,M2, ε) code

}
(109)

denote the set of achievable rate pairs, where Mi is the
message size for transmitter i ∈ {1, 2}. The capacity region
of the MAC [51], [52] is

C =
⋃

PQPX1|QPX2|Q

{(R1, R2):

R1 ≤ I2(X1;Y2|X2, Q)

R2 ≤ I2(X2;Y2|X1, Q)

R1 +R2 ≤ I2(X1, X2;Y2|Q)}, (110)

where Q is the time sharing random variable. In [53], Dueck
uses the blowing-up lemma to derive the first strong converse
for discrete memoryless MACs. In [54], for discrete memory-
less MACs, Ahlswede uses a wringing technique to show

R(n, ε) ⊆ C +O

(
log n√
n

)
1, (111)

which improves Dueck’s result. The coefficients of the term
O
(

logn√
n

)
1 in (111) are bounded by a multiple of the prod-

uct of input and output alphabet sizes |X1||X2||Y2|. In [55,

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3
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Fig. 3: The achievable rate region from Theorem 1 (ex-
cluding the O(1) term) applied to the channel in (108) with
logM = 1000 and εk = 10−3 for k ∈ [2]. The results
are shown for (a) a = 0.7 and b = 0.11 and blocklengths
(n1, n2) = (2501, 4904), and (b) for a = b = 0.11 and
blocklengths (n1, n2) = (2290, 4399).

Th. 1], Fong and Tan improve Ahlswede’s second-order term

O
(

logn√
n

)
1 to O

(√
logn
n

)
1 for the Gaussian MAC. They

derive this result by applying Ahlswede’s wringing technique
[54] to quantized channel inputs. In [56], Kosut further im-
proves the second-order term to O

(
1√
n

)
1. The second-order

term in [56, Th. 7] has the same order and, for some channels,
the same sign as the best-known second-order achievable term
in [13]. Kosut’s result applies to all discrete memoryless MACs
and to the Gaussian MAC. To prove this converse, Kosut
introduces a new measure of dependence between two random
variables called “wringing dependence.” A key aspect of the
approach is to restrict the channel inputs so that the wringing
dependence between them is small.

In [57], Moulin proposes a new converse technique for
maximum-error capacity. His approach relies on strong large
deviations for binary hypothesis tests and leads to a second-
order term as in (27) when no time sharing is needed. Since
the capacity regions for the maximum and average error prob-
ability can differ [58], Moulin’s result does not give a converse
for the average-error capacity. Whether it is possible to derive
a converse for the average-error capacity with a second-order
term matching the ones in [10]–[13], [25] remains an open
problem.

In the sparse recovery literature, where achievability proofs
typically consider the expected error probability evaluated
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under i.i.d. codebook design (see, e.g., [30]–[34]), converses
derive lower bounds on the expected error probability assum-
ing i.i.d. code design. Although a lower bound on the expected
error probability for our problem could be derived using tools
from [33], such a bound would yield a bound for the best i.i.d.
random code rather than a bound for all possible codes.

D. A RAC Code That Decodes Transmitter Identity

While the use of identical encoding at all transmitters has
a number of practical advantages, the techniques employed in
this work are not limited to that case.

We next briefly explore the use of distinct encoders at
each transmitter of a RAC. Under permutation-invariance (2)
and identical encoding, the decoder cannot distinguish which
transmitter sent each of the decoded messages. Maintaining
permutation-invariance but replacing identical encoders with
a different instance of the same random codebook for each
encoder, we get a code that achieves the same first- and
second-order terms as in Theorem 1, with a decoder that
can also associate the corresponding transmitter identity to
each decoded message. The following definition formalizes
the resulting RAC codes.

Definition 2. An (M, {(nk, εk)}Kk=0) identity-preserving code
comprises a collection of encoding functions

fk: U × [M ]→ XnK , k = 1, . . . ,K, (112)

and a collection of decoding functions

gk: U × Ynkk →
{

[M ]k ×
(

[K]

k

)}
∪ {e}, k = 0, 1, . . . ,K,

(113)

where erasure symbol e is the decoder’s output when the
decoder is not ready to decode. At the start of each epoch,
a random variable U ∈ U , with U ∼ PU , is generated
independently of the transmitter activity, and revealed to
the transmitters and the receiver for use in initializing the
encoders and the decoder. If the set of active transmitters
A ⊆ [K] satisfies |A|= k > 0, i.e., k transmitters are active,
then the messages of A and their corresponding transmitter
identities are decoded correctly at time nk, with probability
at least 1− εk, i.e.,

1

Mk

∑
wA∈[M ]k

P

[
{gk(U, Y nkk ) 6= (wA,A)}

⋃
{
k−1⋃
t=0

{gt(U, Y ntk ) 6= e}

}∣∣∣∣∣ WA = wA

]
≤ εk, (114)

where WA are the independent and equiprobable messages of
the transmitters in A, and the given probability is calculated
using the conditional distribution PY nkk |X

nk
A

= PnkYk|XA where
Xnk
i = fi(U,Wi)

nk , i ∈ A. If A = ∅, then the probability
that at time n0 the receiver decodes to the unique message in
set [M ]0 = {0} is no smaller than 1− ε0. That is,

P
[
g0(U, Y n0

0 ) 6= 0|W[0] = 0
]
≤ ε0. (115)

If we continue to assume permutation-invariance (2) and
to employ the same input distribution PX at all encoders,

then the channel output statistics again depend on the di-
mension of the channel input but not on the identity of the
active transmitters. In this case, we can apply the proof from
the identical-encoding single-threshold-decoding argument in
Section IV-A to derive an achievability result for the general
case.11 In particular, consider a code with KM (rather than M )
messages. Replacing M by KM in Theorem 1 implies that our
RAC code with identical encoders gives a penalty of −k logK
on the right-hand side of the rate bound (27). Suppose that
we use this identical-encoding code to design a general code
in which codewords indexed from (t − 1)M + 1 to tM are
used exclusively by transmitter t for t = 1, . . . ,K. Since each
message belongs to a single transmitter, the list of decoded
messages reveals the identities of the active transmitters. Under
this allocation of codewords, the repetition error Prep in (56)
disappears since transmitters send messages from distinct sets.
The error probability from decoding the wrong codeword
values decreases since there are fewer legitimate codeword
combinations to consider. Therefore, in the case where K is
a finite constant and the receiver decodes both messages and
transmitter identities, the first three terms in (27) are preserved,
and the penalty −k logK only affects the constant term O(1)
in (27).

When applied to a scenario with M = 1 and identity de-
coding, the bound in Theorem 2, modified as described in the
preceding paragraph, extends the non-asymptotic achievability
bound in the group testing problem [33, Th. 4] to the scenario
where an unknown number k out of a total of K items are
defective. In the scenario considered in [33], the number of
defective items k is known, and our MAC bound (50) with
K replaced by k, M replaced by KM = K, and the term
K(K−1)

2M removed applies. The resulting bound is similar to
[33, Th. 4]. The difference is that the bound in (50) uses a
single information density threshold rule, while [33, Th. 4]
uses 2k − 1 simultaneous information density threshold rules.

E. Per-user Probability of Error

We extend the definition of the PUPE from [6, Def. 1] to
the RAC with k ∈ [K] active transmitters as

ek ,
1

Mk

∑
w[k]∈[M ]k

k∑
i=1

1

k
P
[
wi /∈ gT (U, Y nTk )|W[k] = w[k]

]
,

(116)

where Y nTk is the received output at time nT , and

T , min{t ∈ {0} ∪ [K]: gt(U, Y
nt
k ) 6= e} (117)

is the random variable describing the decoder’s estimate of
the number of active transmitters.12 We set T = K if
gt(U, Y

nt
k ) = e for all t ∈ {0} ∪ [K]. For k = 0, we define

e0 , P
[
g0(U, Y n0

0 ) 6= 0|W[0] = 0
]

as in (7).

11This simple argument was suggested by Dr. Jonathan Scarlett.
12Note that the joint error probability in (6) can likewise be written as

1

Mk

∑
w[k]∈[M ]k

P
[
gT (U, Y

nT
k )

π
6= w[k]

∣∣∣∣W[k] = w[k]

]
.
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For a RAC with a total of K transmitters and a MAC with
K transmitters, the following corollary to Theorem 2 gives
non-asymptotic achievability bounds under the PUPE criterion
(116).

Corollary 1. Fix constants γ0, λks,t ≥ 0, and γt > 0 for all
1 ≤ s ≤ t ≤ k. For any k and n, let (Xn

[k], X̄
n
[k], Y

n
k ) be a

random sequence drawn i.i.d. ∼ PX[k]X̄[k]Yk
(x[k], x̄[k], yk) =(∏k

i=1 PX(xi)PX(x̄i)
)
PYk|X[k]

(yk|x[k]).

A) For any RAC
{(
X k, PYk|X[k]

(yk|x[k]),Yk
)}K

k=0
satis-

fying (2) and (3), any K ≤ ∞, and any fixed input
distribution PX , there exists an (M, {(nk, ek)}Kk=0) RAC
code under the PUPE criterion (116) such that

e0 ≤ P [h(Y n0
0 ) > γ0] , (118)

and for all k ≥ 1,

ek ≤ P[ık(Xnk
[k] ;Y

nk
k ) ≤ log γk] (119a)

+P [h(Y n0

k ) ≤ γ0] +
k(k − 1)

2M
(119b)

+
k−1∑
t=1

(
k − 1

t

)
P[ıt(X

nt
[t] ;Y ntk ) > log γt] (119c)

+
k∑
t=1

t−1∑
s=1

(
k − 1

t− s

)
P
[
ıt(X

nt
[s+1:t];Y

nt
k )

> ntE[ıt(X[s+1:t];Yk)] + λks,t

]
(119d)

+

k∑
t=1

t∑
s=1

(
k − 1

t− s

)(
M − k
s

)
P
[
ıt(X̄

nt
[s] ;Y

nt
k |X

nt
[s+1:t])

> log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t
]
. (119e)

B) For a MAC with K transmitters satisfying (2), there exists
a MAC code for M messages and decoding blocklength
nK such that

eK ≤ P[ıK(XnK
[K] ;Y

nK
K ) ≤ log γK ] +

K(K − 1)

2M

+
K−1∑
s=1

(
K − 1

K − s

)
P
[
ıK(XnK

[s+1:K];Y
nK
K )

> nKE[ıK(X[s+1:K];YK)] + λKs,K

]
+

K∑
s=1

(
K − 1

K − s

)(
M −K

s

)
P
[
ıK(X̄nK

[s] ;Y nKK |XnK
[s+1:K]) > log γK

−nKE[ıK(X[s+1:K];YK)]− λKs,K
]
. (120)

Proof: Notice that in (119), the only modification from
Theorem 2 is the replacement of the coefficients

(
k
t

)
in

(47d) and
(
k
t−s
)

in (47e)–(47f) by the coefficients
(
k−1
t

)
and(

k−1
t−s
)
, respectively. To see how Corollary 1 is derived from

Theorem 2, observe that the PUPE (116) measures the fraction
of transmitted messages missing from the list of decoded

messages. Therefore, to bound the PUPE for the RAC, we can
multiply the error probability bounds in (47) that correspond
to the case where t out of k messages are decoded by k−(t−s)

k ,
where s is the number of messages decoded incorrectly.

Similarly, under the PUPE, the coefficient
(
K
K−s

)
in the K-

transmitter MAC bound (50) is replaced by
(
K−1
K−s

)
in (120)

since we can multiply the error probability bounds in (50b)–
(50c), corresponding to the case where s out of K messages
are decoded incorrectly, by s

K .
From the proof of Theorem 1, the error probability bounds

in (119c)–(119e) behave as O
(

1√
nk

)
. This implies that under

the PUPE criterion (116), our encoding and decoding scheme
described in Section IV-A achieves the same first three order
terms as Theorem 1. Only the constant O(1) term in (27) is
affected by the change from the joint error probability to the
PUPE.

The PUPE criterion becomes critical in applications of the
Gaussian RAC with K → ∞, where the energy per bit
( nP

2 log2M
) and the number of bits sent by each transmitter

(log2M ) are fixed as the blocklength n grows, and all K
transmitters are active. In [6], Polyanskiy shows that in this
regime, the joint error probability goes to 1 as K →∞. As we
saw in (120), the PUPE introduces scaling factors s

K in front of
the error terms corresponding to s out of K messages decoded
incorrectly, for s = 1, . . . ,K. In the regime K → ∞, the
number of these terms is infinite, and the PUPE can be strictly
less than 1 even as the joint error probability approaches 1. In
[6], Polyanskiy shows that the PUPE behaves nontrivially in
this regime.

VI. TESTS FOR NO ACTIVE TRANSMITTERS

In this section, we give an analysis of the error probabilities
of the composite binary hypothesis test that we use to decide
between H0: “no active transmitters,” and H1: “k ∈ [K] active
transmitters;” that is

H0 : Y n0 ∼ Pn0

Y0

H1 : Y n0 ∼ Pn0

Yk
for some 1 ≤ k ≤ K. (121)

In the context of Theorem 2, the maximal number of transmit-
ters, K, can be infinite. In that case, enumerating all alternative
possibilities as in (121) becomes infeasible, and a universal
(goodness-of-fit) test

H0:Y n ∼ PnY0

H1:Y n � PnY0
(122)

is appropriate.
Following [59], a test statistic hn:Yn 7→ R is a function

that maps the observed sequence yn to a real number used
to measure the correspondence between that sequence and the
null hypothesis. A (randomized) test corresponding to the test
statistic hn is a binary random variable that depends only on
hn(Y n). The test is deterministic if it outputs H0 if hn(yn) ≤
γ0 for some constant γ0, and H1 otherwise.

Type-I and type-II errors corresponding to a deterministic
test with the statistic hn are defined as

α(hn) , PY0
[hn(Y n) > γ0] (123)
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β(hn) , Q[hn(Y n) ≤ γ0], (124)

where Q is the unknown alternative distribution of Y , and
γ0 is a constant determined by the desired error criterion.
Throughout the following discussion and in our application
of these results in Lemma 5, we employ deterministic tests.
For these deterministic tests, we choose γ0 to ensure that we
meet the zero-transmitter error bound α(hn) ≤ ε0, and then
we show that β(hn) decays exponentially with n for each Q
in {PY1 , . . . , PYK} to ensure (28) in Theorem 1.

In Sections A and B, below, we consider Hoeffding’s test
and the Kolmogorov-Smirnov test as possible hypothesis tests
for recognizing the zero-transmitter scenario. Both tests are
universal in the sense that the test statistic does not vary with
the alternative output distributions PY1

, . . . , PYK . They both
give an exponentially decaying type-II error for a fixed type-
I error ε0 ∈ (0, 1). The disadvantage of Hoeffding’s test is
that its traditional form requires the channel output alphabet
to be finite for every k (as in the adder-erasure RAC in (23));
the advantage of Hoeffding’s test is that it achieves the same
exponent as the Neyman-Pearson Lemma, which is optimal
for a given collection of output distributions PY1 , . . . , PYK ,
but is not universal, meaning that a different test statistic
is necessary for each collection {PYk : k ∈ [K]}. In contrast
to Hoeffding’s test, the Kolmogorov-Smirnov test does not
require Y to be finite; however, when applied to a setting with
finite Y , it achieves a type-II error exponent that is inferior
to that achieved by Hoeffding’s test. In Section VI-C, we
compare the performances of these universal test statistics to
that of the log-likelihood ratio (LLR) threshold test, which
is third-order optimal in terms of the type-II error exponent
for composite hypothesis testing [60] and relies explicitly on
alternative output distributions PY1 , . . . , PYK .

A. Hoeffding’s Test

Denote the empirical distribution of an observed sequence
y1, . . . , yn by

P̂yn(a) ,
1

n

n∑
i=1

1{yi = a} ∀ a ∈ Y. (125)

Hoeffding’s test is based on the relative entropy, denoted by
D(·‖·), between P̂yn and PY0

, giving the test statistic

hHn (yn) = D(P̂yn‖PY0
). (126)

Note that if PY0
is a continuous distribution, hHn (yn) = +∞.

Theorem 3 (Hoeffding’s test [61]). Let Y be a finite set, and
let Q be an unknown alternative distribution for Y0. If PY0 is
absolutely continuous with respect to Q, and PY0

6= Q, then
the type-I and type-II errors of Hoeffding’s test satisfy

α(hHn ) ≤ exp{−nγ0 +O(log n)} (127)

β(hHn ) ≤ exp

{
−n inf

P :D(P‖PY0 )<γ0
D(P‖Q) +O(log n)

}
.

(128)

In [61], a more restrictive assumption (PY0
(y) > 0 and

Q(y) > 0 for all y ∈ Y) is used. Absolute continuity

is sufficient according to the proofs given in [59] and [62,
Th. 2.3], which both rely on Sanov’s theorem. The error
exponents of Hoeffding’s test coincide with the exponents of
the optimal (Neyman-Pearson Lemma) binary hypothesis test.
Therefore, Hoeffding’s test is asymptotically universally most
powerful.

Setting γ0 = |Y|logn
n achieves type-I error ε0 → 0 as n →

∞; therefore, the type-I error condition is satisfied for any
ε0 > 0 and sufficiently large n. Under this choice, type-II error
exp{−nD(PY0

‖Q) + o(n)} is achieved (see [62, Th. 2.3]).
Therefore, in (77), the maximum type-II error decays with
exponent

C ′ = inf
k∈[K]

D(PY0
‖PYk) (129)

≥ 2 inf
k∈[K]

{(
sup
x∈R
|Fk(x)− F0(x)|

)2

+
4

9

(
sup
x∈R
|Fk(x)− F0(x)|

)4
}

(130)

≥ 2δ2
0 +

4

9
δ4
0 . (131)

The inequality in (130) is due to [63, eq. (5)-(6)] and Pinsker’s
inequality [64]. The inequality in (131) follows from (18).

In [59], Zeitouni and Gutman extend Hoeffding’s test to
continuous distributions. Their test, which also uses the em-
pirical distribution, employs “δ-smoothing” of the decision re-
gions obtained by a relative entropy comparison. The Zeitouni-
Gutman test is optimal under a slightly weaker optimality
criterion than the standard first-order type-II error exponent
criterion. Using [59, Th. 2], it can be shown that the Zeitouni-
Gutman test also yields the desired exponentially decaying
maximum type-II error.

B. Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test [65], [66] relies on the

empirical CDF

F̂ (n)(x|yn) ,
1

n

n∑
i=1

1{yi ≤ x} ∀x ∈ R (132)

of the observed sequence y1, . . . , yn ∈ R. The Kolmogorov-
Smirnov test uses a deterministic test

hKSn (yn) = sup
x∈R
|F̂ (n)(x|yn)− F0(x)| (133)

to test whether the observed sequence yn is well-explained by
PY0 with the CDF F0.

The following theorem bounds the probability that the
Kolmogorov-Smirnov statistic exceeds a threshold γ0.

Theorem 4 (Dvoretzky-Kiefer-Wolfowitz [67], [68]). Let
Y1, . . . , Yn be drawn i.i.d. according to an arbitrary distribu-
tion PY0 with the CDF F0 on R. For any n ∈ N and γ0 > 0,
it holds that

α(hKSn ) ≤ 2 exp{−2nγ2
0}. (134)

In [67], Dvoretzky et al. prove Theorem 4 with an unspec-
ified multiplicative constant C in front of the exponential on
the right side of (134). In [68], Massart establishes that C = 2.
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In our operational regime of interest, we set the type-I error
to a given constant ε0, which by Theorem 4 corresponds to
setting the threshold γ0 to

γ0 =

√
log 2

ε0

2n
= O

(
1√
n

)
. (135)

We next bound the type-II errors for every k ∈ [K]. For each
k ∈ {0, . . . ,K}, let Fk denote the CDF of PYk . The type-II
error when k ≥ 1 transmitters are active is bounded as

βk(hKSn ) = P
[
sup
x∈R
|F̂ (n)(x|Y nk )− F0(x)|≤ γ0

]
(136)

≤ P
[

sup
x∈R

(
|Fk(x)− F0(x)|

− |F̂ (n)(x|Y nk )− Fk(x)|
)
≤ γ0

]
(137)

≤ P
[

sup
x∈R
|F̂ (n)(x|Y nk )− Fk(x)|

≥ sup
x∈R
|Fk(x)− F0(x)|−γ0

]
(138)

≤ 2 exp

{
− 2n

(
sup
x∈R
|Fk(x)− F0(x)|

)2

+O(
√
n)

}
, (139)

where (137) follows from triangle inequality |x+y|≥ |x|−|y|,
and (139) follows from Theorem 4 and (135). Applying (18)
to (139), we conclude that the maximum type-II error in (77)
decays exponentially with n, with exponent

C ′ = 2 inf
k∈[K]

(
sup
x∈R
|Fk(x)− F0(x)|

)2

(140)

≥ 2δ2
0 . (141)

Comparing (140) and (130), from (18), we see that the type-II
error exponent achieved by the Kolmogorov-Smirnov test is
always inferior to that achieved by Hoeffding’s test.

C. The Optimal Composite Hypothesis Test

From (131) and (141), we know that there exists a positive
constant c0 such that

n0 ≥ c0 log n1 + o(log n1) (142)

suffices to meet the error requirements of the composite
hypothesis test given in (75) and (76). Since the proposed tests
are universal, Theorem 2 allows us to decode any message set
of k ≤ K active transmitters without knowing the total number
of transmitters, K. In this section, we find the smallest first
three terms on the right side of (142) that we can achieve
when K is finite and we allow the composite hypothesis test
to depend on the distributions PY1 , . . . , PYK .

Let βε0(PY0
, {PYk}Kk=1) denote the minimax type-II error

among the alternative distributions PY1 , . . . , PYK such that
type-I error (under PY0 ) does not exceed ε0; that is,

βε0(PY0
, {PYk}Kk=1) , min

hn:α(hn)≤ε0
max
k∈[K]

βk(hn), (143)

where the minimum is over all tests including deterministic
and randomized tests.

The LLR test statistic hLLR
n : Yn 7→ RK is given by

hLLR
n (yn) =

n∑
i=1

hLLR
1 (yi), (144)

where

hLLR
1 (y) ,


log

PY0 (y)

PY1 (y)

log
PY0 (y)

PY2 (y)

...
log

PY0 (y)

PYK (y)

 . (145)

Given a threshold vector τ ∈ RK , the corresponding LLR test
outputs H0 if hLLR

n (yn) ≥ τ , and H1 otherwise.
The gap in the type-II error exponent (C ′ in (77)) between

the general optimal tests and the LLR tests with the optimal
threshold vector τ is O

(
1
n

)
[60]; therefore, we only consider

minimizing over the LLR tests in (143) for asymptotic opti-
mality.

Denote by D and V the mean and covariance matrix of the
random vector hLLR

1 (Y0), respectively. Define

Dmin , min
k∈[K]

D(PY0
‖PYk) (146)

Imin , {k ∈ [K]:D(PY0‖PYk) = Dmin} (147)

Vmin , Cov
[(
hLLR

1 (Y0)
)
Imin

]
∈ R|Imin|×|Imin|. (148)

The following theorem gives the asymptotics of the minimax
type-II error defined in (143).

Theorem 5. Assume that PY0
is absolutely continuous with

respect to PYk , 0 < D(PY0
‖PYk) < ∞ for k = 1, . . . ,K,

V is positive definite, and T = E[‖hLLR
1 (Y0) − D‖32] < ∞.

Then for any ε0 ∈ (0, 1), the asymptotic minimax type-II error
satisfies

βε0(PY0
, {PYk}Kk=1) = exp

{
− nDmin +

√
nb

− 1

2
log n+O(1)

}
, (149)

where b is the solution to

P [Z ≤ b1] = 1− ε0, (150)

for Z ∼ N (0,Vmin) ∈ R|Imin|. Moreover, the minimax error
in (149) is achieved by a LLR test with some threshold vector
τ .

Proof: See Appendix E.
Rewriting (149), defining b as given in (150), and using the

condition in (75) with any fixed Ek, we see that a decision
about whether any of the transmitters are active can be made
at time

n0 =
1

2Dmin
log n1 +

b√
2D3

min

√
log n1

− 1

2Dmin
log logn1 +O(1) (151)
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while guaranteeing both that the probability that we do not
decode at time n0 when no transmitters are active does not
exceed ε0 and that the probability that we decode at time n0

when k > 0 transmitters are active does not exceed Ek√
nk

. Note
that Ek only affects the constant term O(1) in (151). Theo-
rem 5 implies that the coefficients in front of log n1,

√
log n1,

and log logn1 in (151) are optimal. Juxtaposing (129) and
(151), we see that Hoeffding’s test achieves the optimal first-
order error exponent (that is, the optimal coefficient in front
of log n1).

VII. SUMMARY AND CONCLUSIONS

We study the agnostic random access model, in which each
transmitter knows nothing about the set of active transmitters
beyond what it learns from limited scheduled feedback from
the receiver, and the receiver knows nothing about the set
of active transmitters beyond what it learns from the channel
output. In our proposed rateless coding strategy, the decoder
attempts to decode only at a fixed, finite collection of decoding
times. At each decoding time nt, it sends a single bit of
feedback to all transmitters indicating whether or not its
estimate for the number of active transmitters is t. We prove
non-asymptotic and second-order achievability results for the
equal rate point (R, . . . , R) under our assumptions on the
channel (permutation-invariance (2), reducibility (3), friend-
liness (16), and interference (17)). For a nontrivial class of
discrete, memoryless RACs, our proposed RAC code performs
as well in its capacity and dispersion terms as the best-known
code for the discrete memoryless MAC in operation; that is, it
performs as well as if the transmitter set were known a priori.
The assumptions of permutation-invariance (2), reducibility
(3), and interference (17) together with our use of identical
encoding guarantee (by Lemma 2) that the equal rate point
always lies on the sum-rate boundary rather than on one of the
corner points. For example, for two users, the capacity region
is a symmetric pentagon. This ensures that our simplified,
single-threshold decoding rule results in no loss in the first-
or second-order achievable rate terms, making the codes far
more practical than prior schemes [10]–[13] in which decoders
employ 2k − 1 simultaneous threshold-rules. In Section V-D,
we show that as long as K < ∞, there is no loss in the
first two terms even if the decoder is tasked with decoding
transmitter identity.

We also provide a tight approximation for the capacity and
dispersion of the adder-erasure RAC (23), which is an example
channel satisfying our symmetry conditions.

In order to decide whether there are any active transmitters
without enumerating all K alternative hypotheses, we analyze
universal hypothesis tests. Results are given both for the
case where the channel output alphabet is finite and the case
where the channel output alphabet is countably or uncountably
infinite. Using existing literature, it is possible in both cases
to obtain exponentially decaying maximum type-II error under
the condition that supx∈R|Fk(x)−F0(x)|≥ δ0 > 0 for all k ∈
[K]. We also derive the best third-order asymptotics of the
minimax type-II error (Theorem 5).
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of constant-composition codes for the multiple-access channel,” IEEE
Trans. Inf. Theory, vol. 61, no. 1, pp. 157–172, Jan. 2015.

[14] M. V. Burnashev, “Data transmission over a discrete channel with
feedback: Random transmission time,” Problems of Information Trans-
mission, vol. 12, no. 4, pp. 10–30, 1976.

[15] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Feedback in the non-
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APPENDIX A
PROOFS OF LEMMAS 1–3

We first state and prove Lemma 6, which we then use to
prove Lemmas 2, 1, and 3 (in that order).

Lemma 6. Let X1, X2, . . . , Xk be i.i.d., and let the inter-
ference (17), permutation-invariance (2), and reducibility (3)
assumptions hold. Then Ik(Xi;Yk|X[i−1]) is strictly increas-
ing in i, i.e., for all i < j ≤ k,

Ik(Xi;Yk|X[i−1]) < Ik(Xj ;Yk|X[j−1]). (A.1)

Proof of Lemma 6: By permutation-invariance (17) and
the i.i.d. distribution of X1, . . . , Xk, we have

Ik(Xi;Yk|X[i−1]) = Ik(Xj ;Yk|X[i−1]). (A.2)

Let (U, V, T ) be mutually independent random variables.
Then I(U ;V ) = I(U ;T, V ) = 0. Since I(U ;T, Y ) ≤
I(U ;T, V, Y ), the chain rule implies that

I(U ;Y |T ) ≤ I(U ;Y |T, V ). (A.3)

Setting U to Xj , Y to Yk, T to X[i−1], and V to X[i:j−1] in
(A.3) and then applying (A.2) gives (A.1) with < replaced by
≤. Equality in (A.3) is attained if and only if U and V are
conditionally independent given (Y, T ). As a result, equality
in our modified form of (A.1) occurs if and only if Xj and
X[i:j−1] are conditionally independent given (Yk, X[i−1]). We
proceed to show that this is not possible using a proof by
contradiction.

Assume that Xj and X[i:j−1] are conditionally independent
given (Yk, X[i−1]), i.e.,

PX[i:j]|Yk,X[i−1]
= PX[i:j−1]|Yk,X[i−1]

PXj |Yk,X[i−1]
. (A.4)

Set X[i−1] = 0i−1 and use Bayes’ rule to show

PX[i:j]|Yk,X[i−1]=0i−1 = PX[j−(i−1)]|Yk−(i−1)
(A.5)

PX[i:j−1]|Yk,X[i−1]=0i−1 = PX[2:j−(i−1)]|Yk−(i−1)
(A.6)

PXj |Yk,X[i−1]=0i−1 = PX1|Yk−(i−1)
(A.7)

due to reducibility (2), permutation-invariance (3), and the
i.i.d. distribution of X1, . . . , Xk. Therefore, (A.4) implies
that X1 and X[2:j−(i−1)] are conditionally independent given
Yk−(i−1), which is not possible by interference assumption
(17).

Proof of Lemma 2: We wish to show that
1

k
Ik(X[k];Yk) <

1

s
Ik(X[s];Yk|X[s+1:k]). (A.8)

By the chain rule for mutual information, the left-hand side
of (A.8) equals the average of k terms

1

k
Ik(X[k];Yk) =

1

k

k∑
i=1

Ik(Xi;Yk|X[i−1]). (A.9)

By permutation-invariance (2) and the chain rule, the right-
hand side of (A.8) equals the average of the last s of those k
terms

1

s
Ik(X[s];Yk|X[s+1:k]) =

1

s
Ik(X[k−s+1:k];Yk|X[k−s])

(A.10)
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=
1

s

k∑
i=k−s+1

Ik(Xi;Yk|X[i−1]).

(A.11)

Since the terms in these averages are strictly increasing in i
by Lemma 6, we have the desired result.

Proof of Lemma 1: We wish to show that 1
sIs >

1
k Ik.

We proceed by representing Is in terms of Ik as
1

s
Is =

1

s
Ik(X[s];Yk|X[s+1:k] = 0k−s) (A.12)

≥ 1

s
Ik(X[s];Yk|X[s+1:k]) (A.13)

>
1

k
Ik, (A.14)

where (A.12) follows from reducibility (3), (A.13) follows
from friendliness (16), and (A.14) follows from Lemma 2.

Proof of Lemma 3: To derive the bound E[ıt(X[s];Yk)] ≤
Ik(X[s];Yk) < It(X[s];Yt), we write

E[ıt(X[s];Yk)] = E
[
log

PYt|X[s]
(Yk|X[s])

PYt(Yk)

]
(A.15)

= −D(PX[s]
PYk|X[s]

‖PX[s]
PYt|X[s]

)

+D(PYk‖PYt)
+D(PX[s]

PYk|X[s]
‖PX[s]

PYk) (A.16)
= −D(PX[s]

PYk|X[s]
‖PX[s]

PYt|X[s]
)

+D(PYk‖PYt) + Ik(X[s];Yk) (A.17)
≤ Ik(X[s];Yk) (A.18)

=
s∑
i=1

Ik(Xi;Yk|X[i−1]) (A.19)

<
s∑
i=1

Ik(Xi;Yk|X[i−1], X[s+1:s+k−t]) (A.20)

= Ik(X[s];Yk|X[t+1:k]) (A.21)

≤ Ik(X[s];Yk|X[t+1:k] = 0k−t) (A.22)
= It(X[s];Yt), (A.23)

where (A.18) follows from data processing inequality of
relative entropy (e.g., [45, Th. 2.2.5]), (A.19) follows from the
chain rule, (A.20) follows from permutation-invariance (2) and
Lemma 6, (A.21) follows from permutation-invariance (2) and
the chain rule, and (A.22) and (A.23) follow from friendliness
(16) and reducibility (3), respectively.

APPENDIX B
PROOF OF LEMMA 4

To prove Lemma 4, we first derive the saddle point condition
for the MAC.

Theorem 6 (Saddle point condition for the MAC). Let P1

and P2 be convex set of distributions on alphabets X1 and X2,
respectively. Suppose that there exists a product distribution
PX∗1PX∗2 such that

sup
PX1

PX2
PX1
∈P1,PX2

∈P2

I2(X1, X2;Y2) = I2(X∗1 , X
∗
2 ;Y ∗2 ) = I∗2 ,

(B.1)

where PY ∗2 |X∗1 ,X∗2 = PY2|X1,X2
. Then, for all PX1

∈ P1 and
for all QY2

, it holds that

D(PX1
PX∗2PY2|X1,X2

‖PX1
PX∗2PY ∗2 )

≤I∗2 (B.2)
≤D(PX∗1PX∗2PY2|X1,X2

‖PX∗1PX∗2QY2
). (B.3)

Proof of Lemma 4: Lemma 4 follows by an application
of Theorem 6 to the setting where P1 includes the set of all
distributions with a singleton on X1 having probability 1, i.e.,
{δx1

:x1 ∈ X1} ⊆ P1, and I∗2 < ∞. Particularizing PX1
in

(B.2) to any PX1
= δx1

with x1 ∈ X1 yields

D(PX∗2PY2|X1=x1,X2
‖PX∗2PY ∗2 ) ≤ I∗2 (B.4)

for all x1 ∈ X1. Since the left-hand side of (B.4) is equal to
the conditional expectation of ı2(X∗1 , X

∗
2 ;Y ∗2 ) given X∗1 =

x1, (35) follows with less than or equal to. The equality in
(35) follows since otherwise (B.4) would give the contradiction
I2(X∗1 , X

∗
2 ;Y ∗2 ) < I∗2 .

Proof of Theorem 6: The proof of Theorem 6 is similar
to the proof of the saddle point condition for point-to-point
channels in [45, Th. 4.4] and extends [45, Th. 4.4] to the
MAC. Although the optimization in (B.1) is not convex in
general [39], the optimization

sup
PX1
∈P1

I2(X1, X
∗
2 ;Y2), (B.5)

where PX1X∗2Y2
= PX1

PX∗2PY2|X1,X2
is convex.

Inequality (B.3) follows from the golden formula (e.g., [45,
Th. 3.3])

I∗2 = D(PX∗1PX∗2PY2|X1,X2
‖PX∗1PX∗2PY ∗2 ) (B.6)

= D(PX∗1PX∗2PY2|X1,X2
‖PX∗1PX∗2QY2)−D(PY ∗2 ‖QY2)

(B.7)

and the nonnegativity of the relative entropy. Notice that for
I∗2 =∞, (B.2) is trivial. Assume that I∗2 <∞. Fix any PX1 ∈
P1. Let λ ∈ (0, 1). Set

PX1λ
= λPX1 + (1− λ)PX∗1 ∈ P1. (B.8)

Let θ ∼ Bernoulli(λ), so that PX1λ|θ=0 = PX∗1 and
PX1λ|θ=1 = PX1

, and let

PX1λX∗2Y2λ
= PX1λ

PX∗2PY2|X1,X2
. (B.9)

Then

I∗2 ≥ I2(X1λ, X
∗
2 ;Y2λ) (B.10)

= D(PX1λ
PX∗2PY2|X1,X2

‖PX1λ
PX∗2PY2λ

) (B.11)
= λD(PX1PX∗2PY2|X1,X2

‖PX1PX∗2PY2λ
)

+(1− λ)D(PX∗1PX∗2PY2|X1,X2
‖PX∗1PX∗2PY2λ

) (B.12)
≥ λD(PX1PX∗2PY2|X1,X2

‖PX1PX∗2PY2λ
)

+(1− λ)I∗2 , (B.13)

where (B.13) follows from (B.3). By subtracting (1 − λ)I∗2
from both sides of (B.13) and dividing by λ, we get

I∗2 ≥ D(PX1
PX∗2PY2|X1,X2

‖PX1
PX∗2PY2λ

). (B.14)
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By taking lim infλ→0 in (B.14) and applying the lower semi-
continuity of the relative entropy (e.g., [45, Th. 3.6]), (B.2) is
proved.

Note that (PX∗1 , PX∗2 ) does not have to be unique for
Theorem 6 and Lemma 4 to hold.

APPENDIX C
ADDER-ERASURE RAC

Here, we approximate the sum-capacity and dispersion of
the adder-erasure RAC for a large number of transmitters (k).

Theorem 7. The optimal input distribution for the adder-
erasure RAC defined in (23) is the Bernoulli(1/2) distribution
at all encoders. That input distribution achieves the sum-rate
capacity, and

Ik = (1− δ)
(

1

2
log

πek

2
− log e

12k2

)
+O(k−3) (C.1)

Vk = (1− δ)

[
δ

4
log2 πek

2
+

log2 e

2
− log2 e

2k

−

(
log e

2
+
δ log πek

2

12

)
log e

k2

]
+O

(
log k

k3

)
. (C.2)

The calculation leading to Theorem 7 is presented in Lem-
mas 7–8, which rely on Stirling’s approximation and the Taylor
series expansion.

Consider a binomial random variable X ∼ Binom(n, 1/2).
Lemma 7, below, shows that the probability mass that this
Binomial distribution puts at k is well approximated by

P̃X(k) ,
1√
πn
2

e
−

(k−n
2

)2

n
2

(
1 +

f(k)

n
+
g(k)

n2

)
, (C.3)

where

f(x) , − 1

12

(2x− n)
4

n2
+

1

2

(2x− n)
2

n
− 1

4
(C.4)

g(x) ,
1

288

(2x− n)
8

n4
− 3

40

(2x− n)
6

n3
+

19

48

(2x− n)
4

n2

− 11

24

(2x− n)
2

n
+

1

32
. (C.5)

Define the interval

K ,

[
n

2
− A

2

√
n log n,

n

2
+
A

2

√
n log n

]
(C.6)

for some constant A > 0.

Lemma 7. Let X ∼ Binom(n, 1/2). Then for any k ∈ K,

PX(k) =

(
n

k

)
2−n = P̃X(k)

(
1 +O

(
log6 n

n3

))
. (C.7)

Proof of Lemma 7: We apply Stirling’s approximation
[69, eq. (6.1.37)]

n! =
√

2πnn+ 1
2 e−n

(
1 +

1

12n
+

1

288n2
+O(n−3)

)
,

(C.8)

and a Taylor series expansion of
(
n
k

)
around x = 0, where

k =
n

2
+
x

2

√
n log n, (C.9)

to PX(k) =
(
n
k

)
2−n, to derive (C.7).

Let V (X)

V (X) = Var

[
log

1

PX(X)

]
. (C.10)

denote the varentropy of X .

Lemma 8 (Entropy and varentropy of Binom (n, 1/2)). For
X ∼ Binom (n, 1/2),

H(X) =
1

2
log

πen

2
− log e

12n2
+O(n−3) (C.11)

V (X) =
log2 e

2
− log2 e

2n
− log2 e

2n2
+O(n−3). (C.12)

Proof of Lemma 8: Let T̃ (k) denote the first 3 terms of
the Taylor series expansion of log 1

P̃X(k)
around n

2 evaluated
at k, giving

T̃ (k) ,
1

2
log

πn

2
+ log e

(
(k − n

2 )2

n
2

− f(k)

n
+
−g(k) + f2(k)

2

n2

)
. (C.13)

Recall the definition of interval K from (C.6). Then we can
write the entropy H(X) as

H(X) =
n∑
k=0

(
n
k

)
2n

log

(
2n(
n
k

)) (C.14)

= E
[
T̃ (X)

]
+E

[(
log

1

PX(X)
− T̃ (X)

)
1{X ∈ K}

]
+E

[(
log

1

PX(X)
− T̃ (X)

)
1{X /∈ K}

]
. (C.15)

Using the moments of Binom (n, 1/2) (e.g., [69,
eq. (26.1.20)]), the first term in (C.15) is

E
[
T̃ (X)

]
=

1

2
log

πen

2
− log e

12n2
. (C.16)

By Lemma 7, the second term in (C.15) is

E
[(

log
1

PX(X)
− T̃ (X)

)
1{X ∈ K}

]
= O

(
log6 n

n3

)
.

(C.17)

By Hoeffding’s inequality,

P [X /∈ K] ≤ 2n−
A2 log e

2 , (C.18)

where A is the constant in (C.6). Since the minimum of PX(k)
over k is achieved at k = n, using (C.18), we get

E
[
log

1

PX(X)
1{X /∈ K}

]
= O

(
log6 n

n3

)
(C.19)

for A ≥ 3√
log e

. Similarly, by taking the derivative of T̃ (k),
one can show that T̃ (k) ≤ T̃ (n) ≤ n for all k ∈ [0, n], which
gives

E
[
T̃ (X)1{X /∈ K}

]
= O

(
log6 n

n3

)
. (C.20)
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Combining (C.15)–(C.17), (C.19)–(C.20) gives

H(X) =
1

2
log

πen

2
− log e

12n2
+O

(
log6 n

n3

)
. (C.21)

Via an argument similar to (C.19) and (C.20), we can
show that for A ≥ 4√

log e
, the contribution of k /∈ K to

the varentropy is O
(

log6 n
n3

)
. Therefore, using the moments

of Binom(n, 1/2) and Lemma 7, we can approximate the
varentropy V (X) as

V (X) = E
[
log2 1

PX(X)

]
− (H(X))2 (C.22)

= E
[
(T̃ (X))2

]
− (H(X))2 +O

(
log6 n

n3

)
(C.23)

= log2 e

(
1

2
− 1

2n
− 1

2n2

)
+O

(
log6 n

n3

)
. (C.24)

The above analyses use the first 3 terms of the Stirling
series (C.8) to obtain the remainder O

(
log6 n
n3

)
. Applying the

same analyses with 4 terms of the Stirling series improves the
remainder to O(n−3), as claimed in (C.11) and (C.12) in the
statement of Lemma 8.

We are now equipped to prove Theorem 7.
Proof of Theorem 7: Define

E , 1{Y = e}. (C.25)

By the chain rule for entropy, we have for the adder-erasure
RAC

Ik(X[k];Yk) = H(Yk)−H(Yk|X[k]) (C.26)
= H(Yk, E)−H(E) (C.27)
= H(Yk|E) (C.28)
= (1− δ)H(Yk|E = 0). (C.29)

Given the independent inputs Xi ∼ Bernoulli(pi) for i ∈ [k],
H(Yk|E = 0) is equal to the entropy of the sum of k indepen-
dent Bernoulli random variables with parameters (p1, . . . , pk),
which is maximized when pi = 1/2 for all i [70]. Therefore,
for any δ ∈ [0, 1], the equiprobable input distribution at all
encoders, X∗i ∼ Bernoulli(1/2), maximizes the mutual infor-
mation Ik(X[k];Yk) for all k. Let (X∗[k]Y

∗
k ) ∼ PX∗

[k]
PYk|X[k]

.
Then

Ik(X∗[k];Y
∗
k ) = (1− δ)H(Z), (C.30)

where Z ∼ Binom(k, 1/2), and (C.1) follows from Lemma 8.
Furthermore,

ık(X∗[k];Y
∗
k ) =

0 w.p. δ

log 2k

(ki)
w.p. (1− δ) (ki)

2k
, 0 ≤ i ≤ k,

(C.31)

which gives

Vk = Var
[
ık(X∗[k];Y

∗
k )
]

= (1− δ)
[
V (Z) + δ(H(Z))2

]
,

(C.32)

and (C.2) follows from Lemma 8.

APPENDIX D
BOUND ON THE CARDINALITY |U|

While the analysis in Section IV-B employs common ran-
domness U with |U|= |X |MnK , [15, Th. 19] shows that
|U|≤ K + 2 suffices to achieve the optimal performance.
Theorem 8, stated next, improves the cardinality bound on |U|
from K+ 2 [15, Th. 19] to K+ 1 by using the connectedness
of the set of achievable error vectors defined in (D.1).

Theorem 8. If an (M, {(nk, εk)}Kk=0) RAC code exists, then
there exists an (M, {(nk, εk)}Kk=0) RAC code with |U|≤ K+1.

Proof of Theorem 8: For fixed M,n0, . . . , nK , let Gu
denote the set of achievable error vectors compatible with
message size M , blocklengths n0, . . . , nK , and cardinality
|U|≤ u; that is,

Gu = {(ε′0, . . . , ε′K) : ∃(M, {(nk, ε′k)}Kk=0) code with
|U|≤ u}. (D.1)

Let G denote the set of achievable error vectors compatible
with message size M and blocklengths n0, . . . , nK ; that is,

G = {(ε′0, . . . , ε′K) : ∃(M, {(nk, ε′k)}Kk=0) code}. (D.2)

As observed in [15, Proof of Th. 19], G = G|X |MnK is the
convex hull of G1. Indeed, every vector (ε′0, . . . , ε

′
K) in G is

a convex combination of vectors in G1, and the coefficients
of the convex combination are determined by the distribution
of the common randomness random variable U .

Furthermore, G1 is a connected set. To see this, take any
ε1, ε2 ∈ G1. For any ε′ ≥ ε with ε ∈ G1, the line segments
Li = {λεi+(1−λ)1:λ ∈ [0, 1]}, i = 1, 2, also belong to G1,
and the path L1 ∪ L2 connects ε1 and ε2. Therefore, G1 is a
connected set.

Since G = conv(G1) ⊂ RK+1, and G1 is a con-
nected set, by Fenchel-Eggleston-Carathéodory’s theorem [71,
Th. 18 (ii)], G = GK+1 holds. Therefore, (ε0, . . . , εK) ∈ G
implies that (ε0, . . . , εK) ∈ GK+1.

APPENDIX E
COMPOSITE HYPOTHESIS TESTING

We begin with a lemma that is used in the proof of
Theorem 5. See Fig. 4 for an illustration of Lemma 9.

Lemma 9. Let f :Rd → R be a continuous function that
satisfies coordinate-wise partial ordering, i.e., f(x) ≤ f(y)
for any x,y ∈ Rd with x ≤ y. Then for any a in the image
of f (denoted a ∈ Imf ), it holds that

b? = min
b∈Rd:f(b)≥a

max
1≤j≤d

bj = min
x∈R:f(x1)≥a

x. (E.1)

Proof: Since a ∈ Imf , there exists some b ∈ Rd such
that f(b) = a. Denote by bmin and bmax the minimum
and maximum components of b, respectively. Since f is
nondecreasing,

f(bmin1) ≤ a = f(b) ≤ f(bmax1). (E.2)

Therefore, since the function mapping b to f(b1) is continuous
and nondecreasing, by the intermediate value theorem there
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Fig. 4: An example to illustrate Lemma 9. Here f(b) = FZ(b)
is the CDF of Z ∼ N (0,V), where V = [ 1 0.4

0.4 0.5 ]. The shaded
region illustrates the set {b ∈ R2 : f(b) ≥ a = 0.95}.
Lemma 9 shows that the minimax on this set is achieved at
a point described by a scalar multiple of 1. For this example,
the optimizer is b? = (1.69, 1.69).

exists some b ≤ bmax such that f(b1) = a. Equation (E.1)
follows.

Let Z ∼ N (0,V). Define the multidimensional counterpart
of the function Q−1(·) as

Qinv(V, ε) ,
{
z ∈ RK : P [Z ≤ z] ≥ 1− ε

}
. (E.3)

Proof of Theorem 5: For any ε0 ∈ (0, 1), consider all
composite hypothesis tests in the form given in (121) that
achieve type-I error no greater than ε0. Let

Eε0(PY0 , {PYk}Kk=1) ,
{

(e1, . . . , eK) : ∃ a (randomized) test

such that
P [Decide H1|H0] ≤ ε0,

P [Decide H0|H1] = ek, 1 ≤ k ≤ K
}

(E.4)

denote the set of type-II errors achievable by these tests. Huang
and Moulin [60, Th. 1]13 show that the asymptotic form of the
error region defined in (E.4) is given by

Eε0(PY0 , {PYk}Kk=1)

= exp

{
−nD +

√
nQinv(V, ε0)− 1

2
log n1 +O(1)1

}
. (E.5)

13In the converse part of the proof of [60, Th. 1], Huang and Moulin show
that for any LLR test (144) with threshold vector τ such that the type-I
error is bounded by ε0, it holds that τ = nD −

√
nb + O(1)1 for some

b ∈ Qinv(V, ε0). Then, it is assumed that b = O(1)1, and [60, Lemma 2]
is applied. However, according to the definition of Qinv(V, ε0) in (E.3), b
can have coordinates growing with n, which violates this assumption. In [72,
Th. 11], Chen et al. confirm that the asymptotic expansion in (E.5) holds.
They prove the converse part of the expansion (E.5) by evaluating a converse
bound that they derive in [72, Lemma 9] for the composite hypothesis testing.

By the definition of the minimax error (143) and the
characterization of the achievable error region asymptotics in
(E.5), we have

βε0(PY0 , {PYk}Kk=1)

= min
z∈exp{−nD+

√
nQinv(V,ε0)− 1

2 logn1+O(1)1}
max

1≤k≤K
zk. (E.6)

Applying Lemma 9 with f(z) = P [−nD +
√
nZ ≤ z] and

a = 1− ε0, where Z ∼ N (0,V), we obtain

βε0(PY0
, {PYk}Kk=1)

= min
z∈R:f(z1)≥1−ε0

exp

{
z − 1

2
log n+O(1)

}
. (E.7)

Since f(z1) is nondecreasing and continuous in z,

f(z?1) = 1− ε0 (E.8)

holds, where z? is the argument that achieves the minimum on
the right-hand side of (E.7). Recall the definitions of Dmin and
Imin from (146)–(147). By Chernoff’s bound on f(z), for any
z = nE+o(n) with E > −Dmin, we have f(z1) = 1−o(1).
Similarly, for E < −Dmin, we have f(z1) = o(1), giving

z? = −nDmin + o(n). (E.9)

We proceed to show that the minimum on the right-hand side
of (E.7) is achieved at

z? = −nDmin +
√
nb+O (1) , (E.10)

where b is defined in (150). Here

P
[
−nDmin1 +

√
nZImin ≤ z?1

]
= P

[
−nD +

√
nZ ≤ z?1

]
+P
[
{−nDmin1 +

√
nZImin ≤ z?1}⋂{

−nDIcmin
+
√
nZIcmin

� z?1
} ]

(E.11)

= 1− ε0 +O

(
1

n

)
, (E.12)

where (E.12) follows from (E.8), (E.9), and the union bound
and Chebyshev’s inequality on P

[
−nDIcmin

+ ZIcmin
� z?1

]
.

By the Taylor series expansion of Qinv(V, ·), we conclude that

P
[
ZImin

≤ 1√
n

(z? + nDmin)1 +O

(
1

n

)]
= 1− ε0,

(E.13)

which implies (E.10). Combining (E.7) and (E.10) completes
the proof.
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