38,274 research outputs found

    Using Wii technology to explore real spaces via virtual environments for people who are blind

    Get PDF
    Purpose - Virtual environments (VEs) that represent real spaces (RSs) give people who are blind the opportunity to build a cognitive map in advance that they will be able to use when arriving at the RS. Design - In this research study Nintendo Wii based technology was used for exploring VEs via the Wiici application. The Wiimote allows the user to interact with VEs by simulating walking and scanning the space. Finding - By getting haptic and auditory feedback the user learned to explore new spaces. We examined the participants' abilities to explore new simple and complex places, construct a cognitive map, and perform orientation tasks in the RS. Originality – To our knowledge, this finding presents the first virtual environment for people who are blind that allow the participants to scan the environment and by this to construct map model spatial representations

    Web-based haptic applications for blind people to create virtual graphs

    Get PDF
    Haptic technology has great potentials in many applications. This paper introduces our work on delivery haptic information via the Web. A multimodal tool has been developed to allow blind people to create virtual graphs independently. Multimodal interactions in the process of graph creation and exploration are provided by using a low-cost haptic device, the Logitech WingMan Force Feedback Mouse, and Web audio. The Web-based tool also provides blind people with the convenience of receiving information at home. In this paper, we present the development of the tool and evaluation results. Discussions on the issues related to the design of similar Web-based haptic applications are also given

    Web-based multimodal graphs for visually impaired people

    Get PDF
    This paper describes the development and evaluation of Web-based multimodal graphs designed for visually impaired and blind people. The information in the graphs is conveyed to visually impaired people through haptic and audio channels. The motivation of this work is to address problems faced by visually impaired people in accessing graphical information on the Internet, particularly the common types of graphs for data visualization. In our work, line graphs, bar charts and pie charts are accessible through a force feedback device, the Logitech WingMan Force Feedback Mouse. Pre-recorded sound files are used to represent graph contents to users. In order to test the usability of the developed Web graphs, an evaluation was conducted with bar charts as the experimental platform. The results showed that the participants could successfully use the haptic and audio features to extract information from the Web graphs

    Constructing sonified haptic line graphs for the blind student: first steps

    Get PDF
    Line graphs stand as an established information visualisation and analysis technique taught at various levels of difficulty according to standard Mathematics curricula. It has been argued that blind individuals cannot use line graphs as a visualisation and analytic tool because they currently primarily exist in the visual medium. The research described in this paper aims at making line graphs accessible to blind students through auditory and haptic media. We describe (1) our design space for representing line graphs, (2) the technology we use to develop our prototypes and (3) the insights from our preliminary work

    Tac-tiles: multimodal pie charts for visually impaired users

    Get PDF
    Tac-tiles is an accessible interface that allows visually impaired users to browse graphical information using tactile and audio feedback. The system uses a graphics tablet which is augmented with a tangible overlay tile to guide user exploration. Dynamic feedback is provided by a tactile pin-array at the fingertips, and through speech/non-speech audio cues. In designing the system, we seek to preserve the affordances and metaphors of traditional, low-tech teaching media for the blind, and combine this with the benefits of a digital representation. Traditional tangible media allow rapid, non-sequential access to data, promote easy and unambiguous access to resources such as axes and gridlines, allow the use of external memory, and preserve visual conventions, thus promoting collaboration with sighted colleagues. A prototype system was evaluated with visually impaired users, and recommendations for multimodal design were derived

    Two-handed navigation in a haptic virtual environment

    Get PDF
    This paper describes the initial results from a study looking at a two-handed interaction paradigm for tactile navigation for blind and visually impaired users. Participants were set the task of navigating a virtual maze environment using their dominant hand to move the cursor, while receiving contextual information in the form of tactile cues presented to their non-dominant hand. Results suggest that most participants were comfortable with the two-handed style of interaction even with little training. Two sets of contextual cues were examined with information presented through static patterns or tactile flow of raised pins. The initial results of this study suggest that while both sets of cues were usable, participants performed significantly better and faster with the static cues

    Tele-media-art: web-based inclusive teaching of body expression

    Get PDF
    Conferência Internacional, realizada em Olhão, Algarve, de 26-28 de abril de 2018.The Tele-Media-Art project aims to promote the improvement of the online distance learning and artistic teaching process applied in the teaching of two test scenarios, doctorate in digital art-media and the lifelong learning course ”the experience of diversity” by exploiting multimodal telepresence facilities encompassing the diversified visual, auditory and sensory channels, as well as rich forms of gestural / body interaction. To this end, a telepresence system was developed to be installed at Palácio Ceia, in Lisbon, Portugal, headquarters of the Portuguese Open University, from which methodologies of artistic teaching in mixed regime - face-to-face and online distance - that are inclusive to blind and partially sighted students. This system has already been tested against a group of subjects, including blind people. Although positive results were achieved, more development and further tests will be carried in the futureThis project was financed by Calouste Gulbenkian Foundation under Grant number 142793.info:eu-repo/semantics/publishedVersio

    Sonification of guidance data during road crossing for people with visual impairments or blindness

    Get PDF
    In the last years several solutions were proposed to support people with visual impairments or blindness during road crossing. These solutions focus on computer vision techniques for recognizing pedestrian crosswalks and computing their relative position from the user. Instead, this contribution addresses a different problem; the design of an auditory interface that can effectively guide the user during road crossing. Two original auditory guiding modes based on data sonification are presented and compared with a guiding mode based on speech messages. Experimental evaluation shows that there is no guiding mode that is best suited for all test subjects. The average time to align and cross is not significantly different among the three guiding modes, and test subjects distribute their preferences for the best guiding mode almost uniformly among the three solutions. From the experiments it also emerges that higher effort is necessary for decoding the sonified instructions if compared to the speech instructions, and that test subjects require frequent `hints' (in the form of speech messages). Despite this, more than 2/3 of test subjects prefer one of the two guiding modes based on sonification. There are two main reasons for this: firstly, with speech messages it is harder to hear the sound of the environment, and secondly sonified messages convey information about the "quantity" of the expected movement
    • …
    corecore