1,387 research outputs found

    Genetic Code and Number Theory

    Full text link
    Living organisms are the most complex, interesting and significant objects regarding all substructures of the universe. Life science is regarded as a science of the 21st century and one can expect great new discoveries in the near futures. This article contains an introductory brief review of genetic information, its coding and translation of genes to proteins through the genetic code. Some theoretical approaches to the modelling of the genetic code are presented. In particular, connection of the genetic code with number theory is considered and the role of pp-adic numbers is underlined.Comment: 15 pages. To apper in "Modern Topics in Science", a book of invited papers (Eds. R. Constantinescu, G. Djordjevic, Lj. Nesic

    BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction

    Get PDF
    A novel discrete mathematical approach is proposed as an additional tool for molecular systematics which does not require prior statistical assumptions concerning the evolutionary process. The method is based on algorithms generating mathematical representations directly from DNA/RNA or protein sequences, followed by the output of numerical (scalar or vector) and visual characteristics (graphs). The binary encoded sequence information is transformed into a compact analytical form, called the Iterative Canonical Form (or ICF) of Boolean functions, which can then be used as a generalized molecular descriptor. The method provides raw vector data for calculating different distance matrices, which in turn can be analyzed by neighbor-joining or UPGMA to derive a phylogenetic tree, or by principal coordinates analysis to get an ordination scattergram. The new method and the associated software for inferring phylogenetic trees are called the Boolean analysis or BOOL-AN

    Implementation of the Combined--Nonlinear Condensation Transformation

    Full text link
    We discuss several applications of the recently proposed combined nonlinear-condensation transformation (CNCT) for the evaluation of slowly convergent, nonalternating series. These include certain statistical distributions which are of importance in linguistics, statistical-mechanics theory, and biophysics (statistical analysis of DNA sequences). We also discuss applications of the transformation in experimental mathematics, and we briefly expand on further applications in theoretical physics. Finally, we discuss a related Mathematica program for the computation of Lerch's transcendent.Comment: 23 pages, 1 table, 1 figure (Comput. Phys. Commun., in press

    On the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source

    Get PDF
    In this paper, we develop an explicit formula allowing to compute the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source. We derive efficient algorithms allowing to deal both with low or high complexity patterns and either homogeneous or heterogenous Markov models. We then apply these results to the distribution of DNA patterns in genomic sequences where we show that moment-based developments (namely: Edgeworth's expansion and Gram-Charlier type B series) allow to improve the reliability of common asymptotic approximations like Gaussian or Poisson approximations
    corecore