In this paper, we develop an explicit formula allowing to compute the first k
moments of the random count of a pattern in a multi-states sequence generated
by a Markov source. We derive efficient algorithms allowing to deal both with
low or high complexity patterns and either homogeneous or heterogenous Markov
models. We then apply these results to the distribution of DNA patterns in
genomic sequences where we show that moment-based developments (namely:
Edgeworth's expansion and Gram-Charlier type B series) allow to improve the
reliability of common asymptotic approximations like Gaussian or Poisson
approximations