
BOOL-AN: A method for comparative sequence analysis 
and phylogenetic reconstruction

Éena Jakó a,b,c,*, Eszter Ari a,b,d, Péter Ittzés a,e, Arnold Horváth a, János Podani a,b

a eScience  Regional  Knowledge  Center,  Eötvös  Loránd  University,  H-1117  Budapest, 
Pázmány Péter sétány 1/A, Hungary
b Department of Plant Taxonomy and Ecology, Eötvös Loránd University, H-1117 Budapest,  
Pázmány Péter sétány 1/C, Hungary
c Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences,  
Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
d Department of Genetics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány  
1/C, Hungary
e Collegium Budapest, Institute for Advanced Study, H-1014 Budapest, Szentháromság u. 2,  
Hungary

* Corresponding author:

Éena Jakó
Address: Theoretical Biology and Ecology Research Group of the Hungarian Academy of 
Sciences, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117, Hungary

Phone: +36-1-381 21 87

Fax: +36-1-381 21 88

E-mail: jako@elte.hu; jakoeena@gmail.com

Jakó	
  É,, 	
  Ari 	
  E, 	
   IAzés 	
  P, 	
  Horváth	
  A, 	
  Podani 	
   J 	
   (2009) 	
  BOOL-­‐AN: 	
  A	
  method	
   for 	
  compara@ve	
  

sequence	
  analysis	
  and	
  phylogene@c	
  reconstruc@on	
  Mol	
  Phylogenet	
  Evol.	
  52(3)	
  887-­‐97.

doi:	
  10.1016/jympev.2009.04019

http://www.sciencedirect.com/science/article/pii/S1055790309001584

mailto:jakoeena@gmail.com
http://www.sciencedirect.com/science/article/pii/S1055790309001584


Abstract
A novel  discrete  mathematical  approach is  proposed  as  an  additional  tool  for  molecular 

systematics which does not require prior statistical assumptions concerning the evolutionary 

process. The method is based on algorithms generating mathematical representations directly 

from DNA/RNA or protein sequences, followed by the output of numerical (scalar or vector) 

and visual characteristics (graphs). The binary encoded sequence information is transformed 

into a  compact  analytical  form, called the Iterative Canonical  Form (or  ICF) of  Boolean 

functions, which can then be used as a generalized molecular descriptor. The method provides 

raw vector data for calculating different distance matrices, which in turn can be analyzed by 

neighbor-joining  or  UPGMA to  derive  a  phylogenetic  tree,  or  by  principal  coordinates 

analysis to get an ordination scattergram. The new method and the associated software for 

inferring phylogenetic trees are called the Boolean analysis or BOOL-AN.

Keywords: molecular systematics, discrete mathematical method, molecular codes, molecular 

descriptors, Iterative Canonical Form, ICF, Boolean analysis, BOOL-AN, phylogenetic tree.

Abbreviations: BOOL-AN: Boolean Analysis, ICF: Iterative Canonical Form; NJ: neighbor-

joining; UPGMA: Unweighted Pair Group Method with Arithmetic mean; PCoA: Principal 

Coordinates Analysis.



1. Introduction
Molecular  systematics  involving  phylogenetic  reconstruction  and  comparative  sequence 

analysis  is  increasingly  relevant  to  different  disciplines  such  as  epidemiology,  genetics, 

applied and environmental microbiology, developmental biology, biochemistry, and molecular 

diagnostics. Its methods help us better understand evolutionary and functional relationships 

through  the  analyses  of  DNA/RNA  or  protein  sequences.  The  background  of  such 

applications is extensively studied at all available levels. These range from the evaluation of 

structure and function of individual gene or protein sequences to analyses of characteristic 

patterns  or  frequencies  of  base  distributions  in  families  of  functionally  or  evolutionarily 

related sets of sequences in the genome or proteome-level analyses. 

The widely used tree construction methods of molecular systematics are all based on 

stochastic or probabilistic models, starting with proper sampling and alignment of sequences. 

Differences arise in model selection for molecular evolution and the definition of their basic 

statistical assumptions (Felsenstein, 1985; Hillis et al., 1994; Huelsenbeck et al., 2002; Lio 

and Goldman, 1998; Miyamoto and Fitch, 1995; Penny and Hendy, 1986; Penny et al., 1992, 

2001; Steel et al., 1993; Sullivan and Joyce, 2005). Critical reviews of dominant approaches 

including maximum parsimony, distance methods, likelihood methods and Bayesian inference 

of phylogeny are given by Swofford et al. (1996), Sullivan and Swofford (2001), Huelsenbeck 

et al. (2001; 2002), Brocchieri (2001), Holder and Lewis (2003), and Felsenstein (2004).

Some alternative approaches have also been suggested that are based on analyses of 

entire genomes (or proteomes) by using genomic signatures (Karlin and Burge,  1995),  or 

appearances and frequencies  of  characteristic  sequence patterns  (Gupta,  1998;  Karlin  and 

Burge, 1995; Karlin et al., 1997). Recently, in cases of more complex evolutionary scenarios, 

the  application  of  phylogenetic  networks  (Huson  et  al.,  2006),  and  other  alternative 



approaches for exploring sets of phylogenetic trees by analysis and visualization of a tree 

space (Hillis et al., 2005) have been proposed.

The traditional models of molecular evolution generally treat sequences as collections 

of “independently and identically” distributed sites (Cavender, 1978; Farris, 1973; Hasegawa 

et al., 1985). In order to avoid computational difficulties, it is assumed that all nucleotide or 

amino  acid  positions  and  changes  along  the  sequence  (and  anywhere  on  the  tree)  are 

independent (Swofford and Olsen, 1990; Penny et al., 1991). An exception is the method of 

phylogenetic invariants as extended to any number of taxa (Steel et al. 1993) which does not 

assume  that  mutation  is  independent  over  the  sites.  Thus,  in  contrast  to  chemical  and 

biochemical approaches, the positional information, linear ordering and interconnections of 

sequence elements (nucleotides or amino acids) are disregarded by these methods.

As  far as the application of molecular systematics in chemistry or biochemistry is 

concerned, considerable efforts have been made to develop visual and computational methods 

for  studying  individual  gene  or  protein  sequences,  their  structures,  functions,  repetitive 

sequences,  and  nucleotide  or  amino  acid  frequencies  (Roy  et  al.,  1998).  For  studying 

structural relationships in individual macromolecules, the most preferred algorithms are based 

on  graph-theoretical  methods.  One  of  the  main  drawbacks  of  the  graph-theoretical 

representations suggested thus far is, however, that the time complexity of standard graph 

similarity measures is exponential to the number of nodes (Redelings and Suchard, 2005). A 

number  of  algorithms  generating  first  visual  representations  of  DNA/RNA and  protein 

sequences and followed by derivation of numerical characteristics have also been proposed. 

(Hamori, 1985; Liao, 2005; Nandy, 1996; Randič et al., 2000, 2003, 2007; Yau et al., 2003). 

With  increasing  number  and  length  of  sequences,  these  algorithms  encounter  serious 

computational  difficulties.  In  addition,  since  the  encoding  of  the  primary  sequence 

information is biased in most cases, the above methods for 2D/3D visual representation may 



produce different numerical characteristics and ambiguous phylogenetic trees.

As far as the actual problems of molecular biology are concerned, one needs effective 

computational methods that (i) allow the generation of accurate trees for a relatively great 

number of functionally and/or evolutionarily related sets of sequences with natural-length, (ii) 

do not contradict in their methodological basic assumptions to known biochemical concepts 

of structure and function and mechanisms of molecular evolution, and (iii) can be used on 

different organizational levels (e.g., from comparative analysis of single macromolecules to 

genome or proteome level analyses). These are the points we would like to emphasize in this 

paper by suggesting that, although several, more or less sophisticated tree building procedures 

exist,  new  discrete  mathematical  approaches  that  consider  information  conveyed  by 

macromolecular data in a way acceptable for both chemical and biological applications may 

prove useful in a confirmatory approach.

The proposed novel discrete mathematical approach is based on algorithms generating 

mathematical  representations  directly from  DNA/RNA or  protein  sequences.  The  binary 

encoded  sequence  information  is  transformed  into  a  unique  analytical  form,  called  the 

Iterative Canonical Form (ICF) of Boolean functions (Jakó, 1983, 1985; Ittzés et al., 2005), 

used as generalized Boolean descriptors (Jakó, 2007). Depending on the objectives of the 

analysis, the analytical expression of the ICF provides further molecular descriptors in scalar, 

vector,  matrix  or  graph-theoretical  forms.  This  procedure  continues  with  a  definition  of 

distances computed on the basis the proposed Boolean descriptors.  In turn,  the computed 

distances are subjected to neighbor-joining (Saitou and Nei, 1987) or other distance based tree 

generating algorithms as well as multidimensional scaling. By analogy to the term “Bayesian 

analysis”, this new method is referred to as “Boolean analysis” and is abbreviated as BOOL-

AN.



2. Method
The  main  steps  of  the  BOOL-AN for  numerical  characterization  and  tree  generation  for 

functionally  and/or  evolutionarily  related  sets  of  sequences  (DNA/RNAs or  proteins)  are 

illustrated in Figure 1.

As a first step, the set of sequences under consideration should be aligned, possibly 

according to their known secondary structures. Second, for each type of nucleotide or amino 

acid,  the  sequence  information  is  represented  in  discrete  mathematical  terms  by  using  a 

system of binary strings or Boolean functions,  considered as generalized molecular codes 

(Jakó, 2007). The encoded sequence information is then ordered in metric space (binary n-

cube),  followed  by  transformation  into  a  unique,  logically  reduced  analytical  form,  the 

Iterative Canonical Form (or ICF) of Boolean functions. The subformulae of the ICF are used 

as  mathematical  invariants for  identification  and  classification  or  generalized  molecular 

descriptors. The proposed molecular codes and molecular descriptors are unique, compact and 

complete, allowing reconstruction without loss of the sequence information. The numerical or 

vectorial  representations  of  the  ICF  subformulae  are  used  to  represent  functional  or 

phylogenetic relationships on the basis of different distance functions (Euclidean, Jaccard, 

Manhattan, etc.). For this purpose, the tree generating algorithm requires simultaneous storage 

of  the  molecular  descriptors  and  the  distance  matrix.  Metric  multidimensional  scaling 

(Principal Coordinates Analysis, PCoA, see e.g., Podani 2000) provides an alternative display 

of relationships in terms of ordination scattergrams. Furthermore, the ICF subformulae can be 

used  for  generating  graph-theoretical  representations  of  the  primary  structures.  The  ICF 

graphs  are  non-complete  bipartite  graphs,  in  which  the  colored  (or  uncolored)  vertices 

correspond to  the  presence (or  absence)  of  the elements  (nucleotides  or  amino acids)  on 

certain  sequence  positions.  According  to  our  previous  results,  the  functionally  or 

evolutionarily  related  sets  of  sequences  have  similar  analytical,  vector  or  matrix 

representations,  and  similar  topology  of  the  ICF  graphs.  It  is  important  that  the  initial 



sequence information can be unambiguously restored from the analytical expressions of the 

ICF as well as from the ICF graphs. These important properties of BOOL-AN facilitate its 

application  to  comparative  sequence  analysis  at  the  level  of  individual  DNA/RNAs  (or 

proteins) as well as to functionally or evolutionarily related sets of sequences in a broad range 

of applications.

2.1. Encoding the sequence information and ordering in metric  
space

The initial sequence information is specified by a disjoint system of binary strings or Boolean 

functions, considered as generalized molecular codes. A Boolean function f of n variables is a 

function f(x1, …, xn), in which each binary variable xi (or its complement x’i) is 1 or 0. The 

value of function f is also 1 or 0. The combinations of binary variables x1, …, xn are used for 

encoding  the  positional  information,  whereas  the  values  of  function  f encode  the 

presence/absence of data for a certain type of nucleotide residue. Thus, the presence/absence 

of characters (e.g., nucleotides A, T, C, or G) in certain positions is encoded by listing all of 

the on-set (‘1’) and off-set (‘0’) values of the corresponding Boolean function, represented by 

its designation number DN(f). That is, the 1-s encode the positions where a certain type of 

nucleotide  is  present,  whereas the  0-s  refer  to  the  positions  from which  a  given type  of 

element is absent (including gaps indicated by ‘–‘for alignment).  The designation number 

DN(f) = (f 0 , f 1, ..., f 2 n-1) of a Boolean function is unambiguous, while a fixed order: 0 - 2n-1 

(or 1 - 2n) of listing these values is assumed. Note that the sequence information can also be 

specified by using only the  on-set values of functions  f (x1, ..., xn) expressed in  equivalent 

binary or decimal forms. Here, the number of variables  n is defined according to the actual 

sequence length L (L  2n). In other words, n=ceiling log2L  where the ceiling function 

returns the next greater integer. For example, for encoding a nucleotide sequence with length 

L = 1000 we should have a system of m = 4 Boolean functions with n = 10 variables (since 210 



= 1024), whereas for encoding a protein sequence of the same length, a system of  m = 20 

Boolean functions with n = 10 variables are necessary. An example for encoding the sequence 

information for an arbitrary nucleotide sequence by using the proposed molecular codes in 

different forms is shown in Figure 2.

To  organize  the  sequence  data  and  to  characterize  possible  relationships,  it  is 

important to have an appropriate space of representations (Eigen, 1987). The binary encoded 

initial sequence information should be ordered on a Boolean n-cube, a graph whose vertex set 

consists of all the 2n binary n-tuples. In other words, the binary n-cube is a partially ordered 

set  or  metric  space,  conventionally  denoted  by (Bn,  ).  Two vertices  are  adjacent  if  the 

corresponding n-tuples differ in exactly one coordinate position. The number of vertices on 

each level of the n-cube is determined according to the Pascal triangle: n0  + n1  + … + 

 nn−1 + nn  = 2n. For example, if n = 4, then the number of vertices on the k = 0,n  levels 

of the n-cube will be 1+4+6+4+1 = 16.

There  are  two  main  alternative  possibilities  of  ordering  the  initial  sequence 

information in sequence space: the linear (or total) ordering (denoted by ’’) or the partial 

one (denoted by ’’). In case of  linear ordering the decimal equivalents correspond to the 

lexicographic  order  of  the  positional  numbers,  whereas  in  case  of  partial ordering  the 

positional numbers correspond to the ordering of vertices at the k levels of the n-cube, where 

k (k = 0,n ) is the number of 1s in the binary vectors labeling the vertices. Correspondingly, 

the sets of vertices of rank k=1: {(0,0,0,1),(0,0,1,0), (0,1,0,0),(1,0,0,0)} are ordered on the first 

level, the sets of vertices of rank k = 2: {(0,0,1,1),(0,1,0,1),(0,1,1,0),(1,0,0,1),(1,1,0,0)} appear 

at the second level, and so on. The colored vertices from the lower levels, connected with 

some higher  level  vertices  are  in  relation of  inclusion ()  or  partial  order.  For  example, 



(0,0,0,1)(0,0,1,1) or (0,0,1,0)}  {(0,0,1,1),(0,1,1,0)}. This binary relation of partial order is 

then used in  the  proposed algorithm for  logical  partitioning to  derive  some characteristic 

logically reduced subsets of elements for analytical and graph representations of the initial 

sequence information.

2.2. Iterative Canonical Form (ICF) of Boolean functions
For  generating  mathematical  representations directly  from DNA/RNA primary  sequences, 

here we use the Iterative Canonical Form (ICF) of Boolean functions (Jakó, 1983; 1985) as 

generalized molecular descriptors. In order to obtain the general analytical expressions of the 

ICF, the BOOL-AN program performs logical partitioning and minimization of the initial data 

structure Mf,  ordered on the  corresponding Boolean n-cube (Bn,  ).  Here,  the union and 

intersection of the binary n-cube subsets can be considered as a single partition, where  Mf = 

M f
1 M f

0 , and M f
1 M f

0  = . By logical partitioning and minimization according to 

the algorithm of the ICF, the elements of the sets M f
1  and M f

0  are transformed into some 

logically reduced, mutually disjoint  subsets of elements Si,1M f
1 ,  and Si,0M f

0 .  There 

exists a one-to-one correspondence between the set of all binary vectors of the n-cube and the 

set of all monotone conjunctions of rank 0,1, …,n in the analytical expression of the ICF. For 

computing the subsets {Si1, Si0}, the ICF algorithm exploits the partial order relation between 

the  vertices  of  the  colored  Boolean  n-cube.  For  this  purpose,  two  logical operations  for 

reduction (β) and extension (α) of binary vectors are introduced, and termed the β- reduction, 

and α-extension, respectively. The operation of  β-reduction takes the given subset M f
1 (M

f
0 ) to the set of its minimal elements, whereas the operation of α-extension takes the subset 

M f
1 (M f

0 )  to  the  union of  its  elements,  defined by the  corresponding intervals  on the 

binary n-cube.



The main steps of the algorithm of the ICF for derivation of the structural units {Si1, 

Si0} by using the operations β and α are as follows:

Define the initial data sets: M f
1  and M f

0 .
1.Open an empty list L of sets. Assign  = M f

1 , i = 1; j=1;
2.Until the cyclic reminder  =  do

Calculate Si1 = β(M) and insert the set Si1 into the list L of temporary results.
Calculate the even cyclic reminder i0 = αSi1  M f

0 .
Calculate Si0 = β(M) and insert the set Si,0 into the list L of temporary results.
Calculate odd cyclic reminder i1=αSi0  M f

1 .
Assign i = i + 1.

When the algorithm terminates, the list L will contain the sets of structural units
Si1 and Si0.

Remark: Here i (i < n-1) is the number of iteration steps. whereas j = (1,0) denotes the parity 

of the cyclic reminder ij used for calculation of the structural units Sij in the given iteration 

step i. Here Si,j  M f
1 for j=1, and Si,j  M f

0  for  j=0, respectively. The process of logical 

partitioning is finished when any of the odd or even cyclic reminders  ij becomes empty. 

Obviously, if  i0 = , then Si0 = , and will not be represented in the formulae, since Si0 = 

1, where the sign ‘’denotes the logical operation of negation.

When the algorithm terminates, we can build the analytical expression of the ICF from 

the computed structural units by substitution of the elements of the subsets Si,1 and Si,0 into the 

subformula (φ1iφ0i), where φ1,i and φ0,i are disjunctions of monotone conjunctions. As a final 

result, the general expression of the Iterative Canonical Form (ICF) of Boolean functions will 

be as follows:

f(x1, …, xn) = ϕ1i∧¬ϕ0i ¿ , where i  [n+12 ]
As seen from Figure 3i, by applying simple rules the initial data set can be unambiguously 

restored from the ICF structural invariants based on the relation of inclusion (or partial order) 

between the connected nodes of the n-cube B3,. Thus, the black nodes (Si,1  M f
1 ) generate 



(i.e. recolor to black) all the connected nodes at the higher levels of the n-cube, whereas the 

white or empty nodes (Si,0  M f
0 ) prohibit all the connected nodes at higher levels, and 

prohibition has priority. 

2.3. Distance calculation
In order to obtain the ICF-based distances between two nucleotide sequences, we start from 

the calculation of the matrix  D of between-object distances or dissimilarities, based on the 

structured set results {Si1 and Si0}. The binary string representations of the four characters 

result  in  four  ICF  sets.  To  extract  all  the  biologically  important  information  from  the 

nucleotide  sequences  predefined  by  the  positions  and chemical  ordering  of  elements,  we 

applied the ICF algorithm from both directions (5‘-3‘and 3‘-5‘ for DNA/RNAs or N-terminal 

to C-terminal and the reverse for protein sequences, respectively). For example, in this way, 

each nucleotide sequence is represented by 4×2 = 8 ICF sets. In order to get contingency 

information  on  two  sequences,  the  respective  ICF  sets  are  compared.  The  number  of 

congruent positions in the respective subsets (for the same character, and iteration step) is a, 

while the differences are reflected by b or c. Here b stands for the number of positions which 

were found in the first sequence only, while c represents the number of positions restricted to 

the second sequence. In other words, a, b and c are the values in three cells of the usual 2×2 

contingency table. Distance calculation is demonstrated through a simple example, calculated 

by the BOOL-AN software (see Figure 4), where the ICF was calculated with linear ordering, 

only for one direction (left-to-right). In case of real sequences, this process should be repeated 

for all the four characters and in both chemical directions. To calculate distance matrices from 

the  ICF  results,  two  well-known  measures  were  used.  The  Euclidean  distance  is 

EDxy=b+c ,  whereas  the  Jaccard  similarity  index  is  calculated  as  JACxy=
a
a+b+c  



(Podani, 2000), where a, b and c stand for the cells of the respective contingency table. The 

Jaccard-index may be transformed into a distance by  JACDxy=1−JACxy .  Examples of 

matrices calculated by these measures are shown in Table 1 for a combined dataset derived for 

12 mammal species (Penny et al., 1991).

Regarding  distance  calculations  based  on  the  ICF-graphs,  it  should  be  noted  that 

among suboptimal matching algorithms recently preferred techniques apply  bipartite graph 

matching,  which  is  considerably  simpler  than  arbitrary  graphs,  and  can  be  solved  in 

polynomial time (Riesen et al., 2007). In our case, there is a matching between two sets of 

nodes (Si1 and Si0) with a merged graph structure (for the four characters A, T, C, and G 

represented on a single n-cube). Correspondingly, the dissimilarity of two ICF graphs can be 

defined by determining the minima of distortions needed to transform one graph into the other 

(Riesen et al., 2007).

2.4. Visualization of results
Generation of trees from the ICF distance matrices is performed by the unweighted pair group 

method (UPGMA), or neighbor-joining (NJ) supplied within the BOOL-AN software (or by 

the NEIGHBOR program of the PHYLIP program package (Felsenstein, 2005)). The distance 

relationships among sequences can also be represented as two or three dimensional ordination 

scattergrams by using principal coordinates analysis, as well as in the form of ICF graphs.

2.4.1. Visualization in form of trees
In UPGMA, the distance between two groups of objects is understood  to be the arithmetic 

average of all between-group distance values. The well-known steps are (i) in the dissimilarity 

matrix  D the reciprocally  nearest  pairs  of  objects  (or  groups)  are  identified to  form new 

groups, (ii) the distances between the newly obtained groups and all others are recalculated by 

considering the number of objects previously merged in each group. Calculations continue 

until all objects are merged into a single group.



By the neighbor-joining (NJ) method, the evolutionary distances are represented as an 

additive tree (Podani, 2000). This tree may be rooted in different ways, usually to an outgroup 

or by the midpoint method. The major difference between UPGMA and rooted NJ trees is that 

in the first all objects are equidistant from the root, which is usually not so in NJ trees.

An  example  of  visualization  of  a  tree  derived  from the  combined  dataset  for  12 

mammals (Penny et al., 1991) and for the same dataset with randomized site order by using 

the BOOL-AN software (ICF algorithm) and standard methods is shown in Figure 5: BOOL-

AN (a  and  d),  maximum parsimony (b  and  e); Bayes statistical, maximum likelihood and 

minimum evolution with neighbor-joining trees (c and  f); from the original sequences and 

from the randomized sequences as well.  Maximum parsimony trees were searched by the 

branch-and-bound  exact  algorithm (Penny  et  al.  1982)  using  program PAUP*  (Swofford 

2003).  The  MRBAYES  program  (Huelsenbeck  &  Ronquist  2001)  was  used  to  generate 

Bayesian trees with the GTR nucleotide substitution model, 25% burn in and MC3 running for 

1 million generations. Minimum evolution analysis with the parameter model suggested by 

Felsenstein (1984) with neighbor joining (Saitou & Nei 1987) was performed by PHYLIP 

(Felsenstein 2005). Maximum likelihood analysis was also done by PAUP* with settings from 

the best-fit model (Felsenstein 1981). 

As seen from this example, the standard phylogenetic methods were not sensitive to 

the  rearrangement  of  the  sequence  sites.  After  randomization  of  the  initial  ordering  of 

sequence sites, these trees did not change their topology (tree b = tree e; tree  c = tree f). In 

contrast, the BOOL-AN produced a different topology (tree a  tree d), since for the BOOL-

AN, the positional information and ordering of sequence sites are essential, whereas standard 

molecular phylogenetic methods ignore them. What is biologically important in this result is 

that the BOOL-AN tree (Fig. 5a) is the only one which includes the clade of Euarchontoglires 

(i.e.,  primates  sister  to  the  group  of  rabbits  and  rodents,  cf.  Murphy  et  al.  2001).  The 



performance of BOOL-AN and the known methods of phylogenetic tree generation will be 

evaluated based on mitochondrial tRNA sequences of great apes in a forthcoming survey. 

We also tested  the  performance of  BOOL-AN on  simulated DNA sequences.  The 

simulations were made by the seq-gen sequence generator (Rambaut and Grassly 1997) along 

a predefined tree with ten ingroup taxa and an outgroup. 500 and 1000 bases long sequences 

were  generated  under  the  HKY (Hasegawa  et  al  1985)  and  GTR+G+I  (Tavaré  1986) 

nucleotide  substitution  models.  All  the  eight  possible  combinations  of  three  BOOL-AN 

parameters (linear or partial coding, starting position 0 or 1, Euclidean or Jaccard distance) 

were applied. In most cases (12 out of 16), the BOOL-AN tree had the same topology as the 

predefined one, and the remaining four trees were only slightly different from the original 

one.

2.4.2. Visualization in form of scattergrams
The structure of the distance matrix obtained through the ICF method can also be visualized 

as a 2D (or 3D) scattergram by a multidimensional scaling algorithm. Principal Coordinates 

Analysis (PCoA) has been most commonly applied to produce a metric ordination of objects 

according to their distances or dissimilarities. The main steps involve the following:  (i) the 

distance matrix is transformed into another symmetric matrix considered as a cross-products 

matrix  among  objects  (ii),  the  cross-products  matrix  is  analyzed  for  eigenvalues  and 

eigenvectors which in turn are used to calculate the coordinates of objects themselves. PCoA 

is included in the BOOL-AN program. The 2D or 3D scattergrams may be displayed by the 

3D Studio software (Anderson, 2008) or SYN-TAX 2000 (Podani, 2001). An example for 

visualization of the previous example by a 3D scattergram is shown in Figure 6.



2.4.3. Visualization in form of ICF graphs
In the field of structural pattern recognition and classification, graphs constitute a powerful 

way  of  representing  discrete  objects  (e.g.,  RNA/DNAs).  Noteworthy,  graphs  allow us  to 

describe relational information between the elements of the structures. As it was mentioned 

before,  one  of  the  main  drawbacks  of  graphic  representations is  that  the  computation  of 

measures of standard graph similarity is exponential to the number of involved nodes. Thus, 

such computations with known methods are feasible only for relatively small graphs, usually 

with maximum 60 nodes (Riesen et al., 2007). Here, we propose a novel, efficient method for 

computing  distances  between  molecular  descriptors  by  matching  non-complete  bipartite 

graphs, derived from the Iterative Canonical Forms (or ICF) of Boolean functions and named 

ICF-graphs. An exploration of the proposed sequence space and visualization of the sequence 

information for two types of nucleotides (G and T) by using the ICF-graphs are given in 

Figure 7 on samples of the combined dataset for ape, human and dog (Penny et al., 1991). As 

seen, for evolutionarily more closely related species (ape and human) the topology of the ICF 

graphs is very similar, whereas it differs substantially from the topology of the ICF graph 

derived for dog.

3. The BOOL-AN software
A prototype  of  a  software  package  has  been  made  for  comparative  sequence  analysis, 

reconstruction  of  phylogenetic  trees,  and  supervised  (Jakó  et  al.,  2007)  or  unsupervised 

classification, based on ICF, which combines several functionalities. These include commonly 

used input formats, a sequence editor, the ICF algorithm, an ICF graph generating algorithm 

to estimate sequence similarity, a variety of distance metrics, graphical, text and printable 

outputs, and export to other programs. The ICF program package can be interfaced easily to 

the  SYN-TAX  2000  multivariate  statistical  package  (Podani  2001)  and  to  the  PHYLIP 

program package (Felsenstein, 2005). After loading the input sequences (in fasta and PHYLIP 

interleave  or  sequential  formats),  the  software  computes  the  ICF  molecular  descriptors 



(subsets Sij) in different (binary or decimal) forms. From these subsets, distance matrices can 

be calculated by different functions (e.g., Jaccard or Euclidean). At the end of the process, the 

BOOL-AN software can generate trees (NJ or UPGMA) or metric multidimensional scaling 

(PCoA) ordinations from the distance matrices. The ICF Sij subset can be saved as a text file; 

the distance matrices as text or PHYLIP lower matrix format or SYN-TAX 2000 format; and 

the trees as a picture file or in newick format (suitable for example for TreeView software 

(Page, 1996)); and the PCoA results in 3D Studio or SYN-TAX 2000 format. The ICF graph 

outputs can be visualized with Yed software (yWorks, 2008). The BOOL-AN software can 

generate a phylogenetic tree and it is possible to zoom the graph in and out at each node. 

Owing to the ICF algorithm and the effectiveness of the programs, the BOOL-AN software 

performs  the  computations  for  average  length  sequences  (e.g.,  from 100  to  few  tens  of 

thousands bases) extremely fast, actually within seconds. Table 2 shows the time (in seconds) 

needed to complete ICF calculations with BOOL-AN. Note that the BOOL-AN software is 

platform independent (it is based on JAVA), and has graphical setup for Windows. A User’s 

manual  is  also  supplied  with  the  program.  A demo  version  of  the  software  is  freely 

downloadable from http://ramet.elte.hu/ICF.

4. Discussion
In  most  of  the  current  methods of  phylogeny  reconstruction,  emphasis  is  focused  on 

computationally  efficient  algorithms  that  have  been  implemented  and  tested  on  real  and 

simulated data (Karlin, 2005). It is also imperative to have a system of compatible models and 

software  which  can  be  used  in  different  fields  and  at  different  organizational  levels. 

Concerning molecular systematics, critical attention has been paid recently to the problems of 

inferring evolutionary distances from patterns of similarity between sequences (Schwartz and 

Maresca, 2006). According to the basic, and generally accepted assumption by Zuckerkandl 

and Pauling (1962),  the degree of  molecular  similarity  reflects  the degree of  relatedness. 

http://ramet.elte.hu/ICF


“However, the relationship between evolutionary distance (distance in the tree) and sequence 

dissimilarity is not linear and other complications arise: for example, the rate of substitutions 

can vary across the tree and across the sequence sites” (Steel, 2005). It can be concluded, 

therefore, that some principal restrictions that are due to the basic assumptions of similarity 

based  methods,  cannot  be  avoided  in  the  framework  of  statistical  models.  The  standard 

sequence analysis and phylogenetic methods tend to group sequences on the basis of their 

nucleotide composition (Lockhart et al., 1994), whereas the positional information, ordering 

and interrelations of elements are completely neglected.

Mathematical  models,  assuming  that  sites  evolve  at  different  rates  (Chang,  1996; 

Fitch, 1971; Uzzell and Corbin, 1971; Yang, 1996) may in principle allow the recovery of 

some ancient divergences if we require that each site maintains its characteristic rate over the 

entire evolutionary period (Penny et al.,  2001). However, this assumption contradicts with 

results of structural biology which suggest that tertiary structures should diverge with time 

during  the  evolution  (Penny  et  al.,  2001).  There  is  a  substantial  amount  of  evidence 

suggesting also that the interactions of neighbouring or even relatively distant sites can have a 

strong influence on types and rates of mutational events which may occur at a given sequence 

position (Arndt et al., 2003).

Furthermore, the widely used distance methods assume that, in general, minor changes 

in gene or protein sequences lead only to minor changes in functional properties. The validity 

of this assumption is by no means guaranteed, however. For instance,  in vivo and  in vitro 

tRNA identity  conversion  experiments  (Giegé  et  al.,  1998;  Hou  and  Schimmel,  1988; 

McClain  and  Foss,  1988;  McClain  et  al.,  1991;  Normanly  et  al.,  1992)  ascertained  that 

functional equality or differences can be revealed irrespective of sequence  similarities. It is 

known that tRNAs that have quite similar sequences may be charged by different amino acids, 

whereas  some  isoacceptor  tRNAs  are  quite  dissimilar  if  compared  using  sequential 



information.  This is  because some characteristic  structural  features (sets of  relatively few 

sequence elements) can be major determinants of the functional identity of tRNAs (Giegé et 

al., 1998, 2007).

Thus, in the context of  biochemistry, the statistical concept of sequence information 

based on  independence of  elements in  the primary structures should be revisited.  This is 

because in chemical and biological applications the sequences of DNA/RNA or proteins are 

considered  as  structural/functional  units,  where  the  positional  information,  ordering  and 

interrelations of elements are of primary importance. On samples of mammalian sequences it 

was shown (see Figure 5) that if we consider the sequence information as a “collection of 

independent characters”, the resulting trees do not change if the sites are randomly reordered. 

In contrast, if we consider the ordering of sites, as in the case of the BOOL-AN, then the trees 

obtained from the original and randomized sets of sequences will be different. Such a result 

seems  more  realistic,  according  to  the  biochemical  understanding  of  the  structural  and 

functional identity of natural macromolecules. It has been proven for all standard methods 

that reconstructing ancestral phylogenies is mathematically impossible if mutation rates are 

high and the number of characters is less than a low-degree polynomial in the number of taxa 

(Mossel  2003),  but  this  may  not  be  the  case  for  BOOL-AN,  because  this  method  uses 

positional information as well. 

In this paper, we proposed a novel discrete mathematical  approach  which does not 

require  prior  statistical  assumptions  about  the  sequence  information  or  the  evolutionary 

process. Instead of ‘random assemblages’ of elements, the sequences are considered as finite, 

linearly  ordered sets  of  symbols  which  represent  macromolecules  as  certain 

structural/functional units. In mathematical sense, ordered sets are the simplest kinds of all 

structures, whereas their characteristic properties can be considered as structural invariants.  

The most important novelty in the proposed method is therefore perhaps the possibility of 



formal representation of sequence information by generalized molecular codes and molecular 

descriptors  in  discrete  mathematical  terms.  As it  was  shown on numerous examples,  the 

method  allows  us  to  generate  mathematical  representations  directly  from  DNA/RNA or 

protein sequences, and then to derive numerical and visual characteristics. Note that the basic 

requirements formulated earlier by Read (1983) and Randič (1991) for chemical codes are 

satisfied by the proposed generalized molecular  codes and molecular  descriptors,  because 

these are:

• unique, that is, they are defined by strings of symbols corresponding to 

single partitions of ordered sets;

• compact,  that  is,  they  are  expressed  in  logically  reduced  analytical 

form, called the Iterative Canonical Form (ICF) of Boolean functions; and

• complete, in that they allow reconstruction without loss of information.

Thanks to these features, the ICF descriptors can reveal an inherent abstract structure 

of the nucleotide (or protein) sequences in different forms. This underlying abstract structure, 

in form of ICF invariants shows a correct size and gradual change dependence in the primary 

structures of macromolecules under consideration. The ICF descriptors produce numerical 

data  in  conventional  vector  and  matrix  formats  which  can  be  subsequently  evaluated  by 

distance-based  methods  of  tree  generation  (e.g.,  UPGMA  and  NJ)  and  metric 

multidimensional  scaling  (e.g.,  PCoA) to  reveal  characteristic  structural  properties  in  the 

sequence  space.  We  provided  the  BOOL-AN  software  to  complete  all  the  required 

calculations for the possible different forms of visualization, although the package flexibly 

interfaces with other programs as well, if one wishes to use alternative methods.

The ICF based tree construction (i.e. the BOOL-AN) may become more relevant for 

phylogenetic  studies  since  the method is  able  to  extract  additional  biologically  important 

structural information from DNA/RNA or protein sequences (such as orientation, positions 



and interrelations of  elements).  Also,  the method is  computationally effective,  due  to  the 

proposed  concepts  of  the  sequence  information  and  sequence  space  and  the  applied 

optimization algorithm (ICF) with global properties.

It is well-known that the initial concept of sequence space for proteins was proposed 

by Maynard Smith (1970), and reinvented afterwards by a number of authors (Eigen 1985, 

1987, 1988; Kauffman, 1993; Schuster, 1986; and others). The sequence space for protein (or 

nucleic acid) sequences is a high-dimensional space, which simultaneously represents a total 

number  of  all  possible  sequences  of  length  L,  that  is  20L proteins  (or  4L nucleic  acid 

sequences). The original idea of Maynard Smith was that if, in general, adaptive evolution 

occurs, then evolution is a ‘walk’ between adjacent vertices in protein space. The question is 

whether in order to improve the function such a walk is a “move” to a one-mutant neighbour 

or there can be certain “jumps” to higher level neighbours as well. Any peptide (or nucleotide 

sequence), which is “functionally improved” is a kind of “local optimum” in such a sequence 

space. However, if the natural alphabet and length of the sequences are considered, we have 

two principal difficulties in modeling adaptive walks in a sequence space. The first difficulty 

is  due  to  the  high  dimensionality  of  the  space  itself.  Second,  the  standard  heuristic 

optimization algorithms have local properties and thus they have tendency to converge to a 

local rather than a global optimum. It excludes also “jumps” between the different levels of 

the n-cube. The mathematical aspects and unsolved problems concerning local versus global 

properties  of  metric  spaces  motivated  by  applications  in  combinatorial  optimization  are 

discussed in a special literature (Tenenbaum et al. 2000, Silva and Tenenbaum 2003, Arora et 

al. 2006). 

Without  addressing the problem of dimension reduction in the general case, here we 

propose to define the concept of the sequence space on the level of individual DNA/RNA or 

protein sequences and their elements (nucleotides or amino acids), instead of “all possible 



sequences of length L”, as it is defined by the extant models. Thus, each point in our sequence 

space (Boolean n-cube) will represent the presence of a single nucleotide or amino acid site as 

a structural/functional unit of the given macromolecule. Since the dimensionality n in such a 

space can be  considerably reduced, the global optimization problem is not computationally 

heavy. The optimized ICF algorithm is able to handle Boolean functions with maximum 63 

variables (e.g., for sequences with length from 100 to few tens of thousands bases). It means 

also that the BOOL-AN software performs the computations for average length sequences 

extremely fast,  actually within seconds.  Similarly,  the ICF graphs can be derived without 

restrictions upon the number of nodes. Our method for estimating functional similarity by 

computing distances between the ICF-graphs was initially tested on different tRNA model 

systems. These results will be published elsewhere.

Note that the same  concept of sequence space can be used not only at the level of 

single  macromolecules,  but  for  the analysis  of  sets  of  sequences or  consensus sequences 

derived from functionally or evolutionarily related families of macromolecules. As mentioned 

above, the BOOL-AN software can handle sets of hundreds of sequences with natural length 

and, as a further step, it can be expanded (by redefinition of the alphabets of elements) to 

genome-level  analyses.  Therefore,  BOOL-AN  is  a  promising  tool  for  phylogenetic 

reconstruction and its use is suggested whenever increased “methodological support” of gene 

trees is required. This is especially the case for situations with fairly low phylogenetic signal.

5. Conclusions
The trends in molecular systematics indicate clearly a strong need for novel methods and 

computationally efficient algorithms that can be used for the analysis of functional and/or 

evolutionary  relationships  both  in  biological  and  chemical  contexts.  Since  phylogenetic 

methods are currently applied to extensive datasets and for proteome- or genome- level (e.g. 

for expressed sequence tags, single nucleotide polymorphisms (SNPs), genomic signatures, 



etc.) sequence analysis and phylogenetic methods at all levels should be considered. It is also 

important, therefore, that the methodological basic assumptions should not contradict known 

chemical concepts of structure and function on different organizational levels. The proposed 

BOOL-AN  software  can  be  used  also  for  congruence  analysis  and  evaluation  of  the 

conflicting results obtained with other methods and/or by using different data sets.
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Table captions

Table 1. ICF + Jaccard (a) and ICF + Euclidean (b) distance matrices for the combined data 
set of 12 mammals (Penny et al., 1991) with BOOL-AN settings as follows: partial ordering, 
starting position 1, and two chemical directions (bidirectional ordering).

Table 2. CPU time(s) required for ICF calculations by the BOOL-AN software.  ICF and 
BOOL-AN settings were as follows: linear coding, random sequences with equal nucleotide 
composition,  260  MB  used  memory.  Major  hardware  features  were:  Intel  Pentium  M, 
2.26GHz, 1GB Ram.



Figure captions

Fig.  1. Main  steps  of  the  BOOL-AN and  visualization  of  the  results.  a: alignment;  b: 
encoding  of  the  sequence  information;  c: ICF  computation;  d: distance  calculation; 
visualization:  e: ICF graphs,  f: tree construction (UPGMA, NJ),  g: metric multidimensional 
scaling (PCoA).

Fig. 2. Molecular codes for a nucleotide sequence of length L=15, a: specified by using the 
designation  numbers  of  Boolean  functions  DN(f)  =  A,  T,  C  or  G  for  each  type  of  the 
nucleotide residue, listing the site numbers in equivalent decimal (b) or binary (c) forms.

Fig. 3. The ICF calculation on n-cubes:
a) The initial data set Mf = M f

1  M f
0 , where M f

1  = {(0,1,0),(1,0,0),(0,1,1),(1,1,0)}  

B3, and M f
0 = {(0,0,0), (0,0,1),(1,0,1),(1,1,1)} B3.

b) The set β(M f
1 ) = β{(0,1,0),(1,0,0),(0,1,1),(1,1,0)} = {(0,1,0),(1,0,0)} = Si,1 as a result of 

β-reduction.
c) The set α(β(M) = α{(0,1,0),(1,0,0)} = {(0,1,0),(1,0,0),(0,1,1),(1,0,1)(1,1,0),(1,1,1)}  = (x,1,x)  
(1,x,x) = αSi1   is the result of α-expansion following the β-contraction.
d) Calculation of the even cyclic reminder i0 = αSi1  M f

0 = {(1,0,1),(1,1,1)}.
e) The β-reduction of the first cyclic reminder βi0 = Si,0 = (1,0,1).
f) Calculation of α-expansion αSi,0 = {(1,0,1),(1,1,1)}= (1,x,1).
g) Calculation of the odd cyclic reminder: i1 = αSi0  M f

1  = . Since the cyclic reminder 
i1 =  yields an empty subset, the iteration process terminates.
h) Result of the ICF computing: two disjoint logically reduced subsets of structural units
Si,1 = {(0,1,0),(1,0,0)}, and  Si,0 = (1,0,1).
i) Getting back the initial data set Mf from the structural units Si,1, and  Si,0  without loss of 
information. 

Fig. 4. Calculation of Jaccard and Euclidean distances between two binary strings: Encoding 
the positions for one type of nucleotide (e.g. adenine) of Sequences X and Y (a). The ICF 
subsets of the strings (b). Based on the cells of the 2×2 contingency table (c), a is the number 
of ICF subsets that are common in both ICF results, b is the number of ICF subsets that are 
characteristic  for  Sequence  X  exclusively  and  c is  the  number  of  ICF  subsets  that  are 
characteristic for Sequence Y exclusively (d). From the a, b and c values of the ICF subsets 
Euclidean (EDxy) and Jaccard (JACDxy) distances (e) were calculated (see text, for formulae).

Fig. 5. Trees derived from the original sequences of 12 mammals (Penny et al., 1991) (a-c) 
and from the randomized versions (d-e).

Fig.  6. Principal  Coordinates  Analysis  of  12 mammals  (Penny et  al.  1991)  based on the 
distance matrix of Table 1.

Fig. 7. Guanine (G) and thymine (T) ICF graphs derived for 3 mammalian sequences by using 
the  combined  dataset  (Penny  et  al.  1991).  (BOOL-AN settings:  partial  ordering,  starting 
position: 1, bidirectional ordering)



Tab.1

a) ICF + Jaccard distance
Kangaroo: 0.0         -      -      -      -      -      -      -      -      -      -      -
Monkey  : 0.6887 0.0         -      -      -      -      -      -      -      -      -      -
Sheep   : 0.7264 0.7421 0.0         -      -      -      -      -      -      -      -      -
Horse   : 0.6746 0.6635 0.6651 0.0         -      -      -      -      -      -      -      -
Rodent  : 0.7174 0.6532 0.7637 0.6405 0.0         -      -      -      -      -      -      -
Rabbit  : 0.7088 0.6828 0.7367 0.6247 0.5988 0.0         -      -      -      -      -      -
Dog     : 0.632  0.7166 0.769  0.652  0.6624 0.6523 0.0         -      -      -      -      -
Pig     : 0.6374 0.6359 0.5802 0.5141 0.626  0.6315 0.6516 0.0         -      -      -      -
Cat     : 0.7051 0.7411 0.7953 0.7207 0.6454 0.7185 0.5651 0.6795 0.0         -      -      -
Human   : 0.7473 0.3862 0.7635 0.6956 0.6902 0.669  0.7366 0.6737 0.7779 0.0         -      -
Cow     : 0.7377 0.7642 0.4652 0.6513 0.7511 0.7754 0.7796 0.6167 0.7424 0.7792 0.0         -
Ape     : 0.7708 0.4675 0.7747 0.7254 0.72   0.6989 0.7362 0.6983 0.7848 0.1636 0.7875 0.0

b) ICF + Euclidean distance
Kangaroo:  0.0          -       -       -       -       -       -       -       -       -       -       -
Monkey  : 24.1661  0.0          -       -       -       -       -       -       -       -       -       -
Sheep   : 25.1396 25.6125  0.0          -       -       -       -       -       -       -       -       -
Horse   : 23.8747 23.622  23.622   0.0          -       -       -       -       -       -       -       -
Rodent  : 25.1396 23.4521 26.4197 23.1948  0.0          -       -       -       -       -       -       -
Rabbit  : 24.7184 24.0624 25.4755 22.6053 22.0227  0.0          -       -       -       -       -       -
Dog     : 22.7376 25.04   26.4386 23.388  23.7697 23.3238  0.0          -       -       -       -       -
Pig     : 23.1948 23.1948 21.6795 20.0499 23.1084 23.0868 23.6854  0.0          -       -       -       -
Cat     : 24.7386 25.7682 27.2397 25.2982 23.3666 25.1595 21.1424 24.4949  0.0          -       -       -
Human   : 26.1343 16.5831 26.5895 24.8395 24.7992 24.0416 25.9615 24.5561 27.1846  0.0          -       -
Cow     : 25.3772 26.1534 18.2757 23.1948 26.0    26.4764 26.6646 22.5832 25.6905 26.9629  0.0          -
Ape     : 26.8887 18.7883 27.0    25.7488 25.7099 24.9399 26.0384 25.318  27.4773 10.2956 27.2947  0.0

Number of sequences

Length of 
sequences

10 100 1 000
10 ~ 0 ~ 0.02 ~ 0.2

100 ~ 0.02 ~ 0.12 ~ 1.55
1 000 ~ 0.4 ~ 4 ~ 40

10 000 ~ 128 ~ 1 280 ~ 12 800
20 000 ~ 817 ~ 8 170 ~ 81 700
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