7 research outputs found

    A Survey of the Isentropic Euler Vortex Problem Using High-Order Methods

    Get PDF
    The flux reconstruction (FR) method offers a simple, efficient, and easy to implement method, and it has been shown to equate to a differential approach to discontinuous Galerkin (DG) methods. The FR method is also accurate to an arbitrary order and the isentropic Euler vortex problem is used here to empirically verify this claim. This problem is widely used in computational fluid dynamics (CFD) to verify the accuracy of a given numerical method due to its simplicity and known exact solution at any given time. While verifying our FR solver, multiple obstacles emerged that prevented us from achieving the expected order of accuracy over short and long amounts of simulation time. It was found that these complications stemmed from a few overlooked details in the original problem definition combined with the FR and DG methods achieving high-accuracy with minimal dissipation. This paper is intended to consolidate the many versions of the vortex problem found in literature and to highlight some of the consequences if these overlooked details remain neglected

    De-Aliasing Through Over-Integration Applied to the Flux Reconstruction and Discontinuous Galerkin Methods

    Get PDF
    High-order methods are quickly becoming popular for turbulent flows as the amount of computer processing power increases. The flux reconstruction (FR) method presents a unifying framework for a wide class of high-order methods including discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV). It offers a simple, efficient, and easy way to implement nodal-based methods that are derived via the differential form of the governing equations. Whereas high-order methods have enjoyed recent success, they have been known to introduce numerical instabilities due to polynomial aliasing when applied to under-resolved nonlinear problems. Aliasing errors have been extensively studied in reference to DG methods; however, their study regarding FR methods has mostly been limited to the selection of the nodal points used within each cell. Here, we extend some of the de-aliasing techniques used for DG methods, primarily over-integration, to the FR framework. Our results show that over-integration does remove aliasing errors but may not remove all instabilities caused by insufficient resolution (for FR as well as DG)

    Towards industrial large eddy simulation using the FR/CPR method

    Get PDF
    NASA’s 2030 CFD Vision calls for the development of accurate and efficient scale-resolving simulations for turbulent flow, such as large eddy simulation (LES) and direct numerical simulation (DNS). This is primarily because the Reynolds-averaged Navier-Stokes (RANS) approach has failed to predict vortex-dominated flow involving large flow separations, e.g., flow through a jet engine or over aircraft near the edge of the flight envelope, i.e., during take-off and landing at high angles of attack. Although the DNS approach resolves all turbulence scales, it is too expensive in the foreseeable future for real world flow problems because of the disparate length and time scales in the flow. LES resolves the energetic large scales while modeling the smaller scales, so it provides a good compromise between accuracy and cost. As a result, LES is widely considered to be the method of choice for next generation CFD design tool. The major obstacle for LES is its considerable computational cost since unsteady 3D simulations need to be performed to obtain the mean flow quantities such as the drag and lift coefficients. In order to resolve the dominant scales in a turbulent flow, numerical methods used for LES should have low dissipation and dispersion errors. This means standard second order finite-volume methods are usually not accurate or efficient enough for LES applications. High-order methods (order of accuracy 2) have demonstrated their potential for LES and DNS in the past decade because of their low embedded numerical dissipation and dispersion errors. In the present study, we develop and demonstrate a recently developed high-order method, called flux reconstruction (FR) or correction procedure via reconstruction (CPR), for industrial LES. A major advantage of the FR/CPR method is its capability to handle unstructured mixed meshes, and its compactness and scalability, which is particularly desired on modern super-computers. We therefore address the following major pacing items in industrial LES in the present study: High-order methods Geometric flexibility Efficient time integration Efficient implementation on modern super computers Demonstration for real world application

    Extension de la méthode des Différences Spectrales à la combustion

    Get PDF
    L'amélioration des outils d'ingénierie utilisés dans le design des dispositifs industriels de combustion est indispensable afin de respecter les demandes de plus en plus restrictives pour réduire les émissions de gaz à effets de serre. Parmi eux, la mécanique des fluides numériques (CFD) est devenue essentielle pour étudier et optimiser les chambres de combustion au cours des dernières décennies. Elle se complète parfaitement aux expériences réelles qui peuvent être très couteuses et avec lesquelles il est impossible d'obtenir des informations sur n'importe quelle quantité d'intérêt en tout point de la chambre de combustion. En utilisant les simulations aux grandes échelles (LES), la CFD décrit directement l'interaction entre les flammes et les structures turbulentes avec une faible modélisation. La qualité des résultats LES est ainsi très dépendante de la discrétisation utilisée incluant à la fois le maillage et également les propriétés de dissipation et de dispersion des méthodes numériques utilisées. Cependant, la plupart des codes LES employés de nos jours dans l'industrie utilisent des schémas de discrétisation spatiale de basordre (LO) à cause de leur faible coût de calcul et leur facilité d'implémentation sur des maillages complexes. Pourtant, les méthodes numériques d'ordres élevés (HO) pour la LES sont développées depuis deux décennies et ont été appliquées sur des écoulements non-réactifs amenant à des résultats plus précis que les méthodes LO avec un plus faible coût de calcul. Bien que les méthodes HO semblent très prometteuses en combustion, en particulier pour mieux décrire le front de flamme, leur utilisation pour des écoulements réactifs restent encore à être démontrée. Au cours de ces travaux, les avantages et les bénéfices des méthodes HO en combustion sont évalués en utilisant la méthode des Différences Spectrales (SD) avec du raffinement hphp. Premièrement, il est démontré que la formulation originelle des SD est instable pour des écoulements multi-espèces avec des propriétés thermodynamiques variant avec la température et la composition. Il a été constaté que calculer les variables primitives aux points solutions puis de les extrapoler aux points flux, au lieu de faire l'inverse en extrapolant d'abord les variables conservatives, rend stable la méthode SD dans ce cas-ci. De plus, une nouvelle méthodologie, également plus stable pour calculer les flux diffusifs aux interfaces des cellules est détaillée. Enfin, les conditions aux limites caractéristiques et de murs ont été étendues aux écoulements multiespèces dans le formalisme SD. Avec ces développements, des flammes laminaires pré-mélangées 1D et 2D ont été simulées avec des mécanismes réduits à 2 réactions ou des mécanismes réduits analytiquement. Les résultats sont très proches de ceux obtenus avec des solveurs de référence bien établis en combustion. Il est montré que pour un même niveau d'erreur, il est plus efficace d'utiliser des maillages grossiers avec des grandes valeurs de pp et non l'inverse. Par conséquent, le raffinement local en pp, qui applique des grandes valeurs de pp dans les régions d'intérêts seulement, permet de garder une bonne précision à un coût de calcul plus faible. Ceci est particulièrement intéressant pour des simulations de combustion où le front de flamme est très localisé et requiert une plus grande précision que le reste de l'écoulement. Il est également observé sur ces cas simples 1D et 2D que la méthode SD est moins sensible à la discrétisation du front de flamme que les solveurs volumes finis comme AVBP. Pour terminer, deux différentes configurations de flammes 3D turbulentes ont été simulées avec l'algorithme des SD étendu aux écoulements réactifs
    corecore