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The flux reconstruction (FR) method offers a simple, efficient, and easy to implement
method, and it has been shown to equate to a differential approach to discontinuous
Galerkin (DG) methods. The FR method is also accurate to an arbitrary order and the
isentropic Euler vortex problem is used here to empirically verify this claim. This problem
is widely used in computational fluid dynamics (CFD) to verify the accuracy of a given
numerical method due to its simplicity and known exact solution at any given time. While
verifying our FR solver, multiple obstacles emerged that prevented us from achieving the
expected order of accuracy over short and long amounts of simulation time. It was found
that these complications stemmed from a few overlooked details in the original problem
definition combined with the FR and DG methods achieving high-accuracy with minimal
dissipation. This paper is intended to consolidate the many versions of the vortex problem
found in literature and to highlight some of the consequences if these overlooked details
remain neglected.

I. Introduction

Accurate and efficient numerical methods for the simulation of complex aerodynamic flows are desired
to help reduce the design and development costs of aerodynamic vehicles and aeropropulsion systems. The
primary challenge lies in the prediction of the turbulent motion within the flow and its effect on the overall
motion of the fluid. Advanced methods such as large-eddy simulation (LES) and direct numerical simulation
(DNS) offer great advancements in predicting turbulence, but these methods require significant improvements
in accuracy and efficiency in order to become widely used. Focusing on either the accuracy or efficiency aspect
of the underlying numerical algorithms, when developing a computational fluid dynamics (CFD) code, usually
demands concessions from the other parameter.

Promising results have been found applying LES in the realm of aeropropulsion, but the spatial and tem-
poral resolution needed for LES requires high-order (higher than second) numerical methods historically only
found in structured grid methods with large stencils. These methods have numerous drawbacks: difficulty in
grid generation, high sensitivity to grid quality, complex boundary conditions and poor scalability for parallel
computing. These drawbacks severely limit the ability of these codes to compute complex aeropropulsion
configurations, e.g., noise suppressing nozzles.1

In an attempt to alleviate the difficulties of structured grid generation for complex geometries, researchers
have applied LES methods to unstructured grids.2,3 However, the limited second-order accuracy of current
unstructured methods requires an exorbitant number of grid points and offers little incentive over the tra-
ditional structured methods.4,5 The flux reconstruction (FR) method6–8 provides a simple, efficient, and
easy to implement method for solving the Navier-Stokes equations on unstructured grids and is accurate to
an arbitrary order. By employing the high-order FR method with LES to unstructured grids, limitations
related to structured grid generation, grid resolution, and computational efficiency can be overcome.9–12
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II. Numerical Methods

II.A. Spatial Discretization

We briefly review the FR method below. Consider the 1D conservation law

ut + fx = 0 (1)

where the subscripts t and x denote partial differentiation with respect to time and space, respectively.
Let the computational domain Ω be divided into a arbitrary number of nonoverlapping cells. Each cell is
transformed from physical space within the global domain to a common reference space/element, I = [−1, 1],
using the mapping r = χ (x), where r is the local coordinate variable in the reference space. An inverse of
this one-to-one mapping is assumed to exist, and it can be used to transform from reference to physical space
using x = χ−1 (r). The details of such affine mappings are beyond the scope of this paper; the interested
reader can find additional information in many texts on spectral-/finite-element type methods, including but
not limited to Ref. 13–16. The following review focuses on using the FR method to solve the transformed
version of equation (1) within each reference element.

At a given time t, let the exact solution to the transformed conservation law within the reference element
be given by ue(r, t) which is not guaranteed to be a polynomial or even a function that is smooth and/or
continuous. Let u(r, t) be a polynomial of degree P and approximate ue(r, t) within the reference element.
This approximate solution polynomial, u(r, t), is local to each element, and may or may not be continuous
across cell interfaces. With the dependence on time being understood, we will drop the variable t from
ue(r, t) and u(r, t) to simplify notation.

Let NP refer to the minimum number of solution points needed to define the solution polynomial within
the reference element, and let ξ denote the set of solution points, ξn, n = 1, 2, . . . , NP . Using tensor products
to extend this to higher dimensions, the N -D conservation law requires NP = (P +1)N solution points within
each computational cell.

The Lagrange polynomial is defined as the interpolating polynomial through a set of nodal points, for
example ξ, that takes the value 1 at ξn and zero at all other points ξi 6=n:

`n (r) =

NP∏
i=1
i 6=n

r − ξi
ξn − ξi

(2)

Note that the Lagrange polynomial in equation (2) is a polynomial of degree P = NP − 1 and the set
of Lagrange polynomials for all solution points in ξ is a set of NP polynomials each of degree P . When
extending to higher dimensions using tensor products, each Lagrange polynomial is of degree 2P for 2D and
of degree 3P for 3D.

A nodal coefficient of the solution, denoted by ũn, is simply the value of the approximate solution
polynomial evaluated at the solution point, ξn, i.e., ũn = u(ξn). Let ũP denote a vector containing the set
of NP nodal coefficients for the solution at each of the solution points. Assuming that all of ũP is known,
we can use the Kronecker delta property of equation (2) to construct the approximate solution polynomial
as

u (r) =

NP∑
n=1

ũn`n (r) (3)

The above relation is why the set of Lagrange polynomials can also be referred to as a nodal basis set. The
tilde accent is used in this section to identify the nodal coefficients for a polynomial function.

The derivative of the solution polynomial is a linear combination of the derivatives of the polynomial
basis functions

d

dr
u (r) = ur (r) =

NP∑
n=1

ũn

[
d

dr
`n (r)

]
(4)

Using the previous equation, we can define the derivative operator, Dr, as the NP×NP matrix with elements

Dr [i, j] =

[
d

dr
`j (r)

]∣∣∣∣
ξi

(5)
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that transforms the nodal coefficients, ũP , into the derivative nodal coefficients, ũr. Note that this derivative
is exact only when the function being differentiated is a polynomial of degree P or less.

If we use the nodal solution to evaluate the flux function, f , at each solution point, then interpolate
these NP values by a polynomial of degree P , we get what is called the discontinuous flux function. It only
uses information inside a given cell and does not account for interaction between it and the data in the
neighboring cells. Using the superscript D for discontinuous, the discontinuous flux polynomial, fD (r), is
given by

fD (r) =

NP∑
n=1

f̃n`n (r) (6)

where the nodal coefficients of the discontinuous flux, f̃n, are evaluated at the solution points using the
nodal coefficients of the solution, i.e., f̃n = f (ũn). This collocation projection results in fD (r) being a
polynomial of degree P , which only matches the true flux function if the conservation law in equation (1) is
the linear advection equation. For a nonlinear conservation law such as those found in the Euler equations
or Navier-Stokes equations, the true flux function evaluated using the solution polynomial is of much higher
degree than P and possibly even irrational, and fD (r) above may not provide a good approximation. We
will explore other ways of approximating the true flux function later.

With fD (r) given by equation (6), we can compute the derivative of the approximated discontinuous flux
using the derivative operator from equation (5). Denoting f̃ as the column vector containing the coefficients
f̃n, n = 1, 2, . . . , NP , the derivative d

dr

[
fD (r)

]
can be approximated using the matrix-vector product

f̃r = Drf̃ (7)

where, f̃r is the column vector containing the values of the approximate flux derivative at each solution point.
Note that the collocation projection of the discontinuous flux in equation (6) is of degree P . Consequently,
its derivative is of degree P − 1.

If we employ the above fDr to evaluate fx for the conservation law, we obtain erroneous solutions since
such a derivative does not include the interaction of the data between adjacent cells. Therefore, we seek to
construct a so-called continuous flux function, denoted by F (r), which accounts for this interaction between
adjacent cells and approximates the discontinuous flux function in some sense, to which we can then calculate
its derivative. The continuous flux function will be obtained by adding a correction to fD, the discontinuous
one.

To this end, at each (cell) interface, let uL and uR be the values taken on by the solution polynomials to
its left and right, respectively. An upwind flux value common for the two adjacent cells, denoted by f∗, can
then be defined via the wind direction. Here, for the case of the Euler equations, we use Roe’s flux17 with
an entropy fix.18

For the cell e, let f∗lb denote the upwind flux at the ‘left boundary’ of the cell and f∗rb denote the upwind
flux at the ‘right boundary’ of the cell. We can then construct the continuous flux function, F (r), as a
polynomial of degree P + 1 by requiring that it takes on the upwind flux values at the two cell interfaces,
and it approximates fD via P − 1 conditions. Instead of defining F , we define F − fD, which approximates
the zero function. At the two interfaces r = ±1, the function F (r) − fD (r) takes on the following values,
which are called the flux jumps:

F (−1)− fD (−1) = f∗lb − fD (−1) and F (1)− fD (1) = f∗rb − fD (1) (8)

Therefore, F (r)− fD (r) has prescribed left and right interface values, is of degree P + 1, and approximates
zero.

We now separate the prescription of the jump at the left interface from that of the right. This separation
plays a critical role in the new approach. Again, using the local coordinate, let glb be the correction function
for the left interface of the reference element defined by

glb (−1) = 1, glb (1) = 0 (9)

and glb is a polynomial of degree P + 1 approximating the zero function in some sense. We always choose
grb by reflection: grb (r) = glb (−r). As a result,

grb (−1) = 0, grb (1) = 1 (10)
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Consider the left interface r = −1. The polynomial

fD (r) +
[
f∗lb − fD (−1)

]
glb (r) (11)

provides a correction at the left interface for fD (r) by changing the flux value at this interface from fD (−1)
to f∗lb, while leaving the value at the right interface unchanged, namely, fD (1). Next, the polynomial

F (r) = fD (r) +
[
f∗lb − fD (−1)

]
glb (r) +

[
f∗rb − fD (1)

]
grb (r) (12)

provides corrections to both interfaces; using equation (9) and equation (10), one can easily verify that
F (−1) = f∗lb and F (1) = f∗rb. Thus, the above F (r) is of degree P + 1, takes on the upwind flux values
at the two interfaces, and approximates fD (r) in the same sense that glb and grb approximate the zero
function.

The derivative of F (r) at the solution point ξn is evaluated as

∂ F (r)

∂r

∣∣∣∣
ξn

= Fr (ξn) = f̃r,n +
[
f∗lb − fD (−1)

]
g′lb (ξn) +

[
f∗rb − fD (1)

]
g′rb (ξn) (13)

After using the inverse mapping, χ−1, from reference space to physical space, Fr can be employed to ap-
proximate fx at each solution point within the element. Finally, the solution to equation (1) can then be
advanced in time via an explicit Runge-Kutta method.

In order to complete this brief review of the FR method, we must define the correction function glb; the
definition of grb follows by reflection as discussed previously. With LP+1 denoting the (standard) Legendre
polynomial of degree P + 1, the right Radau polynomial of degree P + 1 (P ≥ 0) is defined by

RR,P+1 =
(−1)

P+1

2
(LP+1 − LP ) (14)

A family of correction functions for the left boundary that results in stable schemes is given by

glb = (α)RR,P+1 + (1− α)RR,P with 0 ≤ α ≤ 1 (15)

Note that α = 1 results in the discontinuous Galerkin (DG) method, and α = P+1
2P+1 results in the modified

Spectral Difference (SD) method that is stable.

II.B. Temporal Discretization

The results presented in this paper were integrated in time using the 3-stage strong stability preserving (SSP)
Runge-Kutta method,19 which is 3rd-order accurate in time. All of the results used a constant (global) time
step to advance the solution in time. The size of the time step for each simulation was chosen to be sufficiently
small meaning further reduction in its size would not produce significant changes in the solution error.

III. Governing Equations

The Euler equations describe the motion of an inviscid fluid such as the isentropic vortex that is the
topic of this paper. The 2D Euler equations for a calorically perfect, compressible fluid can be written in
differential form as

∂

∂t


ρ

ρvx

ρvy

ρE

+
∂

∂x


ρvx

ρv2x
ρvxvy

vx (ρE + p)

+
∂

∂y


ρvy

ρvxvy

ρv2y
vy (ρE + p)

 = 0 (16)

where ρ, vi, p, and E respectively refer to the density, velocity in coordinate direction i, pressure, and the
total energy per unit mass of the system. Thermodynamic closure is found through the total energy equation

ρE =
p

γ − 1
+ 1

2ρ
(
v2x + v2y

)
(17)
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where γ is the ratio of specific heats for the fluid in question. Additionally, the ideal gas law

p = ρRgasT (18)

is utilized to relate the temperature, T , to the pressure and density where Rgas is the specific gas constant
of the fluid. The speed of sound, a, is computed using the relation

a =

√
γp

ρ
=
√
γRgasT (19)

In the present work, the fluid is assumed to be calorically perfect air where γ = 1.4 and the dimensionalized
specific gas constant is Rgas = 287.15 J

kg·K .

IV. Isentropic Euler Vortex Problem

IV.A. Problem Definition

The isentropic Euler vortex problem is commonly used9,14,20–30 for testing the order of accuracy of a numeri-
cal method because it is easy to implement and the exact solution is known at all times. This problem is ideal
for high-order methods because their theoretical accuracy should allow them to propagate the vortex with
minimal entropy production for an indefinite amount of time. Being able to sustain vortical flow structures
without the numerical method contributing unwanted numerical dissipation is crucial for advanced turbu-
lence methods like LES. All of these reasons are why this is becoming a popular test case for high-order
methods that are designed to produce minimal numerical dissipation.

There are numerous variations in the definition of the vortex problem throughout literature. To the
authors’ knowledge, the first version of this problem was used by Shu20 to compare high-order weighted
essentially non-oscillatory (WENO) finite-volume (FV) methods with a traditional second-order FV method.
The definition for the vortex problem that is presented here modifies this first version in an attempt to unify
many of the variations that exist.

IV.A.1. Analytic Solution

The initial conditions for the vortex problem are found by superimposing perturbations in velocity and
temperature onto a uniform mean flow. These perturbations are defined such that the entropy, S = p/ργ ,
is constant throughout the entire grid domain, i.e., δS = 0. By compounding various parameters, these
perturbations are ultimately based upon a Gaussian function of the form

Ω = β ef (20)

where β is the maximum strength of the perturbation and the function f determines the strength of the
perturbation at a particular grid coordinate through the relation

f(x, y) = − 1

2σ2

[( x
R

)2
+
( y
R

)2]
(21)

The parameter σ is the familiar standard deviation term found in a general Gaussian function that is used
to control the spread of the distribution, whereas R is a characteristic length scale for the grid. These two
parameters, σ and R, could have been combined into a single parameter to further simplify the problem
definition, but they have been kept separate in order to unify dimensional and nondimensional versions of
the vortex problem. Keeping these separate will also prove to be useful later when looking at what effects
the spread of the perturbation can have on the results of a simulation.

Using the Gaussian function in equation (20), the perturbations in velocity and temperature are given
by

δvx = − y
R

Ω

δvy = +
x

R
Ω

δT = − (γ − 1)

2
Ω2

(22)
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Table 1: Parameters defining the isentropic Euler vortex problem. Quantities for these parameters are
given for a few versions of this problem that can be found in literature. All values without units are
nondimensional.

α M∞ ρ∞ p∞ T∞ Rgas R σ β L

Shu20 45°
√

2
γ

1 1 1 – 1 1 M∞
5
√
2

4π
e
1
2 5

Vincent24 90° 0.4 1 1
γM2
∞

1 – 3
2

1 M∞
27
4π

e
2
9 20

Hesthaven and Warburton14 0°
√

1
γ

1 1 1 –
√

1
2

1 M∞
5
2π

e1 5

High-Order Workshop (Slow)25 0° 0.05 – 100 kPa 300 K 287.15 J
kg·K 0.005 1 1

50
0.05

High-Order Workshop (Fast)25 0° 0.5 – 100 kPa 300 K 287.15 J
kg·K 0.005 1 1

5
0.05

Stationary Vortex 0° 0 1 1 1 – 1 1 5
2π
√
γ

e
1
2 10

These perturbations, along with the isentropic relations between density, pressure, and temperature, are
used to define the initial flow conditions of the primitive variables as

ρ̃0 = (1 + δT )
1

γ−1

ṽx,0 = M∞ cosα+ δvx

ṽy,0 = M∞ sinα+ δvy

p̃0 = 1
γ (1 + δT )

γ
γ−1

(23)

Above, M represents the Mach number with the subscript∞ indicating a mean flow quantity, the parameter
α is the angle of attack for the mean flow which determines the direction of propagation for the vortex,
and the subscript 0 denotes a quantity given at t = 0. The tilde accents on the primitive variables indicate
that each is a nondimensional quantity where ρ∞, a∞, and T∞ have been used as the characteristic density,
velocity, and temperature scales, respectively.

To further simplify the problem, an assumption has been made in equations (21) and (22) that the center
of the vortex lies at the coordinate origin. This assumption will continue for the remainder of this work where
the computational domain is defined to be a square that is centered about the origin. Some versions of this
problem use a grid domain where the coordinate origin is located on one of the grid boundaries invalidating
this assumption. A simple fix can be found by simply replacing the coordinate variables x and y with x̄ and
ȳ where

x̄ = x− xc
ȳ = y − yc

(24)

and the coordinate pair (xc, yc) gives the location of the vortex center.
Nine total parameters must be provided in order to use the above definition for the vortex problem. Five

of these parameters are standard requirements to define any general inviscid flow: α, M∞, and any three of
ρ∞, p∞, T∞, and Rgas. Three of the remaining four parameters required, R, σ, and β, control the shape of
the Gaussian function that is perturbing the mean flow. Finally, the parameter L is equal to half the length
of the computational domain and will be discussed further in the following sections. Given the proper set of
these parameters to use with equations (20) to (23), many of the variations to the isentropic Euler vortex
problem can recovered. A few examples of these variations are shown in table 1 which illustrates the range
in differences between some of the formulations.

IV.A.2. Computational Domain

The last remaining item needed in order to complete the problem is the definition of the computational do-
main. Two items pertaining to the computational domain have been mentioned thus far: the computational
domain is square and the center of the vortex is located at the coordinate origin. This implies that the
boundaries of the grid are located at plus/minus some length L in both the x and y directions. A general
guideline for determining the value for L will be discussed in section IV.B.1.
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Figure 1: Contours of the initial density profile for the Shu version of the vortex problem.

Finally, we need to define the boundary conditions to completely define the computational domain. The
boundary conditions used vary greatly between the different versions of this problem. Examples include but
are not limited to: periodic in all directions, periodic in one direction and imposed free-stream conditions in
the other direction, imposed analytical solution on the boundaries, and characteristic boundary conditions.
Periodic boundary conditions are by far the most popular and are required in order to model the vortex for
any significant amount of time. Analytical boundary conditions will not be explored in this work because
they prevent a true measure of the error generated by a numerical method. Each time the vortex passes
across a grid boundary, the vortex profile is essentially reset to the initial conditions removing all accumulated
error.

To illustrate the end product of this problem definition, a contour plot showing initial density profile for
the Shu vortex is found in figure 1. The original version of this problem used a computation domain of L = 5
and all boundaries were set to periodic conditions. Each simulation was run for a total of 10 time periods,
where a period refers to the amount of time it takes for the center of the vortex to propagate completely
through the computational domain and return back to its initial location.

IV.B. Propagating Vortex

IV.B.1. Verification of Numerical Accuracy

In literature, the primary use of this problem is to verify the numerical accuracy of a method using grid
refinement (h-refinement) and this is where we will begin as well. This problem is ideal for evaluating the
numerical accuracy of a method because the exact solution to the problem is just the translation of the
initial conditions based on propagation speed and simulation time. Therefore, at any given time, we can
easily compute the error between the simulation result and the translated initial conditions.

We started by running the Shu vortex problem on Cartesian grids containing cell counts of 202, 402, 602,
802, and 1002. For each grid that was used, we ran simulations for solution polynomials of orders one (P1)
through six (P6) amounting to a total of 30 individual simulations. Each simulation was run through one
period and a log-log plot of the L2 error versus length scale was created. The length scale, h, is defined as

h =
1√
NDOF

(25)

where NDOF is the total number of solution points (degrees-of-freedom) used for a simulation. Figure 2
shows two of these plots; the left plot shows the density error versus length scale whereas the right plot
shows the x-velocity error versus length scale.

The density error converges as expected except for the P6 solution on the finer grid levels. However,
something is clearly limiting the lower bound of the velocity error for the P3–P6 solutions. After further
testing, it was determined that the exponential function within the velocity perturbations (equations (20)
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Figure 2: L2 errors for the Shu vortex problem after one period using a domain of size [−5, 5]× [−5, 5].
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(a) Vortex coupling due to periodic boundary conditions.
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(b) Velocity magnitude errors after 0.912 periods.

Figure 3: Errors due to the artificial shear layers that are created because the grid domain is not large
enough for the perturbations to reach zero at the domain boundaries.
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Figure 4: L2 errors for the Shu vortex problem after one period using a domain of size [−10, 10]× [−10, 10].
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to (22)) is not zero at the domain boundaries. This fact combined with the periodic boundaries creates
two very small shear layers, one in each coordinate direction. An illustration of how these shear layers are
artificially created by the periodic boundaries is shown in figure 3. The errors associated with these shear
layers are orders of magnitude larger than the error from the numerical method resulting in the error limit
seen in the right plot of figure 2.

The fix to this problem is to make sure that the velocity perturbations are essentially zero at the grid
boundaries. From the problem definition given in section IV.A.1, the three parameters L, R, and σ must
satisfy the relation

ε ≥ L

R
exp

[
−L2

2R2σ2

]
(26)

where ε is some small number very near zero. Since all of our computations are performed using double
precision (64-bit) real numbers, we chose ε to be 64-bit machine epsilon, ε64 = 2−52; this is the smallest
positive number capable of being represented by a 64-bit real number. Using ε64 and keeping the values for
R and σ constant, solving equation (26) for L indicates that L must be greater than 8.8. If machine epsilon
for quadruple precision is used, this increases even further to 12.7

In order to eliminate the artificial shear layers, L was increased from 5 to 10 and the previous simulations
were redone. Since the length of the domain in each direction was doubled, we also doubled the number of
cells in each direction to maintain the same grid cell sizes. This resulted in the cell counts for the five grid
levels becoming 402, 802, 1202, 1602, and 2002. The solution errors after one period using the new grids are
shown in figure 4. This shows that the size of the grid domain needs to be increased to perform an accurate
h-refinement test using this problem as originally defined in Ref. 20.

IV.B.2. Long Term Stability

The motivation for this section originated from trying to replicate the results found in Ref. 23 regarding the
stability of various nodal quadratures within triangular elements. Their work used a P4 solution polynomial
and the same problem definition as Shu except that they increased the size of their computational domain
to L = 10. The grid used for their study was an unstructured grid with 800 triangular cells formed by
diagonalizing a regular Cartesian grid with 202 cells. They found that using the α-optimized nodal points14

based on the 1D Legendre-Gauss-Lobatto points produced large aliasing instabilities, eventually causing their
simulation to blow up at t = 360. A second simulation was performed using a nodal set from Ref. 31 that
provides a better quadrature rule within the reference triangle. The resulting “simulation was not afflicted
by aliasing instabilities and remained stable until it was stopped at t = 4000”.23

To best replicate these results, we made sure that the same problem definition, computational grid, and
numerical methods identified within their work were used. We found that using the α-optimized points
caused our code to blow up at t = 359.38, reproducing the results of their first simulation. Figure 5 shows
the density contours at t = 358 and illustrates the instabilities within the vortex just before the simulation
finally blows up. This figure is similar to figure 12 in Ref. 23.

Instead of using the same quadrature rule for the second simulation, barycentric coordinates were used to
map the 1D Legendre-Gauss-Lobatto nodes to the reference triangle. Surprisingly, this very simple mapping
was significantly more stable than the α-optimized points for this problem with the simulation eventually
blowing up just before t = 900 or 45 periods. When examining the results for this simulation, we found
an odd trend in that the error seemed to increase exponentially through approximately 15 periods before
slowing to a linear accumulation for the remainder of the simulation. These trends are shown along with the
error at each period in figure 6.

These trends in the error accumulation contradict all previous experience with numerical methods where
the error accumulates linearly before it starts to diverge at an exponential rate. In trying to understand this
phenomenon, we switched to the use of quadrilateral cells over triangles. This eliminated any uncertainty
in the stability of the quadrature rules for triangles replacing it with proven quadrature rules based on
a tensor-product formulation of the standard 1D Legendre-Gauss or Legendre-Gauss-Lobatto quadratures.
Another concern was that this grid was too coarse for the version of the problem being used because the
majority of the vortex perturbations were contained within only a 62 section of grid cells. We therefore chose
the 402, 802, and 1602 sized grids with P2–P4 solutions to see what effects h/p-refinement has on the long
term stability for this problem. The log of the L2 error in density versus the number of periods transversed
is shown for each of these cases in figure 7.
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Figure 7: L2 norm of errors for the Shu vortex problem through 100 periods.

Each of these plots can be broken down into three distinct regions. The first region, beginning at t = 0,
sees an exponential increase in error and generally lasts for the first three to five periods. When the solution
is initialized, the analytical solution is evaluated at each solution point within the grid to provide the exact
initial conditions. This initialization is essentially a collocated projection of the analytical solution onto the
solution polynomial space. This exponential increase in error over the first few periods is caused by the error
associated with projecting the initial conditions.

After a few periods, the second region begins with the error leveling out and it then starts to increase
at a linear rate. This region represents the error accumulation of the numerical method once the initial
collocation projection has relaxed to its best approximation of the exact solution in the solution polynomial
space. Ideally, we want whatever method we are using to sustain this linear accumulation of error indefinitely.

Unfortunately, all of these simulations contain a third region that begins after approximately 20 periods
and consists of another exponential accumulation of error. This time the error accumulates until it starts
destabilizing the vortex along with the simulation itself. What before seemed to be a contradiction of past
experience with numerical methods was actually what we should be expecting with a diverging solution.
However, the error levels off again once it reaches the range 0.01–0.001, almost as if the simulation has
re-stabilized itself. Clearly there is some kind of instability present within all of these simulations that is
causing them to diverge.

It is nearly impossible to understand what is causing these instabilities just by looking at how the total
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error within the system evolves over time. We can achieve a greater understanding of this phenomenon by
looking at how the solution itself is evolving. Figure 8 shows snap shots of the density contours at different
points in time for a simulation using a P3 solution on a grid with 1602 cells. Below the time lapse is a plot
of the L2 norm of the density error with green lines indicating the times for each of the snap shots. After
20 periods, the error begins to coalesce in the outer regions of the domain which coincides with the start of
the third region where the error accumulates at an exponential rate. Now we can see that this accumulation
is simply the error continuing to coalesce in the outer regions. After approximately 60 periods, the error
outside the vortex appears to reach a point of maximum saturation and the total density error levels off.
This error that has accumulated in the outer regions rotates around the vortex slowly deforming it more and
more as the simulation continues over the next 90–100 periods. Around 150 periods, the strain on the vortex
caused by the surrounding error finally reaches a critical point, and it quickly gets torn apart. This point
of “collapse” is generally where a simulation will blow up due to a negative density or pressure. However,
sometimes the simulation will continue on for an indefinite amount of time with the remnants of the vortex
aimlessly floating around within the computational domain.

We tried various strategies to eliminate this instability such as reducing the time step size, increasing
the computational domain to L = 20 as well as L = 40, and even running the simulation using quadruple
(128-bit) precision. We also tried changing the explicit Runge-Kutta method used for time integration,
specifically the 5-stage/4th-order SSP32 and 5-stage/4th-order low-storage33 variations. Furthermore, we
also tried changing the upwinding method used to compute the common interface fluxes, specifically trying
the HLLC (Harten, Lax, and van Leer Riemann-solver with restored contact surface),34 AUSM+ (improved
Advection Upstream Splitting Method),35 and LDFSS (Low-Diffusion Flux-Splitting Scheme)36 upwinding
methods.

After all of these attempts failed, we wanted to determine if these instabilities were due to the nonlinearity
of the Euler equations. By altering the problem definition so that the velocity perturbations are zero and the
pressure is held constant, the momentum and energy equations reduce down to the continuity equation or
more simply the linear advection equation. These changes result in the simulation of a density/entropy wave
in the form of a Gaussian distribution that is convected at a constant velocity. Using this linear advection
problem, we were able to run this problem successfully for 800 periods using a P3 solution, Lobatto points,
and a 202 grid with L = 5. The error in figure 9 shows that the error accumulation is linear for all 800
periods with no signs of it diverging at any time soon afterwards.

These results seemed to indicate that we were experiencing the infamous aliasing instabilities that are
inherent to DG methods when applied to nonlinear equations. Common methods for suppressing aliasing
error are filtering the higher-order modes of the solution polynomial14,37 and increasing the quadrature
within each cell which is sometimes referred to as over-integration.37–39 Application of an exponential
filter14 to this problem failed at preventing the error from accumulating at an exponential rate regardless
of the parameters used for the filter function. A more extensive study using over-integration is found in
Ref. 40. In that study, we found that over-integrating was successful in eliminating aliasing errors caused by
using an insufficient quadrature to integrate the nonlinear flux functions. However, over-integration was not
successful in preventing the vortex problem from diverging for the simulations shown in figure 7. In fact,
the simulation shown in figure 8 was over-integrated to 2P yet still succumbed to this instability.

One final sanity check was done by independently verifying our results using the finite-difference code
WRLES41 (Wave Resolving Large-Eddy Simulation). WRLES uses dispersion-relation-preserving (DRP)
schemes to solve the Favre filtered Navier-Stokes equations, and is accurate up to 12th-order in space. The
solution found by WRLES for this version of the vortex problem was very similar to the FR results and
exhibited the same trends in the accumulation of error.

Both codes finding similar results indicates that this nonlinear stability is independent of the numerical
method being used and is likely caused by the definition of the problem itself. Most of the versions of
this problem use either periodic or analytic boundary conditions in order to allow the vortex to propagate
indefinitely. However, Vincent et al. made a subtle new change to the boundary conditions of the problem
in Ref. 24 without any reasoning for the change. As others had done before, the free-stream velocity was
changed so that the vortex propagated in only one direction, in this case the y-direction only, i.e. vx,∞ = 0.
The new twist was that the constant x boundaries were set to free-stream conditions instead of leaving them
periodic. With this slight change, they were able to successfully perform an h-refinement study using the
vortex problem and showed super accuracy through 45 periods without any instabilities.

We made a similar change to our problem by propagating the vortex in only the x-direction, i.e. vy,∞ = 0,
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Figure 8: Time series showing how the
density solution evolves over time when
all domain boundaries are periodic. The
plot to the right shows the L2 norm of
the density error versus period. The
embedded green lines correspond to the
times at which each of the above contour
snapshots were taken.
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and changing the constant y boundaries to characteristic boundary conditions. A comparison between be-
tween the version using all periodic boundaries and the version using a mixture of periodic and characteristic
boundary conditions is shown in figure 10. The simulation using a mixture of boundary conditions remains
stable through 200 periods, whereas the simulation with full periodic boundary conditions starts experi-
encing instabilities after only 20 periods. Clearly we have determined that the nonlinear instability we are
encountering is related to the periodicity of the boundary conditions.

IV.C. Stationary Vortex

We have successfully determined that the source of the nonlinear instability we have been encountering is
the periodicity of the boundary conditions. A subtle consequence of using periodic boundaries is that the
problem we are solving is no longer the exact problem that was intended by the original definition. As we
showed in figure 3a, the periodic boundaries actually create a coupled vortex across each of the domain
boundaries. So instead of simulating a single, uncoupled, propagating vortex as intended by the original
problem definition, we are actually simulating an infinite array of vortices with centers that are separated by
a distance of 2×L. Even if the computational domain is made very large, eventually there will be interaction
between the coupled vortices due to the nonlinearity of the Euler equations.

To further understand the effects the boundary conditions have on this problem, we will change the
problem so the velocity of the mean flow is zero. This creates a stationary vortex in that the center of
the vortex never moves from its initial location throughout the simulation. This removes all dependence on
periodic boundaries since the vortex is no longer required to propagate across the domain boundary. This
is also the only way to simulate a single, decoupled vortex for a large length of time without having to use
moving/deforming mesh methods or an excessively large domain.

Because the vortex is no longer propagating, a small complication arises in that we no longer have a
definition for the amount of time in one period. In order to keep comparisons simple, we will define one
period for the stationary vortex as the same amount of nondimensional time required for the propagating
vortex to complete one period.

In the following two subsections, we present results for this stationary version of the problem using two
different sets of boundary conditions. The first case is the same as the original propagating version with all
periodic boundaries and the second case sets all boundaries to characteristic boundary conditions.
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IV.C.1. Periodic Boundary Conditions

The first test case presented for the periodic stationary vortex is a P3 solution on a grid containing 1602

cells. Additionally, a P6 quadrature was used to over-integrated the solution in an effort to prevent aliasing
instabilities. A time lapse showing the density error propagating throughout the computation domain is
given in figure 11. An interesting observation is that the density error emanates as waves outward from the
center of vortex. For this particular problem, these error waves reach the boundary around t = 6. After
this point in time, the periodic boundaries cause the waves to be recirculated back into the domain from the
opposite boundary. Because error is continuously being created within the vortex interior, the recirculating
error waves begin interacting with each other. These errors start building over time and eventually it reaches
a large enough magnitude that causes the vortex to become unstable, resulting in the solution diverging.

A parametric study was performed using P3–P6 solutions on grids containing 402, 802, and 1602 cells in
order to get a sense of how the periodic stationary vortex is affected by h/p-refinement. The error for each
of these cases through 100 periods is shown in figure 12. We see the same results as before with the error
showing the same three regions described previously in section IV.B.2. A very noteworthy fact of figure 12 is
that the third regions of nearly all cases are now aligned. Specifically, only two of the twelve are not aligned:
the P3 solution on the 402 grid and the P6 solution on the 1602 grid. For the P3–402 solution, the error
due to the grid resolution and numerical method is large enough that the vortex becomes unstable before
it is able to reach the area where the error accumulates at an exponential rate. The P6 solution has the
exact opposite problem. The combination of the high-order polynomial solution combined with the higher
fidelity grid results in a larger sensitivity to machine precision type errors. Running the P6–1602 case with
decreasing values for the size of the time step created large horizontal shifts in both directions for the start
of the third region. Essentially these should both be treated as anomalies and separated from the other
aligned cases.

Added to figure 12 is a diagonal cyan line that was created from an exponential fit of the data in the
third region. The equation defining this line is

y =
(
2.22× 10−16

)
e0.3x (27)

The remarkable part of this curve fit is the value of the coefficient in front of the exponential term, which is
the same as machine epsilon for a 64-bit floating point number. This seems to indicate that this exponential
error accumulation is due to machine rounding errors related to the floating point precision. It appears that
this machine error accumulates behind the scenes, masked by the discretization error of the problem.

IV.C.2. Characteristic Boundary Conditions

Because the vortex is no longer propagating, there is no longer a dependence on the domain boundaries
being periodic. This allows us to set all of the boundaries to characteristic boundary conditions allowing
for information to flow in/out of the domain as needed. The initial test case used in section IV.C.1 that
produced figure 11 was performed a second time with the only change being that all boundary conditions
are now characteristic boundaries. An identical time lapse to that in figure 11 but with all characteristic
boundary conditions is shown in figure 13. Here, the waves of error that emanate from the vortex leave the
domain and do not reenter and interact.

Now that we have removed this instability, we can perform an h-refinement study using the vortex
problem over a large number of periods. To complete this study, we used P2–P4 order solutions on grids
containing 402, 802, 1202, 1602, and 2002 cells. The density error versus period time for all but one of these
cases is shown in figure 14. Unfortunately, we were unable to prevent the P2 simulation on the 402 grid
from diverging due to insufficient resolution, thus those results have been omitted.

In order to see how the order of accuracy develops over time, a linear fit was computed using the density
error from each of the grid levels for each point in time. The results of this linear fit using all of the
simulations in figure 14 gives what is shown in figure 15a. If we examine the order after a single period, the
order of accuracy appears to be P + 1 as expected with values of 3.3, 4.8, and 5.5 for the P2, P3, and P4
solutions, respectively. However, if we were to do the same thing after five periods, the respective values
change to 4.0, 5.8, and 5.5 indicating that the P3 solution is of higher order than the P4 solution. Jumping
all the way to 100 periods, it seems that the P2 solution is 6th order accurate and the P3 solution is nearly
8th order accurate.
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Figure 11: Time series showing how the density error recirculates through the domain because of the periodic
boundary conditions.
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Figure 12: Density errors for the stationary vortex with all periodic boundaries.

The issue is that some of the lower resolution simulations used for this h-refinement study suffered
from “non-fatal” instabilities. This simply means an instability of some kind seems to be present without
causing the simulation to blow up. Looking at figure 14, non-fatal instabilities can be found in the following
simulations: P2–802, P3–402, and P4–402. These instabilities cause the linear fit computation to report an
incorrect order of accuracy.

The point of presenting these results is to make the reader aware that care needs to be taken when
performing an h-refinement study using the vortex problem. In most literary articles that use the isentropic
Euler vortex problem for this purpose9,14,21–23,25–27,29,30 is computed using the solution error at some
arbitrary point in time on a series of grid resolutions. Here we have shown that this can be extremely
error prone with us incorrectly showing a 3rd order method with 8th order accuracy. Our incorrect results
showed the method in a positive light but this issue could very easily present a negative result with an
order of accuracy that is less than expected. A common source of negative results is when a simulation is
so overresolved that it encounters machine precision limits. This reasoning is exactly why the present study
was capped at P4 solutions due to P5 and P6 simulations incorrectly reporting poor performance.

By prescreening the results of all our simulations, we can selectively remove from our h-refinement study
those cases that show any indication there was either too little or too much grid resolution. Since one or
more simulations on the 402 and 802 showed signs of instabilities, we removed all the simulations on those
grids from our h-refinement study leaving only the simulations run on the 1202, 1602, and 2002 grids. This
was done to keep the grid levels identical for all polynomial orders. Recomputing the linear fits with this
selectively chosen set of simulations produces the order of accuracy versus time plot shown in figure 15b.

These results are much cleaner than when we blindly used all of our simulations and closer to what is
expected. Initially, the accuracy for each polynomial order is P+1 which is a result commonly found for DG
type methods used with nonlinear equations. As time continues, the accuracy increases for all polynomial
orders reaching an approximate accuracy of P + 3 through 100 periods. This clearly verifies that the FR
method achieves some degree of super accuracy, that is accuracy greater than P + 1, for this problem.
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Figure 13: Time series showing how the density error emanates from the interior of the vortex. All boundaries
use characteristic boundary conditions to prevent errors from accumulating within the computational domain.
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IV.D. Analysis and Recommendations

Based on our experiences with the isentropic Euler vortex problem, the following is a list of general guidelines
and recommendations to keep in mind with its use.

1. If using periodic boundary conditions, make sure that the size of the computational domain is large
enough so that the velocity perturbations are zero at the boundaries. Otherwise, the opposing tangen-
tial velocities across the periodic boundary create an artificial shear layer that does not exist in the
exact analytical solution. The error associated with this shear layer masks the error of the discretization
producing an incorrect total solution error that is larger than expected.

2. When using the vortex problem to perform an h-refinement study, make sure that all of the simulations
used in the study are not under- or overresolved. Both of these situations can cause the computed
order of accuracy to be incorrect.

3. Because the error can change rapidly between multiple simulations, it is also recommended to perform
an h-refinement analysis at several points in time to make sure that the computed order of accuracy
is itself accurate. An increased sampling of the accuracy is the only way to ensure that the results are
correct.

4. If propagating the vortex for more than a single period, the numerical error must have a means of
escaping the computational domain in order to get the best results. This is especially critical when
using high-order methods that produce minimal numerical dissipation. When the vortex is propagating,
it takes less than one period for error to recirculate completely and impinge on the vortex from the
opposite direction. We found that setting the boundaries in one direction to some sort of outflow
boundary condition is sufficient to prevent error from accumulating.

5. If any boundaries are periodic, the simulation is not of a single vortex but of an infinite array of coupled
vortices that interact due to the nonlinearity of the Euler equations. The only way to truly decouple
the vortex is to keep the vortex stationary by changing the mean flow velocity to zero and using an
inflow/outflow condition on all domain boundaries. These changes require extra care that sufficient
grid resolution is used due to additional numerical instabilities related to low-speed flows. Provided
this extra care is taken, the stationary, decoupled vortex can provide additional insight into the error
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Figure 15: The development of the order of accuracy over time for the stationary vortex using all character-
istic boundaries.

generated by a numerical method.
Upon further examination, the nonlinear instability previously encountered for the isentropic Euler vortex

problem seems to be the confluence of several factors. The first factor is that, throughout the entirety of
this work, we have been using the correction function that recovers the nodal DG method which is known
for producing very little numerical dissipation. The second factor is that there is zero physical dissipation in
the governing Euler equations. The third and final factor is that there is no way for energy/information to
truly exit the domain if all the boundaries of the computational domain are periodic. Combining all of these
factors results in a system with little to no ability to dissipate the error which has no means of escaping. The
error that is produced throughout the simulation, whether it is from the truncation error of the numerical
method or from something as small as machine roundoff error, will continuously build upon itself until it
eventually becomes large enough to affect the system in some capacity.

If we were instead using a 2nd-order method, say a finite-volume MUSCL (Monotonic Upstream-Centered
Scheme for Conservation Laws) scheme, this problem would not exist because the numerical method provides
sufficient dissipation to suppress the error from accumulating. However, without a very high grid resolution
it is unlikely that a 2nd-order finite-volume method will be able to propagate the vortex for very long before
the vortex is dissipated completely, leaving only the underlying mean flow to remain.20

As this problem has become increasingly popular for verifying high-order methods, various literary works
have reported instabilities very similar to what has been shown in the current work.23,27 When encountered
within the family of FR methods, these instabilities have generally been explained as being caused by
polynomial aliasing.23,27 Whereas numerical methods utilizing polynomial basis functions have been known
to encounter aliasing instabilities,13,14,23,27,37–39 the results in the current work, along with those in Ref. 40,
indicate that these instabilities with the vortex problem are more likely related to the problem being ill-posed.
This seems to be a case of mistaken identity simply because aliasing errors are not completely understood
and present an open problem for these methods.

Finally, we should reevaluate our results within the context of the true objective for this test case. The
primary purpose of this canonical problem is to demonstrate the ability of a numerical method to sustain
vortical structures inherent to turbulent flows without contributing unwanted numerical dissipation. Because
the final goal is simulating turbulent flows, the issue of insufficient dissipation solving the Euler equations
is mostly irrelevant due to the physical dissipation within the Navier-Stokes equations. Additionally, the
computational domain for nearly all real-world problems contains some form of boundary condition allowing
for outflow from the domain. The previous results have clearly demonstrated the primary purpose of this
problem with our ability to indefinitely propagate the vortex provided that there is a way for error to leave
the system.
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V. Conclusions

The isentropic Euler vortex problem is a simple, canonical test case commonly used to test the accuracy
of an inviscid CFD code. Throughout the many variations of this problem that exist in literature, several
assumptions that are commonly made in the problem definition have been found to cause numerical insta-
bilities, especially when using high-order methods. A list of general guidelines and recommendations has
been provided to help prevent these problems for the unknowing researcher looking add this problem to their
CFD toolbox.

After following these recommendations ourselves, we used the isentropic Euler vortex problem to test
the accuracy of our high-order code that is based on the FR method. We were able to successfully verify
its accuracy and found P + 1 order accuracy through 1 period and super-accuracy, i.e., greater than P + 1,
through 100 periods. By solving this problem using the FR method, we have shown that vortical flow
structures can be be accurately predicted with minimal unwanted numerical dissipation introduced into the
system.
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