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Résumé

L’amélioration des outils d’ingénierie utilisés dans le design des dispositifs industriels de combustion
est indispensable afin de respecter les demandes de plus en plus restrictives pour réduire les émissions
de gaz à effets de serre. Parmi eux, la mécanique des fluides numériques (CFD) est devenue essen-
tielle pour étudier et optimiser les chambres de combustion au cours des dernières décennies. Elle
se complète parfaitement aux expériences réelles qui peuvent être très couteuses et avec lesquelles
il est impossible d’obtenir des informations sur n’importe quelle quantité d’intérêt en tout point de
la chambre de combustion. En utilisant les simulations aux grandes échelles (LES), la CFD décrit
directement l’interaction entre les flammes et les structures turbulentes avec une faible modélisation.
La qualité des résultats LES est ainsi très dépendante de la discrétisation utilisée incluant à la fois le
maillage et également les propriétés de dissipation et de dispersion des méthodes numériques utilisées.
Cependant, la plupart des codes LES employés de nos jours dans l’industrie utilisent des schémas de
discrétisation spatiale de bas-ordre (LO) à cause de leur faible coût de calcul et leur facilité d’implé-
mentation sur des maillages complexes. Pourtant, les méthodes numériques d’ordres élevés (HO) pour
la LES sont développées depuis deux décennies et ont été appliquées sur des écoulements non-réactifs
amenant à des résultats plus précis que les méthodes LO avec un plus faible coût de calcul. Bien que
les méthodes HO semblent très prometteuses en combustion, en particulier pour mieux décrire le front
de flamme, leur utilisation pour des écoulements réactifs restent encore à être démontrée. Au cours de
ces travaux, les avantages et les bénéfices des méthodes HO en combustion sont évalués en utilisant la
méthode des Différences Spectrales (SD) avec du raffinement hp.

Premièrement, il est démontré que la formulation originelle des SD est instable pour des écoulements
multi-espèces avec des propriétés thermodynamiques variant avec la température et la composition.
Il a été constaté que calculer les variables primitives aux points solutions puis de les extrapoler aux
points flux, au lieu de faire l’inverse en extrapolant d’abord les variables conservatives, rend stable la
méthode SD dans ce cas-ci. De plus, une nouvelle méthodologie, également plus stable pour calculer les
flux diffusifs aux interfaces des cellules est détaillée. Enfin, les conditions aux limites caractéristiques
et de murs ont été étendues aux écoulements multi-espèces dans le formalisme SD.

Avec ces développements, des flammes laminaires pré-mélangées 1D et 2D ont été simulées avec des
mécanismes réduits à 2 réactions ou des mécanismes réduits analytiquement. Les résultats sont très
proches de ceux obtenus avec des solveurs de référence bien établis en combustion. Il est montré que
pour un même niveau d’erreur, il est plus efficace d’utiliser des maillages grossiers avec des grandes
valeurs de p et non l’inverse. Par conséquent, le raffinement local en p, qui applique des grandes
valeurs de p dans les régions d’intérêts seulement, permet de garder une bonne précision à un coût
de calcul plus faible. Ceci est particulièrement intéressant pour des simulations de combustion où le
front de flamme est très localisé et requiert une plus grande précision que le reste de l’écoulement.
Il est également observé sur ces cas simples 1D et 2D que la méthode SD est moins sensible à la
discrétisation du front de flamme que les solveurs volumes finis comme AVBP.

Pour terminer, deux différentes configurations de flammes 3D turbulentes ont été simulées avec
l’algorithme des SD étendu aux écoulements réactifs. L’implémentation et la validation d’une métho-
dologie pour injecter de la turbulence dans le domaine de calcul ainsi que l’adaptation du modèle de
flamme épaissie pour la LES dans le contexte des SD, 2 éléments nécessaires pour réaliser ces simula-
tions, sont d’abord présentés. Les résultats ont démontré la capacité de la méthode SD proposée pour
simuler des situations de combustion complexes et la positionnent comme un bon outil numérique
pour le développement des futurs dispositifs industriels de combustion.
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Abstract

There is a strong necessity to improve engineering tools for designing the next generation of industrial
combustion devices able to respect the always more restrictive demands for reducing and limiting
greenhouse gas emissions. Among them, computational fluid dynamics (CFD) has become essential to
study and optimize combustion chambers in the last decades. It is well complementary to experiments
which may be more expensive and are unable to give information on any quantity of interest at any
location. Using the large eddy simulations (LES) approach, CFD describes directly the interaction
between flames and turbulent structures with limited modeling. The quality of LES results is then
highly dependent on the discretization, including the mesh as well as the dissipation and dispersion
properties of the numerical methods used. However, most industrial LES codes available today use
low-order (LO) spatial discretization schemes due to their reduced computational cost and ease of
implementation on complex meshes. Still, high-order (HO) numerical methods for LES have been
developed in the two last decades, and successfully applied to non-reactive flows leading to more
accurate results than LO methods at no extra computational cost. Although HO methods appear to
be very promising for combustion, in particular to better describe the flame front, their application
to reactive flows remains to be demonstrated. In the present work, the capacities and benefits of HO
methods for combustion are assessed, using the Spectral Difference (SD) method with hp refinement.

Firstly, it is shown that the original SD formulation is unstable for multi-species gas flows, with
thermodynamic properties varying with temperature and composition. It is found that computing
primitive variables at solution points and extrapolating them at flux points, rather than conservative
variables, make the SD method stable for such case. In addition, a new methodology, also more
stable for computing the diffusive fluxes at cell interfaces is detailed. Finally, characteristic and wall
boundary conditions are extended to multi-species flows in the SD framework.

With these developments, laminar 1D and 2D premixed flames are then simulated with two-steps
or Analytically Reduced Chemistry mechanisms. Results are very similar to those obtained with
well-established, reference combustion solvers. It is shown that for a given error level, it is more
efficient to employ coarse grids with high p values and not the other way around. Consequently, local
p-adaptation, which puts high values of p in regions of interest only, allows to keep a good accuracy
at a lower computational cost. It is of particular interest for combustion simulations where the very
localized flame front requires higher accuracy than the rest of the flow. It is also observed on these
simple 1D and 2D cases that the SD method is less sensitive to the flame front discretization than
finite volume solvers such as AVBP.

Finally, two different 3D turbulent flames configurations are carried out using the SD algorithm
extended to reactive flows. The implementation and the validation of both a methodology to inject
turbulence in the computational domain and the adaptation of the thickened flame model for LES
within the SD framework, which are required to perform such simulations, are first presented. Results
demonstrate the capability of the proposed SD method to simulate complex combustion situations
and stands as a good numerical tool for the development of future industrial combustion devices.
Keywords: High-order method, Spectral Difference method, Combustion, Navier-Stokes character-
istic boundary conditions, Turbulence injection, TFLES model.
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Chapter 1 : Introduction

This thesis was conducted under a CIFRE project funded by Safran and the Association Nationale
de la Recherche et de la Technologie (ANRT) with the research project number 2019/0794. The two
laboratories involved in the project were the Centre Européen de Recherche et de Formation Avancées
en Calcul Scientifique (CERFACS) and the Office National d’Etudes et de Recherches Aérospatiales
(ONERA).

1.1. Industrial context
1.1.1. Environmental and economic context

The third and last part of the 6th assessment report on climate change, provided by the Intergovern-
mental Panel on Climate Change and published on April 4th 2022 gives direct measures to be taken
in all sectors in order to limit global warming to 1,5 ◦C at the end of the 21st century [1]. In partic-
ular, the reduction of greenhouse gas emissions (mostly composed of CO2) has to be conducted. The
International Energy Agency (IEA) has released guidance to reach net zero CO2 emissions globally by
2050, called the net zero pathway [2]. Among the multiple objectives announced, the end of thermal
engine cars marketing by 2035 (approved on June 8th 2022 by European Parliament for Europe) and
the use of 50% low-emissions fuels in aviation by 2040 are major challenges that the combustion sector
must face. Consequently, alternative fuels such as hydrogen, ammonia, sustainable aviation fuels and
synthetic fuels are currently considered to replace oil and kerosene in future cars and planes. The
impact on the design of combustion chambers is significant, both in terms of security and efficiency.
In particular, designing engines with lower emissions and higher energy efficiency, which drive the
technology in opposite directions, is very challenging. That is why, improving the engineering tools to
build the next generation of combustion chambers is extremely important and a key part of the net
zero pathway proposed by the IEA.

1.1.2. Technical context
Combustion chambers are systems where very complex physical phenomena appear and interact,

and are studied both experimentally and numerically. The advantage of experimental studies is to
directly check the final product that will be used at the end of the design process to make sure
everything works well. Nevertheless, it has two main drawbacks:

• Multiple prototypes will be built before a satisfactory final product is obtained, making experi-
mental campaigns very costly.

• In combustion chambers, the complexity of the geometry and the high temperature make it very
hard to obtain accurate measurements of the flow, flame and major species at various locations.

Thus, experiments are nowadays most often completed with numerical studies, where equations de-
scribing the considered physics are solved using discretization methods applied to a mesh (also called
a grid). When the domain is fluid dynamics, inside which combustion is a particular case, it is called
Computational Fluid Dynamics (CFD). The best benefit of CFD is that it is able to determine at all
locations of the computational domain, any quantity of interest like temperature or composition, for
any operating point. It is then very useful and cheaper than experiment to check some trends during
the design phase. However, CFD has also two main kinds of limitations:

• Intrinsic limits: the equations solved are already models that are built to describe real flow
behaviors.

• Computational limits: the resolution needed to perfectly solve these equations in industrial
configurations, is not affordable with computational power currently available. For instance in
aeronautical chambers at high pressure, the flame thickness is around 0.1 mm whereas the cell
size is typically of the order of 1 mm. Using a mesh refined enough to capture the 0.1 mm flame
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1.2 Large eddy simulations and high-order methods

thickness is affordable only on academic tests cases with simple geometries. This implies to use
additional models to describe the sub-grid scale phenomena.

The computational limits linked to the ratio of the physical scales to the grid cell size, are at the
origin of the three main categories of simulation approach for turbulent flows. In Direct Numerical
Simulations (DNS), the grid is fine enough to capture all turbulent scales and no additional model is
needed. As already said, it is still out of reach for industrial configurations. As it will be shown in
Chapter 3, when only the mean flow is computed the modeling concerns all the turbulent eddies. This
approach is called Reynolds-Averaged Navier-Stokes (RANS) and is widely used in the aeronautical
industry for its very low computational cost. However, RANS method does not give access to the
intermittent part of turbulence. That is why, with the continuous improvement of high performance
computing (HPC), Large Eddy Simulations (LES) are more and more employed for the design of
combustion chambers. In LES, the large eddies of turbulence are resolved by the mesh and the small
eddies are modeled, as they have a more universal behavior [3]. This approach is well suited for
studying combustion phenomena since turbulent combustion is primarily linked to turbulent mixing
processes at large scales.

This classification also holds for turbulent combustion modeling, where both the turbulent flow
and the flame front must be modeled. In Chapter 3, classical turbulent combustion models will be
introduced. They all have the same objective: define a way to model species and energy combustion
source terms able to reproduce the turbulence-flame interaction that the mesh cannot tackle.

1.2. Large eddy simulations and high-order methods

1.2.1. Numerical dissipation and dispersion

LES is meant to explicitly describe the large eddies of the flow. To be useful, it needs to be
accurate and therefore associated with discretization methods with minimum numerical error. By
construction, numerical methods intrinsically create dissipation and dispersion due to the truncation
of the Taylor-series expansions of derivatives [4]:

• The dissipation of a numerical scheme is linked to the even derivative terms in the truncation
error (TE) and tends to smooth all gradients of the solution. It is also called implicit artificial
viscosity as it acts as diffusion, and as opposed to explicit artificial viscosity which is purposely
added by the user to smooth out non-physical perturbations.

• The dispersion of a numerical scheme is linked to the odd derivative terms in the TE and modifies
the propagating velocity of perturbations, leading to the distortion of the solution.

These two errors increase when the numerical scheme order decreases. Mathematically speaking, a
numerical method is said to have an order of accuracy k if the solution error e is proportional to the
grid size h to the power of k:

e ∝ hk (1.1)

According to a survey sent in 2007 to the members of the technical committee of the CFD Algorithm
Discussion Group and other researchers, high-order (HO) methods refer to third-order methods and
higher [5]. Because the TE terms become more and more smaller when the scheme order increases,
dissipation and dispersion errors are low for HO methods.

Dissipation and dispersion are strong issues for LES, since they can deform and dissipate large eddies
that should be captured by the mesh. They have a huge impact for vortex-dominated flows, like the
flow around a helicopter propeller (accurate resolution of unsteady vortices), or for aeroacoustics where
broadband acoustic waves propagate over long distances [5].
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1.2.2. Structured and unstructured meshes

The concepts of structured and unstructured meshes are important to fully understand the chronol-
ogy of numerical methods and the growing use of HO approaches. A mesh is a subdivision of the
considered domain into small volumes called elements or cells. Each of these elements is defined by
its nodes (also called vertices), edges and faces for the 3D elements.

In the case of structured meshes, the domain is discretized using either quadrilaterals (in 2D) or
hexahedra (in 3D) elements where each node is associated with a unique (i, j) doublet in 2D or (i, j, k)
triplet in 3D. Therefore, neighbors of a given element or node are easily retrieved. However, the
generation of structured meshes for complex geometries can be very long which limits their use to
simple configurations only.

In the case of unstructured meshes, the domain can be discretized with elements of other shapes than
only quadrilaterals or hexahedra: triangles and tetrahedra, prisms and pyramids, or even more complex
shapes. Each mesh element is defined by its list of nodes numbered in the global list for the whole
mesh. This element-nodes association is called the connectivity table since it also allows to know which
node is shared by which elements, and therefore which elements are direct neighbors in the mesh. Node
coordinates are also stored in a coordinate table. Thus, in comparison with structured meshes, it is
more complicated to find the coordinates of a given element since this requires to find the corresponding
nodes in the connectivity table and the node coordinates in the coordinate table. The advantage of
unstructured meshes however is a much faster generation for complex geometries. Moreover, the use
of multiple types of elements makes them more flexible to mesh any kind of geometry. That is why,
unstructured meshes are commonly employed for industrial configurations, and any numerical method
considered for industrial application should be able to deal with unstructured meshes.

1.2.3. High-order schemes

The first numerical methods for CFD, which are still widely used are the finite difference (FD) and
the finite volume (FV) approaches. Both may be employed with HO schemes. There are also the
finite element (FE) method and spectral-like methods but they are less popular in CFD compare to
FD and FV probably due to their more complex formalism. Then, it was chosen to not detail them
in this paragraph.

1.2.3.1. The finite difference method

In the FD formulation, the computational domain is discretized using structured meshes and the
solution is computed at the mesh nodes. The derivatives are also computed at nodes with truncated
Taylor-series expansions using the solution values at neighboring nodes. The number of neighbors is
called the stencil of the scheme and the higher the stencil the higher the scheme order. Therefore,
HO FD schemes are easily obtained by increasing the stencil. To gain in efficiency, compact FD
schemes have been designed to reach high order without very large stencils [6]. Still, HO FD methods
suffer from their large stencil in parallel computing as they imply an increase of data communication
between processors. In addition, FD methods require structured meshes which, as mentioned in
paragraph 1.2.2, are not well adapted to complex geometries unless non-body fitted conditions are
used like for instance in the CONVERGE CFD software [7].

1.2.3.2. The finite volume method

The FV formulation is based on the mesh elements, considered as control volumes over which
the equations to solve are integrated, ending up with flux balances to update the solution in the
cell. As the control volume can have any shape, FV methods are more adapted to unstructured
meshes. The solution is stored either at the cell center or at the cell nodes. Most industrial codes
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use second-order FV methods [5] but higher-order, up to fifth-order FV methods also exist, such as
essentially non-oscillatory (ENO) [8–10], weighted ENO (WENO) [11] or also k-exact [12, 13] schemes.
Recently, a so-called targeted ENO (TENO) [14] scheme has been developed to improve the resolving
of small turbulent eddies by ENO-like methods. However, all these HO FV schemes remain complex
to implement and still employ extensive stencils which makes it difficult to keep parallel efficiency.

1.2.4. Towards new generation of high-order schemes

As a conclusion of the above paragraph 1.2.3, HO methods adapted to unstructured grids and
parallel efficiency must avoid the use of large stencils. This has motivated the recent development of
HO discontinuous methods, which all follow the same principle: a HO representation of the solution,
usually a polynomial of degree p, is computed in each mesh element and coupled with element interface
treatments to ensure conservativity. The scheme order is directly linked to the value of p which can
be easily changed in space and time during a simulation. Efficient parallelization is achieved because
solving the equations only involves direct neighbors through interface treatments whatever the value
of p is in this element. With such method, increasing the spatial resolution may be achieved either
by increasing locally the polynomial degree p, called p-refinement (or p-adaptation), or by doing local
mesh refinement, called h-refinement. Typically, p-refinement is used to locally reduce dissipation
and dispersion errors in regions where complex physics occur, whereas h-refinement stays necessary
in regions with geometrical and physical discontinuities [15, 16].

1.2.4.1. The Discontinuous Galerkin method

The most famous HO discontinuous approach is the Discontinous Galerkin (DG) method developed
by Reed and Hill in 1973 for the neutron transport equation [17]. Almost twenty years later, Cock-
burn and Shu applied the DG approach to conservation laws and more specifically to the Navier-Stokes
equations (NSE) [18–20]. Since then, DG has been widely employed to perform LES of various prob-
lems such as turbulent jets [21], laminar to turbulent transition [22], shock waves [23] and combustion
[24–28]. The DG method combines the principles of the finite elements (FE) method and of the FV
method. As in FE, the solution is approximated by a linear combination of basis functions and the
equations are integrated within each element in a weak formulation. Fluxes at element interfaces are
treated as in FV, using approximate Riemann solvers to resolve the flux discontinuity introduced by
the basis functions. There are actually three main categories of DG approaches depending on the
chosen set of basis functions:

• the modal DG approach is the original one used by Cockburn and Shu [18–20] where the or-
thogonal basis functions are Legendre or Lobatto polynomials [15]. This approach has shown
super-convergence properties on scalar conservation laws [29] meaning that for a polynomial of
degree p, the scheme order is strictly higher than p + 1. Nevertheless, as the scheme order in-
creases, the computational cost soars fastly. This is due to the fact that flux integrals appearing
in the weak form must be evaluated exactly using quadrature rules (based on the orthogonal
basis functions chosen) more and more costly as the scheme order increases [30]. To reduce this
cost, non-exact quadrature rules are usually employed but this can create huge aliasing errors,
leading to the blow up of the calculation, especially when flows are highly turbulent. Moreover,
the timestep scales as (2p+ 1)−1 which becomes very restrictive when p goes up.

• the nodal DG approach was introduced by Hesthaven and Warburton [31], where the basis
functions are Lagrange polynomials, reducing the cost of the quadrature rules compared to
modal DG. However, super-accuracy is lost. This is actually not critical since this property was
verified for scalar conservation laws only, whereas CFD equations are more complex. However,
and as for modal DG, the timestep also scales as (2p+ 1)−1.
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• the DG spectral element method (DGSEM) presented by Kopriva and Gassner [32] also uses
Lagrange polynomials but these are built at the same quadrature points than those used to eval-
uate flux integrals. This allows to relax the timestep limitation, which scales now as (p+ 1)−1.
However, the use of DGSEM on hybrid meshes composed of quadrilaterals and triangles in 2D
or hexahedra and tetrahedrals in 3D is more complicated than for modal or nodal DG [33].

1.2.4.2. The Spectral Volume method

The Spectral Volume (SV) method was introduced by Z.J. Wang [34–36] for 2D conservation laws
on unstructured meshes, was later extended to 3D by Liu [37] and to viscous flows by Sun [38]. It
consists in subdividing each mesh element into small control volumes called sub-volumes inside which
a classical FV technique is applied. The number of sub-volumes is linked to the targeted polynomial
degree. As for the DG method, the SV approach uses Riemann solvers at element boundaries only
since the solution is built continuous at sub-volumes boundaries. Additionally, the flux evaluations also
require HO quadrature rules to compute surface integrals making the method very costly especially
for 3D flows. Harris et al. [39, 40] proposed to overcome this issue with a SV method which does not
need quadrature rules. Another issue is that for orders of accuracy higher than two, the division of
a spectral volume into sub-volumes is not unique and has a considerable influence on the stability of
the method, as studied by Van den Abeele et al. [41]. Mainly for this reason, the SV method has lost
interest during the last decades compared to other HO methods.

1.2.4.3. The Spectral Difference method

In paragraphs 1.2.4.1 and 1.2.4.2, the presented HO methods are based on a weak integral form of the
equations and require costly quadrature rules for flux computations. Therefore, new HO discontinuous
methods built to solve directly the strong form of the equations, meaning without integrating them,
have emerged. They are usually called strong HO discontinuous methods as opposed to DG and SV-like
methods often named as weak HO discontinuous methods. One of these strong discontinuous methods
is the Spectral Difference (SD) approach originally introduced by Kopriva and Kolias in 1996 [42, 43]
as the staggered-grid Chebyshev multidomain method, applied to structured quadrilateral elements
using a tensor-product formulation. In 2006, Liu et al. [44] extended the method to triangular elements
and conservation laws. Then, Wang et al. [45] used it for the Euler equations and the extension to
Navier-Stokes equations (NSE) was finally done by May and Jameson [46] for triangular grids and by
Sun et al. [47] for hexahedral elements.

For tensor-product cells such as quadrilaterals or hexahedra, the standard SD method builds a
polynomial of degree p to express the solution using values at what are called solution points (SP) and
a polynomial of degree p+ 1 to express fluxes using values at another set of points called flux points
(FP). This gives a scheme order of p+ 1 [42]. As for DG and SV methods, interface treatments such
as Riemann solvers are employed to ensure conservation across elements. Recently, Chen et al. [48]
presented a new formulation for this kind of elements where the flux divergence is built from the flux
values at SP completed by flux values at interface FP, avoiding to interpolate from SP to internal FP.
They called this approach the collocated-grid SD method. Stability of the standard method on tensor-
product elements was investigated by Van den Abeele et al. [49] and Jameson [50] who concluded that
SP positions have no influence on the stability whereas FP positions do have one. In particular, the
SD method on tensor-product cells is stable for all orders of accuracy if the interior FP are placed
at the roots of the corresponding Legendre polynomial of degree p. For triangular and tetrahedral
elements, also called simplex cells, the stability also depends on FP but the set of stable FP is much
difficult to find. The use of Raviart-Thomas (RT) elements on triangles in SD, named as the SDRT
method, was proven to be linearly stable up to the 4th order by May et al. [51]. It seems to be the more
promising approach and has been applied recently on various test cases [52–54]. Moreover, Veilleux et
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al. [55] extended the SDRT method on triangle elements up to 6th order and on tetrahedral elements
up to 3rd order [56].

1.2.4.4. The Flux Reconstruction method

Another class of strong HO discontinuous method is the Flux Reconstruction (FR) technique, also
called the Correction Procedure for Reconstruction, developed by Huynh [57] in 2007. In this method
the solution and the flux polynomials are defined on the same set of points: SP and FP are collocated.
It implies that the flux divergence is no longer a polynomial of degree p and also that the scheme is
not conservative because the flux is discontinuous at element interfaces. Flux correction functions,
also named lifting operators and taken as polynomials of degree p+ 1, are used to tackle these issues
and make the FR method conservative [57]. These functions have a huge impact on the characteristics
of the FR scheme employed. In particular, specific flux corrections functions can link the FR method
with DG or SD methods [57, 58]. It is also possible to derive mathematical expressions for the lifting
operators that guarantee an energy stable scheme [59]. Jameson et al. studied the stability of the
method in both linear [60] and nonlinear [61] cases and the dissipation and dispersion properties of the
FR approach were investigated in [62, 63]. Extensions to triangular [64] and tetrahedral [65] elements
for any order of accuracy have been considered. Consequently, the FR method was very popular for
multi-element meshes compared to the SD method where for instance tetrahedral elements are not
stable for p > 3 as stated in paragraph 1.2.4.3. That is why, the FR technique has been applied to
multiple flow configurations over the past ten years [66–69]. It should be mentioned that recently
Romero et al. [70] proposed the direct FR method where the existing FR implementation of the nodal
DG scheme is recovered with a much simpler correction procedure than the original one proposed by
Huynh [57]. It was then extended to triangular meshes [71] making this approach a valuable candidate
to be used in the future of FR techniques.

1.3. High-order methods for combustion

In Section 1.2, it was shown that LES needs low-dissipation and low-dispersion errors to perform
well, promoting the use of HO numerical schemes. Discontinuous HO methods seem to be excellent
candidates to handle complex geometries with unstructured meshes while maintaining high orders of
accuracy with efficient parallelization. Yet, although now widely employed in pure aerodynamic cases,
HO methods have only been used in a few combustion cases, whether with DG, SD or FR methods.

1.3.1. Specificities of numerical combustion

In pure aerodynamics, the mono-species non-reacting gas is usually considered as air with a constant
heat capacity ratio γ. In combustion, the gas is composed of Ns species and evolves in a flow where
the temperature T varies importantly due to the flame. In that case, the conservation equations for
a multi-species reacting gas are employed with a varying γ = γ (T, Yk), Yk being the mass fraction of
species k ∈ J1, NsK. Thus, numerics for pure aerodynamics and combustion simulations differ in three
main ways:

1. the multi-species mixture brings additional numerical constraints:
Ns∑
k=1

Yk = 1 and 0 ≤ Yk ≤ 1

must be ensured at each grid point, which can lead to additional treatments [72].
2. the computation of combustion source terms introduces stiffness when fast intermediate species

are considered in the flow, which can entail the use of dedicated time-integration procedures [28,
73, 74].
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3. the temperature and species dependence of γ creates strong and spurious oscillations at interfaces
due to different γ values when a conservative form of the multi-species equations is solved,
independently of the numerical method [75]. More precisely in case of contact discontinuity,
i.e., constant pressure and velocity with varying density (and so a temperature), it was shown
in [75] that the first iteration of any FV numerical scheme preserves the constant velocity but
not the constant pressure if γ = γ (T, Yk) (multi-species case) varies. This is due to the use
of the total energy ρE conservation equation, often preferred in CFD since ρE is a conserved
quantity. Working with the pressure equation solves the problem, but is no more conservative.
Once pressure has gone wrong, the velocity also goes wrong at the next step and oscillations
appear, which can be amplified in the presence of combustion source terms. One popular method
to avoid this behavior in HO solvers is the double flux technique initially developed in the FV
context [76, 77] but it is again intrinsically non-conservative. Other methods are based on the
transport of additional quantities [75, 78–84], which increases the computational cost.

1.3.2. Combustion simulations with DG discretization

Combustion simulations with discontinuous HO methods are still little considered since it requires
to adapt the numerical scheme to the multi-species reacting flow as highlighted in paragraph 1.3.1.
Because the DG approach is the most mature discontinuous technique, well established for pure
aerodynamics, it is also the most used for combustion cases. A review is given below in chronological
order:

• Billet et al. [85] in 2011 were the first ones to apply the double flux methodology with the DG
method to solve the Euler equations for a multi-species non-reacting gas.

• Later, Billet et al. [24] presented in 2014 a DG algorithm taking into account viscous and source
terms in the multi-species reacting flow equations.

• Lv et al. [25], also in 2014, employed the double flux approach combined with a fully conser-
vative upwind-biased flux formulation for the simulation of the multi-species and reacting flow
equations. They validated the method on 1D and 2D multi-species advection cases and shock
problems such as detonations showing the robustness of their algorithm.

• Lv et al. [26] in 2017 improved their methodology by employing an entropy-residual shock indi-
cator coupled with an artificial viscosity approach. They validated it on a bluff-body stabilized
turbulent premixed flame and on more complex detonation cases.

• Johnson et al. [27] recently in 2020 developed a DG approach to solve multi-species reacting
flow problems without using the double-flux methodology. They also presented results with
local p-refinement in a combustion context which is, to the best of the authors’ knowledge, still
unique in the DG community.

• Du et al. [28] very recently in 2022 published a methodology for preserving 0 ≤ Yk ≤ 1 in the
DG framework. In particular, they employed a conservative modified exponential Runge-Kutta
(CMERK) method [86] for time integration instead of Strong Stability Preserving (SSP) Runge-
Kutta schemes [87] classically considered in most works on DG for combustion. Validation was
done on 1D and 2D detonation test cases.

1.3.3. Combustion simulations with SD and FR discretizations

At the time of start of this work in 2019, the only published work about the use of SD and FR
approaches for combustion was from Gupta et al. [88], who applied SD to 1D detonations in a multi-
species reacting gas. However, nothing was specified about a specific treatment of discontinuities with
varying γ, as mentioned above. Later on in 2021, Tofaili et al. [89] also simulated 1D detonations
solving the multi-species reacting Euler equations with the SD method combined with a recently
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developed HO shock capturing approach based on characteristic waves sensors [90] and an extended
limiting procedure originally introduced for pure aerodynamics [91]. These papers have demonstrated
the capability of the SD method to simulate 1D detonations whereas in the present work it is proposed
to reproduce 1D laminar flames to 3D turbulent flames using the SD technique. The very recent work
of Peyvan et al. [92] adapting the double flux method to the FR discretization of the multi-species
Euler equations has also to be underlined.

1.3.4. Interest of discontinuous high-order methods for combustion

As it can be seen, the use of discontinuous HO methods in the combustion field is very recent but
the methodology is very appealing especially due to p-refinement that locally changes the order of
accuracy of the spatial scheme without modifying the mesh. In the current state of the art, spatial
refinement is performed with Adaptive Mesh Refinement (AMR) techniques [93] coupled with FV
discretization. In the AMR framework, a physically-based sensor is used to locate the regions of the
mesh that should be refined but the order of the spatial scheme remains the same. The p-refinement
has been applied in pure aerodynamics simulations either with the DG [94, 95] or the SD [96] method.
Results showed a reduction by almost 50% of the number of mesh points with p-refinement, leading
to a significant reduction of the computational time between 25% to 50% [96]. Thinking of flames,
which are very local phenomena requiring high numerical accuracy, the potential of p-refinement is
very attractive. Nonetheless, the only published paper showing local p-refinement in the context of
discontinuous HO methods applied to combustion is the very recent work of Johnson and Kercher
(2020) [27], already mentioned in paragraph 1.3.2.

1.4. A word on the lattice Boltzmann method

The review of the promising methods for LES of combustion would be incomplete without the lattice
Boltzmann method (LBM). LBM was originally introduced by McNamara and Zanetti in 1988 [97]. It
relies on the resolution of the lattice Boltzmann equations, which describe the flow at the mesoscopic
scale, while the macroscopic quantities such as density, velocity or temperature are recovered using
a quadrature rule applied to the solution of these lattice Boltzmann equations [98, 99]. The method
has reached an excellent level of maturity for non-reacting flows, with the simulation of full scale
applications in the last decade: full scale cars [100], full scale engines [101] and full scale aircrafts [102].
It compares well with classical FV solvers in terms of accuracy but has less computational cost [103].
LBM has three main advantages:

1. The mesh generation even of complex geometries is extremely fast since LBM uses non-body
fitted Cartesian meshes [104].

2. The parallelization of LBM is easy and efficient [105].

3. LBM has low-dissipative properties [106] which is key for LES.

LBM however suffers from its low-Mach number formulation, although some extensions have been
recently proposed with promising results [107, 108]. Very recently, LBM has been coupled to FD
solvers for energy and species transport equations to tackle laminar [109, 110] and turbulent [111]
reacting flows. Results show that this approach is a valuable candidate, as HO discontinuous methods,
for the next generation of LES combustion codes. Nevertheless, one drawback of coupling LBM with
a FD solver is that it no longer has the low-dissipative properties of LBM for energy and species
transport equations.
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1.5. Objectives of the thesis
Despite their increasing popularity for LES in both academic and industrial sectors, HO methods

still suffer from a lack of robustness and reliability compared to current low-order (LO) methods. In
particular, discontinuous HO methods which were originally introduced for simpler equations than
flow equations, require additional treatments to be used in CFD. Some studies have tried to compare
DG, FR and SD techniques but there is no final conclusion about which HO method should be used
for a given application. Actually, in Liang et al. [112], it was shown that FR is most efficient and DG
is the slowest one but in terms of accuracy DG is the best and FR is the worst. For both efficiency and
accuracy the SD method was found to stand in between. In a more recent study, Cox et al. [113] stated
that the SD method is more robust and accurate than FR. This is very encouraging for pursuing the
development of the SD method to simulate complex flows which is the purpose of this work.

In this context, CERFACS and ONERA have joined forces to develop the code JAGUAR (proJect
of an Aerodynamic solver using General Unstructured grids And high ordeR schemes) based on the SD
method. JAGUAR was first applied to non-reacting, mono-species compressible flows showing inter-
esting and promising performances [96, 114, 115]. JAGUAR was then extended to simplex and hybrid
grids [55, 56, 116] and with p-refinement [96]. Finally, characteristic boundary conditions specially
adapted to the SD framework [117, 118] were implemented in JAGUAR to cope with acoustics.

The first objective of the present work is to find, implement and validate a stable SD algorithm
able to simulate the combustion of a multi-species mixture. It implies the extension to multi-species
gas, adaptation of the characteristic boundary conditions and also of the usual walls and symmetry
boundary conditions, implementation of the thermochemistry and of turbulent combustion model.
Then, a second objective will be to demonstrate the performances of the SD method for combustion
both in terms of accuracy and computational cost. In particular the use of local p-adaptation will be
key for that.

1.6. Outline of the manuscript
To achieve the above objectives, the manuscript is organized in three main parts:

• Part I deals with the theoretical background of laminar and turbulent combustion:
⋆ Chapter 2 introduces basic definitions for describing a mixture of gases, the computation

of chemical source terms and finally the governing equations of a multi-species reacting gas
mixture employed throughout this thesis.

⋆ Chapter 3 briefly explains the concept of turbulent flows and how they can be solved
using numerical simulations, with a focus on LES used in this work. Turbulent combustion
modeling is also introduced, and The Thickened Flame model used in this work is presented.

• Part II is dedicated to the SD method, presented in the context of a mono-species and non-
reacting gas, except for the characteristic boundary conditions which are presented for the general
case:
⋆ Chapter 4 presents the SD method in detail. Starting from the one-dimensional hy-

perbolic or parabolic equations, the derivation of the three-dimensional discretization on
hexahedral elements is made. The concept of Riemann solvers and the diffusion schemes
are also introduced, along with the local polynomial adaptation technique. Finally, the
time-discretization is exposed.

⋆ Chapter 5 addresses the subject of boundary conditions in the SD context for a multi-
species gas mixture. Navier-Stokes characteristic boundary conditions (NSCBC) adapted
to the SD formalism are firstly explained. Then, the treatment of symmetry and wall
boundary conditions, still in SD framework, is tackled.
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⋆ Chapter 6 makes a first validation step for non-reacting flows, with the simulation of
turbulent channel and pipe flows with the SD method. These test cases require turbulence
injection through the inlet boundary condition.

• Part III finally brings up the application of the SD method to combustion:
⋆ Chapter 7 first demonstrates the validity of the implementation on one-dimensional and

two-dimensional premixed laminar flames using different chemistries. This requires first
to tackle the issue of the SD instability when considering a multi-species mixture, as it
can occur according to the analysis made in paragraph 1.3.1. A first evaluation of the
performance of the SD method is made via the impact of the spatial resolution of the flame
front.

⋆ Chapter 8 is the final step of this work, applying SD to 3D turbulent premixed combustion
cases. The implementation of the Thickened Flame model in the SD context is firstly
presented. Two different turbulent combustion cases are then computed: the Cambridge
burner [119, 120] and the VOLVO configuration [121, 122]. In both cases, the influence
of the polynomial degree within each element is studied and results are compared with
experimental and numerical data already available in the literature.

Finally, overall conclusions and perspectives for future work are drawn.

1.7. Publications
1.7.1. Non-peer-reviewed journals

• T. Marchal, H. Deniau, J-F. Boussuge, B. Cuenot, R. Mercier, Extension of the Spectral Differ-
ence method to combustion, https://arxiv.org/pdf/2112.09636.pdf.

1.7.2. Peer-reviewed journals
• T. Marchal, H. Deniau, J-F. Boussuge, B. Cuenot, R. Mercier, Extension of the Spectral Differ-

ence method to laminar and turbulent combustion, Submitted to Flow, Turbulence and Combus-
tion in November 2022.

1.7.3. Peer-reviewed Conferences
• T. Marchal, A. De Brauer, H. Deniau, J-F. Boussuge, B. Cuenot, R. Mercier, Efficiency of the

high-order Spectral Difference method in combustion, 39th International Symposium on Combus-
tion. July 24-29th, 2022.
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This chapter is dedicated to the definition of basic combustion concepts that will be used throughout
the manuscript. Only premixed combustion is considered in this work. General definitions to charac-
terize the species, the mixture and the flame are firstly introduced. The ways to model and compute
combustion source terms is then assessed. Finally, the governing equations that are numerically solved
in this work are summed up.

2.1. General definitions
The combustion phenomenon involves multi-species gases, also called mixtures, reacting through

multiple chemical reactions which produce heat. Consequently, additional quantities to characterize
the mixture and the species composing it are introduced..

2.1.1. Chemical species and mixture composition
For each species k of a given mixture, the following quantities can be defined:
• The mass fraction Yk is the ratio between the mass mk of species k and the total mass m of

the mixture:
Yk = mk

m
(2.1)

The mass fractions must satisfy:
Ns∑
k=1

Yk = 1 (2.2)

where Ns is the number of species that compose the mixture.
• The mole fraction is the ratio between the number of moles nk of species k and the total

number of moles n of the mixture:
Xk = nk

n
(2.3)

Since, nk = mk/Wk, where Wk is the molar mass, and n = m/W , where W is the mixture
mean molar mass (see Eq. (2.9) and Eq. (2.10)), the link between Xk and Yk is given by:

XkWk = YkW (2.4)

• The molar concentration [Xk]
[
mol.m−3

]
is the number of moles nk of species k per unit

volume V :
[Xk] = nk

V
= n

V
Xk = ρXk

W
= ρYk
Wk

(2.5)

where ρ is the density of the mixture.
• The density ρk

[
kg.m−3

]
of species k:

ρk = ρYk (2.6)

• The mass specific heat capacity at constant pressure Cpk(T )
[
J.kg−1.K−1

]
and at constant

volume Cvk(T )
[
J.kg−1.K−1

]
. Both quantities depend on temperature and the way they are

obtained in this work is detailed in paragraph 2.4.6.
• The mass enthalpy hk(T )

[
J.kg−1

]
is the sum of the chemical and sensible enthalpies:

hk (T ) = ∆h0
f,k + hsk (T ) = ∆h0

f,k +
∫ T

T0
Cpk

(
T

′)
dT

′ (2.7)
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where ∆h0
f,k is the mass enthalpy of formation of species k at a reference temperature T0 and

hsk is the mass sensible enthalpy of species k at temperature T . The formation enthalpy ∆h0
f,k

is a constant defined for each species k.
Note that any molar quantity fmk , is linked to the associated mass quantity fk with:

fmk = fk ×Wk (2.8)

2.1.2. Mixing rules
Mixing rules define the mixture properties from those of the species present inside the mixture. The

molar mass of the mixture is computed using the mass fractions and the molar mass of each species:

1
W

=
Ns∑
k=1

Yk
Wk

(2.9)

or equivalently using the mole fractions:

W =
Ns∑
k=1

XkWk (2.10)

Similarly, the mass specific heat capacity at constant pressure and at constant volume of the mixture
is computed using the mass fractions:

Cp =
Ns∑
k=1

YkCpk and Cv =
Ns∑
k=1

YkCvk (2.11)

To compute molar specific heat capacities, Eq. (2.11) is multiplied by the molar mass of the mixture:

Cmp = Cp ×W and Cmv = Cv ×W (2.12)

The mass enthalpy of the mixture at temperature T is also defined:

h (T ) =
Ns∑
k=1

Ykhk (T ) =
Ns∑
k=1

Yk

(
∆h0

f,k +
∫ T

T0
Cpk

(
T

′)
dT

′
)

=
Ns∑
k=1

Yk∆h0
f,k + hs (T ) (2.13)

where hs (T ) is the mass sensible enthalpy of the mixture at temperature T given by:

hs (T ) =
Ns∑
k=1

Ykhsk =
∫ T

T0
Cp
(
T

′)
dT

′ (2.14)

Finally, if the mixture is composed of Ns thermally perfect gases, its static pressure is given by the
sum of all species partial pressures (Dalton’s law), noted Pk [Pa], which follow the perfect gas law:

P =
Ns∑
k=1

Pk with Pk = ρk
R

Wk
T (2.15)

where R = 8.314 J.mol−1.K−1 is the molar ideal gas constant. Consequently, the mixture also follows
the perfect gas law:

P =
Ns∑
k=1

Pk =
Ns∑
k=1

ρk
R

Wk
T = ρRT

Ns∑
k=1

Yk
Wk

= ρ
R

W
T (2.16)

The quantity R/W is named the mass gas constant of the mixture noted Rgas and Eq. (2.16) is called
the equation of state (EOS) of the mixture. Since the perfect gas law is employed, Rgas can also be
computed using Mayer’s relation:

Rgas = Cp − Cv ≡ Rgas (2.17)
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2.1.3. Equivalence ratio and mixture fraction

Combustion involves reactants and products, and strongly depends on the ratio of the fuel and
oxidizer concentrations. Definitions are given below for premixed flames only, where the fuel and
oxidizer are fully premixed prior to react in the flame front.

2.1.3.1. Global equivalence ratio

The fuel-oxidizer ratio is usually measured with the global equivalence ratio of the mixture, which
compares the fuel-oxidizer ratio in the mixture to the stoichiometric value. Consider a global one-step
chemical reaction of the type [3]:

ν
′
FF + ν

′
OO −−→ Products (2.18)

with ν ′
F and ν ′

O respectively the stoichiometric coefficients of fuel F and oxidizer O, determined from
the atomic balance between reactants and products. The mass stoichiometric ratio s of the global
reaction in Eq. (2.18) is the inverse mass ratio corresponding to stoichiometric proportions (fuel and
oxidizer completely converted into products):

s =
(
YF
YO

)−1

st
= ν

′
OWO

ν
′
FWF

(2.19)

where WF and WO are respectively the molar mass of the fuel and oxidizer. Using Eq. (2.19), a global
equivalence ratio is introduced for any mixture:

ϕg = s
YF
YO

=

(
YF
YO

)
(
YF
YO

)
st

(2.20)

with YF and YO respectively the fuel and oxidizer mass fractions in the mixture. Depending on the
values of ϕg, three different regimes are introduced:

• ϕg < 1: the lean regime where the oxidizer is in excess and the fuel is completely turned into
products.

• ϕg = 1: the stoichiometric regime where both the oxidizer and the fuel are completely turned
into products.

• ϕg > 1: the rich regime where the fuel is in excess and the oxidizer is completely turned into
products.

2.1.3.2. Mixture fraction and local equivalence ratio

In the case of premixed gaseous flames, and in the absence of dilution or secondary injection, the
equivalence ratio is constant throughout the flame, i.e., even in the burnt gases, and is equal to the
global equivalence ratio [3]. However, in practical systems with multiple injections, dilution or liquid
fuel droplets, the local equivalence ratio ϕ may vary significantly. This local equivalence ratio is often
re-written in the form of a mixture fraction, noted z here, which evaluates the local mixing between
reactants in the combustion chamber, whatever the way they have been introduced. A very convenient
definition, because it remains valid in the burnt gases, was introduced by Bilger [123]:

Z =
Ns∑
k=1

ξk
Wk

Yk (2.21)
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with ξk the sum of atomic mass fractions in species k, weighted by stoichiometric coefficients given
by [123]:

ξk = 2
WC

×WC × akC + 1
2WH

×WH × akH − 1
WO

×WO × akO (2.22)

where akj is the number of atoms j in species k. For instance: aCH4,H = 4, aCH4,C = 1 and aCH4,O = 0.
Thus, ξk are known constants and Z is a local variable function of Yk. Finally, Z is rescaled using ZO
and ZF , the values of Z respectively in the oxidizer and fuel tanks to obtain the normalized mixture
fraction:

z = Z − ZO

ZF − ZO
(2.23)

From z, a local equivalence ratio can be deduced using Eq. (2.24) [3]:

ϕ = z

1 − z
× s× Y 0

F

Y 0
O

(2.24)

with s defined in Eq. (2.19), Y 0
F the initial fuel mass fraction in the fuel tank and Y 0

O the initial
oxidizer mass fraction in the oxidizer tank. For premixed flames, z is constant across the domain so
that ϕ = ϕg in that case as mentioned at the beginning of this paragraph.

2.1.4. Progress variable
The progress variable c quantifies the evolution of the chemical system through a flame, from the

fresh gases, where c = 0, towards the burnt gases where c = 1. For simple cases, it can be based either
on temperature as in Eq. (2.25):

c = T − T f

T b − T f
(2.25)

or on fuel mass fraction as in Eq. (2.26):

c = YF − Y f
F

Y b
F − Y f

F

(2.26)

with the superscripts f and b referring respectively to fresh and burnt gas conditions. In practice for
more complex cases, it is usually a linear combination of some species mass fractions. The progress
variable is very useful to localize the flame front as an iso-surface of c, leading to the normal vector
to the flame front (pointing towards the fresh gases):

nff = − ∇c
||∇c||2

(2.27)

where underscript ff means flame front and ∇ and ||.||2 are respectively the gradient and L2-norm
operators.

2.1.5. Laminar flame speed
The laminar flame speed SL is a key property of premixed flames, also named propagation speed. It

is defined in laminar flow, for a steady and unstretched flame. It may be related to multiple velocities
that can be considered:

(i) The absolute speed Sa.
(ii) The displacement speed Sd.

19



Chapter 2 : Laminar premixed combustion

(iii) The consumption speed Sc.
The first two velocities are local quantities whereas the last one is a global one. In this work, only
SL and Sc have been used and are briefly recalled respectively in paragraphs 2.1.5.1 and 2.1.5.2. The
absolute speed is the velocity at which the flame moves in a fixed reference, while the displacement
speed is the velocity at which the flame moves relatively to the flow.

2.1.5.1. The propagation speed

The propagation speed SL is the speed at which a one-dimensional premixed flame propagates in a
quiescent fresh gas mixture. The flame is steady in the sense that its structure does not change, in
other words, it corresponds to a steady solution in a reference frame moving at speed SL. In that case
SL can be expressed thanks to the mass balance equation:

SL = ρbub

ρf
= ρu

ρf
(2.28)

expressing that in one-dimensional steady case, ρu is constant.

2.1.5.2. The consumption speed

The consumption speed is the integral of the fuel consumption rate ω̇F in the direction normal to
the flame front. It is defined by:

Sc = −1
ρfY f

F − ρbY b
F

∫ +∞

−∞
ω̇F dnff (2.29)

2.1.5.3. Velocities in laminar steady and unstretched flame

For a steady laminar unstretched flame, it can be shown that:

Sa = 0 (2.30)
Sd = u− Sa = u (2.31)

SL = Sc = ρ

ρf
Sd (2.32)

In that case, SL is often written S0
L and corresponds to what is called the unstretched laminar flame

speed.

2.1.6. Laminar flame thickness
The flame thickness is also a very important property of a flame, in particular when using numerical

simulations since it controls the required mesh resolution. Usually, it is obtained from the temperature
profile through the flame with the following formula:

δ0
L = T b − T f

max (||∇T.nff ||2) (2.33)

Using Eq. (2.33) requires a flame solution. It can be replaced by an approximate estimation, obtained
for a constant Prandtl number (see paragraph 2.4.5.3), constant Cp and a Sutherland law for the
dynamic viscosity (see paragraph 2.4.5.1), known as the Blint’s formula [124]:

δblintL = 2Dth

SL

(
T b

T f

)0.7

(2.34)
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where Dth = λf/ρfCp is the thermal diffusivity of the fresh gases, λf being the thermal conductivity.
The flame thickness given by Eq. (2.34) only requires the flame speed and the burnt gases temperature,
which can be obtained from a thermochemical equilibrium computation. It should be mentioned that
the flame thicknesses given by Eq. (2.33) and Eq. (2.34) differ, and are also far from the thickness of
the reaction zone (see paragraph 2.2.2 for a definition of the reaction rate), noted δr, and which is
even smaller.

2.2. Chemical kinetics

The Nr chemical reactions occurring during a combustion process involving Ns species are written:

Ns∑
k=1

ν ′
kjMk −−⇀↽−−

Ns∑
k=1

ν ′′
kjMk for j = 1, Nr (2.35)

where Mk is the symbol used for species k, ν ′
kj and ν ′′

kj are the molar stoichiometric coefficients of
species k in reaction j, in the reactants and in the products respectively. The double arrow means
that the reaction can occur in both directions, from left to right (forward) of right to left (backward).
To ensure mass conservation, they must satisfy:

Ns∑
k=1

ν ′
kjWk =

Ns∑
k=1

ν ′′
kjWk ⇐⇒

Ns∑
k=1

νkjWk = 0 (2.36)

with νkj = ν ′′
kj − ν ′

kj . The progress of these reactions creates or consumes species and also produces
or consumes heat.

2.2.1. Rate of progress of a chemical reaction

The rate of progress of reaction j is given by:

Qj = Qfj −Qrj = Kfj

Ns∏
k=1

[Xk]ν
′
kj −Krj

Ns∏
k=1

[Xk]ν
′′
kj (2.37)

withQfj andQrj respectively the forward and backward rates of progress, [Xk] the molar concentration
per unit volume of species k, and Kfj and Krj respectively the forward and backward reaction rates
constants. They are formulated with the Arrhenius law:

Kj (T ) = AjT
βj exp

(−Eaj
RT

)
= AjT

βj exp
(−Taj

T

)
(2.38)

where Kj refers to Kfj or Krj , Aj is the pre-exponential factor, βj is the temperature exponent, Taj =
Eaj/R and Eaj are respectively the activation temperature and activation energy. The values of Aj , βj
and Eaj are provided in tables using dedicated formats such as CHEMKIN [125] or CANTERA [126].
Eq. (2.38) gives a way to compute both Kfj and Krj independently, but these two quantities are
linked via the equilibrium constant of reaction j noted Kj

eq:

Kj
eq (T ) ≡ Kfj (T )

Krj (T ) =
(
P0

RT

) Ns∑
k=1

νkj

exp
(

∆S0
j (T )
R

−
∆H0

j (T )
RT

)
(2.39)

21



Chapter 2 : Laminar premixed combustion

where P0 = 1 bar, ∆S0
j

[
J.mol−1.K−1

]
and ∆H0

j

[
J.mol−1

]
are respectively the molar entropy and

enthalpy changes in reaction j given by:

∆S0
j (T ) =

Ns∑
k=1

νkjWksk (T ) (2.40)

∆H0
j (T ) =

Ns∑
k=1

νkjWk

(
∆h0

f,k + hsk (T )
)

(2.41)

with sk (T )
[
J.kg−1.K−1

]
the mass entropy of species k at temperature T . Therefore, the backward

reaction rate is usually computed from the forward reaction rate and the equilibrium constant as:

Krj (T ) ≡ Kfj (T )
Kj
eq (T )

(2.42)

2.2.2. Species source term
Using the rates of progress, each species k will be either produced or consumed according to a source

term ω̇k
[
kg.m−3.s−1

]
called reaction rate or net production rate. It is the sum of the reaction rates

ω̇kj generated by the Nr reactions:

ω̇k =
Nr∑
j=1

ω̇kj = Wk

Nr∑
j=1

νkjQj for k = 1, Ns (2.43)

where ω̇kj = WkνkjQj is the reaction rate of species k in reaction j so that Qj is in mol.m−3.s−1.
This reaction rate defined in Eq. (2.43) describes the rate of production (if positive) or destruction (if
negative) of species k due to the chemical reactions. Its units show that one kg of species k is either
produced or consumed (depending on the sign of ω̇k) per unit volume and time. If all reaction rates
ω̇k are added together and thanks to Eq. (2.36), it can be seen that total mass is conserved during a
combustion process since:

Ns∑
k=1

ω̇k =
Ns∑
k=1

Wk

Nr∑
j=1

νkjQj

 =
Nr∑
j=1

Qj
Ns∑
k=1

νkjWk︸ ︷︷ ︸
=0

 = 0 (2.44)

Note that units of reaction rates constants depend on the stoichiometric coefficients of each reaction.
According to Eq. (2.37), since Qj is in mol.m−3.s−1 and [Xk] in mol.m−3, Kfj and Krj have units that

respectively depend on
Ns∑
k=1

ν ′
kj and

Ns∑
k=1

ν ′′
kj . Kfj will be in mol.m−3.s−1/

(
mol.m−3

) Ns∑
k=1

ν′
kj

and Krj in

mol.m−3.s−1/
(
mol.m−3

) Ns∑
k=1

ν′′
kj

.

2.2.3. Heat release rate
The heat generated by the combustion process through chemical reactions results from the balance

of reactants - products formation enthalpies. The heat release rate (HRR) then writes:

ω̇T = −
Ns∑
k=1

∆h0
f,kω̇k (2.45)

Its units in the SI system are: kg.m−1.s−3 which can be also seen as J.m−3.s−1. Therefore, the heat
release rate is an energy released per unit volume and time.
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2.3 Choice of the chemical description

2.3. Choice of the chemical description
The chemical reactions happening during a combustion process are described in what is called a

chemical mechanism or also a chemical scheme. Basically, such mechanism contains the different
reactions introduced in Eq. (2.35) along with their rate constants needed to compute the rates of
progress of each reaction. Different kinds of mechanisms are available in the literature with different
levels of description of the chemistry, from detailed chemistry to Analytically Reduced Chemistry
(ARC) and simplified Globally Reduced Chemistry (GRC). This section explains the main features of
these three types of chemistry.

2.3.1. Detailed chemistry
Detailed mechanisms are employed for very accurate simulations focusing on the chemical processes

of combustion. They can be composed of hundreds of species reacting through thousands of elementary
reactions. As an example, GRI mechanisms [127, 128] describing the combustion of natural gas, i.e.,
lightest hydrocarbon fuels, already contain 53 species and 325 reactions. For heavier hydrocarbons,
the CRECK modeling group proposes a full detailed mechanism as the POLIMI_C1_C16 [129] which
counts 368 species and 14462 reactions. These detailed mechanisms are built to reproduce experimental
data from shock tube experiments and for major flame properties such as auto-ignition, extinction,
laminar flame speed. They are thus quite generic and able to describe chemistry in all combustion
situations. However, their complexity make them unsuitable for both academic and industrial 3D
configurations. More precisely,

(i) their extremely high number of species dramatically increases the system to be solved since a
transport equation as the one in Eq. (2.91) has to be solved for each species,

(ii) they are very stiff, due to highly reactive intermediate species having very short life times and
requiring very small time steps,

(iii) they demand very fine space discretization to represent all intermediate reaction steps, which
may be very narrow.

Therefore, even with the constant increase of computing power, detailed chemistry is very little used
in LES and DNS nowadays.

2.3.2. Globally reduced chemistry
As opposed to detailed chemistry, Globally Reduced Chemistry (GRCs) schemes do not describe

the true elementary reactions, but model the process with one to four global reactions and of the
order of ten transported species. They are therefore very fast to compute. Reaction rates are still
expressed with an Arrhenius-like law similar to Eq. (2.38) where the rate constants are globally fitted
by comparison to experimental data of flame auto-ignition and laminar flame speed. However, due to
the over-simplification it is usually not possible to find a set of rate constants that is valid for a wide
range of conditions. One method to overcome this issue, as in the 2S_BFER methodology [130] is
to use non-constant pre-exponential factors and make them functions of the mixture conditions. This
method is called the Pre-Exponential Adjustment (PEA) and is employed to correct the overestimation
of the laminar flame speed in rich cases [131]. The 2S_BFER assumes a two-steps mechanism for any
fuel F reacting with O2:

F + xO2
Kf1−−→ yCO + zH2O (2.46)

CO + 1
2O2

Kf2−−−⇀↽−−−
Kr2

CO2 (2.47)

where the CO/CO2 equilibrium (see Eq. (2.47)) is added to obtain a correct gas temperature in the
rich burnt gas, and x, y and z are respectively the stoichiometric coefficients for O2, CO and H2O in
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the fuel oxidation reaction. For example, the CH4/Air-2S-BFER chemical scheme [130], that is used
in this work, contains six species and the two reactions Eq. (2.46) and Eq. (2.47) with x=1.5, y=1
and z=2. For this mechanism, the forward rates of progress are computed as [130]:

Qf1 =

Kf1︷ ︸︸ ︷
A1 exp

(−Ea1

RT

)
[CH4]nCH4 [O2]nO2,1 × f1 (ϕ) (2.48)

Qf2 = A2T
0.7 exp

(−Ea2

RT

)
︸ ︷︷ ︸

Kf2

[CO]nCO [O2]nO2,2 × f2 (ϕ) (2.49)

where nk,j is the reaction exponent for species k in reaction j and does not to be confused with the
stoichiometric coefficient of species k in reaction j. Values of the nk,j have been tuned to retrieve the
expected pressure dependency on the laminar flame speed whereas the Aj and Eaj are adjusted to
match directly the laminar flame speed [130]. Values of pre-exponential constants, activation energy
and reaction exponents are summed up in Table 2.1.

CH4 oxidation CO − CO2 equilibrium
Pre-exponential constant 4.9 × 109

[
mol−0.15.cm0.45.s−1

]
2 × 108

[
mol−0.5.cm1.5.s−1

]
Activation energy [cal/mol] 3.55 × 104 1.2 × 104

Reaction exponents [-] nCH4
= 0.50, nO2,1 = 0.65 nCO = 1.00, nO2,2 = 0.50

Table 2.1. – Pre-exponential constant, activation energy and reaction exponents for the CH4/Air-2S-
BFER chemical scheme.

In Eq. (2.48) and Eq. (2.49), f1 and f2 are the two PEA correction functions depending on the local
equivalence ratio, given by [131]:

f1 (ϕ) = 2[
1 + tanh

(
ϕ0,1−ϕ
σ0,1

)]
+B1

[
1 + tanh

(
ϕ−ϕ1,1
σ1,1

)]
+ C1

[
1 + tanh

(
ϕ−ϕ2,1
σ2,1

)] (2.50)

f2 (ϕ) = 1
2

[
1 + tanh

(
ϕ0,2 − ϕ

σ0,2

)]
+ B2

2

[
1 + tanh

(
ϕ− ϕ1,2
σ1,2

)]

+ C2
2

[
1 + tanh

(
ϕ− ϕ2,2
σ2,2

)]
×
[
1 + tanh

(
ϕ3,2 − ϕ

σ3,2

)] (2.51)

where the function parameters are gathered in Table 2.2 and the local equivalence ratio ϕ is computed
from Eq. (2.24).

ϕ0,j σ0,j Bj ϕ1,j σ1,j Cj ϕ2,j σ2,j ϕ3,j σ3,j
j = 1 1.1 0.09 0.37 1.13 0.03 6.7 1.6 0.22 - -
j = 2 0.95 0.08 2.5 10−5 1.3 0.04 0.0087 1.2 0.04 1.2 0.05

Table 2.2. – Coefficient values for f1 (ϕ) and f2 (ϕ) for the CH4/Air-2S-BFER.

The shapes of f1 and f2 are represented in Fig. 2.1. The correction of the fuel oxidation reaction f1
first increases when ϕ is above stoichiometry and later decreases to slow down combustion, while f2
goes very fast to zero to accelerate the evolution towards equilibrium. It can also be noticed that
both functions are closed to one for lean combustion since the rate constants of Table 2.1 lead to the
correct flame speed in the lean side.

GRC schemes are quite attractive as they are simple and fully affordable in 3D simulations. This
is however at the cost of lack of accuracy, and detail about the chemical pathways. Moreover they do
not contain pollutant chemical processes which is critical in the current combustion context.
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Figure 2.1. – Evolution of PEA functions f1 and f2 with equivalence ratio for the CH4/Air-2S-BFER.

2.3.3. Analytically reduced chemistry
As an intermediate between detailed chemsitry and GRC, the so-called Analytically Reduced Chem-

istry (ARC) makes a good compromise between cost and accuracy. Detailed mechanisms are reduced
with physically-oriented methods in order to obtain typically between 10 to 30 species to transport
which is today affordable in CFD simulations, while keeping predictive capabilities over a wide range
of conditions. The reduction process is basically done in two consecutive steps:

(i) a first step reduces the detailed mechanism to a so-called skeletal mechanism. The user selects
different flame parameters to target such as flame speed, flame temperature or NOx concentra-
tion for instance. He also gives an error tolerance on each of these parameters, noted ϵ, using
the detailed mechanism results as references. With these constraints, a number of species and
reactions are discarded using either sensitivity analysis as in [132], principal component analysis
(PCA) [133] or graph methods such as the direct relation graph (DRG) [134] and DRG with
error propagation (DRGEP) [135]. In this work, a skeletal mechanism was employed for sim-
ulating a one-dimensional hydrogen-air premixed flame. It is the so-called San Diego skeletal
mechanism [136], named here as H2AIR_9_21_0_SD since it is composed of 9 transported
species reacting through 21 chemical reactions.

(ii) a second step further reduces the skeletal mechanism on the basis of a timescale analysis to spot
the fast-reacting species. For the very short-time living species it may be considered that their
net chemical source term is zero, i.e., they are in a Quasi-Stationary State (QSS):

d [Xk]
dt

≡ ω̇k ≈ 0 (2.52)

Expressing ω̇k with the species concentrations then gives an estimate of the QSS species k, which
therefore has no longer to be computed with a transport equation. Another advantage is that
removing QSS species reduces stiffness, as by definition QSS species are the most stiff.
Several methods have been developed in the last century to identify QSS species. They are based
on different analyses of characteristic times and can be classified into three groups: The Com-
putational Singular Perturbation (CSP) method [137–139], The Partial Equilibrium Analysis
(PEA) [140] and The Level Of Importance (LOI) [141] method.
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The reduced mechanism obtain after both steps (skeletal mechanism and QSS) is called an ana-
lytically reduced mechanism. In this work, a methane-air ARC mechanism is employed. It has been
derived from the GRI-3.0 [142] detailed mechanism with the software ARCANE [143] using succes-
sively the DRGEP method to get the skeletal mechanism followed by a LOI method to identify the
QSS species. The resulting scheme is composed of 16 transported species, 250 chemical reactions and
10 species in QSS, and is named in the following as CH4_16_250_10_QC.

2.4. Conservation equations for multi-species reacting flows
The combustion phenomenon is described with the three-dimensional multi-species reacting com-

pressible Navier-Stokes equations (NSE) which arise from the conservation of mass (for both the
mixture and the species), momentum and energy. The objective of this section is to introduce these
equations and explain how they are solved in CFD.

2.4.1. Conservation of mass of the mixture

The total mass conservation does not change compared to the non-reacting case since the combustion
process does not modify the total mass:

∂ρ

∂t
+ ∇. (ρu) = 0 (2.53)

where u = (u, v, w)T
[
m.s−1

]
is the velocity vector along physical coordinates (x, y, z) and ∇. is the

divergence operator applied to a vector (resulting in a scalar).

2.4.2. Conservation of momentum

The conservation of momentum in reacting flows also obeys the same equation as in a non-reacting
flow:

∂ρu
∂t

+ ∇. (ρu ⊗ u + P I) = ∇. (τ ) (2.54)

where ⊗ means the tensor product, I is the identity matrix, P is the static pressure, ∇. is the divergence
operator applied to a matrix (which gives a vector) and τ

[
kg.m−1.s−2

]
is the viscous stress tensor

defined under Stokes hypothesis for a Newtonian fluid:

τ = µ

(
∇u + (∇u)T − 2

3∇. (uI)
)

(2.55)

with µ
[
kg.m−1.s−1

]
the dynamic viscosity of the mixture. Although there are no reaction terms in

Eq. (2.54), the flow is modified by combustion through the pressure increase as well as the temperature
increase which modifies the viscosity µ(T ) with a ratio from 1:8 to 1:10 [3]. Density also decreases in
the same ratio through gas expansion. Consequently, the local Reynolds number varies importantly
through the flame and differs in the burnt and fresh gas. For instance, a turbulent non-reacting jet
may become laminar after ignition [144].

2.4.3. Conservation of mass for species

The conservation of mass for species k is an additional equation that is not present in the non-
reacting case. It is due to the multi-species mixture and is given by:

∂ρYk
∂t

+ ∇. (ρ (u + Vk)Yk) = ω̇k for k = 1, Ns (2.56)
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where Vk is the diffusion velocity of species k. The diffusion velocity is a key element of the combustion
process and its modeling is not straightforward as will be shown in the next paragraphs.

By summing equations Eq. (2.56) from k = 1 to k = Ns, the total mass conservation of the mixture
must be recovered:

Ns∑
k=1

[
∂ρYk
∂t

+ ∇. (ρ (u + Vk)Yk)
]

=
Ns∑
k=1

ω̇k︸ ︷︷ ︸
=0

=⇒
∂

(
Ns∑
k=1

ρYk

)
∂t︸ ︷︷ ︸
∂ρ
∂t

+∇.


Ns∑
k=1

ρuYk︸ ︷︷ ︸
ρu

+ ∇.
(
Ns∑
k=1

ρVkYk

)
= 0

=⇒ ∂ρ

∂t
+ ∇. (ρu)︸ ︷︷ ︸

=0

+ρ∇.
(
Ns∑
k=1

VkYk

)
= 0

=⇒
Ns∑
k=1

YkVk = 0

(2.57)

The last equality of Eq. (2.57) is not ensured with all models for diffusion velocities and may require
additional corrections.

2.4.3.1. Diffusion velocity

The diffusion velocities Vk are the solutions of the following linear system of size N2
s which tech-

nically has to be solved in each direction at each mesh point and at each time instant (if the flow is
unsteady) [145]:

∇Xm =
Ns∑
k=1

XmXk

Dmk
(Vk − Vm) + (Ym −Xm) ∇P

P
+ ρ

P

Ns∑
k=1

YmYk (fm − fk) for m = 1, Ns (2.58)

where Dmk = Dkm

[
m2.s−1

]
is the binary mass diffusion coefficient of species m into species k and

fm and fk are respectively the volume forces acting on species m and k. This system is derived by
stating that the total momentum is conserved in collisions so that the momentum of species m can
be changed only by collisions with molecules of other types k ̸= m (the two first terms on the right-
hand-side (RHS) of Eq. (2.58)) and by volume forces acting on species m (the last term on RHS
of Eq. (2.58)) [145]. It should be mentioned that the diffusion of mass due to temperature gradients,
also called the Soret effect, is neglected in Eq. (2.58). In a CFD context, Eq. (2.58) is very costly to
solve and most of industrial codes use simplified transport approaches discuss hereafter [3].

2.4.3.2. Fick’s law

If pressure gradients are sufficiently small and volume forces are neglected, Eq. (2.58) reduces to:

∇Xm =
Ns∑
k=1

XmXk

Dmk
(Vk − Vm) for m = 1, Ns (2.59)

Eq. (2.59) can be analytically solved for two specific cases:
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(i) Binary diffusion: in a mixture with only two species, both having the same binary mass
diffusion coefficient D12. For this case, it can be shown that:

V1 = −D12∇ [ln (Y1)] (2.60)

and V2 is found using Eq. (2.57) with Ns = 2.
(ii) Multi-species diffusion with the same binary mass diffusion coefficient for all species:

in a mixture with Ns > 2 species and Dij = D is constant, the result shown by Eq. (2.60) can
be extended to any species k of the mixture:

Vk = −D∇ [ln (Yk)] (2.61)

Eq. (2.60) and Eq. (2.61) are respectively the Fick’s law in binary and multi-species mixtures. Usually,
combustion chemistry involves more than two species so that binary diffusion cannot be considered.
On the other hand, the approximation Dij = D when Ns > 2 is usually too strong. Consequently,
Fick’s law is almost never used in CFD for combustion.

2.4.3.3. Hirschfelder and Curtiss approximation

In a lot of combustion codes, the resolution of Eq. (2.58) is replaced by the Hirschfelder and Curtiss
approximation which is actually a first-order approximation of Eq. (2.58). This approximation is
written as [146]:

VkXk = −Dk∇Xk (2.62)

or using Yk by substituting Eq. (2.4) into Eq. (2.62):

VkYk = −DkWk

W
∇Xk (2.63)

Dk is not a binary diffusion coefficient but an equivalent diffusion coefficient of species k into the rest
of the mixture [3]. Its expression will be discussed in paragraph 2.4.5. As opposed to Fick’s law in
the multi-species case, the diffusion coefficients differ between species which is expected to be more
accurate. The diffusion coefficients are linked to the heat diffusivity noted Dth, through the Lewis
numbers defined by:

Lek = Dth

Dk
(2.64)

Lewis numbers are usually quasi-constants in flames of most hydrocarbon/air systems, but may vary
significantly with light fuels such as hydrogen [3].
Consequently under this approximation, Eq. (2.56) can be recast into:

∂ρYk
∂t

+ ∇. (ρuYk) = ∇.
(
ρDk

Wk

W
∇Xk

)
+ ω̇k for k = 1, Ns (2.65)

As already mentioned, the total mass conservation is ensured only if the sum of equation in Eq. (2.65)
for all species leads to the density conservation equation, i.e., with a zero RHS. It means that the

quantity ρ
Ns∑
k=1

Dk (Wk/W ) ∇Xk = 0. This is not true in general, and is obtained with a correction

velocity, noted Vc, added to the diffusion flux of Eq. (2.65) which becomes:

∂ρYk
∂t

+ ∇. (ρuYk) = ∇.
(
ρDk

Wk

W
∇Xk − ρYkVc

)
+ ω̇k for k = 1, Ns

⇐⇒ ∂ρYk
∂t

+ ∇. (ρuYk) = ∇. (Mk) + ω̇k for k = 1, Ns

(2.66)
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where Vc and the species diffusion flux Mk are given by:

Vc =
Ns∑
k=1

Dk
Wk

W
∇Xk (2.67)

Mk = ρ

(
Dk

Wk

W
∇Xk − YkVc

)
(2.68)

The Hirschfelder and Curtiss approximation uses mole fractions in Eq. (2.66) whereas mass fractions
are usually preferred in CFD for mass conservation. Thus, the diffusion flux Mk is rewritten using Yk
instead of Xk. Starting from the following result:

Wk

W
∇Xk = Wk

W
∇
(
YkW

Wk

)
= 1
W

W∇Yk + Yk ∇W︸ ︷︷ ︸
−W 2∇( 1

W )

 = ∇Yk − YkW∇
( 1
W

)
(2.69)

where ∇ (1/W ) is deduced from ∇Yk following Eq. (2.9):

∇
( 1
W

)
=

Ns∑
k=1

∇Yk
Wk

(2.70)

Vc and then Mk are expressed as:

Vc =
Ns∑
k=1

Dk

[
∇Yk − YkW∇

( 1
W

)]
(2.71)

Mk = ρ

(
Dk

[
∇Yk − YkW∇

( 1
W

)]
− YkVc

)
(2.72)

It should be mentioned that although Eq. (2.67) (respectively Eq. (2.68)) and Eq. (2.71) (respectively
Eq. (2.72)) are mathematically exactly equal, their numerical discretization is not. The different steps
to compute Mk are summed up in Algorithm 1 of paragraph B.1.1.

2.4.4. Conservation of energy

There are multiple ways to write the conservation of energy depending on which energy variable is
chosen among sensible or total enthalpies/energies and temperature. All equations are listed in [3].
Here, the total non-chemical energy per unit mass E = es+||u||22/2

[
J.kg−1

]
is used, with es = hs−P/ρ

the sensible energy of the mixture. The associated conservation equation writes:

∂ (ρE)
∂t

+ ∇. (u (P + ρE)) = ∇.(τ .u − q) + ω̇T (2.73)

where the energy flux vector q [J.s−1.m−2] is written as:

q = −λ∇T −
Ns∑
k=1

hskMk (2.74)

with λ [J.s−1.m−1.K−1] the thermal conductivity of the mixture (see paragraph 2.4.5.3). This flux
considers a heat diffusion term expressed by Fourier’s Law and a second term associated with the
diffusion of species with different enthalpies which is specific of a multi-species gas [3].
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The heat diffusion term is based on the temperature T , which may be calculated from the sensible
energy es =

∫
Cv(T )dT where Cv(T ) is the mixture heat capacity at constant volume. To avoid

computing an additional gradient, the temperature gradient is obtained ∇T from the perfect gas law:

∇T = ∇
(
PW

ρR

)
= 1
R

[
W

ρ
∇P + PW∇

(1
ρ

)
+ P

ρ
∇W

]
= 1
R

[
W

ρ
∇P − PW

ρ2 ∇ρ− PW 2

ρ
∇
( 1
W

)]
(2.75)

which with Eq. (2.16) becomes:

∇T = T

P
∇P − T

ρ
∇ρ− TW∇

( 1
W

)
(2.76)

Finally, the energy flux introduced in Eq. (2.74) is given by:

q = −λ
(
T

P
∇P − T

ρ
∇ρ− TW∇

( 1
W

))
−

Ns∑
k=1

hskMk (2.77)

The different steps to compute q are summed up in Algorithm 2 of paragraph B.1.2.

2.4.5. Models for diffusion coefficients

In momentum, species and energy equations, the following diffusion coefficients appear:
• Dynamic viscosity µ in the momentum equations.
• Diffusion coefficient Dk of species k into the mixture in species equations.
• Thermal conductivity of the mixture λ in the energy equation.

2.4.5.1. Dynamic viscosity

Based on the kinetic theory of gases, the dynamic viscosity of a mixture can be computed using the
Wilke model [147]:

µ =
Ns∑
i=1

Xiµi

Xi +
Ns∑

j=1,i ̸=j
Xjϕij

(2.78)

where ϕij is given by:

ϕij =

(
1 +

(
Wj

Wi

)1/4√ µi
µj

)2

√
8
(
1 + Wi

Wj

) (2.79)

with µk the viscosity of species k.
However simpler models exist with little influence on the results. In particular it can be assumed

that µ is independent of the gas composition and only depends on the temperature, as summed up in
Table 2.3. For both Sutherland and Power laws, Tref and µref are respectively a reference temperature
and the dynamic viscosity at this reference temperature.

In this work, power laws with user-defined parameters were employed for the three different mech-
anisms used. The values of these parameters are gathered in Table 2.4.
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2.4 Conservation equations for multi-species reacting flows

Sutherland’s law Power law

µ (T ) = µref

(
T

Tref

)3/2
Tref + S

T + S
µ (T ) = µref

(
T

Tref

)n
• S is the Sutherland’s temperature. • n is the power law exponent.

Table 2.3. – Laws for dynamic viscosity as a function of temperature T only.

Mixture name µref

[
kg.m−1.s−1

]
Tref [K] n [−]

CH4/Air-2S-BFER 1.84 × 10−5 300 0.676
CH4_16_250_10_QC 6.87 × 10−5 2129 0.643
H2AIR_9_21_0_SD 8.06 × 10−5 2645 0.648

Table 2.4. – Values of µref , Tref and n used in the power law formula for CH4/Air-2S-BFER,
CH4_16_250_10_QC and H2AIR_9_21_0_SD mechanisms.

2.4.5.2. Species diffusion coefficients

Under the Hirschfelder and Curtiss approximation, Dk is expressed as a function of the binary
diffusion coefficients such that:

Dk = 1 − Yk∑
j ̸=k

Xj

Djk

(2.80)

However, computing the binary diffusion coefficients is numerically costly and a further approximation
may be done, assuming constant Schmidt numbers Sck ≡ µ/ (ρDk) for all species k so that Eq. (2.80)
is replaced by Eq. (2.81):

Dk = µ

ρSck
(2.81)

Schmidt numbers are specified as inputs to define the considered mixture. Their values are determined
so as to reproduce the correct flame behavior, in particular the laminar flame speed.

2.4.5.3. Thermal conductivity of the mixture

As for dynamic viscosity, a formula for the thermal conductivity of a mixture can be obtained from
kinetic theory of gases using the Mathur model [148]:

λ = 1
2


Ns∑
k=1

Xkλk + 1
Ns∑
k=1

Xk
λk

 (2.82)

where λk is the conductivity of species k. However, as for species diffusion coefficients, an approxima-
tion is done considering that the Prandtl number Pr ≡ µCp/λ of the mixture is constant, so that λ
can be obtained using Eq. (2.83):

λ = µCp
Pr

(2.83)

The Prandtl number is also specified as an input to define the mixture. The Prandtl numbers associ-
ated to each of the three mechanisms used in this work are gathered in Table 2.5.
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Mixture name P r [−]
CH4/Air-2S-BFER 0.7

CH4_16_250_10_QC 0.673
H2AIR_9_21_0_SD 0.662

Table 2.5. – Values of Prandtl numbers for CH4/Air-2S-BFER, CH4_16_250_10_QC and
H2AIR_9_21_0_SD mechanisms.

2.4.6. Computing pressure and temperature from transported variables
Both the temperature and the pressure explicitly appear in the conservation equations described

above, and must therefore be calculated. However this is not direct for a multi-species thermally
perfect gas mixture, as ρes (T, Yk), T and P are not anymore linked through a simple linear relation
as it was the case in the mono-species mixture.

In this work, all thermodynamic functions for each species k are tabulated. Starting from the
JANAF enthalpy tables [149] giving hsk (T ) for 100 K intervals [Tn1 , Tn2 ], tables for esk, Cpk and Cvk
are generated:

esk (Tn1 ) = hsk (Tn1 ) − RTn1
Wk

, Cpk (Tn1 ) = hsk (Tn2 ) − hsk (Tn1 )
Tn2 − Tn1

, Cvk (Tn1 ) = esk (Tn2 ) − esk (Tn1 )
Tn2 − Tn1

(2.84)
Consequently, the calculation of pressure and temperature from the conservative variables is done in
five steps:

1. Compute ρes from ρes = ρE − ||ρu||22/ (2ρ).
2. For each interval [Tn1 , Tn2 ], because the ρYk are known, compute:

ρes (Tn1 ) =
Ns∑
k=1

ρYkesk (Tn1 ) and ρes (Tn2 ) =
Ns∑
k=1

ρYkesk (Tn2 ) (2.85)

3. When ρes (Tn1 ) ≤ ρes ≤ ρes (Tn2 ), compute T as:

T =
(
n+ ρes − ρes (Tn1 )

ρes (Tn2 ) − ρes (Tn1 )

)
× 100 (2.86)

4. Once T is known, compute from JANAF tables Cpk(T ), Cvk(T ), and

Rgas ≡ Cp (T ) − Cv (T ) =
Ns∑
k=1

(ρYk) [Cpk (T ) − Cvk (T )] /ρ (2.87)

5. Finally, get P from Eq. (2.16).

2.4.7. Summary of equations
The transport equations in conservative form for a combustion problem in 3D under Hirschfelder

and Curtiss approximation are:
∂ρ

∂t
+ ∇. (ρu) = 0 (2.88)

∂ρu
∂t

+ ∇. (ρu ⊗ u + P I) = ∇. (τ ) (2.89)

∂ (ρE)
∂t

+ ∇. (u (P + ρE)) = ∇.(τ .u − q) + ω̇T (2.90)
∂ρYk
∂t

+ ∇. (ρuYk) = ∇. (Mk) + ω̇k for k = 1, Ns (2.91)
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Actually, Eq. (2.88) is not necessary since for a multi-species gas:

ρ =
Ns∑
k=1

ρYk (2.92)

Consequently in practice, Eq. (2.88) is not solved and the density is obtained by using Eq. (2.92).

2.5. Summary of this chapter
In this chapter, variables used to describe multi-species turbulent reacting flows have been intro-

duced in a context of ideal gas. The main difference with a mono-species gas is that all thermodynamic
data vary with the local composition. Basic flame properties, the flame speed and the flame thickness
have also been introduced since they are essential to describe the combustion process.

A general description of the computation of combustion source terms has also been presented.
The combustion process generates heat thanks to the chemical reactions for which reaction rates
are modeled using an Arrhenius law. Combustion chemistry is essential and may be described with
different levels of detail, usually grouped in three categories: the detailed, global and reduced (or
semi-detailed) chemical schemes. It appears that detailed chemistry is well too expensive and not
relevant for the purpose of this work which is to show that combustion can be successfully simulated
using the SD method. Therefore only global and reduced (ARC) schemes are used here.

Finally, the equations modeling the combustion process have been introduced. They are based on
the 3D multi-species NSE under Hirschfelder and Curtiss approximation where a constant Schmidt
number for each species is assumed. These equations will be solved using the SD method for both
reacting and non-reacting flows, as will be detailed in chapter 4.

The equations presented in this chapter describe all combustion processes, steady or unsteady, at
all scales in space and time. They correspond to the equations solved in the fully resolved Direct
Numerical Simulation (DNS) mode, without any model for turbulence and turbulent combustion.
However, most combustion applications can not be computed with a DNS approach, which would
be far too costly in computing time. That is why, modeling of turbulent reactive flows has to be
introduced, either in RANS or LES contexts. This is the topic of the next chapter focusing on
turbulent premixed combustion.
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Chapter 3 : Turbulent premixed combustion

This chapter is dedicated to turbulent premixed combustion and its modeling in LES. Firstly, the
physics of turbulence and their modeling in the three main families of simulation methods are recalled.
Among them, the LES approach is retained in this work as it appears to make a good compromise
between cost and accuracy. Thus, turbulent combustion equations in the context of LES are then
introduced along with the unclosed subgrid-scale terms that need to be modeled. Models for these
unclosed terms are finally described, including turbulent transport and turbulent combustion. A focus
is made on the TFLES combustion model used in this work.

3.1. Simulation of turbulent flows

The objective of this section is to introduce briefly the phenomena involved in non-reacting and
reacting turbulent flows and how they can be simulated using CFD.

3.1.1. The concept of energy cascade

Turbulence is a complex, non-linear phenomenon and its description is one of the most challenging
topic in the field of fluid mechanics. A turbulent flow is identified when flow variables (pressure, ve-
locities, temperature, species mass fractions...) fluctuate randomly within structures having a defined
spectral content. Any of these variables, noted f can be decomposed into its statistical average part
f and its fluctuating part f ′ so that:

f = f + f ′ with f ′ = 0 (3.1)

Eq. (3.1) is referred to as the Reynolds decomposition [150]. To determine whether a given flow is
laminar or turbulent, the Reynolds number defined in Eq. (3.2) is used:

Re = UL

ν
(3.2)

where U and L are respectively a characteristic velocity and length scale of the flow and ν = µ/ρ
is the kinematic viscosity of the fluid. This number evaluates the ratio between inertial and viscous
forces. Laminar flows are characterized by small values of Re where viscous effects dominate, while
for large values of Re inertial forces are sufficiently strong to trigger turbulence. An important process
in turbulent flows is the energy cascade, firstly introduced by Richardson [151] in 1922 through this
famous quotation:

Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity.

It means that a turbulent flow may be viewed as a set of vortices, also called eddies, of various sizes
and characteristic life times interacting with each other, where the large eddies break up and transfer
their energy to the smaller ones and so on. This concept was formalised in 1941 by Kolmogorov [152]
in the case of a homogeneous isotropic turbulent flow, suggesting that most turbulent eddies range
between an integral length scale lt, for the most energetic eddies, and the Kolmogorov length scale ηκ
for the least energetic eddies. Using a turbulent Reynolds number computed with the integral length
scale lt and the turbulent velocity fluctuation at lt, noted U ′,

Ret = U ′lt
ν

(3.3)
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3.1 Simulation of turbulent flows

the ratio of the largest to the smallest scales in the energy cascade can be expressed as [150]:
lt
ηκ

= Re3/4
t (3.4)

In between these two length scales, there is the inertial zone which is an intermediate range of scales
where energy is transferred from largest to smallest scales as initially suggested by Richardson [151].
The energy cascade is illustrated on Figure 3.1 where mass kinetic energy density E of each eddy is
plotted against its wavenumber κ, i.e., inversely proportional to its size. In the case of homogeneous
isotropic turbulence, the kinetic energy in the inertial range decreases linearly with κ in a log-log scale,
with a slope of −5/3: E ∝ κ−5/3.

The introduction of these three regions for turbulent scales is the starting point of the different
classes of method used in CFD to simulate turbulent flows.

Figure 3.1. – Sketch of the energy cascade showing mass kinetic energy density E
[
m3.s−2

]
versus

wavenumber κ
[
m−1

]
, in log-log scale, for homogeneous isotropic turbulence.

3.1.2. Different approaches to simulate turbulent flows
3.1.2.1. Direct Numerical Simulation

The reactive NSE have been introduced in Section 2.4. Solving these equations for all turbulent
and combustion scales is called the DNS approach as highlighted on Figure 3.1. In that case, the
mesh characteristic size ∆x is smaller than both ηκ and δ0

L/n
ff
pts where nffpts is the number of points

needed to correctly discretize the gradients within the flame front, and is usually between ten to twenty
depending on the chemical scheme [3]. Although it is very accurate, this approach is still limited to
simple geometries and relatively small turbulent Reynolds numbers due to its extremely high cost in
terms of computational time. Indeed, it can be shown that the total number of mesh points in 3D
required to correctly resolve all turbulent eddies, noted NDNS

pts , scales as [3]:

NDNS
pts ∝ Re9/4

t (3.5)

37



Chapter 3 : Turbulent premixed combustion

This mesh size may be even more increased by the flame resolution. Current computational power
allows today up to few billions grid points at most so that values of Ret that can be simulated with DNS
are of the order of 104. Therefore DNS is mostly employed to better understand specific turbulence
and flame phenomena, and their interactions, in order to provide guidance for modeling. A review of
some DNS performed on turbulent combustion cases can be found in Poinsot and Veynante [3].

3.1.2.2. Reynolds-Averaged Navier-Stokes

As opposed to DNS, the RANS approach only solves the average quantities f defined in Eq. (3.1).
Thus, RANS does not solve the equations presented in Section 2.4 but their statistical-average obtained
by applying to them the average operator •. As a consequence, only the mean flow is accessible with
RANS. In addition, as the statistical average is usually replaced by a time-average, RANS is limited
to statistically steady flows. Another consequence is that all turbulent structures need to be modeled
as illustrated in Figure 3.1. Mathematically, this modeling is introduced by the unresolved terms
resulting from the averaging process applied to the non-linear terms of NSE. Although this approach
does not give much information on the fluctuating part of the flow, it is still widely employed in
industry because of its low computing cost: the resolution of average gradients can be reached on
coarse meshes.

3.1.2.3. Large Eddy Simulations

LES is an intermediate approach between DNS and RANS, where the large scales of turbulence are
resolved by the mesh up to a certain size ∆ whereas the small scales are modeled. This is represented
in Figure 3.1 where ∆ is called the LES filter scale, with associated wavenumber κ∆, delimiting the
resolved and modeled scales. The scale separation is obtained with a spatial filter which can be either
explicit, using a spatial filter function (box filter, Gaussian filter...) or implicit through the mesh
∆ = O (∆x). Basically, eddies smaller than 2∆x will not be captured. In both cases, similarly to the
RANS averaging operator, the filtering operator is applied to NSE ending up with LES equations for
the filtered variables with unclosed terms related to the behavior of eddies with κ > κ∆. LES improves
very well the prediction of turbulent flows compared to RANS since most of the physics is contained
within the large and intermediate scales which are fully resolved in LES. The extension of LES to
turbulent combustion will be considered in Section 3.2. Usually the flame front is not fully resolved
on the LES mesh and subgrid-scale (SGS) modeling is required also for the turbulent combustion.

With the constantly increasing performances of HPC, LES is becoming a viable and efficient tool
to simulate turbulent combustion and is more and more employed in the industry. That is why, this
approach was chosen for the simulation of turbulent combustion in this work.

3.2. Large Eddy Simulation of turbulent premixed combustion
LES of turbulent combustion relies on the modeling of both subgrid turbulent scales and subgrid

flame front scales arising from the filtering of the NSE. Thus, the objective of this section is to introduce
the concept of LES from a mathematical point of view, then detail the LES equations for turbulent
combustion and how they are implemented in a CFD solver.

3.2.1. LES filters

Mathematically speaking, LES solves the filtered quantities, denoted by f in this section, and defined
by:

f (x) =
∫
f
(
x′)G∆

(
x − x′) dx′ (3.6)
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where G∆ is the LES filter function of width ∆. As stated in paragraph 3.1.2.3, when G∆ is a
mathematical function explicitly applied in the CFD code, it is called explicit LES filter whereas if the
filter is the mesh it is called implicit LES filter. Eq. (3.1) still holds where f is the filtered quantity
and f ′ = f − f is the sub-filter (or sub-grid) part of f . Contrary to the averaging operator in RANS,
the filtered sub-grid part is non-zero: f ′ ̸= 0. Three properties have to be satisfied by the LES filter
function:

1. conservation of constant values, implying
∫

G∆
(
x′) dx′ = 1.

2. linearity: f + g = f + g.
3. commutativity with time and spatial derivatives:

∂f

∂t
= ∂f

∂t
and ∂f

∂x = ∂f

∂x (3.7)

One consequence of Eq. (3.7), is that gradient and divergence operators commute with filter operation
•:

∇f = ∇f and ∇.f = ∇.f (3.8)
The first two properties are very often verified whereas the third one is not ensured when ∆ varies in
space and time. However, different studies have shown that the impact of commutativity errors are
negligible [153, 154].

For variable density flows such as the ones considered here, a filtering operation weighted by the
density is preferred. It is called Favre-filter and is defined as:

ρf̃ (x) ≡ ρf =
∫
ρf
(
x′)G∆

(
x − x′) dx′ (3.9)

where f̃ is the Favre-filtered quantity of variable f so that the following decomposition can also be
done:

f = f̃ + f ′′ (3.10)
with f ′′ the subgrid Favre-filtered part of f . As for the classical filter, applying Favre filter to f ′′ does
not give zero: f̃ ′′ ̸= 0. There are two main advantages in using Favre-filtered quantities when writing
LES equations for a compressible fluid [3]:

1. Less unclosed terms appear, which reduces the number of turbulent models to be used.
2. The obtained Favre-filtered equations have a similar structure than their corresponding unfil-

tered formulation which is easier for generalizing modeling results coming from incompressible
turbulence theory.

3.2.2. Favre-filtered LES equations for turbulent reactive flows
The Favre-filtered LES equations for turbulent reactive flows are derived by applying on the reactive

compressible NSE introduced in Section 2.4, the Favre-filter operator defined in Eq. (3.6). The final
set of LES equations is obtained [3]:

∂ρ

∂t
+ ∇. (ρũ) = 0 (3.11)

∂ρũ
∂t

+ ∇.
(
ρũ ⊗ ũ + P I

)
= ∇.

(
τ + τ t

)
(3.12)

∂
(
ρẼ
)

∂t
+ ∇.

(
ũ
(
P + ρẼ

))
= ∇.(τ .u − q − qt) + ω̇T (3.13)

∂ρỸk
∂t

+ ∇.
(
ρũỸk

)
= ∇.

(
Mk + Mt

k

)
+ ω̇k for k = 1, Ns (3.14)
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where Eq. (3.11), Eq. (3.12), Eq. (3.13) and Eq. (3.14) are the filtered conservation equations respec-
tively of mass, momentum, energy and species.

3.2.2.1. Filtered laminar fluxes

The filtered laminar fluxes of momentum, energy and species equations namely τ , τ .u − q and Mk

are computed from Favre-filtered variables f̃ as follows:

τ = µ

(
∇u + (∇u)T − 2

3∇. (uI)
)

≈ µ

(
∇ũ + (∇ũ)T − 2

3∇. (ũI)
)

with µ ≈ µ
(
T̃
)

(3.15)

τ .u − q = τ .u + λ∇T +
Ns∑
k=1

hskMk ≈ τ ũ + λ∇T̃ +
Ns∑
k=1

h̃skMk with λ =
µCp

(
T̃
)

Pr
(3.16)

Mk = ρ

(
Dk

[
∇Yk − YkW∇

( 1
W

)]
− YkVc

)
≈ ρ

(
Dk

[
∇Ỹk − ỸkW̃∇

(
1̃
W

)]
− ỸkṼc

)
(3.17)

with Dk = µ/ (ρSck) and Ṽc =
Ns∑
k=1

Dk

[
∇Ỹk − ỸkW̃∇

(
1̃/W

)]
. That is why, these filtered laminar

fluxes are not usually modeled since thanks to the approximations made in Eq. (3.15), Eq. (3.16)
and Eq. (3.17), they can be computed from resolved variables f̃ provided by the LES solver.

3.2.2.2. Subgrid turbulent fluxes

The unclosed subgrid fluxes namely τ t, qt and Mt
k appear after the filtering operation applied to

the convective terms of the reactive compressible NSE. The first one is the subgrid Reynolds stress
tensor which has the following expression:

τ t = −ρ
(
ũ ⊗ u − ũ ⊗ ũ

)
(3.18)

This term needs to be modeled because ũ ⊗ u is not known from the LES. An eddy-viscosity model
is usually considered for the modeling of the subgrid Reynolds stress tensor where τ t is expressed as:

τ t = µt
(

∇ũ + (∇ũ)T − 2
3∇. (ũI)

)
(3.19)

with µt the SGS turbulent viscosity. Various models exist in the literature to compute µt: the
Smagorinsky [155], Wall Adapting Local Eddy (WALE) viscosity [156], Vreman [157] or Sigma [158]
models are the most common ones. They all compute µt from resolved velocity gradients. Recently,
Chapelier and Lodato [159] developed the spectral element dynamic model (SEDM) which is well
suited for the SD method and more generally for HO discontinuous spectral element methods. It
actually adapts the amount of numerical dissipation within each element based on an estimate of the
local subgrid turbulent kinetic energy. Consequently, elements with high p values, will have a higher
value of µt than elements with low p values since the last ones have more numerical dissipation [159].

The second unclosed subgrid term is the subgrid energy flux which reads:

qt = ρ
(
ũE − ũẼ

)
(3.20)

It is commonly modeled as a diffusive contribution based on a turbulent conductivity λt expressed via
a constant turbulent Prandtl number Prt specified for the computation:

qt = −λt∇T̃ with λt =
µtCp

(
T̃
)

Prt
(3.21)
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Similarly, the third unclosed subgrid term, which is the subgrid species flux defined by:

Mt
k = −ρ

(
ũYk − ũỸk

)
for k = 1, Ns (3.22)

in Eq. (3.15), is usually modeled by a diffusive contribution of the form:

Mt
k = ρ

(
Dt
k

[
∇Ỹk − ỸkW̃∇

(
1̃
W

)]
− ỸkṼc,t

)
with Dt

k = µt

ρSctk
for k = 1, Ns (3.23)

where Dt
k is the turbulent species diffusivity, Sctk is the turbulent Schmidt number of species k specified

for the computation and Ṽc,t is the turbulent correction velocity needed, as in the laminar case, to
ensure mass conservation:

Ṽc,t =
Ns∑
k=1

Dt
k

[
∇Ỹk − ỸkW̃∇

(
1̃
W

)]
(3.24)

In practice, Sctk is taken constant at the same value for all species so that Eq. (3.24) leads to Ṽc,t = 0.

3.2.2.3. Subgrid chemical source terms

Finally, the energy and species equations contain unclosed source terms, respectively the filtered
heat release rate ω̇T and the filtered reaction rates ω̇k. Usually the flame thickness is much smaller
than ∆ so that the filtered reaction rates can not be computed from the Arrhenius law with the filtered
temperature and concentrations [3]: ω̇k ̸= ω̇k

(
T̃ , Ỹk

)
. A large literature is available on the topic of

modeling the filtered source terms. Examples are the models based on the G-equation [160], the
surface density concept [161] or probability density functions [162]. A complete classification of LES
premixed combustion models can be found in Poinsot and Veynante [3]. In this work, the thickened
flame (TF) approach [163] is chosen and is presented in Section 3.3.

3.2.2.4. A comment on the LES approach used in this work

During this work, no turbulence subgrid model was employed (µt = 0), which explains why these
models are not detailed in the manuscript. Mathematically speaking, this implies that all turbulent
fluxes are zero:

µt = 0 =⇒ λt = Dt = 0 =⇒ τ t = qt = Mt
k = 0 ∀k ∈ J1, NsK (3.25)

Eq. (3.25) can be viewed as an implicit turbulence subgrid modeling [164, 165] since only the dissipation
associated with the numerical scheme acts on the subgrid turbulent scales. On the other hand, using a
turbulence subgrid model is assimilated to explicit turbulence subgrid modeling and is used to better
control the energy transfers from resolved to subgrid-scales.

HO discontinuous methods are based on an upwind treatment of the convective fluxes at interfaces
(Riemann solvers), and therefore contain some numerical dissipation [166]. Consequently, they can
be employed in the context of implicit turbulence subgrid modeling provided that the turbulence
level is not too high, as commonly done in the SD literature [167–169]. Indeed, when going to high
turbulent Reynolds number, the numerical dissipation induced by the SD method is not sufficient to
dissipate energy at the subgrid-scale and subgrid modeling is requierd, as evidenced in Chapelier et
al. [170] and in Chapelier and Lodato [159]. It was also investigated in the context of underresolved
DGSEM simulations by Gassner et al. [171]. Fortunately all turbulent cases studied in this work have
a low Reynolds number, allowing to omit SGS turbulent viscosity. A posteriori checks using Pope’s
criterion [172], to evaluate the quality of the LES, have been conducted on both the Cambridge flame
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burner (see paragraph 8.3.8) and the VOLVO configuration (see paragraph 8.4.7) simulated in this
work. This criterion is defined as:

M (x, t) = KSGS (x, t)
KSGS (x, t) +KRES (x, t) (3.26)

where KRES = (1/2)
(
ũ − ũ

)
.
(
ũ − ũ

)
is the resolved turbulent kinetic energy (TKE) computed from

the statistics of the resolved velocity field ũ and KSGS is the subgrid-scale TKE estimated by:

KSGS =
(

µt

ρ∆SGS

)2

(3.27)

with ∆SGS = CSGS∆x, CSGS being the SGS model constant. Pope’s criterion gives a measure of
the fraction of the TKE which is resolved by the LES mesh. It is commonly accepted in the CFD
community that a good LES mesh must solve at least 80% of the TKE meaning that: M < 0.2.

Finally, Eq. (3.11), Eq. (3.12), Eq. (3.13) and Eq. (3.14), combined with Eq. (3.25) and without
combustion source terms for simplicity, correspond to the compressible NSE of Section 2.4. Thus, in
terms of implementation, these equations are the ones that are basically solved by the CFD code with
ρ = ρ, u = ũ, E = Ẽ and Yk = Ỹk and if explicit turbulence subgrid modeling is desired it is added
in the fluxes and source terms of the compressible NSE.

3.3. The Thickened Flame model for Large Eddy Simulations
The principle of the TF model is to artificially thicken the flame front making it resolvable on

the LES coarse mesh. The objective of this section is to explain the basics of this model in a general
framework without considering its implementation for a given numerical method. This will be detailed
in Section 8.1 in the context of the SD method.

3.3.1. Principle of the Thickened Flame model
The TF model takes its origin from Butler and O’Rourke [173] and is based on laminar premixed

flame properties: combustion source terms and diffusion coefficients may be modified in a way that
thickens the flame while preserving the laminar flame speed. Indeed, keeping the correct flame speed
is essential because it is one key quantity when designing a new combustion chamber, as it gives the
speed at which the fuel is consumed. Following the theory of laminar premixed flames, the laminar
flame speed S0

L and the flame thickness δ0
L scale as [145]:

S0
L ∝

√
Dω̇ , δ0

L ∝

√
D

ω̇
(3.28)

where D is the molecular diffusivity (gathering both thermal and species diffusivities) and ω̇ is the
mean reaction rate. Thus, applying the following scaling operation with a factor F to D and ω̇:

D → FD and ω̇ → ω̇

F
(3.29)

impacts flame speed and thickness as:

δ0
L → Fδ0

L and S0
L → S0

L (3.30)

Therefore, if F > 1, a thicker flame is obtained but with the same flame speed as the original one.
The variable F is called the thickening factor. It can be uniform over the whole domain (constant
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thickening) or locally conditioned on a flame sensor (dynamic thickening) to thicken only the reaction
zone and avoid species over-diffusion and mixing outside the flame. In practice, the implementation
of the TF model in a general CFD code that solves reacting compressible NSE is done as follows at
each mesh point and time step:

• λ and all the Dk are multiplied by F .
• All the ω̇k are divided by F .

3.3.2. How to compute the thickening factor
3.3.2.1. Original formulation of Legier et al.

The constant thickening approach is the simplest way of thickening the flame front by setting a
uniform value of F over the whole computational domain. However, it changes the mixing properties
of the flow in regions where there is no flame. Thus, a dynamic thickening procedure was introduced
where F is computed locally on the fly during the simulation and applied only in the flame region. This
procedure is called the dynamic TF model (DTF) and was originally proposed by Legier et al. [174]
where F is given by:

F = 1 + (Fmax − 1) S (3.31)

with S a local flame sensor which is built to have S = 1 inside the flame front and S = 0 elsewhere.
In Eq. (3.31), Fmax is the maximum thickening set by the user to have an expected number of points
nffpts of size ∆x in the laminar flame thickness δ0

L:

Fmax =
nffpts∆x

δ0
L

(3.32)

Values of nffpts range from 5 to 20 for very stiff chemical schemes. In Legier et al. [174], S was
based on a hyperbolic tangent function, defined from the fuel reaction source term computed with an
Arrhenius-like expression:

S (x, t) = tanh
(
β′ Ω (x, t)

|ω̇F |max1D

)
with Ω (x, t) = Y νF

F Y νO
O exp

(
−ΓEa

RT

)
(3.33)

where β′ = 50, Γ = 0.5 and |ω̇F |max1D is the maximum absolute value of the fuel reaction source
term extracted from a one-dimensional premixed flame computation in representative conditions. The
activation energy Ea is the one of the fuel oxidation reaction, and the value of Γ triggers the sensor
at lower temperature than the current fuel reaction in the scheme [174].

3.3.2.2. Relaxation sensor of Jaravel et al.

The sensor presented in paragraph 3.3.2.1 has some limitations highlighted in the thesis of Benedetta
Franzelli [131] and is not adapted to ARC mechanisms. A more generic approach was developed in
the thesis of Thomas Jaravel [175], leading to the so-called relaxation flame sensor. This new sensor
is adapted to two-reactions chemistries as well as to more complex chemistries like ARC schemes. In
its general formulation, the sensor is based on the fuel source term (but any other species can be
employed) and is given by Eq. (3.34):

S (x, t) = max
[
min

(
2Fmax

|ω̇F (x, t) |
|ω̇F |max1D

− 1, 1
)
, 0
]

(3.34)

where |ω̇F (x, t) | is the absolute value of the fuel source term and Fmax is still given by Eq. (3.31).
The sensor defined by Eq. (3.34) captures well the reaction zone but not the surrounding diffusion
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zone where large gradients of density exist. To take into account this diffusion zone in the sensor, a
fictive species ψ (x, t) is introduced and transported through the following equation [175]:

∂ρψ

∂t
+ ∇. (ρuψ) = ∇. (ρDψ∇ψ) + ρω̇ψ (3.35)

where Dψ is the diffusion coefficient of ψ and ω̇ψ is a source term defined by:

ω̇ψ (x, t) = ψ0 − ψ (x, t)
τ0

if S (x, t) > 0.8

ω̇ψ (x, t) = 0 − ψ (x, t)
τ1

if S (x, t) < 0.05

ω̇ψ (x, t) = 0 otherwise

(3.36)

where τ0 and τ1 are two characteristic times such that τ0 << τ1 and ψ0 is a constant larger than
one. The source term is built so as to relax ψ to zero in non-reacting zones and to ψ0 in the flame
with a spatial transition controlled by Dψ. The way to set the four parameters ψ0, τ0, τ1 and Dψ

of this equation is described in Section A.6. One important thing to notice is that thickening is also
applied to ψ. Consequently, Dψ is multiplied by F and ω̇ψ is divided by F but only in the zone where
S (x, t) < 0.05 [175]. The fictive species ψ is then used to compute a filtered sensor:

Ŝ (x, t) = max [min (ψ (x, t) , 1) ,S (x, t)] (3.37)

which is then used in the dynamic thickening factor:

F (x, t) =
(
1 − Ŝ (x, t)

)
+ Ŝ (x, t) Fmax (3.38)

The relaxation sensor procedure described in this paragraph is the one that was implemented in
JAGUAR during this work. Its implementation in a SD context is detailed in Section 8.1.

3.3.2.3. Generic sensor of Rochette et al.

More recently, a new sensor based on a geometrical analysis of the flame front was developed with
the objective to be independent of the flame properties, avoiding the computation of reference flames
to set sensor parameters. This sensor was developed during the thesis of Bastien Rochette and has
been applied in a variety of test cases, from simple 1D laminar flames to 3D turbulent combustion
cases [176]. However, as this sensor still needs further consolidation, it was decided to not implement
it during this work. One important implementation issue is that this sensor requires to compute the
distance to the flame front from any point of the mesh. Rochette et al. used the Lagrangian formalism
already implemented in the AVBP solver to efficiently compute this distance but such feature does
not yet exist in JAGUAR.

3.3.3. Subgrid-scale modeling in the Thickened Flame model

If the flame front thickening solves the issue of flame front resolution on the grid, it does not take
into account the subgrid-scale interaction of the flame with the turbulence. Moreover, the thickening
by a factor F modifies the resolved flame-turbulence interactions: vortices with size smaller than Fδ0

L

do not wrinkle the thickened flame front whereas they are able to wrinkle the non-thickened flame
front. This phenomenon was studied by Angelberger et al. [177] and Colin et al. [163] using DNS of
flame/vortex and flame/turbulence interactions with a non-thickened and a thickened flame. Some of
their results are illustrated in Figure 3.2 where it can be seen that the thickened flame is less wrinkled
than the non-thickened flame leading to a loss of flame surface area for the thickened flame.
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Figure 3.2. – Results of flame/turbulence interactions with non-thickened and thickened flames simu-
lated in [163, 177]. Left: non-thickened flame. Right: thickened flame.

The modeling of these missing flame-turbulence interactions is done by introducing an efficiency
function defined as the wrinkling ratio between the non-thickened flame of thickness δ0

L in non-filtered
turbulence, and the thickened flame of thickness δ1

L = Fδ0
L in filtered turbulence [178]:

E ≡ Ξ
(
δ0
L

)
Ξ
(
δ1
L

) (3.39)

where Ξ is called the wrinkling factor of the flame surface, and represents the ratio of the SGS turbulent
flame speed at the flame LES filter size ST∆ and the laminar flame speed S0

L [178]:

Ξ ≡ ST∆
S0
L

(3.40)

The efficiency function E is then applied as follows:

D → EFD and ω̇ → E ω̇
F

(3.41)

The efficiency combined with the flame thickening constitute the TF model for LES denoted by
TFLES. It is implemented in a CFD solver as follows, at each mesh point and time step:

• λ and all the Dk are multiplied by EF .
• All the ω̇k are divided by F and multiplied by E .

Therefore, the filtered reaction rates are finally modeled following Eq. (3.42):

ω̇k = E
ω̇k
(
T̃ , Ỹk

)
F

for k = 1, Ns (3.42)

and the filtered heat release rate is deduced from the ω̇k:

ω̇T =
Ns∑
k=1

∆h0
f,kω̇k (3.43)

3.3.4. Models for the wrinkling factor
Several models for the wrinkling factor can be used such as the ones proposed in Colin et al. [179]

or Charlette et al. [178, 180] for the most famous. Since the Charlette model appears to be the most
used in the combustion community and needs less parameters than the Colin model, it was chosen in
the present work and is detailed below.
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3.3.4.1. Original formulation of Charlette et al.

Assuming that production and destruction of the subgrid-scale flame-surface density are in equi-
librium and also that the turbulent spectrum is homogeneous and isotropic at the sub-filter scale,
Charlette et al. [178, 180] proposed the following formulation for the wrinkling factor, extracted from
DNS of flame/vortex interactions:

Ξ
(
δ0
L

)
=
(

1 + min
[
u′

∆
S0
L

Γ
(

∆
δ0
L

,
u′

∆
S0
L

, Re∆

)
,

∆
δ0
L

])β
(3.44)

where β is a model parameter whose estimation is detailed in paragraph 3.3.4.3 and Γ is a function
which has the following form:

Γ
(

∆
δ0
L

,
u′

∆
S0
L

, Re∆

)
=
[((

f−a
u + f−a

∆

)−1/a
)−b

+ f−b
Re

]−1/b

(3.45)

with fu, f∆, fRe, a and b given by:

fu ≡ fu

(
u′

∆
S0
L

)
= 4

(27Ck
110

)1/2 (18Ck
55

)(
u′

∆
S0
L

)2

≈ 1.19
(
u′

∆
S0
L

)2

, Ck ≈ 1.5 (3.46)

f∆ ≡ f∆

(
∆
δ0
L

)
=

27Ckπ4/3

110 ×

(∆
δ0
L

)4/3

− 1

1/2

≈ 1.30

(∆
δ0
L

)4/3

− 1

1/2

(3.47)

fRe ≡ fRe (Re∆) =
[ 9

55 exp
(

−3
2Ckπ

4/3Re−1
∆

)]1/2
×Re

1/2
∆ ≈ 0.40

[
exp

(
−10.35Re−1

∆

)]1/2
×Re

1/2
∆

(3.48)

a ≡ a

(
u′

∆
S0
L

,
∆
δ0
L

)
= 0.60 + 0.20 exp

(
−0.1u

′
∆
S0
L

)
− 0.20 exp

(
−0.01 ∆

δ0
L

)
(3.49)

b = 1.4 (3.50)

In these equations:
• ∆ is the LES filter size for the flame so that ∆ = Fδ0

L = δ1
L as in [178, 180, 181]. Consequently, it

can be shown that the wrinkling factor of the thickened flame Ξ
(
δ1
L

)
is actually equal to unity:

f∆

(
∆
δ1
L

)
= f∆ (1) = 0 ⇒ Γ

(
∆
δ1
L

,
u′

∆
S0
L

, Re∆

)
= 0 ⇒ Ξ

(
δ1
L

)
= 1 (3.51)

• Re∆ is the SGS Reynolds number at size ∆ and is computed as [163, 178]:

Re∆ = 4
(

∆
δ0
L

)(
u′

∆
S0
L

)
(3.52)

• u′
∆ is the SGS turbulent velocity up to the scale ∆ estimated using [163, 182]:

u′
∆ = c2∆3

x||∇2 (∇ × ũ) ||2
( ∆

10∆x

)1/3
(3.53)

where c2 = 1/0.6 ≈ 1.667 is a model constant, ∆x is the local mesh size and ∇2f and ∇ × f are
respectively the Laplacian and rotational operators applied to a variable f . The computation of
u′

∆, and especially of these two operators, in the SD context will be validated in paragraph 8.1.5.
Because of Eq. (3.51), the efficiency function introduced in Eq. (3.39) for Charlette model becomes:

E =
Ξ
(

∆
δ0

L
,
u′

∆
S0

L
, Re∆

)
1 =

(
1 + min

[
u′

∆
S0
L

Γ
(

∆
δ0
L

,
u′

∆
S0
L

, Re∆

)
,

∆
δ0
L

])β
(3.54)
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3.3.4.2. Wang et al. improved formulation

Later on, Wang et al. [181] have replaced ∆/δ0
L by ∆/δ0

L−1 in Eq. (3.54) to maximize the wrinkling
factor around ∆/δ0

L when u′
∆ is large, leading to:

E =
(

1 + max
[
0,min

[
u′

∆
S0
L

Γ
(

∆
δ0
L

,
u′

∆
S0
L

, Re∆

)
,

∆
δ0
L

− 1
]])β

(3.55)

Eq. (3.55) is now the common practice when using Charlette model and is the one implemented in
JAGUAR during this work. Eq. (3.55) has the following three important properties:

1. If the LES filter size for the flame becomes smaller than δ0
L, that is ∆ < δ0

L, no efficiency is
needed anymore and E → 1.

2. If u′
∆ is well higher than S0

L, then E degenerates towards a fractal-like power-law [183, 184]:

E →
(

∆
δ0
L

)β
(3.56)

3. If u′
∆ goes to zero, no efficiency is needed and E → 1 like in the case ∆ < δ0

L.

3.3.4.3. Estimation of β

As stated in paragraph 3.3.4.1, the value of β is not known a priori and needs to be specified. It can
be seen as the parameter of the fractal-like power-law introduced in Eq. (3.56) which has actually a
physical meaning [183, 184]. In the static β formulation, β is a constant for which multiple values have
been proposed depending on the type of flame and flow considered. In their original paper, Charlette
et al. [178] advised to use β = 0.5 but recent DNS of lean turbulent flames by Moureau et al. [185]
for instance, have shown that β = 0.337 gives the closest results to the DNS. Therefore there is no
consensus today on the value of β, which is probably case dependent and influenced by local flame
and flow characteristics.

To overcome this issue, the dynamic β formulation was introduced in [180, 181], where β is evaluated
on the fly during the computation from the filtered LES solution. The dynamic approach was applied to
multiple combustion cases [186–188] leading to more realistic results than with the static β formulation.
However, this formulation was not considered in this work because its implementation and validation
require more time than the static formulation. It was also not considered necessary for the main
purpose of this work which is to demonstrate 3D turbulent combustion simulations using the SD
method.

3.3.4.4. Saturated version of the wrinkling factor

In paragraph 3.3.4.1, a formula for the SGS turbulent velocity u′
∆ was introduced through Eq. (3.53).

The computation of this term can be very costly because of the third-order derivatives of the re-
solved velocity field that are computed at each grid point and time step. However, recent DNS of
Veynante et al. [186] have shown that, for sufficiently turbulent flames and when β is dynamically
adjusted, Eq. (3.55) very often tends to:

E =
(

∆
δ0
L

)β
(3.57)

Eq. (3.57) is referred to as the saturated Charlette model. Since it avoids the computation of u′
∆,

it decreases the cost of E computation with limited impact on the solution in many flame and flow
configurations [186].
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3.3.5. Synthesis on the use of the TFLES model
The TFLES model is composed of multiple bricks with several possible formulations. In a turbulent

combustion case these are :
• The type of thickening: constant or dynamic. In the case of dynamic thickening, the correspond-

ing flame sensor must be selected among the original, relaxation or generic sensors.
• The type of efficiency function: Colin, Charlette or any other one. In the case of Charlette

model, three additional precisions have to be made:
⋆ the type of formulation: the original one or the one of Wang.
⋆ the β formulation: static or dynamic.
⋆ if u′

∆ is computed or not: non-saturated or saturated versions of Charlette model. In the
non-saturated case, the formula used for u′

∆ has to be specified since Eq. (3.53) is not an
unique choice and other possibilities exist in the literature which can strongly impact the
results [182].

For most cases considered in this work, the dynamic TFLES approach using the relaxation sensor
associated to the Charlette model, in its saturated version and with the static β formulation for the
efficiency function, were employed.

3.4. Summary of this chapter
In this chapter, the characteristics of turbulent premixed flows are introduced and their resolution

using LES is assessed. Firstly, the concepts and usual descriptions of turbulent flows are briefly
explained leading to the three main approaches commonly used in CFD for simulating turbulent flows
namely RANS, LES and DNS.

LES have become very popular over the last two decades for simulating turbulent combustion due
to its more realistic flow resolution compared to RANS approach and its cheaper cost compared to
DNS. LES are actually able to capture most of the physics of turbulent combustion phenomena since
the main flow characteristics are contained in the large scales of turbulence. However, the small scales
need to be modeled to take into account, in the simulations, the phenomena happening at scales
smaller than the LES filter size.

Thus, both non-reactive and reactive models are introduced with a special focus on the TFLES
model which was the reactive model implemented in this work whereas implicit turbulence subgrid
modeling was considered for the non-reactive unclosed terms. The purpose of the TFLES model is to
artificially thicken the flame front so that the LES mesh will be able to resolve it with enough mesh
points. However, a sensor is needed to apply the thickening only in the near flame region to not change
mixing properties in regions outside of the flame. Moreover, an efficiency function has to be used to
take into account the loss of flame surface on the thickened flame because some of the small vortices
cannot wrinkled it anymore. A particular focus is made on the relaxation sensor to know where to
apply the TFLES model and on Charlette’s model for the efficiency function.
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This chapter is dedicated to the discretization of the governing equations using the SD method.
It starts with the one-dimensional formulation to give the basics of the method. Then the three-
dimensional discretization on hexahedral elements is introduced. As the method is discontinuous across
elements, Riemann solvers for convective fluxes and diffusion schemes for diffusive fluxes at interfaces
are detailed along with the gradient computation within the SD framework. The local polynomial adap-
tation strategy using the SD method is provided and finally the temporal integration of the equations
is discussed.

4.1. General principle in the one-dimensional case

The objective of this section is to describe the SD discretization process in one-dimensional config-
urations, and to introduce notations that will be useful in later chapters.

4.1.1. Isoparametric transformation in 1D

To introduce the basics of the SD method, let’s consider a hyperbolic 1D-equation written in diver-
gent form:

∂U
∂t

+ ∂E
∂x

= 0, for (x, t) ∈ Ω × [0, tf ] (4.1)

where U = U (x, t) is the vector of conservative variables (also called the solution vector), E = E (U)
is the flux vector of U, t is the time, tf is the final time of the computation, Ω is the physical domain of
study and x represents the 1D spatial coordinate in Ω. Eq. (4.1) is a general form for 1D conservation
laws with Neq equations such as:

• The 1D scalar advection equation (Neq = 1) where U = u and E = cu with c the advection
speed.

• The 1D Euler equations (Neq = 3) where U = (ρ, ρu, ρE)T and E =
(
ρu, P + ρu2, u (P + ρE)

)T
.

They are a simplification of the NSE summarized in paragraph 2.4.7 for a mono-species gas
evolving in a 1D inviscid and non-reacting flow.

To numerically solve Eq. (4.1), Ω is first divided into Ne non-overlapping and possibly non-uniform
elements Ωe:

Ω =
Ne⋃
e=1

Ωe (4.2)

where Ωe = {x ∈ Ω / x ∈ [a, b]} with he = b − a its length as shown in Figures 4.1b and 4.2b.
The principle of the SD technique is to not work with element Ωe but with a standard line L =
{ξ, 0 ≤ ξ ≤ 1} into which each Ωe is transformed. Thus, there is no index e for L since it is the same
standard line for all Ωe. This transformation is usually written from the isoparametric or standard
domain L to the physical domain Ω for each element Ωe:

x (ξ) =
Nv∑
i=1

Mi (ξ)xei (4.3)

with ξ ∈ [0, 1] the 1D spatial coordinate in L, xei the physical coordinate of vertex i of Ωe, Nv the
number of vertices of Ωe and Mi the shape functions. For instance, in the case of 1D linear elements
composing Ω, each element Ωe is defined by Nv = 2 vertices and the following shape functions [116]:

M1 (ξ) = 1 − ξ and M2 (ξ) = ξ (4.4)
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4.1 General principle in the one-dimensional case

(a) Linear isoparametric domain L (b) Linear physical domain Ωe

Figure 4.1. – Linear isoparametric and physical domains in 1D.

These shape functions are used to go from the linear isoparametric domain shown in Figure 4.1a to
the linear physical domain illustrated in Figure 4.1b. For the 1D linear isoparametric element, shape
functions M1 and M2 are respectively the 1D Lagrange polynomials built at ξ1 and ξ2 since:

M1 (ξ) = ξ − ξ2
ξ1 − ξ2

= ξ − 1
0 − 1 = 1 − ξ ≡ lV T1 (ξ) and M2 (ξ) = ξ − ξ1

ξ2 − ξ1
= ξ − 0

1 − 0 = ξ ≡ lV T2 (ξ) (4.5)

where lV Ti (V T stands for vertex) is the i-th 1D Lagrange polynomial built at vertex i using the
coordinates of the remaining vertices s ̸= i in the isoparametric domain:

lV Ti (ξ) =
Nv∏

s=1,s ̸=i

ξ − ξs
ξi − ξs

, for i ∈ J1, NvK (4.6)

The same reasoning can be applied for quadratic elements (and higher order types of elements) which
are defined with Nv = 3 vertices as represented in Figures 4.2a and 4.2b respectively in the isopara-
metric and physical domain. In that case, there are three shape functions [116]:

M1 (ξ) = 1 − 3ξ + 2ξ2 , M2 (ξ) = 2ξ2 − ξ and M3 (ξ) = 4
(
ξ − ξ2

)
(4.7)

(a) Quadratic isoparametric domain L (b) Quadratic physical domain Ωe

Figure 4.2. – Quadratic isoparametric and physical domains in 1D.

The isoparametric transformation is characterized by a non-singular Jacobian matrix J , which is a
scalar in 1D, given by:

J = ∂x

∂ξ
≡ xξ =

Nv∑
i=1

∂Mi

∂ξ
xei (4.8)

The inverse transformation from the physical domain to the isoparametric domain is then related to
the inverse of J defined as:

J−1 = ∂ξ

∂x
≡ ξx (4.9)

Consequently, Eq. (4.1) is solved in the isoparametric domain using the derivation chain rule for ∂E/∂x
and multiplying by the determinant of J noted |J |:

∂U
∂t

+ J−1∂E
∂ξ

= 0 ⇒ ∂ (|J |U)
∂t

+ ∂
(
|J |J−1E

)
∂ξ

− E ∂
(
|J |J−1)
∂ξ︸ ︷︷ ︸
=0

= 0 (4.10)
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because |J |J−1 = 1 in 1D. Variables defined in the standard domain are introduced so that Eq. (4.10)
becomes:

∂Û
∂t

+ ∂Ê
∂ξ

= 0, for (ξ, t) ∈ L × [0, tf ] (4.11)

where

Û = |J |U (4.12)
Ê = |J |J−1E (4.13)

Û and Ê are respectively the solution vector and the flux vector in the isoparametric domain. The
main objective of the SD discretization is the computation of the term ∂Ê/∂ξ corresponding to the
divergence of the flux in the isoparametric domain. The formulation shown in Eq. (4.11) allows to
treat each element Ωe with exactly the same methodology to compute this flux divergence. It is worth
mentioning that in Eq. (4.10), |J | is assumed to be independent of time. It implies that the mesh
cannot change during the computation which was the case during this work.

4.1.2. Definitions of solution points and flux points
In order to have a (p+ 1)-th-order of accuracy inside each element Ωe when solving Eq. (4.11), the

SD principle assumes that vector Û varies as a polynomial of degree p inside L. It means that Û
must be known on p+ 1 points in L called solution points (SP). Moreover, due to Eq. (4.11), the flux
divergence should be a polynomial of degree p too so that Ê has to be a polynomial of degree p+ 1.
Then, p + 2 points called flux points (FP) are also required inside L to build a polynomial of degree
p+ 1 for Ê. The evaluation of fluxes at FP requires to have values of the solution at FP: it was shown
that interpolating U instead of Û from SP to FP is more robust especially on curved elements [30].
Consequently, it is a common practice in the SD community to build the solution polynomial using
values of U at SP as it will be shown in Eq. (4.18).

4.1.2.1. Solution points and degrees of freedom

In the SD community [5, 42, 49], the location of SP inside L is usually taken as the Gauss-Chebyshev
quadrature points of the first kind on [0, 1] defined as:

ξj = 1
2

[
1 − cos

(
2j − 1
2N1d

SP

π

)]
, for j ∈ J1, N1d

SP K (4.14)

with N1d
SP = p + 1 the number of SP in 1D inside a standard element of degree p. Figures 4.3 and

4.4 illustrate the SP positions inside L for p = 2 and p = 3 cases represented by red triangles. Since
any element Ωe is transformed into L, SP coordinates introduced in Eq. (4.14) are the same for all
elements assuming that they have the same value of p. In that case, all elements are said to be of
degree p. If p-adapted simulations are considered, p can be different from one element to another and
then SP coordinates will not be the same for all elements inside L. Another set of SP is also employed
by other authors which is the (p+ 1) Gauss-Legendre quadrature points [189–191]. More details on
Gauss-Legendre quadrature points and Legendre polynomials are given in Appendix C. Using Gauss-
Legendre quadrature points for SP should provide minimal aliasing errors [61, 159, 166]. In this work,
only Gauss-Chebyshev quadrature points of the first kind were employed giving satisfying results in
all cases.

The total number of SP inside the physical domain Ω is called the degrees of freedom (DOF) of the
solution. More generally for any numerical method, DOF are the points where the numerical solution is
stored and advanced in time. For instance, in a classical FV method, DOF corresponds to cell centers.
For a fair comparison between two numerical methods in terms of accuracy and computational time,
the same DOF value for both methods must be used.
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4.1 General principle in the one-dimensional case

4.1.2.2. Flux points

In this work, the location of FP inside L are given by the Gauss-Legendre quadrature points [189–
191] for the p interior FP and the two remaining FP are placed at the boundaries of L namely ξ = 0
and ξ = 1. Figures 4.3 and 4.4 show the distribution of the N1d

FP = p+ 2 FP for p = 2 and p = 3 cases
represented by blue squares. It should be mentioned that the stability of the SD method depends on
the location of FP whereas the location of SP has no influence on stability. Indeed, it was found that
the use of Gauss-Legendre quadrature points for the p interior FP is stable for any value of p [49, 50].
As for SP when p is the same in all elements, FP coordinates are the same in the reference element L
but will be different in case of p-adapted simulations.

Figure 4.3. – Locations of SP ( ) and FP ( ) for p = 2 in isoparametric domain L

Figure 4.4. – Locations of SP ( ) and FP ( ) for p = 3 in isoparametric domain L

At this point, the two sets of points that are used in the SD method have been introduced. In this
work, for a given polynomial order p, SP and FP locations in 1D will always be as:

• Gauss-Chebyshev quadrature points of the first kind on [0, 1] defined by Eq. (4.14) for SP.
• Gauss-Legendre quadrature points for the p interior FP and the two ending points of L for FP.

The interpolation and extrapolation processes between these sets of points can now be explained.

4.1.3. Interpolation between SP and FP

Within the SD framework, the interpolation process uses the Lagrange interpolation principle. The
Lagrange polynomial basis of degree p built at SP, needed to approximate Û as a polynomial of degree
p inside L, writes:

lSPj (ξ) =
N1d

SP∏
s=1,s ̸=j

ξ − ξs
ξj − ξs

, for j ∈ J1, N1d
SP K (4.15)

lSPj is then the j-th 1D polynomial of Lagrange basis built at SP ξj using all the other SP ξs with
s ̸= j. Similarly, using the values of Ê at N1d

FP FP, a (p+ 1)-degree polynomial can be built using the
following Lagrange polynomial basis of degree p+ 1:

lFPk (ξ) =
N1d

F P∏
s=1,s ̸=k

ξ − ξs
ξk − ξs

, for k ∈ J1, N1d
FP K (4.16)

lFPk is then the k-th 1D polynomial of Lagrange basis built at FP ξk using all the other FP ξs with
s ̸= k. Actually, in the SD process, the derivative of Eq. (4.16) is used when Ê is differentiated at SP
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along ξ direction. That is why its analytic formula is recalled in Eq. (4.17):

∂lFPk
∂ξ

(ξ) =

N1d
F P∑

s=1,s ̸=k

 N1d
F P∏

m=1,m ̸=s
ξ − ξm


N1d

F P∏
s=1,s ̸=k

ξk − ξs

, for k ∈ J1, N1d
FP K (4.17)

As lSPj , lFPk and
(
∂lFPk /∂ξ

)
are built from SP and FP locations, their values are also independent of

the mesh element in the constant p case but are element-dependent for p-adapted simulations.

4.1.4. General algorithm for a hyperbolic 1D-equation
Since the equations are solved in the reference domain, the SD discretization process can be explained

inside the standard element L without loss of generality. At a given time instant, the solution vector
Û contains the conservative variables in the isoparametric domain stored at each SP ξj inside L noted
Ûj . These values at SP are used to construct a p-degree polynomial representation of a continuous
solution Uh across L using the Lagrange polynomial basis defined in Eq. (4.15):

Uh (ξ) =
N1d

SP∑
j=1

Ûj

|J |j
lSPj (ξ), for ξ ∈ [0, 1] (4.18)

Using Eq. (4.18), conservative variables are interpolated at internal FP (2 ≤ k ≤ N1d
FP − 1) and

extrapolated at interface FP (k = 1 and k = N1d
FP ). Conservative variables at a FP k in the physical

domain are denoted by Uk. At an internal FP, Ek is directly obtained from Uk and the flux in the
isoparametric domain Êk is deduced from Eq. (4.13). However at an interface FP, Uk is not uniquely
defined since interface FP are shared by two elements. In order to have a continuous flux on the
whole domain to ensure conservativity, a Riemann solver [192] at interface FP is employed to compute
an interface flux noted ÊI

k (I stands for interface). It should be mentioned that ÊI
k is referred as a

numerical flux since it is computed based on a numerical treatment, which is the Riemann solver, and
not based on the direct link between E and U. Riemann solvers will be introduced in more details in
Section 4.3.

Once Êk at internal FP and ÊI
k at interface FP have been computed, a (p+ 1)-degree polynomial

representation of a continuous flux Êh (ξ) across L can be constructed from flux values at FP:

Êh (ξ) =
N1d

F P∑
k=1

Êkl
FP
k (ξ), for ξ ∈ [0, 1] (4.19)

where Ê1 = ÊI
1 and ÊN1d

F P
= ÊI

N1d
F P

. The flux polynomial defined by Eq. (4.19) is differentiated along
the ξ direction and evaluated at each SP ξj to obtain:

∂Êh

∂ξ
(ξj) =

N1d
F P∑
k=1

Êk
∂lFPk
∂ξ

(ξj), for j ∈ J1, N1d
SP K (4.20)

Finally, Eq. (4.11) can be marched in time using any explicit temporal scheme at each SP inside L:

dÛ
dt

(ξj) = −∂Êh

∂ξ
(ξj) = −

N1d
F P∑
k=1

Êk
∂lFPk
∂ξ

(ξj), for j ∈ J1, N1d
SP K (4.21)

The SD discretization described in this paragraph for a hyperbolic 1D-equation is summed up into
six different steps that are shown from Figure 4.5a to Figure 4.7b for a p = 2 case. It is a situation
shown for a given element Ωe and its left (respectively right) neighbor Ωe−1 (respectively Ωe+1) which
has been transformed into the standard element L for applying the SD discretization process.
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4.1 General principle in the one-dimensional case

(a) Step 1: build a continuous polynomial of degree
p = 2 for U based on the 3 values of U (•) at the
3 SP (▲). (b) Step 2: evaluation of U (•) at the 4 FP (■).

Figure 4.5. – 1st and 2nd steps of the SD process in 1D for a hyperbolic equation.

(a) Step 3: evaluation of Ê (⋆) at the 4 FP (■).
There are 2 flux values at interfaces between el-
ements...

(b) Step 4: use a Riemann solver to have a unique
flux value (⋆) at element interfaces.

Figure 4.6. – 3rd and 4th steps of the SD process in 1D for a hyperbolic equation.

(a) Step 5: build flux polynomial of degree p+1 = 3
based on values of Ê (⋆) at the 4 FP (■).

(b) Step 6: derivation of flux polynomial at the 3
SP (▲) to get

(
∂Êh/∂ξ

)
j

for j ∈ J1, 3K.

Figure 4.7. – 5th and 6th steps of the SD process in 1D for a hyperbolic equation.

4.1.5. Conservativity of the method

For any numerical method, it is important to verify that the discretization process is conservative:
the temporal derivative of the mean value of Û inside L must be equal to the flux difference between
its left (k = 1) and right (k = N1d

FP ) faces. Since Û is defined at N1d
SP Gauss-Chebyshev quadrature

points, a quadrature rule can be defined on these points that integrates exactly a polynomial of degree
p at most. This quadrature rule is slightly different from the original Gauss-Chebyshev quadrature and
is detailed in Section A.1. Consequently, each Eq. (4.21) is multiplied by ωj (obtained with Eq. (A.4))
and summing all these equations gives:

d

dt

N1d
SP∑
j=1

ωjÛ (ξj) +
N1d

F P∑
k=1

Êk

N1d
SP∑
j=1

ωj
∂lFPk
∂ξ

(ξj) = 0 (4.22)
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Each component of Ûj and each ∂lFPk /∂ξ, for k ∈ J1, N1d
FP K, are polynomials of degree p so that:

N1d
SP∑
j=1

ωjÛ (ξj) =
1∫

0

Ûdξ (4.23)

N1d
SP∑
j=1

ωj
∂lFPk
∂ξ

(ξj) =
1∫

0

∂lFPk
∂ξ

dξ = lFPk (1) − lFPk (0) =


0 for k = 2, N1d

FP − 1
1 for k = N1d

FP

−1 for k = 1
(4.24)

Therefore, Eq. (4.22) becomes:

d

dt

1∫
0

Ûdξ = Ê1 − ÊN1d
F P

(4.25)

demonstrating the conservativity of the SD method.

4.1.6. Gradient computation in 1D for a diffusion equation: original formulation

The discretization process described in paragraph 4.1.4 is sufficient if the equation solved is hyper-
bolic that is if E is only a function of U. However if the equation is not hyperbolic but is parabolic,
E is a function of either or both U and ∇U. This kind of equation is often associated with diffusion
processes so that it is also denoted by the term diffusion equation. For instance, the 1D heat diffusion
equation:

∂U
∂t

= ∂

∂x

(
λ
∂U
∂x

)
(4.26)

is similar to Eq. (4.1) with E = −λ (∂U/∂x) so that E is a function of (∂U/∂x). The NSE introduced
in Section 2.4.7 also have a parabolic part due to their viscous terms that it is why the discretization
of parabolic equations using the SD method is described here. Thus if E depends on (∂U/∂x), it
means that (∂U/∂x) is needed at FP to compute E at these points. The situation considered is
represented in Figure 4.8 where, for clarity purposes, an element Ωe is shown with its two interfaces
between respectively Ωe−1 on its left and Ωe+1 on its right. Firstly, as for the hyperbolic 1D-equation,

Figure 4.8. – Defining common values for an element Ωe.

Eq. (4.18) is employed to evaluate U at FP. At element interfaces ξ = 0 and ξ = 1, U is discontinuous
across elements and then interface (or common) values must be defined at these points. Usually, they
are taken as the arithmetic average between the two states available at each interface:

Ue−1/2 = Ue−1
h (1) + Ue

h (0)
2 and Ue+1/2 = Ue

h (1) + Ue+1
h (0)

2 (4.27)

where superscripts e − 1, e and e + 1 were added here for clarity. Once common values have been
computed at interface FP, U is continuous across all elements and its values at FP are denoted by
UC
k for k ∈ J1, N1d

FP K. Consequently, as for the flux polynomial defined by Eq. (4.19), a (p+ 1)-degree
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polynomial representation of a continuous solution vector can be constructed. This polynomial is
differentiated along ξ direction and evaluated at SP to obtain:

∂Ue
h

∂ξ
(ξj) =

N1d
F P∑
k=1

UC
k

∂lFPk
∂ξ

(ξj), for j ∈ J1, N1d
SP K (4.28)

which is the gradient of U along ξ evaluated at SP. The same process is repeated but for these gradient
at SP:

1. A p-degree polynomial representation of the gradient is built from the values defined in Eq. (4.28)
and is evaluated at FP:

∂Ũe
h

∂ξ
(ξk) =

N1d
SP∑
j=1

(
∂Ue

h

∂ξ

)
j

lSPj (ξk), for k ∈ J1, N1d
FP K (4.29)

2. Values of
(
∂Ũe

h/∂ξ
)

(ξk) are discontinuous at element interfaces. In the SD community, the
usual approach is to take the arithmetic average, as in Eq. (4.27) for states, to define common
gradient values at element interfaces:(

∂Ũe
h

∂ξ

)
e−1/2

= 1
2

∂Ũe−1
h

∂ξ
(1) + ∂Ũe

h

∂ξ
(0)

 and
(
∂Ũe

h

∂ξ

)
e+1/2

= 1
2

∂Ũe
h

∂ξ
(1) + ∂Ũe+1

h

∂ξ
(0)


(4.30)

3. Once common gradients have been computed, a (p+ 1)-degree polynomial for the gradient of U
along ξ direction, continuous across all elements, is obtained denoted by

(
∂
˜̃Ue
h/∂ξ

)
k
.

4. Values of
(
∂
˜̃Ue
h/∂ξ

)
k

are scaled by ξx to get the gradient of U along x direction:

(
∂U
∂x

)
k

= ξx

∂˜̃Ue
h

∂ξ


k

, for k ∈ J1, N1d
FP K (4.31)

Finally, values of (∂U/∂x)k are used to compute Ek and Eq. (4.13) ends the process to obtain Êk at
each FP k ∈ J1, N1d

FP K.
The methodology introduced in this paragraph to compute the gradient at FP is the original one

proposed by Kopriva [193] and later used by Sun [47]. It is refer to as the average approach due to
the averaging of both states (with Eq. (4.27)) and gradients (with Eq. (4.30)) at element interfaces.
In paragraph 4.1.7, a new approach developed during this work will be introduced and is based on FR
like scheme for gradient evaluation.

4.1.7. Gradient computation in 1D for a diffusion equation: SDLIFT formulation

The average approach described in paragraph 4.1.6 does not offer flexibility for the computation
of common state and gradient at element interfaces and appeared to be very unstable when the
mesh is coarse if a multi-species reacting gas is considered. Another methodology can be considered
using principles from the FR discretization introduced by Huynh in 2009 in his paper for solving the
diffusion equation with a FR scheme [194]. Thus, the reasoning shown here is strongly inspired from
what is presented in this paper. The situation considered is still the one represented in Figure 4.8
where Eq. (4.26) has to be solved using a SD discretization.
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Starting from Eq. (4.18), a (p− 1)-degree polynomial can be built for the gradient of U along ξ
direction:

∂Ue
h

∂ξ
(ξ) =

N1d
SP∑
j=1

Ûe
j

|J |ej

∂lSPj
∂ξ

(ξ), for ξ ∈ [0, 1] (4.32)

If Ue−1/2 and Ue+1/2 are the common state values (computed for instance with Eq. (4.27)), then
(∂Ue

h/∂ξ) can be corrected into a p-degree polynomial as in the FR approach:

∂Ũe
h

∂ξ
(ξ) = ∂Ue

h

∂ξ
(ξ) +

(
Ue−1/2 − Ue

h (0)
) ∂gRe
∂ξ

(ξ) +
(
Ue+1/2 − Ue

h (1)
) ∂gLe
∂ξ

(ξ) (4.33)

where gLe (respectively gRe ) is the left (respectively right) correction function at the right (respectively
left) interface of Ωe. The superscripts L and R refer to the sides of the interface and not on the element
side as it was done in Huynh’s original papers [57, 194]. For instance, gLe has superscript L because
it is used for the left side of the interface e + 1/2 and gRe is defined equivalently for right side of the
interface in e− 1/2. These correction functions are polynomials of degree p+ 1 that approximate zero
in some sense [57, 194] and have the following constraints:

gLe (1) = 1 and gLe (0) = 0 (4.34)
gRe (1) = 0 and gRe (0) = 1 (4.35)

Thanks to these correction functions,
(
∂Ũe

h/∂ξ
)

is of degree p but is discontinuous across elements.
Consequently, a new correction step is done by introducing common gradient values at element inter-
faces (computed for instance with Eq. (4.30)) to have:

∂
˜̃Ue
h

∂ξ
(ξ) = ∂Ũe

h

∂ξ
(ξ) +

(∂Ũe
h

∂ξ

)
e−1/2

−
∂Ũe

h

∂ξ
(0)

 gRe (ξ) +

(∂Ũe
h

∂ξ

)
e+1/2

−
∂Ũe

h

∂ξ
(1)

 gLe (ξ) (4.36)

Eq. (4.36) defines a (p+ 1)-degree polynomial for the gradient of U along ξ direction which is contin-
uous across the computational domain and is evaluated at all FP to get (∂U/∂ξ)Ck for k ∈ J1, N1d

FP K.
Finally from the values of (∂U/∂ξ)Ck , Eq. (4.31) is employed to compute the gradient along x direction
used for the fluxes at FP.

This new methodology is named the SDLIFT approach in this work since it uses the SD method
coupled with lifting/correction functions as in the FR formalism. It offers the possibility to make
different choices for the common states and gradients at element interfaces. Each of these choices is
considered as a numerical diffusion scheme since it is a user choice on the way to set these common
states and gradients. Three different diffusion schemes are considered in this work and are detailed
respectively in paragraphs 4.1.7.2, 4.1.7.3 and 4.1.7.4. Before going through these diffusion schemes,
some precision about correction functions employed in this work is provided.

4.1.7.1. Correction functions employed in this work

Correction functions have been introduced for the FR theory by Huynh [57, 194] where he proposed
three different correction functions. In this work, two of these three correction functions were employed.
There are defined on ξ ∈ [0, 1] whereas Huynh worked with ξ ∈ [−1, 1]. Consequently, since in Huynh’s
framework gLe and gRe are symmetric about 0 for ξ ∈ [−1, 1] [57, 194], in ξ ∈ [0, 1] these two functions
are symmetric about 0.5 meaning that:

gRe (ξ) = gLe (1 − ξ) for ξ ∈ [0, 1] (4.37)
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Thus, it is possible to focus only on building gRe as a polynomial degree of p+ 1 satisfying Eq. (4.34)
and Eq. (4.35) and then use Eq. (4.37) to find gLe from gRe . That is why, for clarity in this paragraph,
gRe will be denoted by g.

The first correction function used in this work is the Right Radau polynomial of degree p+ 1, noted
RR,p+1, defined in Eq. (C.14) for an arbitrary degree k ≥ 1. It turns out that with such correction
function, the FR scheme is equivalent to the DG method [57] so that Huynh named it as gDG:

gDG = RR,p+1 (4.38)

By construction, gDG is of degree p+ 1 and satisfies Eq. (4.35) because of Eq. (C.15).
The second correction function which was also investigated in this work is the one written as gGa

by Huynh and defined as [57, 194]:

gGa = p+ 1
2p+ 1RR,p+1 + p

2p+ 1RR,p (4.39)

Thanks to the properties of Right Radau polynomials, gGa also verifies Eq. (4.35) and is of degree
p+ 1 since RR,p+1 is of degree p+ 1. It is named like this because its remaining p zeros (gGa is already
zero at ξ = 1) on [0, 1] are the p Gauss-Legendre points (see appendix C for more details) on [0, 1].
This can be demonstrated by expressing gGa as a function of Pp which is the Legendre polynomial
of degree p (again see appendix C for more precision) on [0, 1] here. Starting from Eq. (4.39), gGa
becomes:

gGa = 1
2p+ 1

[
(p+ 1) (−1)p+1

2 (Pp+1 − Pp) + p
(−1)p

2 (Pp − Pp−1)
]

=⇒ gGa = (−1)p+1

2 (2p+ 1) [(p+ 1) (Pp+1 − Pp) − p (Pp − Pp−1)]

=⇒ gGa = (−1)p+1

2 (2p+ 1) [(p+ 1)Pp+1 − (2p+ 1)Pp + pPp−1]

(4.40)

According to the recurrence formula of Shifted (ξ is in [0, 1] here) Legendre polynomials, shown in
Eq. (C.11), for k = p:

(p+ 1)Pp+1 = (2p+ 1) (2ξ − 1)Pp − pPp−1

=⇒ (2p+ 1) (2ξ − 1)Pp = (p+ 1)Pp+1 + pPp−1

=⇒ (2p+ 1) (2ξ − 2)Pp = (p+ 1)Pp+1 − (2p+ 1)Pp + pPp−1

(4.41)

by subtracting (2p+ 1)Pp on both sides. Injecting Eq. (4.41) into Eq. (4.40) implies that:

gGa = (−1)p+1

2 (2p+ 1) (2p+ 1) (2ξ − 2)Pp = (−1)p+1 (ξ − 1)Pp (4.42)

Therefore, Eq. (4.42) shows that gGa and (ξ − 1)Pp have the same zeros which are as expected ξ = 1
and the p roots of Pp corresponding to the p Gauss-Legendre points on [0, 1]. This result also highlights
the fact that gGa vanishes at the p interior FP of the SD scheme since they correspond to the p Gauss-
Legendre points on [0, 1]. This correction function has then an impact only at boundary FP ξ = 0
and ξ = 1.

The representations of gDG and gGa for the cases p = 2 (degree 3 for correction functions) and
p = 4 (degree 5 for correction functions) are shown in Figures 4.9a and 4.9b. The function gDG
is steeper than gGa. Huynh has shown that generally, a steeper correction function results in a
scheme with smaller timesteps but is more accurate [57, 194]. The choice of the correction function
is a user-defined parameter along with the diffusion scheme that will be detailed in the following
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Figure 4.9. – Correction functions used in this work for the SDLIFT approach shown at two different
polynomial degrees.

paragraphs for three different cases. In his article on diffusion schemes for the FR method, Huynh gave
some recommendations about which correction function to use with a given diffusion scheme [194].
However, these recommendations were based on empirical results from the resolution of a simple
diffusion equation so that it is difficult to generalize them when applied to the 3D NSE. Vincent et
al. [59] have developed a methodology to find energy-stable FR scheme and have found some of stable
Huynh’s schemes with their method. They were able to identify mathematically the stability and the
accuracy of a FR method for a given correction function. Nevertheless, there was no conclusion on
which correction function to use: the more accurate ones have the lower timestep limits whereas the
more stable dissipates too much and accuracy is lost. This trade-off between accuracy and stability is
to be determined by the user.

4.1.7.2. Bassi and Rebay 1 diffusion scheme

The Bassi and Rebay 1 (BR1) scheme originally comes from DG formulation [195, 196], where
common states and gradients in a given element Ωe are set according respectively to Eq. (4.27)
and Eq. (4.30). Thus, Eq. (4.36) using the common gradients defined in Eq. (4.30) has a five ele-
ments stencil as illustrated on Figure 4.10 since:

• For the left interface gradient in e− 1/2:
∂Ũe

h

∂ξ
(ξ) depends on Ue−1/2 and Ue+1/2 then Ωe−1 and Ωe+1 are involved

=⇒
∂Ũe−1

h

∂ξ
(ξ) involves Ωe−2 and Ωe =⇒

(
∂Ũe

h

∂ξ

)
e−1/2

involves Ωe−2, Ωe−1 and Ωe.

• For the right interface gradient in e+ 1/2:

Same reasoning ends up with
(
∂Ũe

h

∂ξ

)
e+1/2

involving Ωe, Ωe+1 and Ωe+2.

• Conclusion:
∂
˜̃Ue
h

∂ξ
(ξ) involves Ωe−2, Ωe−1, Ωe, Ωe+1 and Ωe+2 for the BR1 diffusion scheme.

Moreover, if gLe and gRe are zero at Gauss-Legendre points (gGa correction function is employed), this
BR1 formulation is completely equivalent to the average approach described in paragraph 4.1.6.

4.1.7.3. Bassi and Rebay 2 diffusion scheme

As for the BR1 diffusion scheme, the Bassi and Rebay 2 (BR2) scheme also comes from DG formu-
lation [195, 196], where common states are again computed with Eq. (4.27) but common gradients are
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Figure 4.10. – Illustation of the stencil of the BR1 diffusion scheme.

set as:

(
∂Ũe

h

∂ξ

)
e−1/2

= 1
2

∂Ũe−1,R
h

∂ξ
(1) + ∂Ũe,L

h

∂ξ
(0)

 and
(
∂Ũe

h

∂ξ

)
e+1/2

= 1
2

∂Ũe,R
h

∂ξ
(1) + ∂Ũe+1,L

h

∂ξ
(0)


(4.43)

where

∂Ũe,L
h

∂ξ
(0) ≡

∂Ũe
h

∂ξ
(0) −

(
Ue+1/2 − Ue

h (1)
) ∂gLe
∂ξ

(0) = ∂Ue
h

∂ξ
(0) +

(
Ue−1/2 − Ue

h (0)
) ∂gRe
∂ξ

(0) (4.44)

∂Ũe,R
h

∂ξ
(1) ≡

∂Ũe
h

∂ξ
(1) −

(
Ue−1/2 − Ue

h (0)
) ∂gRe
∂ξ

(1) = ∂Ue
h

∂ξ
(1) +

(
Ue+1/2 − Ue

h (1)
) ∂gLe
∂ξ

(1) (4.45)

In Eq. (4.44) and Eq. (4.45), the second equality is obtained from Eq. (4.33). Common states are then
computed similarly to the BR1 scheme but thanks to Eq. (4.44) and Eq. (4.45), Eq. (4.36) using the
common gradients defined in Eq. (4.43) has a three elements stencil as shown on Figure 4.11 because:

• For the left interface gradient in e− 1/2:
∂Ũe−1,R

h

∂ξ
(ξ) and ∂Ũe,L

h

∂ξ
(ξ) depend on Ue−1/2 then Ωe−1 and Ωe are involved

=⇒
(
∂Ũe

h

∂ξ

)
e−1/2

involves only Ωe−1 and Ωe.

• For the right interface gradient in e+ 1/2:

Same reasoning ends up with
(
∂Ũe

h

∂ξ

)
e+1/2

involving only Ωe and Ωe+1.

• Conclusion:
∂
˜̃Ue
h

∂ξ
(ξ) involves Ωe−1, Ωe and Ωe+1 for the BR2 diffusion scheme.
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Figure 4.11. – Illustation of the stencil of the BR2 diffusion scheme.

4.1.7.4. I-continuous diffusion scheme

The I-continuous (IC) scheme was introduced by Huynh [194] in the FR context. It computes the
common state value at an element interface, for instance between Ωe and Ωe+1, such that:

(
∂Ũe

h

∂ξ

)
e+1/2

= ∂Ũe,R
h

∂ξ
(1) = ∂Ũe+1,L

h

∂ξ
(0) (4.46)

⇐⇒ ∂Ue
h

∂ξ
(1) +

(
Ue+1/2 − Ue

h (1)
) ∂gLe
∂ξ

(1) = ∂Ue+1
h

∂ξ
(0) +

(
Ue+1/2 − Ue+1

h (0)
) ∂gRe+1

∂ξ
(0)

⇐⇒ Ue+1/2 =
∂Ue+1

h
∂ξ (0) − ∂Ue

h
∂ξ (1) − Ue+1

h (0) ∂g
R
e+1
∂ξ (0) + Ue

h (1) ∂g
L
e

∂ξ (1)
∂gL

e
∂ξ (1) − ∂gR

e+1
∂ξ (0)

(4.47)

The same calculation holds for the interface between Ωe−1 and Ωe. In practice, only gLe or gRe is stored
in a CFD code since from Eq. (4.37):

∂gRe
∂ξ

(ξ) = −∂gLe
∂ξ

(1 − ξ) (4.48)

Therefore if only right correction functions are stored, Eq. (4.47) can be recast into:

Ue+1/2 =
∂Ue

h
∂ξ (1) − ∂Ue+1

h
∂ξ (0) + Ue+1

h (0) ∂g
R
e+1
∂ξ (0) + Ue

h (1) ∂g
R
e

∂ξ (0)
∂gR

e
∂ξ (0) + ∂gR

e+1
∂ξ (0)

(4.49)

Once common state has been computed with Eq. (4.49), common gradient is computed based on
Eq. (4.46). As for the BR2 scheme, IC scheme has also a three elements stencil because common
gradients are computed using values defined by Eq. (4.44) and Eq. (4.45). If the computation is done
at constant polynomial order p, gRe = gRe+1 and Eq. (4.49) can be further simplified.

4.2. Formulation for hexahedral elements
The SD method for hexahedral elements, also called tensor-product elements, is an extension of

the 1D formulation presented in Section 4.1. The objective of this section is to explain how the
isoparametric transformation is applied when the equations considered are fully three-dimensional and
also how SP and FP are located inside a standard hexahedral element. The physical and isoparametric
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coordinates are now respectively denoted by x = (x, y, z)T and ξ = (ξ, η, ζ)T. It should be highlighted
that the discretization of the SD method on triangles and tetrahedral elements, also called simplex
elements, is not explained here since these elements were not considered in this work. Actually, simplex
elements are treated differently than tensor-product ones. Indeed, the 1D formulation of Section 4.1
cannot be considered direction per direction on simplex elements, as it is the case for tensor-product
ones which will be shown in the next paragraphs.

4.2.1. Isoparametric transformation in 3D

The NSE summarized in paragraph 2.4.7, can be recast into the following general form:

∂U
∂t

+ ∂E
∂x

+ ∂F
∂y

+ ∂G
∂z

= S, for (x, t) ∈ Ω × [0, tf ] (4.50)

where U = (ρ, ρu, ρv, ρw, ρE, ρY1, . . . , ρYNs)T is the vector of conservative variables, E = Ec + Ed,
F = Fc + Fd and G = Gc + Gd are respectively the sum of convective and diffusive fluxes of U along
x, y and z directions and S is a source term vector. They read as:

Ec = (ρu, ρu2 + P, ρvu, ρwu, u (P + ρE) , ρuY1, . . . , ρuYNs)T

Fc = (ρv, ρuv, ρv2 + P, ρwv, v (P + ρE) , ρvY1, . . . , ρvYNs
)T

Gc = (ρw, ρuw, ρvw, ρw2 + P, w (P + ρE) , ρwY1, . . . , ρwYNs
)T

Ed = (0, −τ11, −τ21, −τ31, ∂xqx − uτ11 − vτ12 − wτ13, −∂xM1x, . . . , −∂xMNsx)T

Fd = (0, −τ12, −τ22, −τ32, ∂yqy − uτ21 − vτ22 − wτ23, −∂yM1y, . . . , −∂yMNsy)T

Gd = (0, −τ13, −τ23, −τ33, ∂zqz − uτ31 − vτ32 − wτ33, −∂zM1z, . . . , −∂zMNsz)T

S = (0, 0, 0, 0, ω̇T , ω̇1, . . . , ω̇Ns
)T

(4.51)

The 3D computational domain Ω is now divided into Ne non-overlapping hexahedral elements inside
which Eq. (4.50) is to be solved. Each element Ωe of Ω will be transformed into a standard hexahedron
H = {(ξ, η, ζ) , 0 ≤ ξ, η, ζ ≤ 1} following the inverse of the transformation defined in Eq. (4.52) [47]:

x (ξ) =
Nv∑
i=1

Mi (ξ) xei (4.52)

where xei = (xei , yei , zei ) are the Cartesian coordinates in the physical domain of vertex i in Ωe and
Mi (ξ) are still the shape functions. As in the 1D case, Ωe can be linear (Nv = 8), quadratic (Nv = 27)
or a even higher order hexahedral element. The transformation and its inverse from a linear standard
hexahedron in the isoparametric domain into a linear hexahedron in the physical domain is represented
in Figure 4.12 where ξi = (ξi, ηi, ζi) are the coordinates of vertex i in the standard hexahedron. The

Figure 4.12. – Isoparametric transformation between a linear standard hexahedron and a linear hex-
ahedron.
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advantage of using high-order elements comes when complex geometries are considered since they will
better describe curved boundaries or mesh singularities. In 3D for a hexahedral element, the shape
functions are the product of the one-dimensional shape functions:

Mi (ξ, η, ζ) = lV Ti (ξ) lV Ti (η) lV Ti (ζ) , for i ∈ J1, NvK (4.53)
where lV Ti is the 1D Lagrange polynomial defined in Eq. (4.6). This isoparametric transformation
from the reference domain ξ to the physical domain x is characterized by a Jacobian matrix J along
with its inverse (assuming a non-singular transformation) representing the reverse transformation:

J =

 xξ xη xζ
yξ yη yζ
zξ zη zζ

 and J−1 =

 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 (4.54)

J can be determined explicitly thanks to Eq. (4.52) which can be derived with respect to ξ, η and ζ:

∂x

∂ (ξ, η, ζ) ≡ (xξ, xη, xζ)T =
Nv∑
i=1

∂Mi

∂ (ξ, η, ζ)x
e
i (4.55)

∂y

∂ (ξ, η, ζ) ≡ (yξ, yη, yζ)T =
Nv∑
i=1

∂Mi

∂ (ξ, η, ζ)y
e
i (4.56)

∂z

∂ (ξ, η, ζ) ≡ (zξ, zη, zζ)T =
Nv∑
i=1

∂Mi

∂ (ξ, η, ζ)z
e
i (4.57)

Thanks to Eq. (4.53), derivatives of shape functions with respect to reference coordinates can be
analytically expressed:

∂Mi

∂ξ
(ξ, η, ζ) = ∂lV Ti

∂ξ
(ξ) lV Ti (η) lV Ti (ζ) , for i ∈ J1, NvK (4.58)

∂Mi

∂η
(ξ, η, ζ) = lV Ti (ξ) ∂l

V T
i

∂η
(η) lV Ti (ζ) , for i ∈ J1, NvK (4.59)

∂Mi

∂ζ
(ξ, η, ζ) = lV Ti (ξ) lV Ti (η) ∂l

V T
i

∂ζ
(ζ) , for i ∈ J1, NvK (4.60)

Therefore, J−1 and |J−1| will be given by [4]:

J−1 = [com (J)]T

|J |
= 1

|J |

 yηzζ − zηyζ zηxζ − xηzζ xηyζ − yηxζ
zξyζ − yξzζ xξzζ − zξxζ yξxζ − xξyζ
yξzη − zξyη zξxη − xξzη xξyη − yξxη

 (4.61)

|J−1| = 1
|J |

= 1
xξ (yηzζ − zηyζ) − yξ (xηzζ − xζzη) + zξ (xηyζ − xζyη)

(4.62)

where com (J) is the comatrix of J . Combining Eq. (4.61) with Eq. (4.54) gives the expressions of
J−1 components as a function of J components:

ξx|J | = (yηzζ − zηyζ)
ξy|J | = (zηxζ − xηzζ)
ξz|J | = (xηyζ − yηxζ)
ηx|J | = (zξyζ − yξzζ)
ηy|J | = (xξzζ − zξxζ)
ηz|J | = (yξxζ − xξyζ)
ζx|J | = (yξzη − zξyη)
ζy|J | = (zξxη − xξzη)
ζz|J | = (xξyη − yξxη)

(4.63)
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Jacobian matrices, and then their determinants, depend on the location of the points where they are
computed due to the interpolation process on geometry using shape functions. Therefore, there are
Jacobian matrices for SP and for FP.

As in the 1D case, Eq. (4.50) is solved in the isoparametric domain using the derivation chain rule
on ∂E/∂x, ∂F/∂y and ∂G/∂z:
∂U
∂t

+
(
ξx
∂E
∂ξ

+ ξy
∂F
∂ξ

+ ξz
∂G
∂ξ

)
+
(
ηx
∂E
∂η

+ ηy
∂F
∂η

+ ηz
∂G
∂η

)
+
(
ζx
∂E
∂ζ

+ ζy
∂F
∂ζ

+ ζz
∂G
∂ζ

)
= S (4.64)

Eq. (4.64) is not in divergent form which is not something useful in a CFD context. However, Vi-
nokur [197] and Viviand [198] have shown that any equations of the form of Eq. (4.50), to which a
transformation was applied, can be put back into a conservative form in the new transformed do-
main [4]. To do so, Eq. (4.64) is first multiplied by |J | and is then rearranged into a conservative form
in (ξ, η, ζ) space by adding and subtracting terms:

|J |∂U
∂t

+ ∂

∂ξ
[|J | (ξxE + ξyF + ξzG)] + ∂

∂η
[|J | (ηxE + ηyF + ηzG)] + ∂

∂ζ
[|J | (ζxE + ζyF + ζzG)]

− E
[
∂

∂ξ
(ξx|J |) + ∂

∂η
(ηx|J |) + ∂

∂ζ
(ζx|J |)

]
− F

[
∂

∂ξ
(ξy|J |) + ∂

∂η
(ηy|J |) + ∂

∂ζ
(ζy|J |)

]
− G

[
∂

∂ξ
(ξz|J |) + ∂

∂η
(|J |ηz) + ∂

∂ζ
(ζz|J |)

]
= |J |S

(4.65)
The last three terms in brackets are equal to zero and can be dropped. This can be checked by
substituting the expressions of J components given by Eq. (4.63) into these three terms and using
Schwarz’s theorem to permute partial derivatives all the terms canceled. Thus, introducing the flux
vectors in the isoparametric domain:

Ê = |J | (ξxE + ξyF + ξzG) , F̂ = |J | (ηxE + ηyF + ηzG) , Ĝ = |J | (ζxE + ζyF + ζzG) (4.66)

and substitute them into Eq. (4.65), the equation in conservative form in the isoparametric space is:

∂Û
∂t

+ ∂Ê
∂ξ

+ ∂F̂
∂η

+ ∂Ĝ
∂ζ

= Ŝ, for (ξ, t) ∈ H × [0, tf ] (4.67)

with still Û given by Eq. (4.12) and Ŝ = |J |S. Again as in the 1D case, |J | is assumed to be
independent of time. Note that Eq. (4.66) can be written in matrix vector product using |J | and J−1:

F̂ = |J |J−1.F where F̂ =

 Ê
F̂
Ĝ

 and F =

 E
F
G

 (4.68)

which allows to write Eq. (4.50) and Eq. (4.67) as:
∂U
∂t

+ ∂E
∂x

+ ∂F
∂y

+ ∂G
∂z

= S ⇐⇒ ∂U
∂t

+ ∇x.F = S (4.69)

∂Û
∂t

+ ∂Ê
∂ξ

+ ∂F̂
∂η

+ ∂Ĝ
∂ζ

= Ŝ ⇐⇒ ∂Û
∂t

+ ∇ξ.F̂ = Ŝ (4.70)

where ∇x and ∇ξ are the divergence operators respectively in x and ξ spaces. Variables F and F̂
are the flux tensors respectively in the physical and isoparametric domains. Since, |J |×Eq. (4.64)
and Eq. (4.65) are equal, it can be written that:

∇ξ.F̂ = |J |×∇x.F (4.71)
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4.2.2. Solution points and flux points in 3D

4.2.2.1. Solutions points in 3D

For 3D hexahedral grids, the SP are set direction per direction by repeating the same 1D process
described in Section 4.1. It means that for an element of degree p, the number of SP inside this
element is:

Nd
SP = (p+ 1)d (4.72)

where d stands for the space dimension (d = 3 for hexahedral elements). A SP j ∈ J1, Nd
SP K has then

three coordinates: ξj = (ξj , ηj , ζj)T. Each of these coordinates are still given by the Gauss-Chebyshev
points in each direction in the isoparametric space:

(ξj , ηj , ζj)T = (ξj1 , ξj2 , ξj3)T = ξj1,j2,j3 , (j1, j2, j3) ∈ J1, N1d
SP Kd (4.73)

where ξj1 , ξj2 and ξj3 are obtained using Eq. (4.14). If all elements are at the same degree p, the
number of DOF inside the computational domain is given by:

DOF = Ne ×Nd
SP (4.74)

4.2.2.2. Flux points in 3D

FP locations in 3D hexahedral grids are linked to the fact that the flux polynomial must be of degree
p + 1 along each direction ξ, η and ζ. To do so, three sets of FP, one per direction ξ, η and ζ, are
introduced. Coordinates ξk = (ξk, ηk, ζk)T of a given FP k ∈ J1, Nd

FP K (Nd
FP is defined in Eq. (4.76))

depends on which direction the FP is:
• For ξ-FP: (ξk, ηk, ζk)T = (ξk1, ηj2, ζj3)T , (k1, j2, j3) ∈ J1, N1d

FP K × J1, N1d
SP K × J1, N1d

SP K

• For η-FP: (ξk, ηk, ζk)T = (ξj1, ηk2, ζj3)T , (j1, k2, j3) ∈ J1, N1d
SP K × J1, N1d

FP K × J1, N1d
SP K

• For ζ-FP: (ξk, ηk, ζk)T = (ξj1, ηj2, ζk3)T , (j1, j2, k3) ∈ J1, N1d
SP K × J1, N1d

SP K × J1, N1d
FP K

where ξk1 (respectively ηk2 and ζk3) are the Gauss-Legendre points along ξ (respectively η and ζ)
direction plus the two ending points. Consequently in space dimension d, the number of FP along a
given direction noted Ndir,d

FP and the total number of FP noted Nd
FP inside a hexahedral elements are

given by:

Ndir,d
FP = (p+ 2) (p+ 1)d−1 (4.75)
Nd
FP = d×Ndir,d

FP = d (p+ 2) (p+ 1)d−1 (4.76)

SP and FP in the isoparametric domain H are represented in Figure 4.13 for the p = 1 case.

4.2.3. General principle in 3D

The extension of the algorithm presented in paragraph 4.1.4 for a 1D hyperbolic equation is done
here for 3D conservative laws written in the isoparametric domain such as Eq. (4.67). At a given time
instant, the solution vector Û contains the conservative variables in the isoparametric domain stored
at each SP (ξj1 , ξj2 , ξj3)T inside H noted Û(j1,j2,j3). These values at SP are used to construct, in each
direction ξ, η and ζ, a p-degree polynomial representation of a continuous solution Uh across H as the
tensor product of the one-dimensional Lagrange polynomials of degree p along ξ, η and ζ directions:

Uh (ξ, η, ζ) =
N1d

SP∑
j1=1

N1d
SP∑

j2=1

N1d
SP∑

j3=1

Û(j1,j2,j3)
|J |(j1,j2,j3)

lSPj1 (ξ) lSPj2 (η) lSPj3 (ζ), for (ξ, η, ζ) ∈ [0, 1]3 (4.77)
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Figure 4.13. – Locations of SP ( ), ξ-FP ( ), η-FP ( ) and ζ-FP ( ) for p = 1 in isoparametric
domain H.

where lSPj1 (respectively lSPj2 and lSPj3 ) is the 1D Lagrange polynomials built at 1D SP ξj1 (respectively
ξj2 and ξj3). Eq. (4.77) is used to evaluate conservative variables at FP along ξ, η and ζ directions
respectively noted U(k1,j2,j3), U(j1,k2,j3) and U(j1,j2,k3). The flux evaluation at FP depends on whether
the FP is an internal or an interface FP and also if the flux to compute is a convective or a diffusive
flux. Consequently, there are four possible cases:

• Convective fluxes at internal FP: values of Ec, Fc and Gc are obtained at ξ-FP (respec-
tively η-FP and ζ-FP) from the values of U(k1,j2,j3) (respectively U(j1,k2,j3) and U(j1,j2,k3)) since
convective fluxes are only a function of U.

• Diffusive fluxes at internal FP: as introduced in paragraphs 4.1.6 and 4.1.7, the diffusive
fluxes can be both a function of U and ∇U. In that case, gradients at FP along ξ, η and
ζ directions, respectively denoted by ∇U(k1,j2,j3), ∇U(j1,k2,j3) and ∇U(j1,j2,k3), are computed
at FP. Then, values of Ed, Fd and Gd are obtained at ξ-FP (respectively η-FP and ζ-FP)
from the values of (U,∇U)(k1,j2,j3) (respectively (U,∇U)(j1,k2,j3) and (U,∇U)(j1,j2,k3)). The
methodology to compute the gradients used in this work is detailed in Section 4.4.

• Convective fluxes at interface FP: as in 1D, conservative variables are discontinuous at
these FP leading to a discontinuity of convective fluxes. A Riemann solver is employed to
compute interface fluxes in the isoparametric domain namely ÊI

c , F̂I
c and ĜI

c . A description of
the Riemann solvers and the one used in this work is explained in Section 4.3.

• Diffusive fluxes at interface FP: they are also discontinuous at interface FP since both
conservative variables and their gradients are discontinuous at these locations. A diffusion
scheme is considered to get unique diffusive flux values in the isoparametric domain at interface
FP namely ÊI

d, F̂I
d and ĜI

d. A description of the diffusion schemes employed in this work is also
found in Section 4.4.
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At internal FP along ξ, η and ζ directions, convective and diffusive fluxes in the physical domain
are added together to get E, F and G on these locations. The fluxes in the isoparametric domain
Ê(k1,j2,j3), F̂(j1,k2,j3) and Ĝ(j1,j2,k3) are then deduced from Eq. (4.68). Once internal and interface
fluxes have been computed, continuous fluxes Êh, F̂h and Ĝh across H of degree (p+ 1) respectively
along ξ, η and ζ directions can be constructed from flux values at FP and 1D Lagrange polynomials:

Êh (ξ, η, ζ) =
N1d

F P∑
k1=1

N1d
SP∑

j2=1

N1d
SP∑

j3=1
Ê(k1,j2,j3)l

FP
k1 (ξ) lSPj2 (η) lSPj3 (ζ), for (ξ, η, ζ) ∈ [0, 1]3 (4.78)

F̂h (ξ, η, ζ) =
N1d

SP∑
j1=1

N1d
F P∑

k2=1

N1d
SP∑

j3=1
F̂(j1,k2,j3)l

SP
j1 (ξ) lFPk2 (η) lSPj3 (ζ), for (ξ, η, ζ) ∈ [0, 1]3 (4.79)

Ĝh (ξ, η, ζ) =
N1d

SP∑
j1=1

N1d
SP∑

j2=1

N1d
F P∑

k3=1
Ĝ(j1,j2,k3)l

SP
j1 (ξ) lSPj2 (η) lFPk3 (ζ), for (ξ, η, ζ) ∈ [0, 1]3 (4.80)

Eq. (4.78), Eq. (4.79) and Eq. (4.80) are then differentiated respectively along ξ, η and ζ directions
and evaluated at SP to get:(

∂Êh

∂ξ

)
(j1,j2,j3)

=
N1d

F P∑
k1=1

Ê(k1,j2,j3)
∂lFPk1
∂ξ

(ξj1), (j1, j2, j3) ∈ J1, N1d
SP Kd (4.81)

(
∂F̂h

∂η

)
(j1,j2,j3)

=
N1d

F P∑
k2=1

F̂(j1,k2,j3)
∂lFPk2
∂η

(ηj2), (j1, j2, j3) ∈ J1, N1d
SP Kd (4.82)

(
∂Ĝh

∂ζ

)
(j1,j2,j3)

=
N1d

F P∑
k3=1

Ĝ(j1,j2,k3)
∂lFPk3
∂ζ

(ζj3), (j1, j2, j3) ∈ J1, N1d
SP Kd (4.83)

where lSPjm (ξjn) = δmn, with δmn being the Kronecker symbol between m and n, was abundantly used
to get rid of the triple summations in Eq. (4.78), Eq. (4.79) and Eq. (4.80). Finally, the semi-discrete
(because time has not been discretize yet) formulation of Eq. (4.67) can be written and integrated in
time using any explicit temporal scheme:(
dÛ
dt

)
(j1,j2,j3)

= −

(∂Êh

∂ξ

)
(j1,j2,j3)

+
(
∂F̂h

∂η

)
(j1,j2,j3)

+
(
∂Ĝh

∂ζ

)
(j1,j2,j3)

+Ŝ(j1,j2,j3), (j1, j2, j3) ∈ J1, N1d
SP Kd

(4.84)
The temporal discretization of Eq. (4.84) will be detailed in Section 4.6.

4.2.4. Practical implementation
According to Eq. (4.81), Eq. (4.82) and Eq. (4.83), values of Ê, F̂ and Ĝ are only needed respectively

at ξ-FP, η-FP and ζ-FP. For instance, there is no need to compute F̂ and Ĝ for FP along ξ-direction
since they will not be used to derive Ê along ξ-direction with Eq. (4.81). Consequently for ξ-FP,
only |J |ξx, |J |ξy and |J |ξz are stored at these points to compute Ê from E, F and G using the
first component of Eq. (4.68). This is exactly what it is done for internal FP but for interface FP
some precision should be made. At interface FP, a Riemann solver is employed for convective fluxes
(subscript c) and a diffusion scheme is used for diffusive fluxes (subscript d). The Riemann solver and
the diffusion scheme give respectively the physical convective and diffusive flux values in the physical
normal direction of the interface FP defined as:

Fc/d,n = Fc/d.nuFP (4.85)

70



4.3 Riemann solvers for convective fluxes at interfaces

where nuFP is the unit physical normal vector at a given FP introduced in Section A.2. However, for
instance at interface FP along ξ-direction, it is the value of ÊI

c/d that is actually needed. It shows that
a link between Fc/d.nuFP and ÊI

c/d has to be found. By definition, ÊI
c/d can be viewed as:

ÊI
c/d ≡ F̂c/d.n̂FP = |J |FP × Fc/d.nFP = |J |FP × Fc/d.nuFP ×AFP (4.86)

with n̂FP = (1, 0, 0)T and nFP , nuFP and AFP given in paragraph A.2.2 for an interface FP along
ξ-direction. Using these expressions of nuFP and AFP , Eq. (4.86) becomes:

ÊI
c/d = |J |FP × Fc/d.

1√
ξ2
x + ξ2

y + ξ2
z

 ξx
ξy
ξz

×
√
ξ2
x + ξ2

y + ξ2
z = |J |

(
ξxEc/d + ξyFc/d + ξzGc/d

)
(4.87)

Eq. (4.87) is fully consistent with the first component of Eq. (4.68) used for internal FP along ξ-
direction. The same reasoning holds for interface FP along η and ζ directions.

4.3. Riemann solvers for convective fluxes at interfaces

As mentioned in paragraphs 4.1.4 and 4.2.3, during the SD discretization process a Riemann solver
is needed to determine flux values at FP interfaces between two elements. Actually, the Riemann
solver gives the term Fc.nuFP introduced in Eq. (4.86). The objective of this section is to give a brief
explanation on what is actually a Riemann solver and show an example of one used during this work.

4.3.1. The Riemann problem and its solvers using a 1D equation

In this paragraph as only the 1D case is considered, Fc = Ec and nuFP = nuFP = 1 so that the
physical normal flux at an interface is simply:

Fc.nuFP = Ec (4.88)

4.3.1.1. Presentation of the problem

The Riemann problem can be illustrated by considering a 1D hyperbolic equation as Eq. (4.1) for
a convective flux E = Ec with the following initial condition at an interface x = 0 on a 1D domain:

U (x, 0) = UL (x < 0) and U (x, 0) = UR (x > 0) (4.89)

This situation is represented in Figure 4.14 where obviously UL ̸= UR. It is the kind of situation
that occurs at each interface FP when using the SD method. The approach used to solve a Riemann
problem depends on the system of equations that is considered and especially on whether U is scalar
or a vector and on whether Ec is a linear or a nonlinear function of U. In this work, only system of
equations coming from conservation laws where U is a vector and Ec is a nonlinear function of U will be
considered. Lax [199] gave a review of the results for the general Riemann problem using conservation
laws. However, efficiently solving a Riemann problem applied to conservation laws actually depends
on the system of conservation laws from which Eq. (4.1) comes from [192]. As CFD simulations are
considered in this work, the Riemann solvers will be introduced in the context of the unsteady Euler
equations for which an expression in the 1D case was already shown in paragraph 4.1.1.
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Figure 4.14. – Illustration of the Riemann problem in a 1D general case.

4.3.1.2. Exact and approximate solutions of the Riemann problem

The first one to propose a methodology to solve the Riemann problem for the unsteady 1D Euler
equations for a calorically perfect gas was Godunov [200]. In his method, the Riemann problem is
solved exactly but the computational cost is quite high. That is why, the development of Riemann
solvers less costly, but with properties closed to the exact Riemann solver of Godunov, were on-trend.
These Riemann solvers are usually refer to as approximate Riemann solvers. During this work, only
the Harten Lax and van Leer Contact (HLLC) [201] Riemann solver was employed and is the topic of
paragraph 4.3.2. A complete review of approximate Riemann solvers can be found in Toro’s book [192].

4.3.2. The HLLC Riemann solver
4.3.2.1. General algorithm

The HLLC Riemann solver is usually presented using the three-dimensional Euler equations written
for the 3D flux projected on an interface of unit normal nu =

[
nux, n

u
y , n

u
z

]T
separating two states UL

and UR as in Figure 4.14:

U =



ρ
ρu
ρv
ρw
ρE
ρYk


, Fc (U) .nu ≡ Fc,n (U) =



ρun
ρuun + Pnux
ρvun + Pnuy
ρwun + Pnuz
un (P + ρE)

ρunYk


(4.90)

where un = unux + vnuy + wnuz is the component of velocity acting in direction nu. This scheme
assumes a three-wave model for the solution of the Riemann problem as illustrated in Figure 4.15
for nu = [1, 0, 0]T. It consists of two acoustic waves with the smallest and largest speeds denoted
respectively by SL and SR and a contact wave of speed S∗ which must lie between SL and SR. The
idea of the HLLC solver, is to compute the interface numerical flux based on the signs of SL, S∗ and
SR [192]:

FI
c,n =


FL
c,n if SL > 0

F∗L
c,n if SL ≤ 0 < S∗

F∗R
c,n if S∗ ≤ 0 ≤ SR

FR
c,n if SR < 0

(4.91)

where FL
c,n = Fc,n

(
UL

)
, FR

c,n = Fc,n

(
UR

)
. In Eq. (4.91), F∗L

c,n and F∗R
c,n are the intermediate fluxes

in the star region whose expressions are determined using Rankine-Hugoniot conditions across each
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Figure 4.15. – Situation of the Riemann problem solved with the HLLC solver when nu = [1, 0, 0]T.
The star region consists of two constant states separated by a contact wave of speed
S∗.

of the three waves:

F∗L
c,n = FL

c,n + SL
(
U∗L − UL

)
(4.92)

F∗R
c,n = F∗L

c,n + S∗
(
U∗R − U∗L

)
(4.93)

F∗R
c,n = FR

c,n + SR
(
U∗R − UR

)
(4.94)

with U∗L and U∗R respectively the left and right states in the star region. They are also unknowns
of the problem. Consequently, there are four unknowns F∗L

c,n, F∗R
c,n , U∗L and U∗R and three equations

Eq. (4.92), Eq. (4.93) and Eq. (4.94) so that the problem is underdetermined. One condition remains
to be found and a judicious choice is to impose a condition satisfied by the exact solution of the
Riemann problem. From this exact solution for the Euler equations, it can be assumed that [192]:

P ∗L = P ∗R ≡ P ∗ (Continuity of pressure in the star region) (4.95)
u∗L
n = u∗R

n ≡ S∗ (Continuity of normal velocity in the star region) (4.96)

The objective is then to find expressions for each variables in the star region. Assuming that SL and
SR are known, the first components of Eq. (4.92) and Eq. (4.94) gives the densities in the star region:

ρ∗L = ρL
SL − uLn
SL − S∗

and ρ∗R = ρR
SR − uRn
SR − S∗

(4.97)

Multiplying second, third and fourth components of Eq. (4.92) and Eq. (4.94) by nux, nuy and nuz
respectively and then summing gives:

P ∗L = PL + ρ∗L (SL − S∗)S∗ − ρLuLn

(
SL − uLn

)
and P ∗R = PR + ρ∗R (SR − S∗)S∗ − ρRuRn

(
SL − uRn

)
(4.98)

Then using Eq. (4.97), pressures in the star region have the following expressions:

P ∗L = PL + ρL
(
uLn − SL

) (
uLn − S∗

)
and P ∗R = PR + ρR

(
uRn − SR

) (
uRn − S∗

)
(4.99)

Because of Eq. (4.95) and using expressions in Eq. (4.99), the contact wave speed is obtained:

S∗ =
PR − PL − ρLuLn

(
uLn − SL

)
+ ρRuRn

(
uRn − SR

)
ρR (uRn − SR) − ρL (uLn − SL) (4.100)
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Now that densities ρ∗L/R, pressure P ∗L/R = P ∗ and normal velocity S∗ have been computed, they can
be employed to obtain the remaining components of U∗L and U∗R thanks to Eq. (4.92) and Eq. (4.94):

(ρu)∗L/R =

(
P ∗ − PL/R

)
nux + ρL/RuL/R

(
SL/R − u

L/R
n

)
SL/R − S∗

(4.101)

(ρv)∗L/R =

(
P ∗ − PL/R

)
nuy + ρL/RvL/R

(
SL/R − u

L/R
n

)
SL/R − S∗

(4.102)

(ρw)∗L/R =

(
P ∗ − PL/R

)
nuz + ρL/RwL/R

(
SL/R − u

L/R
n

)
SL/R − S∗

(4.103)

(ρE)∗L/R =
P ∗S∗ − PL/Ru

L/R
n + (ρE)L/R

(
SL/R − u

L/R
n

)
SL/R − S∗

(4.104)

(ρYk)∗L/R = (ρYk)L/R
SL/R − u

L/R
n

SL/R − S∗
(4.105)

Finally, F∗L
c,n and F∗R

c,n can be computed and the final choice for the interface numerical flux is obtained
through Eq. (4.91). It should be pointed out that U∗L/R is never employed to compute F∗L/R

c,n using
F∗L/R
c,n = Fc,n

(
U∗L/R

)
as opposed to what is done in approximate-state Riemann solvers. The

methodology described here is valid for any EOS once SL and SR are available. The EOS impacts
only the values of SL and SR because the sound speed expression is different for each EOS.

4.3.2.2. Wave speed estimates in the HLLC Riemann solver

All the previous computations were done assuming that values of SL and SR were known. Several
choices are available in the literature and the one that was done in this work is:

SL = min
(
uLn − cL, ũn − c̃, uRn − cR

)
and SR = max

(
uLn + cL, ũn + c̃, uRn + cR

)
(4.106)

where cL and cR are the sound speeds respectively in the left and right state. Since ideal multi-species
gases are employed in this work, these sound speeds are given by:

cL/R =
√
γL/RPL/R

ρL/R
(4.107)

In Eq. (4.107), γL and γR are the heat capacity ratios respectively in the left and right states.
In Eq. (4.106), variables with a symbol (̃.) are Roe’s averages introduced in [202] and are recalled
here for completeness:

r̃ =
√
ρR

ρL
(4.108)

ũn = r̃uRn + uLn
1 + r̃

(4.109)

H̃ = r̃HR +HL

1 + r̃
(4.110)

γ̃ = r̃γR + γL

1 + r̃
(4.111)

c̃2 = (γ̃ − 1)
(
H̃ − ũ2

n

2

)
(4.112)
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where H = E + P/ρ stands for the total enthalpy. The wave speed estimates used in this work are
actually a combination of what is done in [85] completed by the Roe’s averages terms which return
the exact solution for an isolated shock and satisfies entropy inequality [201, 203]. However, it should
be mentioned that technically, Eq. (4.112) is valid only for a calorically mono-species gas (γ̃ = γ
is constant) as presented by Roe in its original paper [202]. For a multi-species thermally perfect
gas, another expressions have been derived such as in the recent work of Lecointre et al. [204] who
have developed a methodology to compute c̃ for a general EOS with a multi-species gas. It could be
interesting to try their algorithm in the future although no apparent issues where seen in this work
concerning the computation of c̃ using Eq. (4.112). Finally, there is another methodology, based on
pressure estimates, to compute SL and SR as proposed in the original HLLC paper [205]. It has the
advantage to not use the Roe’s averages avoiding questions on their validity in the multi-species case.
Nevertheless, the entropic character of the wave speed estimates is lost. Still, this approach is widely
employed in the DG community that simulates multi-species reacting flows [25, 27, 92].

4.4. Gradient computation in 3D for diffusive fluxes

In paragraph 4.2.3, the need to compute the gradients of the conservative variables was highlighted
in order to get the diffusive fluxes. The objectives of this section are two folds:

• Explain the original methodology of Sun et al. [47], already explained in a simpler 1D case in
paragraph 4.1.6, in 3D to compute the gradient needed for the evaluation of diffusive fluxes.

• Extend the SDLIFT formulation, originally introduced in 1D (see paragraph 4.1.7), in 3D.

4.4.1. Original formulation

As in the 1D case, the algorithm starts with the conservative variables in the physical space at FP
evaluated using Eq. (4.77). At interface FP, U is discontinuous and the solution at the interface is
taken as the average between the left and right states following Eq. (4.27). Once all common values
have been computed for all interface FP along ξ, η and ζ directions, U is continuous across elements
and is denoted by UC

FP . Values of UC
FP along ξ-direction (respectively η-direction and ζ-direction)

are used to build a (p+ 1)-degree polynomial representation of UC
FP in ξ-direction (respectively η-

direction and ζ-direction) as it is done for fluxes in Eq. (4.78), Eq. (4.79) and Eq. (4.80). Then to
compute the gradient of any component UCi (i ∈ J1, NeqK) of UC

FP at SP, two options are available
depending on what is stored by the CFD code employed. Starting from the gradient definition in
Cartesian coordinates:

∇xU
C
i ≡ ∂UCi

∂x
ex + ∂UCi

∂y
ey + ∂UCi

∂z
ez

⇒ ∇xU
C
i =

(
ξx
∂UCi
∂ξ

+ ηx
∂UCi
∂η

+ ζx
∂UCi
∂ζ

)
ex +

(
ξy
∂UCi
∂ξ

+ ηy
∂UCi
∂η

+ ζy
∂UCi
∂ζ

)
ey

+
(
ξz
∂UCi
∂ξ

+ ηz
∂UCi
∂η

+ ζz
∂UCi
∂ζ

)
ez

⇒ ∇xU
C
i =

[
J−1

]T
.∇ξU

C
i

(4.113)

where ex = (1, 0, 0)T, ey = (0, 1, 0)T and ez = (0, 0, 1)T are the unit vectors of the Cartesian basis.
Thus, by deriving at SP the (p+ 1)-degree polynomial created using UC

FP values and storing J−1

components at SP also, Eq. (4.113) is the first option to obtain the gradients at SP. The second option
starts from Eq. (4.113), multiplied it by |J | and use the following tensor identities for the right hand
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side:

|J |
[
J−1

]T
.∇ξU

C
i = ∇ξ.

(
|J |UCi

[
J−1

]T)
− UCi ∇ξ.

(
|J |
[
J−1

]T)
(4.114)

In Eq. (4.114), the term UCi ∇ξ.

(
|J |
[
J−1

]T)
is zero for the same reasons mentioned in Eq. (4.65),

then gradient in Cartesian coordinates can also be evaluated following Eq. (4.115):

∇xU
C
i = 1

|J |
∇ξ.

(
|J |UCi

[
J−1

]T)
(4.115)

Therefore, Eq. (4.115) actually computes the gradient in Cartesian coordinates at SP by computing
the divergence of the matrix |J |UCi

[
J−1

]T
, with respect to isoparametric coordinates, at SP. To do so,

it needs to have the values of |J |
[
J−1

]T
at FP before computing the divergence. However, compared

to the first option, J−1 is not needed at SP in this approach. In Sun et al. [47], the second option is
employed since they store only |J |

[
J−1

]T
at FP and |J | at SP.

Computing all these gradients for each conservative variable gives
(
∇xUC

)
SP

which contains the
gradients of U with respect to Cartesian coordinates evaluated at SP. These gradients are then inter-
polated at FP along ξ, η and ζ directions using the same interpolation procedure than in Eq. (4.77) to
obtain

(
∇xUC

)
FP

. Again, at interface FP, the gradient is discontinuous and in the original approach
of Sun et al. [47], it is taken as the average between the left and right gradients following Eq. (4.30).
but this time with derivatives along physical coordinates. Once the gradients are continuous at all FP,
the diffusive flux tensor Fd = Fd (U,∇U) is computed at these FP. Finally, depending on whether
the FP is internal or on an interface the following operations are done to get the flux tensor in the
isoparametric domain:

• Internal FP: Fd is added to Fc and Eq. (4.68) is used.
• Interface FP: Eq. (4.86) is used with the nFP value associated to the correct interface FP

direction.

4.4.2. SDLIFT formulation
The SDLIFT formulation in a general 3D framework is very similar to what is described in paragraph

4.1.7 for the 1D case except that derivatives in the tangential directions in isoparametric coordinates
are also needed. Without loss of generality, the FP along ξ-direction in H are considered but the
reasoning is equivalent for the remaining FP along η and ζ directions. Starting from Eq. (4.77), a
(p− 1)-degree polynomial with respect to ξ but of degree p in η and ζ can be built for the derivative
of U with respect to ξ:

∂Ue
h

∂ξ
(ξ, η, ζ) =

N1d
SP∑

j1=1

N1d
SP∑

j2=1

N1d
SP∑

j3=1

Ûe
(j1,j2,j3)

|J |e(j1,j2,j3)

∂lSPj1
∂ξ

(ξ) lSPj2 (η) lSPj3 (ζ), for (ξ, η, ζ) ∈ [0, 1]3 (4.116)

If Ue−1/2 and Ue+1/2 are the common states values defined at interface FP along ξ-direction, (∂Ue
h/∂ξ)

can be corrected into a p-degree polynomial as in the 1D case using correction functions of degree
p+ 1:

∂Ũe
h

∂ξ
(ξ, η, ζ) = ∂Ue

h

∂ξ
(ξ, η, ζ) +

(
Ue−1/2 − Ue

h (0, η, ζ)
) ∂gRe
∂ξ

(ξ) +
(
Ue+1/2 − Ue

h (1, η, ζ)
) ∂gLe
∂ξ

(ξ)

(4.117)
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Eq. (4.117) defines a p-degree polynomial along ξ, η and ζ directions but is discontinuous at interface
FP along ξ-direction since it is almost sure that:

∂Ũe−1
h

∂ξ
(1, η, ζ) ̸= ∂Ũe

h

∂ξ
(0, η, ζ) and ∂Ũe

h

∂ξ
(1, η, ζ) ̸= ∂Ũe+1

h

∂ξ
(0, η, ζ) (4.118)

Thus, by defining common normal derivatives at these interface FP, respectively
(
∂Ũe

h/∂ξ
)
e−1/2

and(
∂Ũe

h/∂ξ
)
e+1/2

, a (p+ 1)-degree polynomial in ξ and a p-degree polynomial in η and ζ for ∂U/∂ξ at
ξ-FP, continuous across elements, can be built:

∂
˜̃Ue
h

∂ξ
(ξ, η, ζ) = ∂Ũe

h

∂ξ
(ξ, η, ζ) +

(∂Ũe
h

∂ξ

)
e−1/2

−
∂Ũe

h

∂ξ
(0, η, ζ)

 gRe (ξ)

+

(∂Ũe
h

∂ξ

)
e+1/2

−
∂Ũe

h

∂ξ
(1, η, ζ)

 gLe (ξ)

(4.119)

Therefore, the use of Eq. (4.119) at FP along ξ-direction, gives the derivative of U in ξ-direction for
these FP denoted by (∂U/∂ξ)C(k1,j2,j3). However, to compute the viscous fluxes at FP, derivatives of
U with respect to x, y and z are actually needed and not the derivatives with respect to ξ, η and ζ.
The formula shown in Eq. (4.113) should be used to obtain the gradient in Cartesian coordinates from
the derivatives with respect to ξ, η and ζ. The SDLIFT treatment already provides derivative along
ξ with (∂U/∂ξ)C(k1,j2,j3) so that it remains to find values for (∂U/∂η)C(k1,j2,j3) and (∂U/∂ζ)C(k1,j2,j3).
Actually, there are two possibilities to compute these tangential derivatives.

The first one starts by writing the corrected continuous (p+ 1)-degree polynomials of U respectively
along η and ζ directions:

Ũe,η
h (ξ, η, ζ) = Ue

h (ξ, η, ζ) +
(
Uη
e−1/2 − Ue

h (ξ, 0, ζ)
)
gRe (η) +

(
Uη
e+1/2 − Ue

h (ξ, 1, ζ)
)
gLe (η) (4.120)

Ũe,ζ
h (ξ, η, ζ) = Ue

h (ξ, η, ζ) +
(
Uζ
e−1/2 − Ue

h (ξ, η, 0)
)
gRe (ζ) +

(
Uζ
e+1/2 − Ue

h (ξ, η, 1)
)
gLe (ζ) (4.121)

where superscripts η and ζ have been added to the notations of the corrected polynomial Ũe
h and

interface values Ue−1/2 and Ue+1/2 in these directions for clarity. Then, Ũe,η
h and Ũe,ζ

h are derived re-

spectively in η and ζ directions and evaluated at SP to get
(
∂Ũe,η

h /∂η
)

(j1,j2,j3)
and

(
∂Ũe,ζ

h /∂ζ

)
(j1,j2,j3)

.

Finally, these derivatives at SP will be extrapolated at FP along ξ-direction which give discontinuous
tangential derivatives at ξ-FP written as: (∂U/∂η)D(k1,j2,j3) and (∂U/∂ζ)D(k1,j2,j3). At this point, tan-
gential derivatives of U in η and ζ directions evaluated at ξ-FP have been obtained but they are not
continuous at interface FP as opposed to the normal derivatives that are built continuous thanks to
the SDLIFT process. There are two choices available:

1. Keep the discontinuity for tangential derivatives in η and ζ and use Eq. (4.113) to obtain the
gradient in Cartesian coordinates. This is probably what is done in Castonguay et al. [206] and
in Sheshadri et al. [207] in the FR context although this point is not clearly specified.

2. Do the average of the tangential derivatives at each interface FP to have fully continuous deriva-
tives in ξ, η and ζ. However, this choice will increase the stencil for the gradient computation
and thus will change the compactness of diffusion schemes as the BR2 or the IC introduced in
paragraphs 4.1.7.3 and 4.1.7.4 in the 1D case.

In this work, for this first choice for computing tangential derivatives, it was chosen to keep the
discontinuity for tangential derivatives. This first possibility for obtaining tangential derivatives is
named the classical approach.
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The second possibility to obtain tangential derivatives of U at FP is the methodology described by
Huynh [194]. It starts from the corrected continuous (p+ 1)-degree polynomial in ξ, and of degree p
in η and ζ, for U:

Ũe
h (ξ, η, ζ) = Ue

h (ξ, η, ζ) +
(
Ue−1/2 − Ue

h (0, η, ζ)
)
gRe (ξ) +

(
Ue+1/2 − Ue

h (1, η, ζ)
)
gLe (ξ) (4.122)

Eq. (4.122) evaluated at ξ-FP gives Ũe
h(k1,j2,j3) which are used to compute tangential derivatives at

ξ-FP:

(
∂U
∂η

)C
(k1,j2,j3)

=
N1d

SP∑
j2=1

Ũe
h(k1,j2,j3)

∂lSPj2
∂η

(ηj2), (k1, j2, j3) ∈ J1, N1d
FP K × J1, N1d

SP K × J1, N1d
SP K (4.123)

(
∂U
∂ζ

)C
(k1,j2,j3)

=
N1d

SP∑
j3=1

Ũe
h(k1,j2,j3)

∂lSPj3
∂ζ

(ζj3), (k1, j2, j3) ∈ J1, N1d
FP K × J1, N1d

SP K × J1, N1d
SP K (4.124)

Therefore, derivatives of U along η and ζ directions for ξ-FP are also obtained with Huynh’s approach.
There are continuous (superscript C) at interface FP since Ũe

h(1,j2,j3) and Ũe
h(N1d

F P ,j2,j3) are the common
values at interface FP along ξ direction. However, tangential derivatives introduced in Eq. (4.123)
and Eq. (4.124) define (p− 1)-degree polynomials respectively in η and ζ and not of degree p as in the
original approach. This second possibility for computing tangential derivatives is named the Huynh’s
approach.

Once tangential derivatives along η and ζ have been obtained, either with classical or Huynh’s
approach, Eq. (4.113) is employed to get the gradient in Cartesian coordinates at ξ-FP. At interface
FP, these Cartesian gradients are still discontinuous for two reasons:

1. If the classical approach is considered, (∂U/∂η)D(k1,j2,j3) and (∂U/∂ζ)D(k1,j2,j3) are discontinuous
at interface FP.

2. The terms ηx, ηy, ηz, ζx, ζy and ζz of J−1 are discontinuous at ξ interface FP. The three remaining
terms of J−1, ξx, ξy and ξz are continuous at ξ interface FP since they define the normal vectors
at these FP which is unique and thus independent on which side of the interface it is computed.
This is independent of the approach used for computing tangential derivatives.

Consequently, Eq. (4.30) is employed to define unique Cartesian gradients at interface FP. Finally, the
evaluation of diffusive flux tensor Fd at ξ-FP is done as in the original formulation. The way to compute
common states and common normal derivatives is exactly the same as explained in the 1D case for the
three diffusion schemes used in this work: BR1, BR2 and IC introduced respectively in paragraphs
4.1.7.2, 4.1.7.3 and 4.1.7.4. The main steps to compute the gradients in Cartesian coordinates of
conservatives variables at ξ-FP using the SDLIFT formulation are summed up in Algorithm 3 of
Section B.2. The reasoning is exactly the same for η and ζ directions.
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4.5 Local polynomial degree adaptation

4.5. Local polynomial degree adaptation

One of the most interesting feature of HO polynomial methods is that they can locally adapt the
polynomial degree to have high polynomial degrees only in regions of interest. This methodology is
often referred to as p-adaptation or p-refinement and, similarly to mesh refinement, is an excellent way
to reduce the total number of DOF, which surely saves computational time, without loosing accuracy.
It will be employed in this work in 2D and 3D cases.

4.5.1. Sensors

The polynomial degree within each element can be set by hand by the user or automated using a user-
defined sensor. Multiple sensor definitions exist depending on the simulation considered. The sensors
used for mesh refinement could be used. For instance, sensors can be based on error estimates [95, 208]
or on time-averaged of target quantities [209]. In this work, time-averaged of some quantities like the
norm of the density or temperature gradients or of the HRR have been considered. For instance, in
the case of the norm of the density gradient, the following sensor value θe is computed in each element
Ωe:

θe = 1
tavg|Ωe|

∫ t+tavg

t

∫
Ωe

||∇ρ||2 dΩedt and θ̃e = θe
max

Ω
(θe)

(4.125)

where |Ωe| is the volume of Ωe and tavg is the time averaging duration. In Eq. (4.125), θ̃e is the scaled
sensor value of θe to keep it between 0 and 1 in the whole domain. Using θ̃e, the polynomial degree
pe within each element is set according to:

pe = pmin + INT
[
tanh

(
αθ̃e

)
(pmax − pmin)

]
(4.126)

where pmin and pmax are respectively the minimum and maximum polynomial degrees set by the user,
INT stands for the integer function and α is a smoothing parameter used to avoid jumps of more than
one degree between adjacent elements as it is done in the DG framework [96].

4.5.2. Load-balancing

For parallel computations, having a variable value of p in the whole domain entails the use of load-
balancing when the mesh is cut and distributed to processors in order to have more processors on
zones where the polynomial degree is higher. In JAGUAR, it is done using the ParMETIS MPI-based
parallel library [210] which takes a weight of (pe + 1)d (number of DOF per element in dimension
d) associated to each element and re-assigns elements to processors that had only elements with low
weight values after the first partitioning of the mesh (which was done before pe was set).

4.5.3. Methodology

The polynomial distribution can be set once at the beginning of the computation based on θ̃e
values obtained from a previous computation, it is called then static p-adaptation, or it can evolve
during the computation, it is then named dynamic p-adaptation. Static p-adaptation requires a first
computation, usually done at a small constant polynomial degree in all elements, but is easier to
use than dynamic p-adaptation which needs to reallocate arrays and adapt load balancing during the
computation. However, dynamic p-adaptation has the advantage to adjust to the solution during the
simulation. In this work, only static p-adaptation was considered.
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4.5.4. The mortar element method
When using p-adaptation, the polynomial degree of each element, noted pe, can differ from one

element to another. Interfaces between two elements of different degrees have FP placed at different
locations. Figure 4.16 illustrates this situation for an interface between a left element with pL = 1 and
a right element with pR = 2. Kopriva [43] proposed to solve this problem by using a mortar element

Figure 4.16. – Illustration of the mortar element method at an interface between a left element with
pL = 1 and a right element with pR = 2. Red triangles represent SP and blue squares
represent FP in the ξ direction.

method [211] where a fictive interface M , called mortar, is introduced to compute interface fluxes.
In the general case, the mortar degree pM is equal to max (pL, pR), thus pM = 2 in the example of
Figure 4.16. The mortar element treatment is different for the convective and diffusive fluxes since
the first one is only a function of U whereas the second one is a function of both U and ∇U.

For the convective fluxes at an interface where pL ̸= pR, the mortar element method is done in three
steps [96]:

1. UL is projected on M using an unweighted L2-projection to get UM,L and UM,R = UR since
pM = pR.

2. A Riemann problem is solved between states UM,L and UM,R to get convective fluxes on Mortar
FP noted FM

c,n.
3. FM

c,n is projected back on ΩL to get FΩL
c,n and FΩR

c,n = FM
c,n since pM = pR.

FΩL
c,n and FΩR

c,n are the convective fluxes values at interface FP respectively in ΩL and ΩR that will be
used to compute the flux divergence at SP in these elements. The projections mentioned in steps 1
and 3 are explained in Appendix D for both 2D and 3D cases.

For the diffusive fluxes at an interface where pL ̸= pR, the mortar element method is done this time
in eight steps [96]:

1. Same step as step 1 of the convective flux treatment on mortar to obtain UM,L and UM,R.
2. Common interface values on mortar FP, noted UM,I , are computed from UM,L and UM,R based

on the diffusion scheme used.
3. UM,I is projected back on ΩL to get UΩL,I and for interface FP on ΩR: UΩR,I = UM,I since
pM = pR.

4. Gradients of U in ΩL and ΩR are computed with UΩL,I and UΩR,I at interface FP.
5. Viscous fluxes FΩL

d,n and FΩR
d,n are evaluated at interface FP of ΩL and ΩR, independently.

6. FΩL
d,n is projected on M using an unweighted L2-projection to get FM,L

d,n and FM,R
d,n = FΩR

d,n since
pM = pR.

7. Viscous fluxes on M are averaged to get FM
d,n =

(
FM,L
d,n + FM,R

d,n

)
/2.
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8. FM
d,n is projected back on element interfaces as in step 3 of the convective flux treatment.

Except the number of steps, the main difference with convective fluxes treatment is that the viscous
fluxes are computed at the interface of each element prior to being projected onto the mortar element.
Note that in practice, FM

d,n is added to FM
c,n and then the back projection from mortar to element

interfaces is done on FM
c,n + FM

c,n to only have one projection operation of the fluxes instead of two.
Finally, it should be highlighted that Kopriva demonstrated that this mortar element method is
conservative [43]. This treatment is the only difference between a computation at constant degree p
and a computation using p-adaptation.

4.6. Temporal discretization
During the previous sections of this chapter, the way to spatially discretize Eq. (4.67) using the SD

method was explained ending up with Eq. (4.84) which can be put under the generic form:

dÛ
dt

+ ∇ξ.F̂ = Ŝ ⇐⇒ dÛ
dt

= Ŝ − ∇ξ.F̂ ≡ R (4.127)

where R = Ŝ − ∇ξ.F̂ is called the Residual. It corresponds to the discretization of the source terms
and of the flux divergence. Following this definition and as an example, the simplest way to discretize
Eq. (4.127) in order to advance Û in time from t to t + ∆t, ∆t (t) being the timestep computed at
time t, is by doing an explicit Euler integration:

Û (t+ ∆t (t)) = Û (t) + ∆t (t) R (t) or also Ûn+1 = Ûn + (∆t)n Rn (4.128)

with n the considered time iteration. The issue with such explicit Euler integration is that it is only
first-order accurate in time. More complex time integration procedure have been developed with
the objective to have higher order of accuracy in time. One of the most common choice is to use
Runge-Kutta (RK) schemes which were employed in this work.

4.6.1. Runge-Kutta schemes
4.6.1.1. Characteristics of a Runge-Kutta scheme

A RK scheme has four main characteristics which are:
1. Its number of stages, noted Q here.
2. Its order of accuracy, noted S here.
3. Its stability: A-stable [212] or L-stable [213]. L-stability is a special case of A-stability which is

better for solving nonlinear stiff equations.
4. Its type of integration: explicit or implicit.

RK methods are denoted "nameRK(Q,S)" which allows the reader to directly know the order of
accuracy and the number of stages.

4.6.1.2. General formula of a Runge-Kutta scheme

The RK integration process is the sum of two tasks:
• Task 1: the Q stage values Ûq are computed using a stage equation:

Ûq = Ûn + (∆t)n
Q∑
j=1

aqjRj for 1 ≤ q ≤ Q (4.129)

with R1 = Rn.
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• Task 2: the solution at time instant n+ 1 is computed using an update equation:

Ûn+1 = Ûn + (∆t)n
Q∑
q=1

bqRq (4.130)

where Rj = R
(
Ûj
)
, the matrix A = [aqj ]1≤q,j≤Q and the vector b = [bq]T1≤q≤Q are given by the

RK method. They are typically gathered in what is called a Butcher tableau [214] as represented in
Table 4.1 in the general case.

c A

bT

Table 4.1. – General form of a Butcher tableau.

These coefficients are found by solving a system of equations which depends on the order of accuracy
and also on dissipation and dispersion properties that are investigated to obtain a given scheme. An
example of such system can be seen in [215]. Note that since R does not depend on time in this work,
the vector c in the RK method is not used in Eq. (4.129) and Eq. (4.130). However, c is employed
to get the current time at a given RK stage (see Eq. (6.81)). Additionally, implicit RK schemes have
not been considered throughout this work and only explicit RK schemes are discussed in the next
paragraph.

4.6.1.3. Explicit Runge-Kutta schemes

For explicit RK schemes, aqj = 0 for j ≥ q meaning that matrix A is a strictly lower triangular
matrix. Thus, each stage Ûq is "explicitly" known thanks to the values of the previous stages and
Eq. (4.129) can be recast as:

Ûq = Ûn + (∆t)n
q−1∑
j=1

aqjRj for 1 ≤ q ≤ Q (4.131)

Explicit RK schemes are typically named ERK(Q,S) and Butcher’s tableau for forward Euler, ERK(2,2)
and ERK(4,4) methods can be found in [216] for illustration. These ERK schemes work well to in-
tegrate any equation but more complex schemes have been derived based on specific design criterion
linked to special applications. For instance to reduce the memory cost of the RK method, low-storage
RK schemes have been developed where Ûq can be computed using only the values of Rq−1:

Ûq = Ûn + (∆t)n γqRq−1 for 1 ≤ q ≤ Q (4.132)

with R0 = Rn and γ = [γq]T1≤q≤Q the input RK coefficients of the low-order RK scheme. Consequently,
for low-storage RK schemes the solution at time iteration n+ 1 is:

Ûn+1 ≡ ÛQ = Ûn + (∆t)n γQRQ−1 (4.133)

A very popular low-storage RK scheme is the explicit RK of second-order and six stages with low-
dissipation and low-dispersion designed by Bogey and Bailly for aeroacoustic applications [217] noted
ERK(6,2)LDLD here. More recently, Vanharen et al. [218] have also developed a fourth-order with six
stages low-storage RK scheme designed for SD with a higher stability than the ERK(6,2)LDLD where
the last two coefficients, γ5 and γ6, depend on polynomial degree p. More details about low-storage
RK schemes can be found in [219] especially on how Butcher’s coefficients can be manipulated to
obtain only one coefficient γq to update the solution at each stage. However, it should be mentioned
that not all the RK schemes can be recast into low-storage RK processes [220, 221].
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Another class of ERK schemes have been developed for shock applications where strong discontinu-
ities appear in the computational domain. They were originally named as Total Variation Diminishing
(TVD) RK schemes since they were designed so that the total variation (TV) of each component Ûn
of the numerical solution vector Ûn [222]:

TV
(
Ûn
)

=
DOF∑
i=1

|Ûni − Ûni−1| (4.134)

does not increase with time meaning that [222]:

TV
(
Ûn+1

)
≤ TV

(
Ûn
)

(4.135)

The solution at each stage is usually presented under the form of Eq. (4.136) introduced by Shu and
Osher [9]:

Ûq =
q−1∑
j=0

(
αqjÛj + (∆t)n βqjRj

)
for 1 ≤ q ≤ Q

Û0 = Ûn , ÛQ = Ûn+1

(4.136)

where coefficients αqj and βqj are given with the TVD-RK scheme. For consistency,
q−1∑
j=0

αqj = 1

for q ∈ J1, QK. The formulation of Eq. (4.136) is used because it is easier to employ for building
TVD-RK schemes than the one of Butcher showed in Eq. (4.129) and Eq. (4.130). However, every
RK scheme written under Shu-Osher representation has an equivalent Butcher tableau and vice versa.
The link between coefficients α, β and Butcher matrices can be found in [223, 224]. There is also a
Python module with many RK methods and associated functions to compute Shu-Osher or Butcher
representations [225]. In this work the three-stages third-order in time TVD-RK scheme of Gottlieb
and Shu [222] and the five-stages fourth-order in time Strong Stability Preserving (SSP) RK scheme
of Spiteri and Ruuth [226] were employed. A SSP scheme is actually the new name of a TVD scheme
given by Gottlieb and Shu who claim that it is more suitable for the properties of such schemes [87].
Consequently, these two schemes used in this work will be named as SSP-ERK(3,3) and SSP-ERK(5,4).
Their coefficients α and β and their equivalent Butcher tableau are summed up in Appendix E. Both
schemes are widely employed in the HO community especially when simulating shocks or combustion
applications [24–27, 85, 90]. That is why they have been retained in this work.

Note that no special time integration treatment is done for the combustion source terms such as
Strang splitting [73] as in [24–27, 85], sub-cycling, or exponential integration like in [74]. This was not
needed for the present work since the chemical schemes employed were not sufficiently stiff to have an
impact on stability.

4.6.2. Stability conditions

Explicit time integration is associated with stability criteria limiting the timestep to a maximum
value. These stability criteria are based on Courant-Friedrichs-Lewy (CFL) and Fourier (Fo) conditions
linked to the spatial discretization of respectively the convective and diffusive fluxes. Firstly, the
convective timestep computed at each SP, is obtained from the CFL number:

CFL = (||u||2 + c) ∆tconv

∆SP
⇐⇒ ∆tconv = CFL × ∆SP

(||u||2 + c) (4.137)
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where ||u||2 + c and ∆SP are respectively the maximum eigenvalue of the convective flux Jacobian
matrix and the characteristic size evaluated at the given SP given by:

∆SP = |J |1/dSP

p+ 1 (4.138)

Note that Eq. (4.138) assumes that SP are equally spaced which is actually untrue for any value of
p if Eq. (4.14) is employed for their location in the isoparametric domain. Secondly, there is also a
diffusive timestep involving viscosity, thermal and species diffusion effects through the Fo number:

Fo = ∆tdiff
∆2
SP

max
(
ν,

ν

Pr
,
ν

Sck

)
⇐⇒ ∆tdiff = Fo × ∆2

SP

max
(
ν, ν

Pr ,
ν
Sck

) (4.139)

The timestep at a given SP is then taken as the minimum between the convective and the diffusive
timesteps:

∆t = min
(
∆tconv,∆tdiff

)
(4.140)

The CFL and Fo numbers are input parameters and depend on the temporal scheme that is used and
also on the value of the polynomial degree p. Generally, for a given time integration scheme, CFL and
Fo values have to be decreased when p increases. Finally, a chemical timestep can be computed based
on the smallest chemical timescale of the species τk = ρYk/|ω̇k|:

∆tchem = min
k

(τk) = min
k

(ρYk/|ω̇k|) (4.141)

In this work, chemical schemes employed were not stiff enough, and it was always verified that ∆tchem >
∆tconv and ∆tchem > ∆tdiff .

4.7. Summary of this chapter
In this chapter, the methodology to discretize conservation equations using the SD method first

on 1D elements for illustration and then on 3D hexahedral elements has been explained. The SD
method performs an isoparametric transformation of the computational domain transforming each
mesh element into a standard reference element where governing equations are numerically solved.
Inside the reference element, the SD method uses two sets of points:

• Solution points (SP) where the p-degree continuous polynomial of the solution vector is built
using a Lagrange interpolation principle.

• Flux points (FP) where the (p+ 1)-degree continuous polynomial of the flux vector is built still
using a Lagrange interpolation principle.

Before being differentiated at SP, the flux polynomial is made continuous at element interfaces through
the use of a Riemann solver for convective fluxes and of a diffusion scheme for diffusive fluxes. A special
focus has been made on the HLLC Riemann solver [201] which was the one employed during this work.
Concerning gradient computation and diffusion schemes, the classical approach of Sun et al. [47] and
a completely new approach called SDLIFT formulation were introduced. The latter was designed
following the FR framework and aims at reducing the stencil of gradient computation in order to gain
in stability for stiff problems.

One of the best feature of the SD method to reduce its computational cost, without loosing accuracy,
is local polynomial adaptation. The polynomial distribution can be set by hand or using a suitable
sensor based on physical quantities. At an interface between two elements with different degrees, FP
do not coincide and the mortar element method [211], firstly introduced by Kopriva [43] in the SD
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4.7 Summary of this chapter

context, is used to evaluate interface fluxes. Finally, when the SD discretization is completed, the
equations are integrated in time using explicit SSP RK schemes either of third or fourth order in time.
Due to this explicit time-integration procedure, the timestep cannot exceed a maximum value given
by CFL and Fourier stability conditions.
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Chapter 5 : Boundary Conditions

This chapter is dedicated to characteristic and wall boundary conditions for the general case of a
multi-species gas for which a mono-species gas is only a particular case. The gas is also assumed to be
non-reacting meaning that boundary conditions are supposed to be far from flames. The way to impose
characteristic boundary conditions in the context of the SD method is described and some examples
are shown on subsonic inflow and outflow conditions. Then, the methodology to reproduce symmetry,
adiabatic and isothermal no-slip walls and especially the different options available at a boundary FP
are discussed. Additionally, a formula to impose a normal gradient of a variable at a given FP is
provided.

5.1. Navier-Stokes Characteristic Boundary Conditions for a
multi-species non-reacting gas

The way to impose boundary conditions when solving the compressible form of the NSE is essential
to avoid reflections of acoustic waves at the boundaries. Indeed, Dirichlet boundary conditions, which
impose conservative variables directly at boundaries, make the problem ill-posed leading to unwanted
behaviors or even instabilities. This is avoided by characteristic boundary conditions, widely employed
in the context of FD [227] and FV [228], and also with more recent numerical methods such as DG [229],
SD [117] and LBM [110]. Originally introduced by Thompson for hyperbolic systems of equations [230],
they were extended to the non-reacting Navier-Stokes equations by Poinsot and Lele [231] who named
them as Navier-Stokes Characteristic Boundary Conditions (NSCBC). Later on, Baum et al. [232] and
Sutherland et al. [233] developed NSCBC for multi-species and reacting gases. All these developments
were written for low-order FD or FV schemes where no geometrical transformation of the physical
domain is done since the equations are solved in a cartesian coordinate system. That is why Kim
and Lee [234, 235] extended the NSCBC approach, in the mono-species gas case, to HO FD schemes
where the equations are solved in a generalized coordinate system as in Eq. (4.67). Recently, based
on the work of Kim and Lee, Fievet et al. [117] have developed a compact formulation of the NSCBC
methodology, still in the mono-species case, for a generalized coordinate system and applied it in the
SD context on academic 1D and 2D test cases.

The objective of this section is to present characteristic boundary conditions in the context of the
SD method for multi-species mixtures. Firstly, the formulation of Kim and Lee is recalled and then
the formulation of Fievet et al., that is used in this work, is introduced. In particular, the extension
of Fievet et al. algorithm to a multi-species non-reacting thermally perfect gas, which was needed for
this work, is explained.

5.1.1. Imposing derivatives at FP in SD

In the SD algorithm, boundary conditions are set at FP since SP are always strictly inside the
computational domain. It will be shown in the next parts that for particular boundary conditions,
derivatives of some scalars or vectors have to be imposed at boundary FP. Let’s denote by f any scalar
(pressure, temperature or mass fraction) or vector (flux vector) function. Without loss of generality,
if the boundary is at a constant ξ location in the isoparametric domain, f can be differentiated with
respect to ξ (normal direction of the boundary) using derivatives of Lagrange polynomials at FP:

∂f

∂ξ
(ξ) =

p+2∑
k=1

fk
∂lFPk
∂ξ

(ξ) (5.1)

where fk is the value of f at FP k in direction ξ. This situation is represented in Figure 5.1 for a
boundary located at ξ = 1 when the polynomial degree is p = 3 in the element close to the boundary
(five FP along ξ direction). In that case, imposing (∂f/∂ξ) (1) to a given value implies that f at ξ = 1,

88



5.1 Navier-Stokes Characteristic Boundary Conditions for a multi-species non-reacting gas

Figure 5.1. – Illustration of the computation of a function f at a boundary FP to impose (∂f/∂ξ) at
this boundary FP. The polynomial degree is set to p = 3 with five FP along direction ξ.

which is fp+2, is computed by inverting Eq. (5.1) to get:

fp+2 =

∂f
∂ξ (1) −

p+1∑
k=1

fk
∂lF P

k
∂ξ (1)

∂lF P
p+2
∂ξ (1)

(5.2)

The same principle can be used for a boundary located at ξ = 0, where imposing (∂f/∂ξ) (0) leads to
f at ξ = 0 given by Eq. (5.3):

f1 =

∂f
∂ξ (0) −

p+2∑
k=2

fk
∂lF P

k
∂ξ (0)

∂lF P
1
∂ξ (0)

(5.3)

More generally, this reasoning is exactly the same for boundaries along η and ζ directions in the
isoparametric domain.

5.1.2. Generalized characteristic form of the mono-species and non-reacting
Navier-Stokes equations

Considered the NSE of Eq. (4.50) with S = 0. Using the flux splitting E = Ec + Ed, F = Fc + Fd

and G = Gc + Gd, Eq. (4.50) becomes:

∂U
∂t

+ ∂Ec

∂x
+ ∂Fc

∂y
+ ∂Gc

∂z
+ ∂Ed

∂x
+ ∂Fd

∂y
+ ∂Gd

∂z
= 0 (5.4)

Then, following the work of Kim and Lee [234, 235], the chain rule introduced in Eq. (4.64) is applied
to Eq. (5.4) to get:

∂U
∂t

+
(
ξx
∂Ec

∂ξ
+ ξy

∂Fc

∂ξ
+ ξz

∂Gc

∂ξ

)
+
(
ξx
∂Ed

∂ξ
+ ξy

∂Fd

∂ξ
+ ξz

∂Gd

∂ξ

)
+
(
ηx
∂Ec

∂η
+ ηy

∂Fc

∂η
+ ηz

∂Gc

∂η

)
+
(
ηx
∂Ed

∂η
+ ηy

∂Fd

∂η
+ ηz

∂Gd

∂η

)
+
(
ζx
∂Ec

∂ζ
+ ζy

∂Fc

∂ζ
+ ζz

∂Gc

∂ζ

)
+
(
ζx
∂Ed

∂ζ
+ ζy

∂Fd

∂ζ
+ ζz

∂Gd

∂ζ

)
= 0

(5.5)

Remember that, because of Eq. (4.65), |J |×Eq. (5.5) is actually equal to:

|J |∂U
∂t

+ ∂Êc

∂ξ
+ ∂F̂c

∂η
+ ∂Ĝc

∂ζ
+ ∂Êd

∂ξ
+ ∂F̂d

∂η
+ ∂Ĝd

∂ζ
= 0 (5.6)

The idea of the NSCBC technique is to modify the flux derivative in the normal direction of the
boundary to account for the characteristic waves that enter and leave the computational domain.

Let’s consider, without loss of generality, a boundary located at a ξ-normal face (boundary at
a constant ξ). Firstly, the characteristic decomposition of the ξ-convective flux is found using a
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mathematical analysis of the 3D-Euler equations in isoparametric coordinates which is detailed in
Appendix F for a multi-species thermally perfect gas:

Aξ =
(
ξx
∂Ec

∂ξ
+ ξy

∂Fc

∂ξ
+ ξz

∂Gc

∂ξ

)
= P−1

U ΛAξ
PU

∂U
∂ξ

(5.7)

where ΛAξ
= diag (un, un, un, un + c, un − c, un) is a diagonal matrix containing the eigenvalues of

matrix Aξ explicitly expressed in Eq. (F.19) and PU is the transformation matrix from conservative
to characteristic variables W. This matrix can be expressed using PQ and ∂Q/∂U, whose expressions
are derived in Appendix F in the multi-species case and are recalled here for clarity:

PU = PQ.
∂Q
∂U (5.8)

PQ =



nux 0 nuzρ/c −nuyρ/c −nux/c2 0
nuy −nuzρ/c 0 nuxρ/c −nuy/c2 0
nuz nuyρ/c −nuxρ/c 0 −nuz/c2 0
0 nux/

√
2 nuy/

√
2 nuz/

√
2 1/

(√
2ρc

)
0

0 −nux/
√

2 −nuy/
√

2 −nuz/
√

2 1/
(√

2ρc
)

0
0 0 0 0 0 1


(5.9)

∂Q
∂U =



1 0 0 0 0 0
−u
ρ

1
ρ

0 0 0 0
−v
ρ

0 1
ρ

0 0 0
−w
ρ

0 0 1
ρ

0 0
(γ − 1) ||u||22

2 (1 − γ)u (1 − γ) v (1 − γ)w γ − 1 (1 − γ)
(
hsk − TCp

W

Wk

)
−Yk
ρ

0 0 0 0 1
ρ


(5.10)

The wave strengths of the ξ-convective characteristics, introduced in the developments of Appendix F,
can be also expressed with PU and from Eq. (5.7):

L = ΛAξ
PU

∂U
∂ξ

= PU

(
ξx
∂Ec

∂ξ
+ ξy

∂Fc

∂ξ
+ ξz

∂Gc

∂ξ

)
(5.11)

The matrix PU is also used to define the following quantities:

∂W = PU∂U (5.12)

T c = PU

[(
ηx
∂Ec

∂η
+ ηy

∂Fc

∂η
+ ηz

∂Gc

∂η

)
+
(
ζx
∂Ec

∂ζ
+ ζy

∂Fc

∂ζ
+ ζz

∂Gc

∂ζ

)]
(5.13)

T d = PU

[(
ηx
∂Ed

∂η
+ ηy

∂Fd

∂η
+ ηz

∂Gd

∂η

)
+
(
ζx
∂Ed

∂ζ
+ ζy

∂Fd

∂ζ
+ ζz

∂Gd

∂ζ

)]
(5.14)

D = PU

(
ξx
∂Ed

∂ξ
+ ξy

∂Fd

∂ξ
+ ξz

∂Gd

∂ξ

)
(5.15)

which allow to rewrite Eq. (5.5) into the characteristic space by multiplying it with matrix PU to get:

∂W
∂t

+ L + T c + T d + D = 0 (5.16)
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Since |J |×Eq. (5.5) and Eq. (5.6) are equivalent, another expression for L can be obtained by multi-
plying this time Eq. (5.6) with PU:

L = PU
|J |

(
ξx|J |∂Ec

∂ξ
+ ξy|J |∂Fc

∂ξ
+ ξz|J |∂Gc

∂ξ

)
⇒ L = PU

|J |

(
∂Êc

∂ξ
−
[
Ec

∂

∂ξ
(ξx|J |) + Fc

∂

∂ξ
(ξy|J |) + Gc

∂

∂ξ
(ξz|J |)

])

⇒ L = PU
|J |

(
∂Êc

∂ξ
− Ac (ξ)

) (5.17)

Note that the term Ac is zero when the mesh is orthogonal. Similarly, the expressions of T c, T d and
D can be recast [117]:

T c = PU
|J |

(
∂F̂c

∂η
+ ∂Ĝc

∂ζ
− [Ac (η) + Ac (ζ)]

)
(5.18)

T d = PU
|J |

(
∂F̂d

∂η
+ ∂Ĝd

∂ζ
− [Ad (η) + Ad (ζ)]

)
(5.19)

D = PU
|J |

(
∂Êd

∂ξ
− Ad (ξ)

)
(5.20)

It should be noted that neglecting the Ac and Ad terms on unstructured meshes, leads to instabilities
since they act like constant source terms at the boundary. As described in Fievet et al. [117], the equa-
tions presented in this section were used by Kim and Lee [234, 235] to derive characteristic boundary
conditions in generalized coordinates. Their method follows Algorithm 4 shown in paragraph B.3.1.

5.1.3. Compact formulation of the characteristic boundary conditions for a
mono-species non-reacting gas

In this paragraph, a very recent and different formulation is presented for the characteristic boundary
conditions where the previous convective/diffusive characterization is replaced with a normal/tangent
determination. A boundary located at a ξ-normal face is still considered without loss of generality.

5.1.3.1. General algorithm

Firstly, the convective and diffusive fluxes are summed up during their evaluation to get the compact
form of Eq. (4.67). Thanks to Eq. (5.17) and Eq. (5.20), an expression of the total (convective and
diffusive) flux derivative in the normal direction of the boundary, ∂Ê/∂ξ, is found:

∂Êc

∂ξ
= |J |P−1

U .L + Ac (ξ)

∂Êd

∂ξ
= |J |P−1

U .D + Ad (ξ)
⇒ ∂Ê

∂ξ
= |J |P−1

U . (L + D) + A (ξ) (5.21)

with A (ξ) the total correction term given by:

A (ξ) = Ac (ξ) + Ad (ξ) = (Ec + Ed)
∂

∂ξ
(ξx|J |) + (Fc + Fd)

∂

∂ξ
(ξy|J |) + (Gc + Gd)

∂

∂ξ
(ξz|J |) (5.22)

Consequently, Eq. (4.67) becomes:

|J |∂U
∂t

+ |J |P−1
U . (L + D) = −

(
∂F̂
∂η

+ ∂Ĝ
∂ζ

+ A (ξ)
)

(5.23)
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Therefore, by multiplying Eq. (5.23) with PU, a new equivalent form of Eq. (5.16) is obtained:

|J |∂W
∂t

+ N = −S (5.24)

where N and S are respectively the normal and tangential strengths of the characteristics waves which
are given by:

N ≡



N1
N2
N3
N+
N−

N5+k


= |J | (L + D) = PU

(
∂Ê
∂ξ

− A (ξ)
)

(5.25)

S ≡



S1
S2
S3
S+
S−

S5+k


= PU

(
∂F̂
∂η

+ ∂Ĝ
∂ζ

+ A (ξ)
)

= |J | (T c + T d) (5.26)

To go back to the system of equations with primitive variables Q, Eq. (5.24) is simply multiplied by
P−1

Q to get:

|J |∂Q
∂t

+ P−1
Q .N = −P−1

Q .S (5.27)

The boundary condition is then applied as follows. If the ξ-normal face is located at ξ = 1 as in
Figure 5.1, the NSCBC treatment imposes a value of

(
∂Ê/∂ξ

)
at the boundary FP in ξ = 1 according

to the waves crossing this boundary. Firstly, Eq. (5.25) is employed to get first values of N in ξ = 1.
Then, depending on the type of NSCBC to be imposed, some values of N are changed which gives a
new normal strengths vector N ∗. Finally, a new flux derivative in the normal direction

(
∂Ê/∂ξ

)∗
in

ξ = 1 is obtained by inverting Eq. (5.25). However as shown in Eq. (4.84), in SD the flux derivatives
are computed at SP from the flux polynomial built at the FP. Thus, the NSCBC approach actually
provides the expected value of

(
∂Ê/∂ξ

)
at the FP in ξ = 1 that will be used to deduce a flux value

at this FP. Let’s denote by Ê∗ the flux values obtained after the NSCBC treatment applied in ξ = 1
which is still unknown here. This flux at the boundary FP to be imposed is actually given by Eq. (5.2)
with f = Ê:

Ê∗
p+2 =

∂Ê
∂ξ

∗
(1) −

p+1∑
k=1

Êk
∂lF P

k
∂ξ (1)

∂lF P
p+2
∂ξ (1)

(5.28)

Applying Eq. (4.81) with this new flux at the boundary FP gives:

∂Ê
∂ξ

∗

(SP ) = Ê∗
p+2

∂lFPp+2
∂ξ

(SP ) +
p+1∑
k=1

Êk
∂lFPk
∂ξ

(SP )

=⇒ ∂Ê
∂ξ

∗

(SP ) =

∂Ê
∂ξ

∗

(1) −
p+1∑
k=1

Êk
∂lFPk
∂ξ

(1)

 ∂lF P
p+2
∂ξ (SP )
∂lF P

p+2
∂ξ (1)

+
p+1∑
k=1

Êk
∂lFPk
∂ξ

(SP )
(5.29)
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Finally, by simultaneously adding and subtracting Êp+2
(
∂lFPp+2/∂ξ

)
(1) in the first sum, Eq. (5.29)

becomes [117]:

∂Ê
∂ξ

∗

(SP ) =
[
∂Ê
∂ξ

∗

(1) − ∂Ê
∂ξ

(1)
] ∂lF P

p+2
∂ξ (SP )
∂lF P

p+2
∂ξ (1)

+ ∂Ê
∂ξ

(SP ) (5.30)

Eq. (5.30) shows how the value of
(
∂Ê/∂ξ

)
at SP is corrected into

(
∂Ê/∂ξ

)∗
(SP ) thanks to the

NSCBC treatment. This corrected value will be the one used in Eq. (4.84) to march Û in time. The
main steps of this algorithm that shows characteristic boundary conditions with a normal/tangent
determination of the waves is given in Algorithm 5 of paragraph B.3.2.

Compared to Kim and Lee’s formulation presented in paragraph 5.1.2, this methodology has the
advantage to not store both convective and diffusive fluxes separately which also avoids two extrap-
olations, instead of one here, for evaluating convective tangent fluxes and diffusive tangent fluxes.
Additionally, correction terms Ac and Ad are needed along ξ direction only according to Eq. (5.25)
and Eq. (5.26) whereas they have to be known along ξ, η and ζ directions under Kim and Lee formula-
tion because of Eq. (5.11), Eq. (5.13), Eq. (5.14) and Eq. (5.15). This new formulation was successfully
tested by Fievet et al. [117] on 1D and 2D Euler test cases such as one-dimensional acoustic wave
or the convection of a 2D vortex. However, they did not test it with both a viscous mono-species
or multi-species gases which is something performed in this work. It is presented in Chapter 6 for a
viscous mono-species gas and in Chapters 7 and 8 for a viscous multi-species gas.

5.1.3.2. A comment on the computation of correction terms for the mesh’s non-orthogonality

The computation of correction terms A (ξ) (see Eq. (5.22)), needed at NSCBC FP, can be done
using two different approaches:

1. Approach 1: first store the ∂
(
ξx/y/z|J |

)
/∂ξ terms at SP in elements containing at least one

NSCBC. Then, still at SP in these elements: compute Ec/d, Fc/d and Gc/d and evaluate A (ξ).
Finally, extrapolate A (ξ) from SP to the NSCBC FP. This method requires the knowledge of
∇U at SP to compute diffusive fluxes. This is the one that was used during this work.

2. Approach 2: is an alternative to approach 1 to avoid storing ∇U at SP in elements containing
NSCBC faces. Thanks to the SD discretization, the fluxes in the isoparametric domain Ê, F̂ and
Ĝ are known at FP respectively along ξ, η and ζ directions. Thus, from their flux polynomials
built at FP, Ê, F̂ and Ĝ can be evaluated at SP and then Eq. (4.68) can be inverted to get E, F
and G at SP. Finally, correction terms are computed at SP and extrapolated at NSCBC FP as in
approach 1. Consequently, this method requires one interpolation and one matrix inversion but
there is no need to store ∇U and evaluate fluxes at SP. Moreover, it is expected to have more
accurate results than the first approach since it takes into account the flux values at interface
FP obtained with the Riemann solver and the diffusion scheme.

For future work, it could be interesting to compare both approaches in terms of results and computa-
tional efficiency.

5.1.4. Types of NSCBC

The objective of this paragraph is to explain several types of NSCBC implemented in step 2 of
Algorithm 5. A subsonic outflow and a subsonic inflow are considered along a ξ-normal boundary as
shown in Figure 5.2 with their associated waves.
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Figure 5.2. – Waves crossing NSCBC inlet and outlet.

5.1.4.1. Subsonic outflow imposing a constant pressure

The aim here is to impose a constant pressure at the outlet boundary based on the waves that cross
it. According to Figure 5.2, for a subsonic outflow, 4 +Ns characteristic waves are leaving the domain
(1 at speed un + c and 3 + Ns at speed un) while 1 characteristic wave is entering the domain at
speed un − c. Consequently, only one thermodynamic relation must be imposed to have a numerically
well-behaved boundary condition [231]. Then, the entering wave is specified as [117]:

N ∗
− = |J |KP

(
P − P t

)
+ αSexact

− − (1 − α) S− (5.31)

where KP

[
s−1

]
is the pressure relaxation coefficient, P t and P are respectively the target and current

pressure at the boundary and α is a relaxation parameter usually taken as the averaged bulk Mach
number over the whole boundary [117, 236]. In Eq. (5.31), Sexact

− is the exact value of S− that can be
sometimes obtained using Eq. (5.26) in some analytical test cases where mathematical expressions of(
∂F̂/∂η

)
and

(
∂Ĝ/∂ζ

)
are known [237, 238]. It is always set to zero in this work. Note that with this

formulation, the pressure is weakly imposed to limit undesired noise. At this point, only convective
fluxes have been treated. According to [231], for a subsonic outflow, diffusive fluxes have to satisfy (in
the case of a ξ-normal boundary):

∂ [(τ .nu) .tu1 ]
∂ξ

= 0 , ∂ [(τ .nu) .tu2 ]
∂ξ

= 0 , ∂q.nu

∂ξ
= 0, ∂Mk.nu

∂ξ
= 0 for k = 1, Ns (5.32)

where tu1 and tu2 are two unit tangential vectors in the exit plane, computed from nu, whose expressions
are given in Section A.3. Derivatives in Eq. (5.32) are imposed following the method described in
paragraph 5.1.1. As they concern diffusive fluxes, Ed, Fd and Gd are modified to take into account
these conditions before the computation of Êd which is needed to get N through Eq. (5.25).

5.1.4.2. Subsonic inflow imposing velocities and temperature

The objective here is to impose either time-derivatives or time-constant velocities and temperature
at the inlet boundary still based on the waves crossing this boundary. According to Figure 5.2, for
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a subsonic inflow, 4 + Ns characteristic waves enter the domain while the remaining one exits it.
Then, there are now 4+Ns thermodynamic relations to impose for a numerically well-posed boundary
condition [3]. Let’s say that u, v, w, T and Yk are prescribed at the inflow boundary. In that case,
Eq. (5.24) is multiplied by P−1

Q and after some rearrangements described in Section A.5, the system
to solve for the unknown wave amplitudes N ∗

1 , N ∗
2 , N ∗

3 , N ∗
+, N ∗

5+k is given by:

|J |∂u
∂t

= nuz c

ρ
(N ∗

2 + S2) −
nuyc

ρ
(N ∗

3 + S3) − nux√
2
(
N ∗

+ + S+ − N− − S−
)

(5.33)

|J |∂v
∂t

= −nuz c

ρ
(N ∗

1 + S1) + nuxc

ρ
(N ∗

3 + S3) −
nuy√

2
(
N ∗

+ + S+ − N− − S−
)

(5.34)

|J |∂w
∂t

=
nuyc

ρ
(N ∗

1 + S1) − nuxc

ρ
(N ∗

2 + S2) − nuz√
2
(
N ∗

+ + S+ − N− − S−
)

(5.35)

|J |∂T
∂t

= T

ρ

[
nux (N ∗

1 + S1) + nuy (N ∗
2 + S2) + nuz (N ∗

3 + S3)
]

− T (γ − 1)√
2c

(
N ∗

+ + S+ + N− + S−
)

+ TW
Ns∑
k=1

N ∗
5+k + S5+k

Wk

(5.36)

|J |∂Yk
∂t

= −
(
N ∗

5+k + S5+k
)

for k = 1, Ns (5.37)

For the velocity components, what is actually imposed are the time derivatives of normal and tangential
velocities along the face (in the face referential) defined by:

∂un
∂t

= nux
∂u

∂t
+ nuy

∂v

∂t
+ nuz

∂w

∂t
(5.38)

∂ut1
∂t

= tu1x
∂u

∂t
+ tu1y

∂v

∂t
+ tu1z

∂w

∂t
(5.39)

∂ut2
∂t

= tu2x
∂u

∂t
+ tu2y

∂v

∂t
+ tu2z

∂w

∂t
(5.40)

where ut1/2 = u.tu1/2 with tu1 and tu2 the tangential vectors given in Appendix A.3 for the cases
|nuz | < 0.7 and |nuz | ≥ 0.7. Therefore, the derivatives of normal and tangential velocities are linked to
the wave amplitudes by:

• Derivative normal to the face:

|J |∂un
∂t

= N− + S− − N ∗
+ − S+√

2
(5.41)

• Tangential derivatives if |nuz | < 0.7:

|J |∂ut1
∂t

= nuxn
u
z c

ρ

√
(nux)2 +

(
nuy

)2
(N ∗

1 + S1) +
nuyn

u
z c

ρ

√
(nux)2 +

(
nuy

)2
(N ∗

2 + S2) −
c

√
(nux)2 +

(
nuy

)2

ρ
(N ∗

3 + S3)

⇐⇒ |J |∂ut1
∂t

= − c

ρ

[
tu2x (N ∗

1 + S1) + tu2y (N ∗
2 + S2) + tu2z (N ∗

3 + S3)
]

(5.42)

|J |∂ut2
∂t

= c

ρ

nuy (N ∗
1 + S1) − nux (N ∗

2 + S2)√
(nux)2 +

(
nuy

)2


⇐⇒ |J |∂ut2

∂t
= c

ρ

[
tu1x (N ∗

1 + S1) + tu1y (N ∗
2 + S2)

] (5.43)
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• Tangential derivatives if |nuz | ≥ 0.7:

|J |∂ut1
∂t

=
c

√(
nuy

)2
+ (nuz )2

ρ
(N ∗

1 + S1) −
nuxn

u
yc

ρ

√(
nuy

)2
+ (nuz )2

(N ∗
2 + S2) − nuxn

u
z c

ρ

√(
nuy

)2
+ (nuz )2

(N ∗
3 + S3)

⇐⇒ |J |∂ut1
∂t

= c

ρ

[
tu2x (N ∗

1 + S1) + tu2y (N ∗
2 + S2) + tu2z (N ∗

3 + S3)
]

(5.44)

|J |∂ut2
∂t

= c

ρ

nuz (N ∗
2 + S2) − nuy (N ∗

3 + S3)√(
nuy

)2
+ (nuz )2


⇐⇒ |J |∂ut2

∂t
= − c

ρ

[
tu1y (N ∗

2 + S2) + tu1z (N ∗
3 + S3)

] (5.45)

In the case of time-constant target values at the inlet boundary denoting by:

u = ut , v = vt , w = wt , T = T t and Yk = Y t
k for k = 1, Ns (5.46)

a relaxation procedure is applied as in the subsonic outflow condition, so that time derivatives in
Eq. (5.33)-Eq. (5.36) are replaced by:

∂un
∂t

= Ku
[
ut − u

]
.nu , ∂ut1

∂t
= Ku

[
ut − u

]
.tu1 , ∂ut2

∂t
= Ku

[
ut − u

]
.tu2

∂T

∂t
= KT

[
T t − T

]
, ∂Yk
∂t

= KYk

[
Y t
k − Yk

]
for k = 1, Ns

(5.47)

where ut =
(
ut, vt, wt

)T
and Ku, KT and KYk

are respectively the relaxation coefficients for velocity
components, temperature and species mass fractions. Note that here no condition on diffusive fluxes
is imposed as stated in [231, 233].

5.2. Symmetry and no-slip wall boundary conditions for a multi-species
non-reacting gas

The objective of this section is to define what are the properties that symmetries and no-slip walls
must satisfy and how to set them using SD formalism.

5.2.1. General case
In this paragraph, a symmetry or a wall of normal n is considered.

5.2.1.1. Symmetry boundary condition for a multi-species non-reacting gas

A symmetry for a multi-species gas is a boundary condition where the following conditions must be
fulfilled:

un = 0 , ∂ut1
∂n

= 0 , ∂ut2
∂n

= 0 , ∂P
∂n

= 0 , ∂T
∂n

= 0 and ∂Yk
∂n

= 0 for k = 1, Ns (5.48)

where ut1/2 have been defined in paragraph 5.1.4.2 and (∂f/∂n) ≡ ∇f.n = nx (∂f/∂x)+ny (∂f/∂y)+
nz (∂f/∂z) is the notation for the gradient of any scalar function f (for instance ut1 in Eq. (5.48))
projected on n.
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5.2.1.2. No-slip wall boundary conditions for a multi-species non-reacting gas

A no-slip wall for a multi-species gas is a boundary condition where:

u = 0 and ∂Yk
∂n

= 0 for k = 1, Ns (5.49)

Then, two types of no-slip walls are commonly defined depending on the temperature condition:

∂T

∂n
= 0 (Adiabatic no-slip wall) (5.50)

T = Tw (Isothermal no-slip wall) (5.51)

with Tw a prescribed temperature to be set at the wall. One condition remains to be found for pressure.
Let’s consider the three dimensional momentum equations taken from Eq. (2.89) projected along n:

∂ (ρun)
∂t

+ ∂P

∂n
+ ∂ (ρuun)

∂x
− ρu2∂nx

∂x
− ρuv

∂ny
∂x

− ρuw
∂nz
∂x

+ ∂ (ρvun)
∂y

− ρuv
∂nx
∂y

− ρv2∂ny
∂y

− ρvw
∂nz
∂y

+ ∂ (ρwun)
∂y

− ρuw
∂nx
∂z

− ρvw
∂ny
∂z

− ρw2∂nz
∂z

= nxgx + nygy + nzgz

(5.52)

where gx, gy and gz are respectively the viscous fluxes components of x, y and z-momentum. Apply-
ing Eq. (5.49) on Eq. (5.52) ends up with:

∂P

∂n
= nxgx + nygy + nzgz (5.53)

Eq. (5.53) shows that for no-slip walls, the normal pressure gradient should balance the projection
of viscous fluxes on the normal to the wall. Usually, these viscous fluxes are often neglected and the
normal pressure gradient is set to zero at no-slip walls.

5.2.2. How to satisfy a normal gradient condition

It was shown in paragraph 5.2.1 that for symmetry and no-slip walls, normal gradients to the bound-
ary of some quantities as pressure or tangential velocities have to be imposed. As in paragraph 5.2.1.1,
let’s denote by f any scalar function for which the normal gradient (∂f/∂n) has to be imposed at the
boundary and is then assumed to be known here. The gradient along a normal n (not necessarily an
unit normal) in the physical space is:

∂f

∂n
≡ nx

∂f

∂x
+ ny

∂f

∂y
+ nz

∂f

∂z

∂f

∂n
= nx

(
ξx
∂f

∂ξ
+ ηx

∂f

∂η
+ ζx

∂f

∂ζ

)
+ ny

(
ξy
∂f

∂ξ
+ ηy

∂f

∂η
+ ζy

∂f

∂ζ

)
+ nz

(
ξz
∂f

∂ξ
+ ηz

∂f

∂η
+ ζz

∂f

∂ζ

)
∂f

∂n
= (nxξx + nyξy + nzξz)

∂f

∂ξ
+ (nxηx + nyηy + nzηz)

∂f

∂η
+ (nxζx + nyζy + nzζz)

∂f

∂ζ
(5.54)

Taking for example a ξ-normal boundary, n will be given by Eq. (A.12) so that Eq. (5.54) is now:

∂f

∂n
= A2

FP

∂f

∂ξ
+ (nxηx + nyηy + nzηz)

∂f

∂η
+ (nxζx + nyζy + nzζz)

∂f

∂ζ
(5.55)
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where AFP =
√
ξ2
x + ξ2

y + ξ2
z . Finally, Eq. (5.55) can be expressed for (∂f/∂ξ):

∂f

∂ξ
= 1
A2
FP

(
∂f

∂n
− (nxηx + nyηy + nzηz)

∂f

∂η
− (nxζx + nyζy + nzζz)

∂f

∂ζ

)
(5.56)

Since (∂f/∂n), the metrics and the derivatives in tangential directions of the boundary are known,
the RHS of Eq. (5.56) can be computed. Then, (∂f/∂ξ) is known and the methodology explained in
paragraph 5.1.1 is used to compute the value of f at the boundary FP.

5.2.3. Practical implementation
In a SD context, a boundary condition is a particular kind of interface, noted I, where only one state,

the one from the computational domain, is known. The remaining state is outside the computational
domain and has to be determined to satisfy the type of boundary condition. As it will be shown in
Section 7.1 for the multi-species case at FP, primitive variables, denoted by Q = (T,u, P, Yk)T here,
are employed for stability reasons. Then during the following reasoning, each boundary condition
is prescribed by setting up these primitive variables according to the considered boundary condition
needed. There are two different methods to specify a boundary condition due to the fact that only one
state is available at boundary interface I. Assuming that the boundary left state QL

FP is the known
state from the interior domain, the convective fluxes on I can be set with:

• Method 1 (Weak-Riemann for convective fluxes): a ghost state defined for the right state
at I noted QR

FP . Then, the Riemann solver is applied between QL
FP and QR

FP to get convective
fluxes on I. This method was named the Weak-Riemann approach by Mengaldo et al. [239].

• Method 2 (Weak-Prescribed for convective fluxes): a prescribed value set for both states
QBC
FP such that: QL

FP = QR
FP = QBC

FP . Consequently, the convective fluxes on I are evaluated
using QBC

FP as the solution vector. This method was named the Weak-Prescribed approach by
Mengaldo et al. [239].

For diffusive fluxes on I, the same kind of reasoning can be done except that they also need the
knowledge of left and right gradients (∇Q)L and (∇Q)R. In the same way as convective fluxes,
diffusive fluxes on I can be set with:

• Method 1 (Weak-Riemann for diffusive fluxes): from the known boundary left state and
gradient QL

FP and (∇Q)L, define a ghost state as for convective fluxes QR
FP and an appropriate

value of the gradient in this ghost state (∇Q)R. Then, compute the interface diffusive flux
based on

(
QL
FP ,QR

FP , (∇Q)L , (∇Q)R
)

as for interior faces using the strategies explained in
Section 4.4.

• Method 2 (Weak-Prescribed for diffusive fluxes): a prescribed value for the interface
state QBC

FP used to compute a gradient in the boundary element (∇Q)BC . Then, compute the
interface diffusive flux based on

(
QBC
FP , (∇Q)BC

)
.

In this work, only the Weak-Riemann approach for convective fluxes and the Weak-Prescribed ap-
proach for diffusive fluxes was considered. This choice was made after multiple tests using the different
methods presented above and appeared to be more robust in most of the simulated cases in this work
and especially for the multi-species and reacting cases. It is in accordance with the work of Mengaldo
et al. [239] for the convective fluxes whereas for the diffusive fluxes these authors also recommend
to use a Weak-Riemann approach. However, their paper explained the implementation of boundary
conditions in a DG and FR context for the compressible NSE and a mono-species gas. One major
difference with the SD method is that DG and FR use a single set of points whereas SD use SP for
the interior domain discretization and FP for the boundaries. Taking the example of imposing null
velocities at a wall: as SP are strictly inside the computational domain, their velocity is non-zero and
the extrapolated velocity from SP to a boundary FP (the left velocity at the boundary) will never be

98



5.2 Symmetry and no-slip wall boundary conditions for a multi-species non-reacting gas

zero. On the contrary, for DG or FR, this left velocity is directly imposed to zero and used in the
numerical scheme. Let’s now consider a boundary located at ξ = 1 as in Figure 5.1 with its associated
convective and diffusive fluxes respectively ÊI

c and ÊI
d.

5.2.3.1. Symmetry boundary condition

From Eq. (5.48), the right state is set as:

QR
FP =



TRFP
uRn,FP
uRt1,FP
uRt2,FP
PRFP
Y R
k,FP


=



T ∗

0
u∗
t1
u∗
t2
P ∗

Y ∗
k


(5.57)

where values with superscript ∗ are either:
• computed from QL

FP to satisfy Eq. (5.48). For instance, P ∗ = PL can be set to respect ∂P/∂n =
0 at the interface FP on the symmetry.

• or computed using Eq. (5.2) where each value of (∂f/∂ξ) was found using Eq. (5.56) for each
value of (∂f/∂n) corresponding to satisfy Eq. (5.48). For instance, the pressure is computed
to respect ∂P/∂n = 0 at the interface FP on the symmetry. This was the methodology used
throughout this work.

In Eq. (5.57), velocity components are expressed in the (nu, tu1 , tu2) basis. Thus, to retrieve the cartesian
velocity at the boundary FP, the transformation shown in Eq. (5.58) is applied:

uRFP = uRt1,FP t
u
1x + uRt2,FP t

u
2x

vRFP = uRt1,FP t
u
1y + uRt2,FP t

u
2y

wRFP = uRt1,FP t
u
1z + uRt2,FP t

u
2z

(5.58)

Once left and right states are known, the convective and diffusive fluxes at interface I are computed
as follows:

ÊI
c = ÊI

c

(
QL
FP ,QR

FP

)
and ÊI

d = ÊI
d

(
QR
FP , (∇Q)RFP

)
(5.59)

with (∇Q)RFP the gradient of each variable in QFP computed using the values of QR
FP on the symmetry.

Therefore, for the diffusive fluxes, the prescribed state at the boundary FP is implicitly the right state
introduced in Eq. (5.57): QBC

FP = QR
FP .

5.2.3.2. Adiabatic no-slip wall

From Eq. (5.49) and Eq. (5.53) completed by Eq. (5.50), the right state is set as:

QR
FP =



TRFP
uRFP
vRFP
wRFP
PRFP
Y R
k,FP


=



T ∗

u∗

v∗

w∗

P ∗

Y ∗
k


(5.60)

where again values with superscript ∗ are either:
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• set from QL
FP such that T ∗ = TLFP , P ∗ = PLFP , Y ∗

k = Y L
k,FP , u∗ = −uLFP , v∗ = −vLFP and

w∗ = −wLFP . In that case, u∗, v∗ and w∗ are then set to zero after applying the Riemann solver
before computing velocity gradients and using the diffusion scheme to compute ÊI

d.
• or set from Eq. (5.2) and Eq. (5.56) for T ∗, P ∗ and Y ∗

k . For velocities, u∗ = v∗ = w∗ = 0 is
directly imposed.

ÊI
c and ÊI

d are also computed using Eq. (5.59). The first choice was suggested in [239] as the Weak-
Riemann-A1 approach in order to have an intermediate Riemann state where the normal component
of velocity is zero which is not the case if the second approach is used in Eq. (5.59) for ÊI

c . Both
approaches gave the same results for the cases considered in this work but the second one is preferred
here since the pressure at the wall really follows Eq. (5.53).

5.2.3.3. Isothermal no-slip wall

This boundary condition is identical to the adiabatic no-slip wall except that TRFP is set to the
prescribed wall temperature Tw:

QR
FP =



TRFP
uRFP
vRFP
wRFP
PRFP
Y R
k,FP


=



Tw
u∗

v∗

w∗

P ∗

Y ∗
k


(5.61)

with again ÊI
c and ÊI

d obtained using Eq. (5.59). The two different methodologies, described for the
adiabatic wall to set the star values, can be considered.

5.3. Summary of this chapter
In this chapter, an algorithm for the use of NSCBC within the SD method was presented. It is

based on a compact formulation of the NSCBC approach written in generalized coordinates, originally
derived by Kim and Lee [234, 235], and applied in the SD context by Fievet et al. [117]. Their compact
formulation is completely equivalent to Kim and Lee algorithm while being less expensive in terms
of memory and computational cost. Equations for prescribing subsonic inflow and outflow boundary
conditions using the NSCBC technique have been written. Symmetry and no-slip wall boundary
conditions were detailed for both convective and diffusive fluxes either under the Weak-Riemann or
the Weak-Prescribed formulation. It appeared that for this work, the best results were obtained
by using the Weak-Riemann approach for convective fluxes and the Weak-Prescribed approach for
diffusive fluxes at FP on a symmetry or on a no-slip wall boundary condition. A last boundary
condition needed to simulate turbulent combustion is to have an inlet that correctly reproduces a
turbulent flow behavior. This is the topic of the next chapter.
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6.1 Turbulent flows in channels and pipes

This chapter is dedicated to the simulation of turbulent channels and pipes using the SD method.
First, a brief introduction is made to turbulent channel and pipe flows, followed by a spectral char-
acterization of turbulence. Next, the synthetic random Fourier method, whose principles are derived
from turbulent wavenumber spectral, is detailed. Two additional treatments helping turbulence injec-
tion to reproduce near-wall turbulence are detailed. Finally, three validation test cases are considered:
a periodic channel, a turbulent wall-bounded channel and a turbulent wall-bounded pipe.

6.1. Turbulent flows in channels and pipes

The objective of this section is to introduce basic notations and physical phenomena occurring in
turbulent channel and pipe flows.

6.1.1. Turbulent channel flows

6.1.1.1. Presentation of the case and governing equations

Turbulent planar channel flows have been widely studied in the CFD community [240–244]. The
ideal situation of such flows is presented here to introduce notations and provide some context to the
studies presented in this chapter. This situation is typically represented as in Figure 6.1 where a fluid
evolves in a long channel (L/h >> 1) with a large aspect ratio (b/h >> 1).

Figure 6.1. – Geometry of a channel flow.

The mean flow is mostly in the axial direction z with the mean velocity varying mainly in the
transverse (also called cross-stream) direction y, where bottom and top walls are respectively located
at y = −h and y = +h. Since the spanwise direction x is very large compared to h, the flow is supposed
statistically independent of x [150]. The channel is also assumed to be fully developed so that it is
statistically stationary and statistically one-dimensional with velocity statistics only depending on y.
The flow is characterized by a bulk Reynolds number based on the bulk velocity Ub, the channel height
2h and the kinematic viscosity of the fluid ν:

Reb = Ub2h
ν

(6.1)

where

Ub = 1
2h

∫ h

−h
w (y) dy (6.2)

with w the time average of the component of velocity along the z-axis (channel axis). At Reb < 1350
the flow is laminar, whereas it is fully turbulent at Reb > 1800 [150]. Mean axial and cross-stream
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momentum equations for the turbulent case are:

∂

∂y

(
ν
∂w

∂y
− v′w′

)
− 1
ρ

∂P

∂z
= 0 (6.3)

∂

∂y

(
v′2
)

+ 1
ρ

∂P

∂y
= 0 (6.4)

6.1.1.2. Total shear stress

Integration of Eq. (6.4) between −h and any y ∈ ]−h, h[ gives the evolution of the mean pressure:

P (y, z) = Pw (z) − ρv′2 (y) (6.5)

with Pw (z) ≡ P (y = −h, z) the mean pressure on the bottom wall. From Eq. (6.5) two remarks can
be made:

1. As opposed to the laminar case, the mean pressure is not constant along a plane perpendicular
to the wall because of the velocity fluctuations.

2. Taking the partial derivative of this equation with respect to z and using Eq. (6.3) for
(
∂P/∂z

)
gives:

dPw
dz

(z) = ∂P

∂z
= ρ

∂

∂y

(
ν
∂w

∂y
− v′w′

)
(6.6)

According to Eq. (6.6), the term ρ∂
(
ν (∂w/∂y) − v′w′

)
/∂y is only a function of z. However, w

and v′w′ are only functions of y (following the hypothesis made in paragraph 6.1.1.1) and there-
fore ρ∂

(
ν (∂w/∂y) − v′w′

)
/∂y is also only function of y. Consequently, this term is necessary

equal to a constant Π such that:

dPw
dz

= ρ
∂

∂y

(
ν
∂w

∂y
− v′w′

)
= Π (6.7)

Eq. (6.7) can be integrated between −h and any y ∈ ]−h, h[ to obtain:

ρ

(
ν

[
∂w

∂y
(y) −

(
∂w

∂y

)
y=−h

]
−
[
v′w′ (y) − 0

])
= Π (y + h) (6.8)

Introducing the total shear stress τ (y) and the wall shear stress τw defined as

τ (y) = ρν
∂w

∂y
(y) − ρv′w′ (y) (6.9)

τw = ρν

(
∂w

∂y

)
y=−h

= τ (−h) (6.10)

Eq. (6.8) becomes:

τ (y) = Π (y + h) + τw (6.11)

In Eq. (6.9), the first and second terms in the right-hand side are respectively called the viscous stress
and the Reynolds stress [150]. Finally, because τ (y) is antisymmetric [150], total shear is zero at
channel center (τ (y = 0) = 0) and then from Eq. (6.11) the axial constant pressure gradient is:

Π ≡ dPw
dz

= −τw
h

(6.12)
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Therefore, the total shear stress expression is:

τ (y) = −τwy
h

(6.13)

Eq. (6.13) shows that theoretically, the total shear stress is zero along the centerline y = 0 of fully
turbulent channel flows. As a summary, the pressure drop between the inlet and outlet of the channel
drives the flow and in regions where the flow is fully developed, the constant mean pressure gradient
Π and the shear-stress gradient dτ/dy = −τw/h balance each other. An interesting result to notice is
that for a given pressure gradient Π and channel half-height h, the total shear profile τ (y) is obtained
through Eq. (6.12) (to compute τw) and Eq. (6.13) which is then not dependent on either the fluid
properties and whether the flow is laminar or turbulent.

6.1.1.3. Definitions of quantities to characterize friction

A normalized wall shear stress can be introduced, called skin-friction coefficient and noted Cf , from
the values of τw and Ub:

Cf = τw
1
2ρU

2
b

(6.14)

Close to the wall, viscous effects dominate so that two quantities can be defined to characterize the
flow in this region which are the friction velocity uτ and the viscous length scale δν :

uτ =
√
τw
ρ

and δν = ν

uτ
(6.15)

It can be seen that the Reynolds number based on uτ , δν and ν, noted Reν , is actually equal to unity:

Reν = uτδν
ν

= uτ
ν

× ν

uτ
= 1 (6.16)

Additionally, a friction Reynolds number Reτ based on uτ , h and ν can also be considered (note that
it is based on h and not on 2h as for Reb) [150]:

Reτ = uτh

ν
= h

δν
(6.17)

This friction Reynolds number is linked to the bulk Reynolds number using a correlation built from
experimental data [150]:

Reτ ≈ 0.09Re0.88
b (6.18)

Finally, a last very important variable has to be introduced which is the normal distance from the
wall measured in viscous lengths denoted by y+:

y+ = y

δν
= uτy

ν
(6.19)

The quantity y+ is widely employed to describe a mesh close to a wall using the y value of the closest
point to this wall: a smaller value of y+ typically indicates that the mesh is more refined. It actually
describes a mesh with regard to the boundary layer and to have a full resolution of it, a mesh must
verify y+ ≤ 1. It is also used to define different regions of the flows within the channel which are
summed up in Table 6.1.
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Name of the region Location Description
Viscous sublayer y+ < 5 Reynolds stress negligible compared to viscous stress
Log-law region y+ > 30 and y/h < 0.3 Region where log-law is valid

Buffer layer 5 < y+ < 30 Region between viscous sublayer and log-law region
Viscous wall region y+ < 50 Viscous stress has significant impact on total shear

Outer layer y+ > 50 Viscosity effects negligible on mean flow

Table 6.1. – Regions of the flow and their characteristics in a turbulent channel based on y+ values.
Adapted from Table 7.1 in Pope [150].

6.1.1.4. The law of the wall

The law of the wall is the designation of the boundary layer model expressing the axial mean velocity
w normalized by uτ , noted u+, as a function of y+:

u+ = w

uτ
= fw

(
y+
)

(6.20)

Experimental data indicates that for Reynolds values far from the transition limit, the function fw is
universal for channel, pipe and boundary layer flows [150]. For small and large values of y+, expressions
of fw can be estimated. For instance, it can be shown that for the viscous sublayer and the log-law
region, the law of the wall are respectively [150]:

Viscous sublayer (y+ < 5) : u+ = y+ (6.21)

Log-law region (y+ > 30) : u+ = 1
κ

ln
(
y+
)

+B where κ ≈ 0.41 and B ≈ 5.2. (6.22)

6.1.1.5. The velocity-defect law and the overlap region

In the outer layer where y+ > 50, it has been proposed that the walls tend to reduce the centerline
velocity Ucl = w (0) by a process not dependent on viscosity [245]. The velocity defect is then the
difference between Ucl and the mean velocity w. Thus, the velocity-defect law assumes that this
velocity defect normalized by uτ is only a function of y/h [150]:

U+
cl − u+ = fD

(
y

h

)
(6.23)

where U+
cl = Ucl/uτ and subscript D stands for Defect. As opposed to the law of the wall, there is no

statement saying that fD is the same for all turbulent flows. However, for small y/h value (typically
y/h < 0.3), a log-law can be used for fD [150]:

U+
cl − u+ = −1

κ
ln
(
y

h

)
+B1 (6.24)

with B1 a flow-dependent constant. Consequently, at large Reynolds number, the log-law defined in
Eq. (6.22) and the other log-law of Eq. (6.24) are valid providing that y+ > 50 and y/h < 0.3. This
was called the overlap region by Millikan [245] and shows that fully turbulent flows cannot be easily
characterized by a single velocity profile formula mostly because of this region. This will be discussed
further in Section 6.2.

6.1.1.6. Computation of y+

Usually in CFD to design a mesh it is important to compute its associated y+ value for given fluid
properties ν and given flow conditions characterized by either a bulk Reynolds number Reb (or a bulk
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velocity Ub) or a friction Reynolds number Reτ . In combustion applications, the value of Ub is an
important input parameter since it is linked to the injected fuel mass flow rate. Consequently, to
obtain the y+ of a given mesh for known ν and Ub, the methodology is the following:

1. Use Eq. (6.1) to compute Reb.
2. Use Eq. (6.18) to compute Reτ .
3. Use Eq. (6.17) to compute uτ .
4. Use Eq. (6.15) to compute δν .
5. Use Eq. (6.19) to compute y+.

For step 5, a value of y corresponding to the wall normal coordinate of the closest grid point to the
wall is needed in Eq. (6.19). This value is denoted yw here. In SD, yw is the normal distance of the
closest SP to the wall. However, in practice the exact location of SP is not known before starting the
first computation. Indeed, SP are placed after applying the isoparametric transformation on a given
mesh and using Eq. (4.14) on each element. Thus, to estimate yw before launching any computation,
the element size in the normal direction to the wall ∆w is divided by the number of SP in the normal
direction to the wall estimated as N1d

SP = p+ 1 to get:

yw ≈ ∆w

p+ 1 (6.25)

Eq. (6.25) is an approximation because it assumes that the p+ 1 SP are equally distributed along the
wall-normal direction which is not true as it was shown in Figures 4.3 and 4.4. For a given p value,
the closest SP will be in reality closer than the one obtained for a uniform repartition of SP within
an element. Therefore, Eq. (6.25) will always give a value of yw higher than the exact one and so will
be the corresponding estimate of y+. This methodology is employed since the value of ∆w is easily
known when building a mesh. A last comment should be made on the axial and spanwise distance
from the wall in viscous length units respectively z+ and x+ in the situation shown in Figure 6.1.
Their values are also needed to characterize a mesh and they are computed by first using Eq. (6.25)
with ∆w being the element size either in the axial (for z+) or the spanwise (for x+) direction to the
wall and then Eq. (6.19) is employed to get z+ and x+.

6.1.2. Turbulent pipe flows

6.1.2.1. Presentation of the case

Turbulent pipe flows have been also widely studied in CFD [246–248]. The geometry is usually
represented as in Figure 6.2 for a pipe of radius R and length L >> R along z direction.

Figure 6.2. – Geometry of a pipe flow.
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For a fully developed turbulent pipe, velocity statistics depend only on the radial coordinate r [150].
As for channels, the flow is characterized by a bulk Reynolds number based on bulk velocity Ub, pipe
diameter D = 2R and kinematic viscosity of the fluid ν:

Reb = UbD

ν
(6.26)

where this time

Ub = 1
πR2

∫ R

0
w (r) 2πrdr (6.27)

6.1.2.2. Characterization of friction

Friction is traditionally written using a friction factor noted λ:

λ = D∆P
1
2ρU

2
b L

(6.28)

where ∆P is the pressure drop between the inlet and the outlet of the pipe. It can be shown from the
momentum equations written in cylindrical coordinates that:

λ = 4Cf (6.29)

uτ = Ub

√
λ

8 (6.30)

where Cf and uτ have been defined respectively in Eq. (6.14) and Eq. (6.15). As mentioned in
paragraph 6.1.1.4, from experimental data, the law of the wall fw is the same for both fully turbulent
channels and pipes. Consequently, taking this time y = R − r the normal distance to the walls in a
pipe, expressions of fw in viscous sublayer and log-law regions introduced respectively in Eq. (6.21)
and Eq. (6.22) can be employed for pipe flows. It should be noted that according to Pope [150], the
values of κ and B, used in the log-law, that best fits the experimental data for pipe flows are κ = 0.436
and B = 6.13.

Finally, for smooth pipes, there is a friction law obtained from experimentation that is valid for all
turbulent Reynolds number which implicitly determines λ for a given Reb value:

1√
λ

= 2 log10

(√
λReb

)
− 0.8 (6.31)

Eq. (6.31) is called the Prandtl’s friction law for smooth pipes. Notice that this friction law is very
different from the Poiseuille’s friction law obtained for fully developed laminar flow where: λ = 64/Reb.

6.1.2.3. Algorithm to compute y+ on a given configuration

As for channel flows, for given mesh, ν and Ub, the different steps to compute the y+ are the
following:

1. Use Eq. (6.26) to compute Reb.
2. Solve Eq. (6.31) for λ.
3. Use Eq. (6.30) to compute uτ .
4. Use Eq. (6.15) to compute δν .
5. Use Eq. (6.19) to compute y+ (remember that y = R− r in pipe flows).
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The wall normal coordinate of the closest SP to the wall is also estimated using Eq. (6.25). In practice
when simulating pipe flows, y+ is named r+ since, rigorously speaking, the wall normal coordinate for
a pipe is along the radial direction. Following the same idea, the spanwise distance from the wall is
commonly expressed with a variable Rθ+ based on the length of pipe perimeter:

Rθ+ = 2πR/ [∆w/ (p+ 1)]
δν

(6.32)

where this time ∆w is the element size in the azimuthal direction to the wall. Finally, there is no new
consideration for the axial distance from the wall compared to a channel flow case because the axial
coordinate remains unchanged.

6.1.2.4. How to compute velocities in cylindrical coordinates

For pipe flows, the velocities are very often illustrated using radial, azimuthal and axial velocities
respectively denoted by ur, uθ and uz. However, CFD codes generally output velocities in the Cartesian
basis: u, v and w. Thus, the link between these two systems of coordinates needs to be written and
is given by:  ur

uθ
uz

 = Q.

 u
v
w

 (6.33)

where Q is the passage matrix for the rotation of an angle θ in the xy-plane:

Q =

 cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 (6.34)

showing obviously that: uz = w. The velocity correlation tensor R in Cartesian coordinates, noted
Rcart here for clarity purposes (its expressions are given in Eq. (6.44) and Eq. (6.93)), contains the
Reynolds stresses in the Cartesian basis. Thus, to obtain the Reynolds stresses in the cylindrical
coordinates system in a new tensor Rcyl, the following transformation is applied:

Rcyl ≡

 u′2
r u′

ru
′
θ u′

ru
′
z

u′
ru

′
θ u′2

θ u′
θu

′
z

u′
ru

′
z u′

θu
′
z u′2

z

 = QT.Rcart.Q (6.35)

6.1.3. How to create a turbulent flow in channels and pipes in CFD

Turbulent channels and pipes have been introduced in paragraphs 6.1.1 and 6.1.2 along with their
flow characteristics. In a CFD context, it is very important to be able to reproduce such flows but the
transition to turbulence is not easy to reach since L must be very large compare to h for channels or
R for pipes. In other words, at first sight the computational domain appears to be necessary quite big
resulting in a very costly simulation. One way to overcome this issue is by replacing inlet and outlet
boundary conditions by periodic boundary conditions coupled with an additional pressure gradient
source term to make the flow move from inlet to outlet. This methodology actually reproduces an
infinite channel or pipe flow configuration and has been widely employed for DNS of channel [249]
and pipe [247, 248] flows. However, it is not very useful when the channel or the pipe is the inlet of
a more complex system such as a combustion chamber. In that case, periodic boundary conditions
cannot be considered since the outlet is most of the time an outlet pressure boundary condition at
the combustion pressure chamber. That is why the turbulence is usually injected at the inlet of the

109



Chapter 6 : Generation of turbulent inlet conditions in the context of the Spectral Difference
method

channel or the pipe with the objective to reproduce a turbulent flow within a reasonable axial length
L ≈ 7 − 8 × 2h for channels or L ≈ 7 − 8 ×D for pipes.

Actually, the injection of a turbulent velocity field at an inlet, noted uturbin , is mostly done by injecting
a time-average velocity profile uin superimposed by a turbulent fluctuation velocity u′

in coming from
the Reynolds decomposition:

uturbin = uin + u′
in (6.36)

The formulas used to impose uin for turbulent channel and pipe flows are explained in Section 6.2
whereas the different methods to generate vector u′

in are introduced in Section 6.4.

6.2. Time-average velocity profiles imposed at turbulent inlets
The objective of this section is to explain the formulas used for the time-average velocity profile

injected at a turbulent inlet uin, also called mean inlet velocity, which was introduced in Eq. (6.36).
The situations that will be considered are the turbulent channel and pipe flows presented respectively
in paragraphs 6.1.1 and 6.1.2.

6.2.1. Turbulent channel flows
The channel flow situation presented in Figure 6.1 is again considered here. The aim is to find

expressions for the components of uin = (uin, vin, win)T to inject at the inlet of the channel. Firstly, if
a fully turbulent flow is injected at the inlet, then the average transverse velocities must be zero (the
average flow is purely axial) therefore:

uin = vin = 0 (6.37)

It remains now to find an expression for win. In Section 6.1 it was shown that there is no explicit
mathematical formula for the axial velocity profile in a fully turbulent channel or pipe. It is mainly
due to the lack of modeling of the overlap region. However, at an inlet face, a general formula for the
mean velocity profile is still needed to set the mean inlet velocity from its near-wall region to its face
center far from walls. Experimental works suggest to consider a power-type law for the axial mean
velocity of the form [250–254]:

win (y) = Ucl

(
1 − |y|

h

)1/n
(6.38)

where the exponent 1/n depends on Reb and centerline velocity. In practice it is imposed to maintain
the expected bulk velocity at the inlet using:

Ub =

h∫
−h

Ucl
(
1 − |y|

h

)1/n
dy

2h = Ucl
2h

[ nh

n+ 1

(
1 + y

h

)1+1/n
]0

−h
+
[

−nh
n+ 1

(
1 − y

h

)1+1/n
]h

0

 = nUcl
n+ 1

⇐⇒ Ucl = n+ 1
n

Ub

(6.39)

In Eq. (6.38), for a large range of values of Reb, the exponent 1/n is close to 0.143 or equivalently
n ≈ 7 for most turbulent flows. This exponent 1/n actually decreases with increasing Reb making the
profile defined in Eq. (6.38) stiffer close to the wall as it can be seen in Figure 6.3. For the interested
reader, a summary of many correlations available for n as a function of Reb was presented in Afzal et
al. [254].

110



6.3 Spectral description of turbulence

−1.0 −0.5 0.0 0.5 1.0

y/h [−]

0.0

0.2

0.4

0.6

0.8

1.0

w
in
/U

cl
[−

]
n = 1/2

n = 5

n = 7

n = 9

Figure 6.3. – Non-dimensionalized velocity profiles win/Ucl for different values of n. The case n = 1/2
corresponds to the laminar Poiseuille’s flow shown here for comparison.

6.2.2. Turbulent pipe flows
In this paragraph, the pipe flow situation presented in Figure 6.2 is considered and components of

mean inlet velocity uin = (uin, vin, win)T have to be determined. As for the fully turbulent channel
flow, the fully turbulent pipe flow has a purely axial flow on average so that Eq. (6.37) has to be
verified. A power-type law is also employed:

win (r) = Ucl

(
1 − r

R

)1/n
(6.40)

with still 1/n depending on Reb and Ucl set according to the expected Ub following Eq. (6.41):

Ub =

R∫
0
Ucl

(
1 − r

R

)1/n 2πr dr

πR2 =
2Ucl

(
0 − 0 + nR

n+1

R∫
0

(
1 − r

R

)1+1/n
dr

)
R2 = 2Ucl

R2
n2R2

(n+ 1) (2n+ 1)

⇐⇒ Ucl = (n+ 1) (2n+ 1)
2n2 Ub

(6.41)
The estimation of n and Ucl can be a little bit different for pipe flows compared to channel flows if
White’s correlation [255, 256] is used:

Ub
Ucl

= 0.811 + 0.038 [log10 (Reb) − 4] (6.42)

Eq. (6.42) gives a value for the ratio Ub/Ucl as a function of Reb which can be applied in Eq. (6.41) to
find the corresponding n value through the solution of the following second-order equation:

Ub
Ucl

= 2n2

(n+ 1) (2n+ 1) ⇐⇒ n2
(
Ub
Ucl

− 1
)

+ n3 Ub
Ucl

+ Ub
Ucl

= 0 ⇐⇒ n =
3 Ub
Ucl

+
√

Ub
Ucl

(
Ub
Ucl

+ 8
)

4
(
1 − Ub

Ucl

)
(6.43)

6.3. Spectral description of turbulence
In Section 6.2, expressions for the time-average velocity profiles uin to be imposed at the inlet

of turbulent channels and pipes have been described. Thus, it remains to introduce the different
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methodologies available to create the vector u′
in in Eq. (6.36). To explain the generation of turbulence

fluctuations it is common sense to work with variables defined in the spectral space or Fourier space.
The objective of this section is to briefly introduce how turbulent processes can be described in the
spectral space and set the hypotheses on which the turbulent generation in Section 6.4 will be done.

6.3.1. Homogeneous and isotropic turbulence
In a fully developed turbulent flow far enough from the boundaries, there exists a region of tur-

bulence where the dynamic quantities can be defined as homogeneous and isotropic. The concept of
homogeneous and isotropic turbulence (HIT) is an ideal assumption widely used in the turbulence
theory. The homogenous property is defined when all the statistics are independent of the position of
the flow so that it is statistically invariant by translations [150]. The isotropic property corresponds
to statistics independent of the orientation of the reference domain meaning that they are invariant
by rotations and translations of the reference domain [150]. Since the objective is to inject velocity
fluctuations with the characteristics of a fully turbulent flow, the HIT assumption will be considered
throughout this Section and also in Section 6.4.

6.3.2. Two-point correlation and velocity-spectrum tensors
The two-point correlation tensor is a matrix used to evaluate the influence of the flow at a position

x on the flow at position x + r and at time t, defined as:

Rij (r,x, t) = u′
i (x, t)u′

j (x + r, t) (6.44)

where u′
i is the fluctuating part of the i-th component of velocity given by:

u′
i = ui − ui (6.45)

In the case of homogeneous turbulence, Rij is independent of x and depends only on the distance
between the two points on the flow and still on time:

Rij (r,x, t) = Rij (r, t) for homogeneous turbulence (6.46)

When r = 0, the two-point correlation tensor becomes the autocorrelation tensor Rij (0, t) from which
the turbulent kinetic energy (TKE) at a given point (r = 0) can be extracted by considering one half
of its trace:

TKE = 1
2Rii (0, t) = u′

1u
′
1 + u′

2u
′
2 + u′

3u
′
3

2 (6.47)

This value of TKE is the same at all points for homogeneous turbulence. In addition, if the turbulence
is also isotropic, turbulent velocity fluctuations do not have any directional preference then:

u′
iu

′
j = 0 for i ̸= j and u′

1u
′
1 = u′

2u
′
2 = u′

3u
′
3 = u2

rms for isotropic turbulence (6.48)

with urms (subscript rms stands for root mean square) the intensity of turbulence in any direction of
the flow. Consequently, the two-point correlation tensor under HIT assumptions is the same at all
points in all directions of the flow which is translated mathematically as:

Rij = u2
rmsδij for homogeneous AND isotropic turbulence (6.49)

Combining Eq. (6.47) and Eq. (6.48) gives the link between TKE and urms for a HIT field:

TKE = 3
2u

2
rms ⇐⇒ urms =

√
2TKE

3 (6.50)
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The velocity-spectrum tensor is defined for homogeneous turbulence as the Fourier transform of the
two-point correlation tensor [150]:

Φij (κ, t) = 1
(2π)3

∫ ∞∫
−∞

∫
e−iκ.rRij (r, t) dr (6.51)

with κ = (κx, κy, κz)T is the wavenumber vector. It is a very important quantity since it represents
the Reynolds-stress density in spectral space.

6.3.3. The energy spectrum function
Although Φij contains a lot of information because it is a matrix of a vector, it is also hard to

manipulate especially for qualitative discussions on turbulence. That is why, a much simpler variable
called the energy spectrum function, noted E, is often considered. This function can be viewed as
a mass kinetic energy density per wavenumber since its units are

[
m3.s−2

]
=
[
m2.s−2/m−1

]
. It is

obtained from Φij after getting rid of all the directional information by taking half the trace of Φij

and integrating over the surface of a sphere S of radius κ = ||κ||2 [150]:

E (κ) =
∮ 1

2Φii (κ) dS (κ) (6.52)

where Φii = Φ11 + Φ22 + Φ33 is the trace of Φij . As shown in Eq. (6.52), the energy spectrum function
is simpler than Φij since it is a scalar function of a scalar. One of the biggest interest of using E (κ)
is that for a HIT field, all the information characterizing the turbulent structures is contained in
E (κ). In other words, the knowledge of the energy spectrum function determines the kind of HIT
field generated. Indeed, it is possible to show under HIT assumptions that:

TKE =
∫ ∞

0
E (κ) dκ (6.53)

ϵ = 2ν
∫ ∞

0
κ2E (κ) dκ (6.54)

Lf = π

2u2
rms

∫ ∞

0

E (κ)
κ

dκ (6.55)

where ϵ and Lf are respectively the dissipation rate of turbulence and the longitudinal integral length
scale of the HIT field. Finally, given the quantities introduced in Eq. (6.53), Eq. (6.54) and Eq. (6.55),
two other important quantities can be deduced:

τϵ = Lf
urms

(6.56)

Ret = urmsLf
ν

(6.57)

with τϵ and Ret respectively the large eddies turnover time and the turbulent Reynolds number. The
next two paragraphs are dedicated to two examples of energy spectrum functions: the Passot-Pouquet
spectrum [257] and the von Karman-Pao spectrum [258].

6.3.4. Passot-Pouquet energy spectrum function
Given a turbulent intensity urms and a characteristic length noted Le, the Passot-Pouquet (PP)

energy spectrum is defined by [257]:

E (κ) = A

(
κ

κe,PP

)4

exp

−2
(

κ

κe,PP

)2
 (6.58)
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with κe,PP = 2π/Le and the constant A is obtained by writing that E (κ) must satisfy:∫ ∞

0
E (κ) dκ = 3

2u
2
rms ⇐⇒ A = 16u2

rms

κe,PP

√
2
π

(6.59)

According to Eq. (6.58), κe,PP is the wavenumber at which E (κ) is maximum which means that Le
corresponds to the size of the most energetic structures generated with the PP spectrum. Using
Eq. (6.54) and Eq. (6.55) with E (κ) given by Eq. (6.58), the dissipation rate and the integral length
scale for the PP spectrum are:

ϵPP = 15
4 νu

2
rmsκ

2
e,PP (6.60)

Lf,PP =
√

2π
κe,PP

(6.61)

This spectrum correctly describes the large eddies (small κ values) of turbulence but the small eddies
(large κ values) are not represented. Consequently, it should be used when the Reynolds number is
small (not small enough to be laminar, but small compared to a highly turbulent flow).

6.3.5. von Karman-Pao energy spectrum function
As for the PP spectrum, with a turbulent intensity urms and a characteristic length noted Le, the

von Karman-Pao (VKP) energy spectrum is defined by:

E (κ) = α
u2
rms

κe,VKP

(κ/κe,VKP)4(
1 + (κ/κe,VKP)2

)17/6 exp
[
−2
(

κ

κKol

)2
]

(6.62)

where α, κe,VKP and κKol are three constants determined hereafter. The constant α is obtained by
writing that:∫ ∞

0
E (κ) dκ = 3

2u
2
rms ⇐⇒︸︷︷︸(

κKol
κe,VKP

)2
→∞

α = 55Γ (5/6)
9
√
πΓ (1/3) ≈ 1.4527621122109746 (6.63)

where Γ stands for the gamma function [259]. As highlighted by Eq. (6.63), this value of α such that
the integral of the spectrum equals the TKE, is only valid if the ratio (kKol/ke,VKP)2 is big. For
κe,VKP, it has an expression that satisfies:

Le = π

2u2
rms

∫ ∞

0

E (κ)
κ

dκ ⇐⇒︸︷︷︸(
κKol

κe,VKP

)2
→∞

κe,VKP = 9πα
55Le

(6.64)

Thus, for the VKP spectrum, the input characteristic length Le is actually the longitudinal integral
length scale Lf . Finally, κKol is obtained by solving the following system for κKol and ϵ:

κKol =
(
ϵ

ν3

)1/4
(6.65)

ϵ = 2ν
∫ ∞

0
κ2E (κ) dκ (6.66)

Combining Eq. (6.65) and Eq. (6.66) in the limit (κKol/κe,VKP)2 → ∞ gives an expression for ϵVKP:

ϵVKP = [αΓ (2/3)]3/2 κe,VKP
2 u3

rms (6.67)
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and κKol is deduced from Eq. (6.65). It should be mentioned that very often, ϵVKP is simply computed
by:

ϵVKP = u3
rms

Le
(6.68)

It should also be mentioned that the maximum energy occurs at the wave number
√

12/5κe,VKP.
The VKP spectrum can represent both the large and small turbulent structures. From a numerical

point of view it is a more realistic spectrum than the one from Passot and Pouquet but it needs a
better mesh resolution to capture the small scales. Table 6.2 sums up the main turbulence variables
expressions for these two turbulence spectrums. Moreover, the demonstrations of Eq. (6.63), Eq. (6.64)
and Eq. (6.67) are given in Appendix G.

Spectrum κe [m−1] ϵ [m2.s−3] Lf [m]

Passot-Pouquet 2π
Le

15
4 νu

2
rmsk

2
e

√
2π
κe

von Karman-Pao 9πα
55Le

(αΓ (2/3))3/2 κe
2 u

3
rms or u

3
rms

Le
Le

Table 6.2. – Summary of the values taken by κe, ϵ and Lf for both Passot-Pouquet and von Karman-
Pao spectrums.

6.4. Injection of turbulence using a synthetic random Fourier method

The objective of this section is to describe the approach used in this work to generate turbulent
velocity fluctuations u′

in at the inlet of a computational domain.

6.4.1. Different methods to inject turbulence in a computational domain

The injection of turbulence in a computational domain is a vast topic of research and plenty of
approaches exist in the literature. The classification of these different methods depend on the author
and some nice reviews are the ones of Tabor et al. [260], Wu [261] and Dhamankar et al. [262].
Following the categorization of Wu [261], two main families of methods can be considered:

• Recycling methods containing:
⋆ The strong recycling method where a turbulent flow originating from a former simulation

is injected at the domain inlet.
⋆ The weak recycling method where the outgoing flow is reintroduced at the inflow bound-

ary [261].
• Synthetic methods containing:

⋆ The synthetic random Fourier method where turbulent fluctuations are injected by assim-
ilating them to a sum of random Fourier modes [263, 264].

⋆ The digital filtering method where a random white-noise signal is first generated and then
filtered in a particular way to create spatial and temporal correlation on the original sig-
nal [265].

⋆ The synthetic eddy method where a turbulent flow is represented through a distribution of
convected randomly turbulent spots whose size and turbulent intensity vary in space and
time [266].
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⋆ The volume forcing method where several planes located downstream of the inlet will add
a body force term in the NSE to accelerate the transition to turbulence [267, 268].

This work is focused on combustion applications where channels or pipes are very often the injector
part of a combustion system. Thus, recycling methods were not adapted in that case. Indeed, the
strong recycling would have been too costly and for the weak recycling method the flow at the outlet
of the injector is not supposed to be re-injected at the inlet. Concerning synthetic methods, the digital
and the synthetic eddy methods, although they are widely used, are more complicated to implement
in a CFD code compared to the synthetic random Fourier method and still employed in combustion
simulations. Thus, a synthetic random Fourier method was implemented during this work in order
to be used on turbulent combustion applications after being validated on non-reactive turbulent cases
which is the purpose of Sections 6.6, 6.7 and 6.8. Finally, the volume forcing method was not employed
in this work, but a methodology to artificially reproduce roughness in a channel or pipe flow was tried
to also accelerate the development of turbulence. It is detailed in paragraph 6.5.2.

6.4.2. The synthetic random Fourier method
Originally introduced by Kraichnan [263] for the diffusion of particles in random velocity fields, a

divergence-free synthetic HIT field can be generated based on the summation of N Fourier modes, each
characterized by a wavenumber vector κn with n ∈ J1, NK. In Kraichnan’s method, the components
of κn are chosen stochastically and indirectly to satisfy a given energy spectrum. For instance, in
order to have a PP spectrum as in Eq. (6.58), each component of κn has to be picked from a Gaussian
distribution of standard deviation κe/2. However, this methodology is not really practical since if
another energy spectrum is desired by the user, the corresponding stochastic distribution must be
found to compute vectors κn. Consequently, it is more useful to have a way to obtain κn components
deterministically, that is with an explicit mathematical formula, from a given energy spectrum.

Thus, following the works of Karweit et al. [269] and Bechara et al. [264], a turbulent velocity vector
on a given point x can be computed using Eq. (6.69):

u′
in (x) = 2

N∑
n=1

utn cos (κn.x + ψn) σn (6.69)

where utn, ψn and σn are respectively the amplitude, the phase and the direction (it is a unit vector)
of the n-th Fourier mode associated with the wavenumber vector κn.

6.4.2.1. Determination of utn

The amplitude utn is determined from the turbulent kinetic energy spectrum E, chosen by the user,
using Eq. (6.70):

utn =
√

E (κn) ∆κn for n ∈ J1, NK (6.70)
with κn = ||κn||2 and ∆κn being the difference between two consecutive modes which could be linear
(Eq. (6.71)) or logarithmic (Eq. (6.72)) so that ∀n ∈ J1, NK:

∆κn = κN − κ1
N − 1 ≡ ∆κlin with κn = κ1 + (n− 1) ∆κlin (6.71)

∆κn = κn+1 − κn with κn = exp (ln (κ1) + (n− 1) ∆κlog) and ∆κlog = ln (κN ) − ln (κ1)
N − 1 (6.72)

The logarithmic distribution will give a better discretization of the spectrum in the lower wavenumber
range associated with the larger energy containing eddies. A nice property satisfied by the utn terms,
to check if the generation process gave the expected HIT field, is [264]:

N∑
n=1

u2
tn = TKE = 3

2u
2
rms (6.73)
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6.4.2.2. Determination of κn components, ψn and σn

The turbulent velocity field should satisfy the incompressibility condition for each mode:

∇.u′
in = 0 ⇐⇒ κn.σn = 0 for n ∈ J1, NK (6.74)

meaning that κn and σn are always perpendicular. The wavenumber vector κn is described using
its spherical coordinates (κn, ϕn, θn) and the unit vector σn is determined by its polar angle αn lying
in the (κ1, κ2) plane as shown in Figure 6.4. The HIT field is obtained by appropriately choosing

Figure 6.4. – Geometry of the n-th Fourier mode.

probability density functions for the four random angles ϕn, θn, ψn and αn. It can be shown that ϕn,
αn and ψn should be uniform densities such that [261, 269]:

P (ϕn) = P (αn) = P (ψn) = 1
2π (6.75)

and a sine function should be used for θn:

P (θn) = sin (θn)
2 (6.76)

Choosing a random number following a uniform probability density can be done using free software
such as the one proposed by Takuji Nishimura and Makoto Matsumoto [270] employed in this work.
This software will give a random number in [0, 1] following a uniform probability density and then
this number is simply multiplied by 2π to get the appropriated ϕn, αn and ψn values. However, to
obtain a sine probability density for θn, an additional treatment is required. Using the so-called inverse
method [271], θn can be generated with Eq. (6.77) [272, 273]:

θn = cos−1 (2a− 1) (6.77)

where a follows a uniform density on [0, 1] also obtained with the generator available in [270]. Once
ϕn and θn have been obtained, κn components in Cartesian coordinates are given by:

κn = κn

 cos (ϕn) sin (θn)
sin (ϕn) sin (θn)

cos (θn)

 (6.78)

with κn already computed either through Eq. (6.71) or Eq. (6.72). For σn, in practice αn is not
computed and an intermediate unit vector ζn, whose Cartesian components are randomly generated
from a uniform density on [−1, 1], is employed instead such that:

σn = ζn × κn
||ζn × κn||2

(6.79)
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It is worth mentioning that in Saad et al. [272], ζn is generated using its spherical coordinates selected
randomly with the same methodology as for κn components. These two methods must be equivalent
since ζn is only an intermediate vector picked randomly on a sphere of radius unity and used to
ensure that σn satisfies Eq. (6.74) which is ensured by Eq. (6.79). Vector σn therefore has a random
polar angle αn lying in [0, 2π] and not an explicit random value determined from Eq. (6.75). The
different steps to generate the turbulent velocity field u′

in on a given point x using this methodology
are summed up in Algorithm 6 of Section B.4.

6.4.2.3. Time-dependent synthetic HIT field

For turbulent injection through a boundary, a time dependence has to be introduced in Eq. (6.69).
It was done by Bailly and Juvé [274] who used a constant (in time and space) velocity vector uc at
which the turbulent field is convected from an imaginary box outside of the computational domain so
that Eq. (6.69) becomes:

u′
in (x, t) = 2

N∑
n=1

utn cos (κn. (x − tuc) + ψn) σn (6.80)

where t is the time. The formulation given by Eq. (6.80) corresponds to Eq. (7) in Bailly and Juvé [274]
with ωn set to zero and is the formula employed in this work. In practice, ||uc||2 = Ub and is in the
direction of the channel or pipe axis. Since ERK time integration methods are employed, Eq. (6.80)
is evaluated at each RK stage. Thus, the time t at each RK stage q is needed noted tq. It is computed
from the values of c = [cq]T1≤q≤Q in the Butcher tableau of a RK method:

tq = tn + cq (∆t)n (6.81)

where tn and (∆t)n are respectively the time and timestep at instant n.

6.4.3. Imposing a turbulent velocity field at a NSCBC inlet
In paragraph 5.1.4.2, the procedure to impose a subsonic inflow with time-constant velocities was

described. However, the objective is now to impose at this NSCBC inlet, the turbulent velocity
defined in Eq. (6.36) which is necessarily time-dependent because of u′

in (x, t). The time derivatives
in Eq. (5.33)-Eq. (5.35) can be computed since the time derivative of Eq. (6.36) is given by:

duturbin

dt
(x, t) = 0 + du′

in

dt
(x, t) = 2

N∑
n=1

utn (κn.uc) sin (κn. (x − tuc) + ψn) σn (6.82)

and technically the system of equations Eq. (5.33)-Eq. (5.36) can be solved for N ∗
1 , N ∗

2 , N ∗
3 and N ∗

+.
However, this turbulent signal must also impose a given mean value, defined by uin, at the boundary.
In these situations, specifying only the time derivatives will not be sufficient for the CFD code to keep
the expected mean value. Thus, a relaxation procedure has to be added to the time derivatives as
in [275, 276] so that:

duturbin

dt
is replaced by duturbin

dt
+Ku

[(
uin + u′

in

)
− u

]
(6.83)

6.5. Features to help reproduce near-wall turbulence
The turbulent velocity introduced in paragraph 6.4.2 corresponds to a divergence-free HIT field.

However, for fully turbulent flows the homogeneous and isotropic properties of turbulence are only
verified far from the boundaries of the domain and especially far from the walls. Indeed, in near-wall
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regions, the cross-correlations u′
iu

′
j (with i ̸= j) are not zero. Thus, if a turbulent field generated

using Eq. (6.80) is imposed at the inlet of a channel or a pipe, it will technically not be sufficient to
reproduce near-wall turbulence in this channel or pipe. The objective of this section is to show some
available features that can be added to the generation of the HIT field described in paragraph 6.4.2
in order to better reproduce near-wall turbulence.

6.5.1. Injection of non-homogeneous and anisotropic turbulence
It is actually possible to transform a HIT field, generated by any method described in para-

graph 6.4.1, into a non-homogeneous and anisotropic turbulent field provided that the velocity cor-
relation tensor R (defined in Eq. (6.44)) of the turbulent flow field is known. Let’s denote by u′,HIT

in ,
a turbulent HIT field with a null mean velocity and a unit RMS velocity: urms = 1 m.s−1. A non-
homogeneous and anisotropic turbulent field can be generated from u′,HIT

in by considering the scaling:

u′,∗
in = A.u′,HIT

in (6.84)

where A is the Cholesky decomposition of R given by [277]:

A =


(R11)1/2 0 0
R21
a11

(
R22 − a2

21

)1/2
0

R31
a11

(R32 − a21a31)
a22

(
R33 − a2

31 − a2
32

)1/2

 (6.85)

This methodology was successfully applied by Smirnov and Celik [278] on a HIT field generated using
the original Kraichnan’s method. Later on, Billson et al. [279, 280] and Shur et al. [281] used it for
a HIT field obtained with Karweit and Bechara methodology explained in paragraph 6.4.2. In this
work, the computation of u′,HIT

in from u′
in introduced in Eq. (6.69) is done following the idea of Shur

et al. [281]:

u′,HIT
in (x) ≡ 2

N∑
n=1

uHIT
tn cos (κn.x + ψn) σn = u′

in (x)√
2
3

N∑
m=1

u2
tm

= 2
N∑
n=1

utn√
2
3

N∑
m=1

u2
tm

cos (κn.x + ψn) σn

(6.86)

so that each mode amplitude utn, originally generated for any value of urms, is divided by the effective

value of urms noted ueffrms and equal to

√√√√(2/3)
N∑
m=1

u2
tm. It can be checked that by construction

N∑
n=1

(
utn/u

eff
rms

)2
= 3/2 (from Eq. (6.73) since u′,HIT

in must have urms = 1):

N∑
n=1

(
utn

ueffrms

)2

= 3
2

N∑
n=1

u2
tn

N∑
m=1

u2
tm

= 3
2 (6.87)

In the case of turbulent injection where a time-dependent synthetic HIT field is considered (see
paragraph 6.4.2.3), u′,HIT

in is computed at each time instant based on Eq. (6.80) with utn = uHIT
tn

and Eq. (6.84) is used to rescale the turbulent field at the given time instant. Hopefully, the Cholesky
matrix A is not time-dependent so that it can be computed and stored once in pre-processing at each
inlet FP.
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This scaling approach is very helpful to inject realistic turbulence at inlet flows reducing the length
of a channel or a pipe after which the flow is fully turbulent. However, it requires the knowledge of
R usually obtained from experimental or DNS data made at the same Reynolds number as the one of
the considered inlet.

6.5.2. Artificial tripping
Another way to help reproduce near-wall turbulence, as in paragraph 6.5.1, is by using a roughness

element (also called step) at the wall of channels or pipes to trip the transition to turbulence. This
so-called tripping method can be either:

1. directly set in the channel or pipe geometry and treated as a wall boundary condition. However,
this methodology is intrusive and it was decided to not use it during this work.

2. reproduced artificially using a source term added to the momentum equations. It is named
artificial tripping and is the methodology that was considered in this work.

The artificially tripping approach was proposed by Boudet et al. [282] for a Cartesian geometry like
flat plate or channel flows as shown in Figure 6.5a for a step of lengths Lx, Ly and Lz respectively in
x, y and z directions. The source term is added in the axial momentum equation (z-axis in that case)
on the region defined by the step with the following formula:

Strip = −1
2Lz

ρCDw|w|ez (6.88)

where CD is a user-specified drag coefficient and w is the local velocity along z-axis. It will induce a
drag force in the axial direction of the form:

Ftrip = 1
2ρLxLyCDw|w|ez (6.89)

(a) Cartesian artificial tripping. (b) Cylindrical artificial tripping.

Figure 6.5. – Artificial tripping using a source term added to momentum equations.

During this work, an artificial tripping adapted to cylindrical geometries was developed. It is shown
in Figure 6.5b for an artificial annular step of length Ltrip and radius Rtrip. In that case, the source
term and the induced drag, added to the axial momentum equation on the region defined by the
annular step, are given by:

Strip = −1
2Ltrip

ρCDw|w|ez and Ftrip = 1
2ρπ

(
R2 −R2

trip

)
CDw|w|ez (6.90)

This artificial tripping method is very appealing for three main reasons:
1. It is not intrusive so that the geometry does not need to be modified.
2. No boundary conditions have to be specified on the step.
3. It is neither computationally expensive nor difficult to implement since the source term expression

is very simple.
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Nevertheless, the location, the size and the value of CD need some preliminary tests which are
configuration-dependent. Some guidelines and good practices to set these parameters will be de-
tailed in paragraph 6.7.3 for the Cartesian artificial tripping and in paragraph 6.8.3 for the Cylindrical
artificial tripping.

6.6. Injection of turbulence through a periodic channel

The objective of this section is to validate the injection of turbulence explained in Section 6.4 and
to see the influence of the different turbulent parameters on the results. In particular, the influence
of the energy spectrum and the number of turbulent modes along with their distribution (linear or
logarithmic) will be investigated in terms of accuracy and computational cost.

6.6.1. Presentation of the case and numerical setup

The computational domain is rectangular with turbulent injection using NSCBC principle at z = 0,
subsonic outflow at constant pressure Pout = 105 Pa at z = 4 mm and periodic boundary conditions
elsewhere as shown in Figure 6.6. The configuration shown in Figure 6.6 is an ideal case to study

Figure 6.6. – Computational domain and boundary conditions for the injection of turbulence inside a
3D periodic channel.

the evolution of HIT since no walls are considered: dissipation of turbulence can only occur through
the energy cascade principle introduced in paragraph 3.1.1. The objective is to reproduce a turbulent
flow with a mean velocity Ub = 100 m.s−1 and velocity fluctuations in the three directions around
urms = 10 m.s−1. As there are no walls in the domain, the injected mean flow is simply set using a
constant axial velocity profile:

uin = (0, 0, 100)T (6.91)

The fluid is air (Rgas = 287.15 J.kg−1.K−1) at P = 105 Pa and T = 300 K so that its kinematic
viscosity is ν ≈ 1.477 × 10−5 m2.s−1. All the three axes are discretized uniformly respectively with 80
segments for the z-axis and 20 segments for both x and y axes. This discretization ends up with 32
000 hexahedral elements where it was chosen to use a polynomial of degree p = 4 (order 5) inside all
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of them to approximate the solution. It gives a total of 4 × 106 DOF using Eq. (4.74) with the same
characteristic mesh sizes between two DOF in each direction of:

∆DOF
x = ∆DOF

y = ∆DOF
z = 10−5 m ≡ ∆DOF (6.92)

All the simulations were first run for 25 convective times, based on Lz and Ub which corresponds to 1
ms of physical time, to evacuate the transient due to initialization. Simulations are then relaunched
for 50 convective times from 1 ms to 3 ms to collect time-average variables. The post-treatment of
these statistics is done as follows:

1. The code provides u, v, w, u2, v2, w2, uv, vw and uw at SP.
2. Then, the velocity correlation tensor in Cartesian coordinates is computed at each SP following:

Rcart ≡

 u′2 u′v′ u′w′

u′v′ v′2 v′w′

u′w′ v′w′ w′2

 =

 u2 − u2 uv − u× v uw − u× w

uv − u× v v2 − v2 vw − v × w

uw − u× w vw − v × w w2 − w2

 (6.93)

3. u, v, w and Rcart at each SP are interpolated on a uniform Cartesian grid with nx, ny and nz
points respectively along x, y and z directions.

4. Since the domain is periodic in both x and y directions, u, v, w and Rcart on the uniform grid
are spatially averaged in these directions at several axial positions (defined by the user) between
z = 0 and z = Lz.

5. At the end of this averaging process, u, v, w and Rcart can be plotted on a 1D line between
z = 0 and z = Lz.

It is worth noting that step 2 and step 3 cannot be done in reverse order because the interpolation
process introduces numerical errors which will accumulate when using Eq. (6.93) on the interpolated
grid. Therefore, it is essential to always first compute output data at SP and then do the interpolation.
The remaining numerical parameters used for all the simulations are summed up in Table 6.3. Finally,

Riemann solver Diffusion scheme Time-integration scheme
HLLC Average approach SSP-ERK(3,3)

Table 6.3. – Riemann solver, diffusion scheme and time-integration scheme used for all simulations of
injection of turbulence through a periodic channel.

in paragraph 6.6.2, some results are compared with the ones obtained using the AVBP solver [283, 284]
which employs the original Kraichnan’s method [263] to inject a PP spectrum. AVBP simulations have
been done using the Two-step Taylor Galerkin version C (TTGC) FE scheme [179] (third-order in space
and time) for convective fluxes, and a FE scheme of order 2 [179] for diffusion fluxes.

6.6.2. Validation case
The turbulent parameters used to generate u′

in for the validation case are summed up in Table 6.4.
The value of N was chosen large enough to ensure a good distribution of modes in the three directions

Energy spectrum N [-] Mode distribution Le [m] urms [m.s−1]
Passot-Pouquet 1000 Logarithmic 2 × 10−4 10

Table 6.4. – Turbulent parameters used for the validation of the injection of HIT in a periodic channel.

x, y and z needed for isotropic turbulence. The PP spectrum is generated for turbulent structures
with sizes ranging from Lref = 1 mm (κmin = 6283 m−1) and Lcut = 6∆DOF (κmax = 1.047×105 m−1)
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to have at least 6 SP in the smallest structures. It is represented in Figure 6.7. This truncated PP
spectrum at κmax does not take into account the Kolmogorov eddy since for these values of urms
and Le, the PP spectrum gives: κKol ≈ 2.030 × 105 m−1 > κmax. However, as already stated
in paragraph 6.3.4, the energies of smallest eddies for the PP spectrum are very small. Thus, for
κ ∈ [κmax, κKol], E (κ) is negligible and Eq. (6.53) holds for the truncated spectrum in Figure 6.7.

104 105

κ [m−1]

10−7

10−4

E
[m

3
.s
−

2
]

Passot− Pouquet when κ ∈ [6.3e+03,1.0e+05]

Figure 6.7. – Passot-Pouquet turbulent spectrum injected at z = 0.

Figure 6.8 shows the injected turbulent structures near the inlet plane which are convected into the
channel. The TKE and RMS velocities decays along the channel axis are represented respectively in
Figures 6.9a and 6.9b. The TKE decay obtained with AVBP solver, already validated on the same
test case [276, 285], is also plotted on Figure 6.9a showing excellent agreement with the JAGUAR
solution. Both codes give almost the same level of TKE at the inlet: TKE(0) = 149.8 m2.s−2 for
JAGUAR and TKE(0) = 142.2 m2.s−2 for AVBP. These values are very close to the expected value
of 150 m2.s−2 given by Eq. (6.50). The small difference between JAGUAR and AVBP is due to the
presence of a mask put on inlet edges for AVBP where velocity is set to zero at the nodes to ensure
the periodicity at these inlet nodes which are also shared with the periodic boundary condition. This
is not needed in the JAGUAR case since there are no FP on the periodic boundary conditions that are
shared with the NSCBC inlet. Looking now at Figure 6.9b, the three RMS velocities start very close
to urms at the inlet and decay in a similar manner showing isotropy of the HIT field in the channel.
Therefore, these results validate the implementation of turbulence injection in JAGUAR detailed in
Section 6.4

6.6.3. Influence of the energy spectrum
The test case of paragraph 6.6.2 can be computed using the VKP energy spectrum with the same

values of Le and urms summed up in Table 6.5. The form of the injected VKP spectrum, still between

Energy spectrum N [-] Mode distribution Le [m] urms [m.s−1]
von Karman-Pao 1000 Logarithmic 2 × 10−4 10

Table 6.5. – Turbulent parameters used for the injection of HIT in a periodic channel with the VKP
spectrum.

κmin = 6283 m−1 and κmax = 1.047 × 105 m−1, is represented in Figure 6.10a. It is compared on
Figure 6.10b with the PP spectrum of Figure 6.7 showing that the VKP spectrum has much more
structures with high energy than the PP one. Consequently, the integral of the VKP spectrum in
Figure 6.10a gives a TKE of 97 m2.s−2 instead of 150 m2.s−2. It is due to two factors:
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Figure 6.8. – Contours of Q-criterion colored by vorticity magnitude. The flow is going from the left
to the right.
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(a) TKE obtained with JAGUAR and AVBP.
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Figure 6.9. – Evolution of the TKE and of the RMS velocities along channel axis.

1. The whole VKP spectrum has a very large range of wavenumbers where E > 10−9 m3.s−2 as
shown in Figure 6.11a where it is plotted for κ such that E (κ) > 10−12 m3.s−2 (blue curve),
for κ ∈ [κmin, κKol] (green curve) and for κ ∈ [κmin, κmax] (orange curve). The same plot is
represented for the PP spectrum used in paragraph 6.6.2 on Figure 6.11b. Because the PP
spectrum has almost all its energy concentrated on a small range of wavenumbers, the integrals
of the three curves are equal to the TKE. However, as already mentioned, for the VKP spectrum
the integral of the discretized energy spectrum (orange curve) gives 97 m2.s−2 ̸= 150 m2.s−2.
The integral of the green curve, which takes into account Kolmogorov eddy, gives 100 m2.s−2

and the one of the blue curve is 124 m2.s−2. Thus, where are the 26 m2.s−2 left? This brings
the reasoning to the second factor.

2. In the calculations of the VKP constants developed in paragraph 6.3.5 and in appendix G, the
integrals are evaluated using the hypothesis that:(

κKol
κe

)2
→ ∞ (6.94)

Nevertheless, in the case studied here: κKol ≈ 2 × 105 m−1 and κe = 3734 m−1 which gives
(κKol/κe)2 ≈ 2800 not really "big".

Consequently, when using the VKP spectrum, the discrete values of E injected in the domain are
usually rescaled so that the integral of the injected VKP spectrum is equal to TKE in order to have
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Figure 6.10. – Comparison of injected PP and VKP spectrums at z = 0.
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Figure 6.11. – VKP and PP spectrums represented for different ranges of κ. Blue curves, green curves
and orange curves correspond respectively to κ such that E (κ) > 10−12 m3.s−2, κ ∈
[κmin, κKol] and κ ∈ [κmin, κmax].

the expected level of energy at the inlet. That is why, the VKP structures are even more energetic
than the PP ones as it is shown in Figure 6.12a where the TKE dissipates much less than for the PP
spectrum using the same urms and Le. The isotropy of the HIT field is also verified with the VKP
spectrum since in Figure 6.12b all the RMS velocities decay in the same manner along channel axis.

6.6.4. Influence of the number of modes and of their distribution

In paragraphs 6.6.2 and 6.6.3, the value of N was set to 1000 in order to have enough modes in
the three directions x, y and z. Otherwise, with small values for N , isotropy can be lost since a
direction can have many more modes than the two remaining ones. However, using N = 1000 modes
at the inlet is costly when considering bigger applications than the channel flow showed here. Load-
balancing is possible by flagging, before the computation, the elements at inlet in order to put more
processors on them. Nevertheless, although it is possible to gain 30% in computational time, many
tests have to be made to find an optimal ratio of processors set to deal with element at inlet and the
remaining ones dealing with the rest of the domain. That is why, a good compromise value for N
is interesting to search for: high enough to keep sufficient isotropy but small enough to not be too
expensive. Simulations of the periodic channel flow validated in paragraph 6.6.2 have been carried out
with N = 100, 300 and 600 modes using a linear or a logarithmic distribution of the modes and for both
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Figure 6.12. – Comparison of TKE decays between PP and VKP obtained with JAGUAR and RMS
velocities decay in the channel for the VKP spectrum.

PP and VKP spectrums. Results in terms of decay of RMS velocities within the channel are presented
in Figures 6.13 and 6.14 respectively for the PP and VKP spectrums. When N = 100, no matter
the mode distribution or the type of energy spectrum: the velocity field generated at the inlet is not
isotropic, as there is always at least one RMS velocity which is far from the expected value of 10 m.s−1.
When N = 300, isotropy is kept by the VKP spectrum, independently of mode distribution, whereas
the PP spectrum does not show good isotropy with a logarithmic distribution of modes although it
is almost the case for the linear distribution. Looking at Figure 6.10, it can come from the fact that
values of E for the PP spectrum are in a larger range than the VKP one. Thus, if for instance there are
more modes which have x-axis as the principal direction (highest components of σn along x-axis) then
the differences in terms of E values are more accentuated. This is the case for the PP spectrum when
the logarithmic distribution is employed because there are much more modes with high E values that
are in the lower range of κ and only a small amount of modes which have low E values in the larger
range of κ. The VKP spectrum does not have such issues since its values of E shown in Figure 6.10a
vary in a smaller range. Finally, when N = 600, isotropy is retrieved in all cases especially for the PP
spectrum with a logarithmic distribution of modes. In terms of computational cost, Table 6.6 sums up
the iteration cost as a function of N showing that from N = 600 the turbulence injection is becoming
very costly. Based on the RMS decays with N study, it seems that a good compromise in terms of
accuracy and computational cost is N = 300 especially if the generated spectrum does not have a
large ratio max

κ
(E) /min

κ
(E). Otherwise, increasing N up to 600 maximum seems sufficient to have

a correct HIT field but at a higher cost. It would be interesting in the future to see the influence of
changing p, at a constant DOF value, on the results and also on the iteration cost with respect to N .

N 100 300 600 1000
Iteration cost

[
µs.ite−1.DOF−1

]
6.4 7.4 9.5 11.0

% of increase from N = 100 - 15 % 48 % 72 %

Table 6.6. – Iteration cost as a function of N in the case of the periodic channel. All computations
were done on 600 processors provided by the same machine.
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(c) N = 300 and linear distribution
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(d) N = 300 and logarithmic distribution
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(e) N = 600 and linear distribution
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(f) N = 600 and logarithmic distribution

Figure 6.13. – Evolution of statistics using Passot-Pouquet energy spectrum for turbulence injection.
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(c) N = 300 and linear distribution

0.000 0.001 0.002 0.003 0.004

z [m]

40

60

80

100

u
′2
,
v
′2
,w
′2

[m
2
.s
−

2
]

u′2

v′2

w′2

(d) N = 300 and logarithmic distribution
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(e) N = 600 and linear distribution
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Figure 6.14. – Evolution of statistics using von Karman-Pao energy spectrum for turbulence injection.
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6.7. Turbulent wall-bounded channel flow

In Section 6.6, the injection of HIT, generated by a synthetic random Fourier method, was vali-
dated on a channel flow where transverse and spanwise boundary conditions were periodic in order
to maintain the hypotheses behind HIT flows. However, in real configurations, HIT flows are not
common because walls are usually employed creating boundary layers due to viscous effects. It en-
tails the apparition of mean axial pressure gradients and mean velocity gradients in the wall normal
directions. Thus, according to Eq. (6.7), cross-correlations u′

iu
′
j are non-zero for i ̸= j making the

turbulence anisotropic and non-homogeneous in the presence of walls. The objective of this section is
to reproduce a fully turbulent flow at Reτ = 550 within a wall-bounded channel on a LES mesh and
to compare with the DNS data available from Del Alamo et al. [241]. Three methods are compared
to create the fully turbulent flow:

• Method 1: using only HIT injection validated in Section 6.6.
• Method 2: using HIT injection validated in Section 6.6 along with artificial tripping introduced

in paragraph 6.5.2.
• Method 3: using the injection of non-homogeneous and anisotropic turbulence described in

paragraph 6.5.1.
The channel length required for a fully turbulent flow will be investigated.

6.7.1. Numerical setup

The computational domain is the wall-bounded channel flow represented on Figure 6.15. Boundary

Figure 6.15. – Computational domain and boundary conditions for the turbulent wall-bounded chan-
nel flow.

conditions are set as follows:
• Turbulence injection through a subsonic NSCBC inlet is used at x = 0.
• Constant pressure at Pout = 101325 Pa through a subsonic NSCBC outlet is used at x = 16h.
• Adiabatic no-slip walls are considered at y = −h and y = h.
• Periodic boundary conditions are employed between z = −h and z = h.
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where h = 1.5 mm is the channel half-height. Since Reτ = 550, the bulk Reynolds number based
on 2h is Reb ≈ 2 × 104 from Eq. (6.18). The fluid considered is air (Rgas = 287.15 J.kg−1.K−1) at
P = 101325 Pa and T = 300 K with µ = 1.85 × 10−5 kg.m−1.s−1 so that ν ≈ 1.573 × 10−5 m2.s−1.
Consequently, the bulk velocity to be imposed at the inlet plane must be around:

Ub = Rebν
2h ≈ 105 m.s−1 (6.95)

which is in accordance with the integral of the axial mean velocity profile showed in Del Alamo et
al. [241]. The mesh is designed to have:

y+ ≈ 1 and x+ = z+ ≈ 22 (6.96)

Since δν = 2.72 × 10−6 m from Eq. (6.17), the closest SP must be around y = yw ≈ δν and if the
polynomial degree is set to p = 4 (order 5), the corresponding element size in the y-direction has to
be ∆w ≈ 1.36 × 10−5 m using Eq. (6.25). Consequently, to capture the viscous boundary layer, the
y-direction is discretized using a geometric progression for the element size in this direction. Starting
from ∆w and with a common ratio of 0.07, it gives an element which is around 12∆w of size, along
the y-direction, at the center of the channel. Using Eq. (6.19) with x+ and z+ instead of y+ and in
order to have uniform discretizations in both axial and spanwise directions, the x and z directions are
respectively discretized with 80 and 10 segments. The final mesh is then composed of 28800 hexahedral
elements which gives a total number of DOF of 3.6 × 106 when p = 4. All the simulations were run
first for 3 convective times, based on Lx and Ub of this case, which corresponds to 0.69 ms of physical
time. From the restart solution at 0.69 ms, time-average variables are collected during 8 convective
times corresponding to 1.83 ms. This value of 8 convective times was shown to be sufficient for the
statistics to be converged. The post-treatment of these statistics is done as follows:

1. The code provides u, v, w, u2, v2, w2, uv, vw and uw at SP.
2. Rcart is computed at all SP using Eq. (6.93).
3. u, v, w and Rcart at each SP are interpolated on an uniform Cartesian grid with nx, ny and nz

points respectively along x, y and z directions.
4. Since the domain is periodic in z direction, u, v, w and Rcart are spatially averaged in this

direction to get a 2D plane of the channel with (x, y) ∈ [0, Lx] × [−h, h].
5. At the end of this averaging process, 1D profiles along y direction at different axial positions can

then be plotted from the 2D average plane.
The remaining numerical parameters for Riemann solver, diffusion scheme and time-integration pro-
cedure used for all the simulations are the same as in Table 6.3.

6.7.2. Injection of HIT only at the inlet
In this paragraph, HIT is injected at the inlet of the channel and is superimposed to an injected

axial mean flow given by Eq. (6.38) (for uin instead of win), with n = 7 and Ucl = 121.1 m.s−1 obtained
from Eq. (6.39) to have the expected bulk velocity. The objective is to see if only HIT injection in the
presence of walls can be able to reproduce, after a certain distance from the inlet in the channel, a
turbulent channel flow similar to the one simulated by Del Alamo et al. [241] with DNS and considered
as the reference here. The choice of the turbulent parameters for injected HIT at the inlet is crucial
and needs some preliminary tests. Table 6.7 sums up the final values retained in this paragraph for
these parameters. Since they were only a few million of SP only, N was taken to 1000. Concerning
the value of urms, based on the DNS data profiles, it seemed that RMS velocities at channel centers
were around 4 m.s−1 for

√
v′2 and

√
w′2 and around 5 m.s−1 for

√
u′2. Thus, after some tests, a value

a bit higher than 5 m.s−1 was found appropriate to have correct RMS velocities at channel center.
Characteristic sizes were chosen as follows:
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Energy spectrum N [-] Mode distribution Le [mm] Lref [mm] Lc [mm] urms [m.s−1]
Passot-Pouquet 1000 Logarithmic 0.85 1.5 0.12 5.33

Table 6.7. – Turbulent parameters used for the HIT injection in a turbulent wall-bounded channel
flow.

• based on previous studies using PP spectrum with walls [286, 287], Le was set between 2h/4
and 2h/3.

• Lref was set equal to h to have structures with a size of at most the channel half-width.
• Lcut was set equal to 2∆DOF

x = 2∆DOF
z since x and z have the coarser meshing and to have at

least 2 SP in the smallest structures.
Transverse profiles along y direction at different axial positions x are represented in Figures 6.16
and 6.17 respectively for the mean axial flow and the RMS velocities. They are plotted against DNS
data using friction variables: JAGUAR velocities are divided by uτ ≈ 5.80 m.s−1 obtained in the
simulation and close to the DNS value of 5.768 m.s−1 obtained from Eq. (6.17). The results show
that a turbulent channel flow is almost reproduced from x = 6 × 2h where velocity profiles have
converged to an established flow close to DNS results especially at channel center. The results at
x = 8 × 2h, corresponding to the outlet position, were not shown because they are on a boundary
condition which usually does not exist in real configurations where the channel is only the injector part
of the whole system. Therefore, it seems that a channel length between 6 × 2h and 7 × 2h is sufficient
to have a turbulent channel flow with JAGUAR using the turbulence injection methodology described
in Section 6.4. However even at x = 7 × 2h, far from the channel center, the near-wall turbulence
is under-predicted because only HIT is employed to trigger the turbulence that is why additional
treatments such as artificial tripping or the injection of anisotropic turbulence can be needed and are
the topics of the next two paragraphs.
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Figure 6.16. – Evolution of U+ = u/uτ as a function of y+ at different axial positions in the channel
when only HIT is injected at channel inlet. DNS results of Del Alamo et al. [241] are
also represented for comparison.

6.7.3. Injection of HIT at the inlet coupled with artificial tripping
The same situation as the one shown in paragraph 6.7.2 is considered with same injected mean

flow and same turbulent injection parameters. In order to better reproduce near-wall turbulence,
two Cartesian artificial steps (one on each wall), like the one shown in Figure 6.5a, are added to
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Figure 6.17. – Evolution of RMS velocities non-dimensionalized by uτ as a function of y+ at different
axial positions in the channel. DNS results of Del Alamo et al. [241] are also represented
for comparison.

the simulation. Firstly, it is important to locate them at appropriate positions based on experience
and best practices with the code. Following what was done in Boudet et al. [282], the two artificial
roughness elements start at x = h = 1.5 mm and end at x = 1.8 mm in order to have 5 SP inside steps
length since ∆DOF

x = 6 × 10−5 m. The height of these steps is set to be 8% of h so that the artificial
step at the top wall is applied for y ∈ [0.92h, h] and at the bottom wall for y ∈ [−h,−0.92h]. Finally,
both artificial steps are activated all along spanwise direction so for z ∈ [−h, h].

Now that the two artificial roughness elements have been located, the only parameter remaining is
the value of CD introduced in Eq. (6.88) which needs to be calibrated. Thus, simulations have been
performed using three different values of CD: 1, 1.5 and 2. Results at x = 7 × 2h are compared in
Figures 6.18 and 6.19 with the ones obtained in paragraph 6.7.2 with only HIT injection. The mean
axial flow is not impacted by the artificial tripping treatment according to Figure 6.18. However,
RMS velocities results are improved when using this treatment especially the axial (Figure 6.19a) and
cross-stream (Figure 6.19d) components. All the three values of CD give good results and CD = 1.5
can be retained as the optimal choice between them since sometimes CD = 2 over-predicts a bit
DNS results whereas CD = 1 under-predicts them sometimes. Of course, a better optimal value for
CD can be investigated (it is completely case-dependent) but the purpose of this reasoning was to
show that artificial tripping can help HIT injection in reproducing near-wall turbulence. It should
be mentioned that using only the artificial tripping, without HIT injection, takes way too much time

132



6.7 Turbulent wall-bounded channel flow

and a much longer channel length to reach an established turbulent flow. Therefore, the use of HIT
injection is really the key element that accelerates the transition to turbulence and artificial tripping
is an additional tool that can be added to have a better description of near-wall turbulence.
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Figure 6.18. – Evolution of U+ = u/uτ as a function of y+ at x = 7 × 2h for three values of CD. DNS
results of Del Alamo et al. [241] and results with only HIT injected at the inlet are also
represented for comparison.

6.7.4. Injection of non-homogeneous and anisotropic turbulence at the inlet
In this paragraph, the injection of non-homogeneous and anisotropic turbulence, described in para-

graph 6.5.1 and based on the DNS profiles of Del Alamo et al. [241], is employed to see if this
technique is also able to reproduce a turbulent channel flow around x = 6 − 7 × 2h. As explained
in paragraph 6.5.1, a turbulent HIT field with urms = 1 m.s−1 has to be generated first before ap-
plying Eq. (6.84). Then, using Eq. (6.86) any given value of urms will end up with a turbulent HIT
field satisfying urms = 1 m.s−1. Consequently, the same turbulent parameters written in Table 6.7
are employed except that at the end of the HIT generation process Eq. (6.86) is used to rescale the N
turbulent modes ending up with u′,HIT

in . Then, Eq. (6.84) can be employed where the Cholesky matrix
is computed as follows from the DNS data:

1. The DNS of Del Alamo et al. provides y+, U+ (
y+
)

and Rcart,+
(
y+
)

where Rcart,+ = Rcart/u2
τ .

2. A python script with input data h, µ, Rgas, P , T and Reτ converts y+, U+ (
y+
)

and Rcart,+
(
y+
)

into y, u (y) and Rcart (y).
3. The Cholesky matrix A (y) is computed from Rcart (y) using Eq. (6.85).
4. The last step, due to the SD framework, is a 1D interpolation of A (y) at inlet FP since the

previous y coordinates are not the ones of inlet FP but those of the DNS data.
While urms does not play a role anymore, the value of Le still has an impact on the injected turbulence:
it gives the size of the most energetic structures of the non-homogeneous and anisotropic generated
turbulent field. Thus, three different values of Le are tested in this case to see their impact on the
results: 0.75 mm, 0.85 mm (the value in Table 6.7) and 1 mm. A last difference with the two previous
cases should be also mentioned: the injected mean flow at the inlet is the one coming from the DNS
of Del Alamo et al. [241] since the objective was to inject available DNS data into the channel and see
what happens. Results at x = 7 × 2h are summed up in Figures 6.20 and 6.21. As for the injected
mean flow with artificial tripping, the mean flow is almost identical even with non-homegenous and
anisotropic injected turbulence and an injected mean flow corresponding to the DNS case. Concerning
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Figure 6.19. – Evolution of RMS velocities non-dimensionalized by uτ as a function of y+ at x = 7×2h
for three values of CD. DNS results of Del Alamo et al. [241] and results with only HIT
injected at the inlet are also represented for comparison.

the RMS velocities illustrated in Figure 6.21, the near-wall turbulence is well captured for all values of
Le. However, it seems that using too high values of Le can lead to an overestimation of the turbulence
at channel center such as for Le = 0.85 mm and Le = 1 mm on Figure 6.21b. On the other hand,
looking at cross-stream RMS on Figure 6.21d, using Le = 1 mm gives the best results. Therefore, it
seems that there is some trade-off to do for the value of Le: not too big for turbulence at channel
center but not too small either to not under-predict turbulence in the boundary layer. It is probable
that this conclusion will be different if a VKP spectrum is used instead which has a more uniform
energy distribution. Except these differences due to Le, this methodology to inject non-homogeneous
and anisotropic turbulence also shows that it is able to reproduce a turbulent channel flow after a
distance around 7 × 2h.

6.7.5. Axial pressure gradient and acoustics in the channel

A last element that can be checked in a turbulent wall-bounded channel flow, is that the pressure
gradient due to friction at walls is correctly estimated. Combining Eq. (6.12) and Eq. (6.15), the mean
axial pressure gradient at channel center follows:

∂P

∂x
= −ρu2

τ

h
⇐⇒ P (x, 0) = Pout + (Lx − x) ρu

2
τ

h
(6.97)
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Figure 6.20. – Evolution of U+ = u/uτ as a function of y+ at x = 7 × 2h for three values of Le when
injecting non-homogenous and anisotropic turbulence. DNS results of Del Alamo et
al. [241] and results with HIT injected at the inlet coupled with artificial tripping for
CD = 1.5 are also represented for comparison.

where Pout = 101325 Pa here. Figure 6.22a shows the evolution of P (x, 0) for the three previously stud-
ied injection cases: HIT only, HIT coupled with artificial tripping for CD = 1.5 and non-homogeneous
anisotropic turbulence with Le = 0.85 mm. The theoretical curve corresponds to Eq. (6.97) computed
with uτ = 5.768 m.s−1 which is the expected value for Reτ = 550. In all cases, the expected evolution
of P (x, 0) is retrieved in the second half of the channel. It is in accordance with the results on veloci-
ties showing that a turbulent channel flow was obtained from x ≈ 12h. The artificial tripping induces
a strong deviation of the mean pressure around its location in x = h but the flow rapidly tends back
to the expected pressure decay. Figure 6.22b presents the non-dimensionalized RMS of pressure along
y = 0 within the channel giving an estimation of the noise generated by the injection of turbulence
in the three cases: HIT only, HIT coupled with artificial tripping and non-homogeneous anisotropic
turbulence. All the three methodologies generate noise mostly at the inlet but is rapidly dissipated
due to friction along the channel. Although it is dissipated, this noise is still higher than what DNS
results have predicted which should be around 5 for

√
P ′2 (x, 0) /ρu2

τ at this friction Reynolds num-
ber [243, 288] instead of approximately 17 along the channel according to Figure 6.22b. One thing also
not expected is that the HIT only case produces more noise at the inlet than the non-homogeneous
and anisotropic case where Eq. (6.74) is not satisfied. More investigations are required to identify
the source of this noise in both HIT and non-homegeneous and anisotropic turbulent cases. It can
come from the NSCBC treatment itself at the inlet where some additional treatments for acoustics
have been recently developed [276]. There is also the incompressibility condition of Eq. (6.74) for
the HIT field that is satisfied in the continuous case without discretization of the space but there is
no guarantee that the discrete divergence of velocity is zero and some additional corrections can be
employed as in Saad et al. [272]. The way to treat properly these noise issues is beyond the scope of
this manuscript and is left for future work.
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Figure 6.21. – Evolution of RMS velocities non-dimensionalized by uτ as a function of y+ at x = 7×2h
for three values of Le when injecting non-homogenous and anisotropic turbulence. DNS
results of Del Alamo et al. [241] and results with HIT injected at the inlet coupled with
artificial tripping for CD = 1.5 are also represented for comparison.
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136



6.8 Turbulent wall-bounded pipe flow

6.8. Turbulent wall-bounded pipe flow
Similar to what was done in Section 6.7, this section is dedicated to the simulation of a turbulent

pipe flow using three approaches: HIT injection only, HIT injection coupled with artificial tripping
and injection of non-homogeneous anisotropic turbulence. The turbulent pipe flow that is considered
is the one simulated in DNS by El Khoury et al. [247] at Reb = 11700 taken as reference for the results.
Like for the turbulent channel flow case, the pipe length from which the flow is fully turbulent will be
investigated.

6.8.1. Numerical setup
The computational domain is a pipe of diameter D = 2R, with R = 6.35 mm, with a length of

L = 8D. It is represented in Figure 6.23a with its associated boundary conditions set as follows:
• Turbulence injection through a subsonic NSCBC inlet is used at z = 0.
• Constant pressure at Pout = 105 Pa through a subsonic NSCBC outlet is used at z = 8D.
• Adiabatic no-slip wall is considered all along the side wall of the pipe where r = R.

(a) Computational domain and boundary
conditions.

(b) View of a quarter-section of the mesh el-
ements.

Figure 6.23. – Computational domain, boundary conditions and cross-sectional view of a quarter-
section of the mesh elements used for the turbulent wall-bounded pipe flow.

The fluid is air (Rgas = 287.15 J.kg−1.K−1) at P = 105 Pa and T = 300 K with µ = 1.716 ×
10−5 kg.m−1.s−1 so that ν ≈ 1.477 × 10−5 m2.s−1. Thus, the bulk velocity to be imposed at the inlet
plane is deduced from Eq. (6.26):

Ub = Rebν
D

≈ 13.62 m.s−1 (6.98)

The value of Reb gives also access to the friction factor by solving Eq. (6.31) which gives 0.03 in this
case. Consequently, friction velocity can be computed from Eq. (6.30) ending up with 0.830 m.s−1.
The associated friction Reynolds number can be found using Eq. (6.17) with R instead of h for pipes:

Reτ = uτR

ν
= 357 (6.99)
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which is extremely close to the value of 360 mentioned in El Khoury et al. [247]. Finally, the viscous
length scale δν is obtained from Eq. (6.15) to get 1.78 × 10−5 m. The mesh is designed to have the
following characteristics:

r+ = 1.25 , Rθ+ = 9 and z+ = 11 (6.100)

A view of a quarter-section of the mesh elements (no SP are shown) is represented in Figure 6.23b
where the mesh refinement in the wall normal direction (radial direction) can be seen. This cross-
section is extruded along pipe direction using 130 uniformly distributed segments between z = 0 and
z = L. The mesh was built for a polynomial degree set to p = 3 (order 4) in every elements. The final
mesh is composed of 108290 second-order (to better capture the curvature of pipe walls) hexahedral
elements which gives a total number of DOF around 6.9×106 when p = 3. All the simulations were run
first for 3 convective times, based on L and Ub of this case, which corresponds to 22.38 ms of physical
time. Then, from the restart solution at 22.38 ms, time-averages variables are collected during 8
convective times corresponding to 44.76 ms. These 8 convective times were sufficient for the statistics
to be converged. The post-treatment of these statistics is done as follows:

1. The code again provides u, v, w, u2, v2, w2, uv, vw and uw at SP.
2. Rcart is computed at all SP using Eq. (6.93).
3. u, v, w and Rcart at each SP are interpolated on a cylindrical mesh where the discretization is

uniform along r ∈ [0, R], θ ∈ [0, 2π] and z ∈ [0, L].
4. Azimuthal average is performed on the uniform cylindrical mesh considering ncut (defined by

the user) cuts at different θ in [0, 2π] where ur, uθ, uz and Rcyl are computed using Eq. (6.33)
and Eq. (6.35).

5. At the end of the azimuthal averaging process, an average meridional plane of the pipe is obtained
on which ur, uθ, uz and Rcyl have been azimuthally averaged and will be used to plot velocity
profiles along r direction at different axial positions on the pipe.

The remaining numerical parameters for Riemann solver, diffusion scheme and time-integration
procedure used for all the simulations are still the same as in Table 6.3.

6.8.2. Injection of HIT only at the inlet

In this paragraph, HIT is injected at the inlet of the pipe and superimposed to an injected axial
mean flow given by Eq. (6.40) with n = 6.86 and Ucl = 16.74 m.s−1 both obtained by solving the
system of equations provided by Eq. (6.41), Eq. (6.42) and Eq. (6.43) for Reb = 11700. As for the wall-
bounded channel flow case, the objective is to see the capability of HIT injection only to reproduce,
after a certain distance from the inlet of the pipe, a turbulent pipe flow in the presence of walls. The
reference turbulent pipe flow from which results will be compared is the DNS made by El Khoury et
al. [247] at the same bulk Reynolds number. The turbulent parameters that have been selected for
the injected HIT are summed up in Table 6.8. In this case, N was set to 300 since the mesh was

Energy spectrum N [-] Mode distribution Le [mm] Lref [mm] Lc [mm] urms [m.s−1]
Passot-Pouquet 300 Logarithmic 3.175 6.35 1.2 1.5

Table 6.8. – Turbulent parameters used for the HIT injection in a turbulent wall-bounded pipe flow.

composed of approximately two times more DOF than in the wall-bounded channel flow. However, in
paragraph 6.6.4, N = 300 was shown sufficient to have a satisfactory HIT field at the inlet at moderate
computational cost. Regarding the urms value, according to DNS results, RMS velocities at channel
centers were around 0.83 m.s−1 for

√
w′2 and around 0.62 m.s−1 for

√
u′2
r and

√
u′2
θ so that a value
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of urms around 0.9 m.s−1 or 1.0 m.s−1 was firstly expected to work. Nevertheless, after some tests
it appeared that urms = 1.5 m.s−1, so around 11% of Ub, was a good choice. It can be due to the
lower value of Reb in this case: 11700 instead of 20000 for the wall-bounded channel flow so that the
flow is harder to trigger to become turbulent. The smaller value of N might entail that the injected
turbulence decays faster in the presence of walls compared to the same case but with N ≈ 1000. This
is something that could be investigated for future works. Characteristic sizes were chosen as follows:

• similarly to the wall-bounded channel case and based on previous studies using PP spectrum
with walls [286, 287], Le was set equal to D/4.

• again, similarly to the wall-bounded channel case, Lref was set equal to R to have structures
with a size of at most the pipe radius.

• Lcut was set equal to 6∆z since z direction has the coarser discretization and to have at least 6
SP in the smallest structures.

Radial profiles at different axial positions z are represented in Figure 6.24 and 6.25 respectively for the
mean axial flow and the RMS velocities in cylindrical coordinates. DNS values are also represented
for comparison. It should be mentioned that RMS velocities u′

ru
′
θ and u′

θu
′
z are not shown since they

are almost zero according to DNS results. As for the wall-bounded channel flow, a turbulent pipe
flow is obtained after approximately 6D or 7D of pipe length using turbulent injection, explained in
Section 6.4, in JAGUAR. The near-wall turbulence is well captured but there are still some differences
with the DNS in the transition zone between the pipe center and the near-wall region. Like in the
wall-bounded channel flow case, artificial tripping and anisotropic turbulent injection will be used in
the next two paragraphs to see if they can better predict this is transition zone.
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Figure 6.24. – Evolution of U+ = w/uτ as a function of r+ at different axial positions in the pipe.
DNS results of El Khoury et al. [247] are also represented for comparison.

6.8.3. Injection of HIT at the inlet coupled with artificial tripping

The same situation as the one shown in paragraph 6.8.2 is considered with the same injected mean
flow and same turbulent injection parameters. In order to better reproduce the DNS results, especially
in the transition zone between the pipe center and the near-wall region, a cylindrical artificial step,
like the one shown in Figure 6.5b, will be added to the simulation. Similarly to what was done for the
Cartesian steps in paragraph 6.7.3, the cylindrical artificial step is set as follows:

• it is located between z = R and z = R+ 5∆DOF
z to have at least 5 SP inside the steps axially.

• it has a height of 8% of R so that it will be applied for r ∈ [0.92R,R].
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Figure 6.25. – Evolution of RMS velocities non-dimensionalized by uτ as a function of r+ at different
axial positions in the pipe when only HIT is injected at pipe inlet. DNS results of El
Khoury et al. [247] are also represented for comparison.

Thus, the only parameter remaining is the value of CD introduced in Eq. (6.90) which needs to be
calibrated. Thus, as for the wall-bounded channel flow, simulations have been performed using three
different values of CD: 1, 1.5 and 2. Results at z = 7D are compared in Figures 6.26 and 6.27 with
the ones obtained in paragraph 6.8.2 with only HIT injection. As for the wall-bounded channel flow,
only RMS velocities are impacted by the artificial tripping treatment: the mean axial flow is almost
the same according to Figure 6.26. These RMS velocities are significantly improved when using the
artificial step for every value of CD tested here. Therefore, like for the wall-bounded channel flow case,
the use of artificial tripping, as a complement to HIT injection, helps to better reproduce a turbulent
pipe flow.

6.8.4. Injection of non-homogeneous and anisotropic turbulence at the inlet
This paragraph studies the impact of using the injection of non-homogeneous and anisotropic tur-

bulence based on the DNS profiles of El Khoury et al. [247] and its capability to reproduce a turbulent
pipe flow around z = 6 − 7D. The same methodology as the one described in paragraph 6.5.1, and
already applied in paragraph 6.7.4 for the wall-bounded channel flow, will be used. The only thing
that differs is the computation of the Cholesky matrix which is slightly different because the DNS
data are in cylindrical coordinates. It is computed as follows:

1. The DNS of El Khoury et al. [247] provides r+, U+ (
r+
)

and Rcyl,+
(
r+
)

where Rcyl,+ = Rcyl/u2
τ .
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Figure 6.26. – Evolution of U+ = w/uτ as a function of r+ at z = 7D for three values of CD. DNS
results of El Khoury et al. [247] and results with only HIT injected at the inlet are also
represented for comparison.
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Figure 6.27. – Evolution of RMS velocities non-dimensionalized by uτ as a function of r+ at z = 7D
for three values of CD. DNS results of El Khoury et al. [247] and results with only HIT
injected at the inlet are also represented for comparison.
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2. A python script with input data D, µ, Rgas, P , T and Reτ converts r+, U+ (
r+
)

and Rcyl,+
(
r+
)

into r, w (r) and Rcyl (r).
3. At each inlet FP, Rcyl (r) is interpolated and Eq. (6.35) is inverted to get Rcart at these FP.
4. Finally, Cholesky matrix A is computed from Rcart at each FP using Eq. (6.85).

The injected mean flow is the one obtained from DNS data and turbulent parameters are the same
as in Table 6.8 except that three different values of Le have been tested to see their impact on the
results: D/3, D/4 (the value in Table 6.8) and D/5. Results at z = 7D are summed up in Figures 6.28
and 6.29. As in the wall-bounded channel case with anisotropic injection, the mean flow is not very
different. It can be noticed that with smaller values of Le, the centerline velocity is slightly over-
predicted. About the RMS velocities shown in Figure 6.29, Le = D/4 gives the best results whereas
for Le = D/3 and Le = D/5 RMS velocities are respectively over-predicted and under-predicted.
Thus, in the case of the wall-bounded pipe, no trade-off has to be found on Le since changing its value
impact all the RMS profiles in the same manner. This is not a result that can be generalized since it
probably depends on the value of Reb and also on the turbulent spectrum that is used. However, for
the situation considered here with a PP spectrum injected in a wall-bounded pipe at Reb = 11700,
it seems that Le = D/4 is an optimal choice. It is able to reproduce a turbulent pipe flow after a
distance around 7D and gives similar results to the injection of HIT coupled with artificial tripping
using CD = 1.5.
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Figure 6.28. – Evolution of U+ = w/uτ as a function of r+ at z = 7D for three values of Le when
injecting non-homogeneous and anisotropic turbulence. DNS results of El Khoury et
al. [247] and results with HIT injected at the inlet coupled with artificial tripping for
CD = 1.5 are also represented for comparison.

6.8.5. Axial pressure gradient and acoustics in the pipe

As it was done for the wall-bounded channel flow in paragraph 6.8.5, the pressure gradient due to
friction at walls can be investigated in the pipe to see if it is correctly reproduced. It can be shown
that the mean axial pressure gradient at pipe center follows [150]:

∂P

∂z
= −2ρu

2
τ

R
⇐⇒ P (z, 0) = Pout + 2 (Lz − z) ρu

2
τ

R
(6.101)

where Pout = 105 Pa here. Figure 6.30a shows the evolution of P (z, 0) for three different injection cases
previously studied: HIT only, HIT coupled with artificial tripping for CD = 1.5 and non-homogeneous
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Figure 6.29. – Evolution of RMS velocities non-dimensionalized by uτ as a function of r+ at z = 7D
for three values of Le when injecting non-homogeneous and anisotropic turbulence.
DNS results of El Khoury et al. [247] and results with only HIT injected at the inlet
are also represented for comparison.

anisotropic turbulence with Le = D/4. The theoretical curve corresponds to Eq. (6.101) computed
with uτ = 0.830 m.s−1 which is the expected value for Reτ = 360. In every cases, the expected
evolution of P (z, 0) is retrieved very rapidly downstream of the inlet plane. As in the wall-bounded
channel flow, the artificial tripping induces a deviation of the mean pressure around its location in
x = R but the flow rapidly goes back to the expected mean pressure downstream. Figure 6.30b presents
the non-dimensionalized RMS of pressure along r = 0 within the channel giving an estimation of the
noise generated by the injection of turbulence in the three cases: HIT only, HIT coupled with artificial
tripping and non-homogeneous anisotropic turbulence. Like in the wall-bounded channel flow, all the
three methodologies generate noise mostly at the inlet but this noise is at well higher levels than in
the channel flow case. This time the noise is more important in the case of non-homogeneous and
anisotropic turbulence which is to be expected since Eq. (6.74) is not satisfied in this case. Therefore,
the wall-bounded pipe also shows that more work is needed to investigate the origin of this noise and
how it can be reduced.
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Figure 6.30. – Evolution of mean pressure and RMS of pressure at channel center (r = 0) along
pipe axis for HIT only, HIT coupled with artificial tripping for CD = 1.5 and non-
homogeneous anisotropic turbulence with Le = D/4 mm cases.

6.9. Summary of this chapter
In this chapter, the general concepts of turbulent channel and pipe flows are first introduced showing

that they are characterized by different flow regions from the viscous sublayer near the walls to the
outer layer near channel or pipe center. In between, the buffer layer and the log-law regions lack of
modeling and are still widely studied. Different methods exist in CFD to reproduce these kinds of
flows and among them the injection of turbulence at the inlet of the computational domain is very
efficient.

Several approaches for injecting turbulence are proposed in the literature. The one which is consid-
ered in this work is the synthetic random Fourier approach where turbulent fluctuations are generated
based on a sum of random Fourier modes. This methodology was originally developed by Kraich-
nan [263] ending up with a divergence-free synthetic HIT field where turbulent modes are chosen
stochastically and indirectly to satisfy a given energy spectrum. In this work, the extension of Kraich-
nan’s work by Karweit et al. [269] and Bechara et al. [264], where turbulent modes are chosen deter-
ministically and directly from a given energy spectrum, is employed since it is adapted to any energy
spectrum function. The synthetic random Fourier method can be extended to inject non-homogeneous
and anisotropic fluctuations to better reproduce near-wall turbulence. The addition of an artificial
tripping approach can also be used for that purpose.

The injection of turbulence is first validated on a channel flow with an inlet and an outlet as axial
boundary conditions whereas channel sides are set as periodic boundary conditions in order to be in
HIT hypotheses where there are no losses due to wall friction. The expected injected HIT field was
retrieved within the channel for two different energy spectrum functions and a study on the influence
of the number of turbulent modes N , and of their distribution, on the results and computational time
was carried out. It shows that for N ≥ 600, the isotropic property of the HIT field is conserved, for
the two energy spectra considered, but there is a trade-off with computational time which strongly
increases when N ≥ 600. The injection of turbulence is then tested for reproducing turbulent wall-
bounded channel and pipe flows. In both cases, it performs well to reproduce turbulence at channel or
pipe centers whereas near the walls and in the transition zone between walls and channel/pipe enters,
turbulence is usually under-predicted. Therefore, either the extension of synthetic random Fourier
method to inject non-homogeneous and anisotropic turbulence or the addition of an artificial tripping
were tested and show improvement of the results in the near-wall region. The length required to reach
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an established turbulent flow using this turbulent injection methodology in JAGUAR, was found to
be around 6 × 2h and 6 ×D respectively for turbulent channel and pipe flows. Finally, although the
results for aerodynamic fields were very satisfying, both channel and pipe flows generate too much
noise compared to what DNS results have shown. Therefore, more work is needed to reduce this noise
which can come from many sources such as the boundary conditions or the discretization of turbulent
modes due to the mesh.
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Chapter 7 : Extension of the Spectral Difference method to simulate a multi-species and reacting
gas mixture

This chapter is dedicated to the simulation of one-dimensional and two-dimensional laminar pre-
mixed flames using the Spectral Difference (SD) method. Firstly, the classical SD algorithm is shown
to be unstable in the presence of a thermally multi-species perfect gas. A modification of the SD algo-
rithm is then proposed to correct this non-physical behavior. This allows to simulate several laminar
one-dimensional and two-dimensional premixed flames, with different chemical schemes, as validation
test cases. A first evaluation of the interest and the potential of using the SD method in combustion
is also investigated on these test cases. Finally, the impact of using the SDLIFT formulation for
diffusion schemes is studied on very coarse discretizations of several flames.

7.1. Handling contact discontinuities for a thermally perfect gas with the
SD method

In paragraph 1.3.1, it was explained that multi-species mixtures, with thermodynamic functions
depending on T and Yk may lead to numerical instability, in particular in reacting flows where the
energy equation is required. This issue has been observed in previous works with FV [75], DG [25, 27,
85] and also FR [92] methods, and is therefore also expected with SD. The objective of this section is
to evaluate and solve this problem with SD.

7.1.1. Discretization of a contact discontinuity with the SD method
Consider the case of a contact discontinuity as described in [75] where the 1D Euler equations for

a multi-species gas (1D case of Eq. (F.1)) are solved with a flow initially at constant pressure Pc
and constant velocity uc but with a temperature or/and composition gradient in the domain. In this
situation, in theory the pressure and velocity remain constant. Denoting Ha(t) the theoretical solution
at time instant t, verified at SP, the question is to determine at which conditions Ha is verified at SP
at the next time instant t+∆t. The conservative variables at SP are advanced in time using Eq. (4.21)
which is recalled here for clarity:

dÛ
dt

(ξj) +
N1d

F P∑
k=1

Ek
∂lFPk
∂ξ

(ξj) = 0, for j ∈ J1, N1d
SP K (7.1)

where Ek here replaces Êk since |J |J−1 = 1 in 1D. As Ek is computed from values at FP, these must
preserve Ha. In other words, the interpolation from SP to FP must preserve constant pressure and
velocity. One easy way to guarantee this is to interpolate directly P and u instead of ρu and ρE. For
the two remaining variables, Yk is interpolated instead of ρYk and ρ can be interpolated as usual - or
the temperature can be taken instead. Thus, Ha is verified also at FP and writing mass, momentum
and energy equations from Eq. (7.1) gives:

1. Conservation of mass

dρ̂

dt
(ξj) +

N1d
F P∑
k=1

ρkuk
∂lFPk
∂ξ

(ξj) = 0 =⇒ dρ̂

dt
(ξj) + uc

N1d
F P∑
k=1

ρk
∂lFPk
∂ξ

(ξj) = 0 (7.2)

since uk = uc for k ∈ J1, N1d
FP K.

2. Conservation of momentum

dρ̂u

dt
(ξj) +

N1d
F P∑
k=1

(
ρku

2
k + Pk

) ∂lFPk
∂ξ

(ξj) = 0 =⇒ dρ̂u

dt
(ξj) + u2

c

N1d
F P∑
k=1

ρk
∂lFPk
∂ξ

(ξj) + Pc

N1d
F P∑
k=1

∂lFPk
∂ξ

(ξj) = 0

(7.3)

since Pk = Pc for k ∈ J1, N1d
FP K.
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3. Conservation of energy

dρ̂E

dt
(ξj) +

N1d
F P∑
k=1

uk (ρkEk + Pk)
∂lFPk
∂ξ

(ξj) = 0 =⇒ dρ̂E

dt
(ξj) + uc

N1d
F P∑
k=1

ρkEk
∂lFPk
∂ξ

(ξj)

+ ucPc

N1d
F P∑
k=1

∂lFPk
∂ξ

(ξj) = 0

(7.4)

Since
N1d

F P∑
k=1

lFPk (ξ) = 1 ∀ξ ∈ [0, 1] ⇒
N1d

F P∑
k=1

[
∂lFPk /∂ξ

]
(ξj) = 0 for j ∈ J1, N1d

SP K so that Eq. (7.3)

(respectively Eq. (7.4)) turns into Eq. (7.5) (respectively Eq. (7.6)):

dρ̂u

dt
(ξj) + u2

c

N1d
F P∑
k=1

ρk
∂lFPk
∂ξ

(ξj) = 0 (7.5)

dρ̂E

dt
(ξj) + uc

N1d
F P∑
k=1

ρkEk
∂lFPk
∂ξ

(ξj) = 0 (7.6)

Injecting Eq. (7.2) into Eq. (7.5) ends up with:
dρ̂u

dt
(ξj) − uc

dρ̂

dt
(ξj) = 0 ⇐⇒ dû

dt
(ξj) = 0, for j ∈ J1, N1d

SP K (7.7)

Eq. (7.7) shows that velocity remains constant at t+ ∆t satisfying half of Ha. Concerning the energy
equation in Eq. (7.6), an expression of ρE as a function of P is needed. For a thermally perfect gas,
ρE can be expressed following Eq. (A.19) provided that the heat capacity ratio is set to γ̃ defined
in Eq. (A.24) so that ρkEk is now:

ρkEk = Pk
γ̃k − 1 + ρk

u2
k

2 = ΓkPc + ρk
u2
c

2 (7.8)

where Γ = 1/ (γ̃ − 1). Using Eq. (7.8) into Eq. (7.6) entails:

dρ̂E

dt
(ξj) + u3

c

2

N1d
F P∑
k=1

ρk
∂lFPk
∂ξ

(ξj) + ucPc

N1d
F P∑
k=1

Γk
∂lFPk
∂ξ

(ξj) = 0 (7.9)

Thanks to Eq. (A.19), the time derivative of ρ̂E (ξj) is expressed as:

dρ̂E

dt
(ξj) = Γ̂ (ξj)

dP̂

dt
(ξj) + Pc

dΓ̂
dt

(ξj) + u2
c

2
dρ̂

dt
(ξj) + ρuc

dû

dt︸︷︷︸
=0

(ξj) (7.10)

Consequently, putting Eq. (7.10) into Eq. (7.9), the energy equation becomes:

Γ̂ (ξj)
dP̂

dt
(ξj) + Pc

dΓ̂
dt

(ξj) + uc

N1d
F P∑
k=1

Γk
∂lFPk
∂ξ

(ξj)

+ u2
c

2

dρ̂
dt

(ξj) + uc

N1d
F P∑
k=1

ρk
∂lFPk
∂ξ

(ξj)


︸ ︷︷ ︸

=0

= 0 (7.11)

Therefore, to have
[
dP̂ /dt

]
(ξj) = 0 for j ∈ J1, N1d

SP K, Γ (ξj) must satisfy:

dΓ̂
dt

(ξj) + uc

N1d
F P∑
k=1

Γk
∂lFPk
∂ξ

(ξj) = 0, for j ∈ J1, N1d
SP K (7.12)

From Eq. (7.12), it can be concluded that:
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• a mixture with constant Γ (calorically perfect gas case) always fulfills
[
dP̂ /dt

]
(ξj) = 0 for

j ∈ J1, N1d
SP K as already said in the beginning of this paragraph.

• in the general case where Γ = Γ (T, Yk) does not verify Eq. (7.12) and Ha is not satisfied at
t+ ∆t.

Although changing the interpolation from SP to FP does not strictly allow to verify Ha, it is clear
from the above derivations that it will improve the stability of the numerical algorithm, at the cost
of a minor modification of the classical SD algorithm. To evaluate this improvement, simulations
of a contact discontinuity with the classical SD algorithm and with the modified SD algorithm are
presented in the next paragraph.

7.1.2. Simulations of a contact discontinuity using the SD method
Two different approaches for the interpolation of variables from SP to FP are defined:
• Approach CONS: Ûe

SP → Ue
FP with Ûe

SP (respectively Ue
FP ) being the conservative variables

at SP (respectively FP) in the isoparametric (respectively physical) domain. Ue
FP are used at FP

to compute all needed variables for flux computations. This is the usual discretization process
in SD.

• Approach TUPY: Ûe
SP → Qe

SP → Qe
FP where Q = (T,u, P, Yk)T is the vector of primitive

variables with T instead of ρ as first variable. Qe
FP is used at FP to compute all needed variables

for flux computations.
These two formulations are tested in a 1D case with air (YO2

= 0.23 and YN2
= 0.77), at T = 300 K

on the left side and T = 2010 K on the right side. Initial pressure and velocity are constant respectively
at Pc = 101325 Pa and uc = 0.2815 m.s−1. The 1D domain is discretized using Ne = 96 elements
with p = 3 set inside each of them. This case is illustrated on Figure 7.1 where values of T , u and
P at SP are shown. Characteristic boundary conditions for a subsonic inlet, imposing T in = 300 K,
uin = uc, Y in

O2
= 0.23 and Y in

N2
= 0.77, and for a subsonic outlet imposing P out = Pc are applied. The
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Figure 7.1. – Initial values of T , u and P at SP for both CONS and TUPY approaches.

simulation is carried out without diffusion fluxes and combustion source terms to compute only the 1D
multi-species, non-reacting Euler equations. As expected, with the CONS approach important wiggles
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7.1 Handling contact discontinuities for a thermally perfect gas with the SD method

appear on the pressure (and consequently on velocity) profile in the temperature transition zone as
depicted in Figure 7.2. Other values of Ne and p have been tested to see if the mesh discretization can
change this behavior, especially with finer meshes, but observations were the same. On the contrary,
such wiggles are not visible with the TUPY approach on the initial discretization with Ne = 96 and
p = 3. For further confirmation, a similar mono-species case was also computed with the CONS
approach, showing a stable behavior as expected. Actually, very small pressure oscillations of the
order of 0.1 Pa are present with the TUPY approach in the temperature transition zone, as Eq. (7.12)
is not strictly verified. These oscillations are however extremely small, and considered acceptable for
the targeted combustion applications.
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Figure 7.2. – Profiles of T , u and P at SP after 104 iterations for multi-species cases with either CONS
or TUPY approaches, and mono-species case with CONS approach.

For further understanding, values of T , u and P are represented in Figure 7.3 at initialization on ten
points equally spaced per mesh element, called output points (OP), for both the mono-species case
and the multi-species case. This allows to see values of T , u and P at other points than SP, evaluated
using the continuous polynomials built from SP. Interestingly, wiggles appear on the pressure profile in
the transition zone between cold and hot air with the multi-species CONS approach whereas a perfect
constant pressure profile is kept with the two other cases.

These results confirm that for the multi-species case, interpolating and building polynomials with
conservative variables create pressure oscillations, whereas working with P and T at SP does not.
Nevertheless, the case presented here has a low velocity so that the advection term in Eq. (7.12) is quite
small. For larger values of uc, larger pressure oscillations are expected even for the TUPY approach,
as illustrated on Figure 7.4 for the exact same case with uc = 20 m.s−1. In that case, additional
numerical treatments will be necessary such as those already mentioned in paragraph 1.3.1 [75–84].

For a flame, uc corresponds to the speed at which the flame front propagates which is the laminar
flame speed S0

L. For most hydrocarbons: 0.1 m.s−1 ≤ S0
L ≤ 2 m.s−1. Thus, the TUPY approach

without additional numerical treatment should be sufficient for the targeted applications of this work.
It was the choice made here and in all simulated cases it did not lead to strong stability issues
probably due to the small values of S0

L used. Finally, it should be mentioned that another approach
interpolating ρ instead of T at FP, called ρUPY was also tested and found much more stable than
the CONS approach and with similar results than the TUPY approach. Some results using the ρUPY
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Figure 7.3. – Initial profiles of T , u and P at OP for multi-species cases with either CONS or TUPY
approaches and mono-species case with CONS approach.
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Figure 7.4. – Profiles of T , u and P at SP at 0, 1000 and 2000 time iterations for the multi-species
case with the TUPY approach when uc = 20 m.s−1.

approach can be found in paragraph 7.5.1.

7.1.3. Discussion on the impact of using TUPY approach instead of CONS

The TUPY approach is well more stable when considering a contact discontinuity simulation with
a thermally perfect gas compared to the CONS approach. A first thing to notice is that, in both
approaches, the conservative variables are still stored and advanced in time at SP. It is essential to
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7.2 One-dimensional laminar premixed flames

ensure the conservativity of the discretization so that Eq. (4.25) still holds. However, when employing
the TUPY approach there are still open questions such as:

1. By construction USP is a p-degree polynomial.
=⇒ QSP is not probably a polynomial due to non-linear relations between U and Q. Neverthe-
less, QSP is used to build a p-degree polynomial for Q at SP used after to evaluate QFP .
=⇒ QFP is obtained from a function that is directly a polynomial which is not the case in CONS
approach since QFP is deduced from UFP .
It is possible that these considerations does not play a big role because at the end: QFP is used
to compute fluxes F at FP, FFP , which are used to build a (p+ 1)-degree polynomial for fluxes
in both approaches.

2. For viscous fluxes, ∇Q is needed at FP. TUPY computes ∇Q directly from QFP whereas CONS
computes ∇U and reconstruct ∇Q.
=⇒ These differences of algorithm were shown to not being equivalent in DG and FR frameworks
although the differences on the results remain small [289]. It might also be the case for the SD
discretization.

7.2. One-dimensional laminar premixed flames
To validate the implementation of reacting flow equations in JAGUAR, simulations of 1D premixed

flames have been performed. In this section, JAGUAR results are compared with results obtained
using the reference solver AVBP [283, 284] developed by CERFACS which solves exactly the same
reacting NSE for a multi-species gas with the same transport and chemistry models. All AVBP
simulations were carried out using the TTGC scheme [179] for convective fluxes without artificial
viscosity for a fair comparison with JAGUAR. For diffusive fluxes, AVBP uses a finite element scheme
of order 2 [179]. 1D cases are also compared to the reference chemistry code CANTERA [126]. The
objective of this section is to validate in JAGUAR:

• The combustion source terms and species transport computations with a two-reactions scheme.
• The implementation of JANAF thermochemical tables.
• The inlet and outlet NSCBC in a 1D multi-species case.

For all JAGUAR simulations presented in this section, the average approach for the diffusion scheme
(see paragraph 4.4.1) was employed along with the SSP-ERK(3,3) scheme of Gottlieb and Shu [222] for
time integration (see Section 4.6). The left boundary condition is a NSCBC subsonic inflow imposing
uin = S0

L, T in = T f and Y in
k such that ϕin = ϕ at the inlet. This inlet boundary condition leads

to a steady flame as the inlet velocity is exactly equal to the flame speed S0
L. The right boundary

is a NSCBC subsonic outflow imposing a static pressure P out. Finally, all JAGUAR and AVBP
simulations were initialized using a CANTERA solution and were run over a physical time of 0.1
seconds for methane-air flames and 0.01 seconds for the hydrogen-air flame. These simulation times
ensured to reach a steady state.

7.2.1. One-dimensional methane/air flame using a two-reactions chemistry
7.2.1.1. Presentation of the case and numerical setup

A 1D CH4/Air premixed flame is considered. The chemical scheme is the two-reactions CH4/Air-
2S-BFER scheme developed by Franzelli et al. [130] and already introduced in paragraph 2.3.2. The
characteristics of this flame are given in Table 7.1 where S0

L and δ0
L have been obtained from the

CANTERA solution at ϕ = 0.8. In particular, δ0
L was obtained from the temperature profile of

the CANTERA solution using Eq. (2.33). The computational domain is a 1D segment of length
Lx = 0.02 m. To allow a fair comparison between JAGUAR and AVBP, all calculations are performed
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ϕ [-] T f [K] T b [K] P [Pa] δ0
L [m] S0

L [cm.s−1]
0.8 300 2010 101325 4.30 × 10−4 28.15

Table 7.1. – Characteristics of the 1D methane-air premixed flame using the CH4/Air-2S-BFER
scheme. T b, S0

L and δ0
L are the values given by CANTERA.

with similar number of points, i.e., same number of DOF. In AVBP, a DOF corresponds to a cell node
whereas in JAGUAR, it corresponds to a SP. In space dimension d for hexahedral elements at the
same degree p, the number of DOF is given by Eq. (4.74) for JAGUAR. Here the number of DOF is
set around 400 in order to have a sufficient number of DOF in δ0

L, around 9. While this imposes a fixed
number of 400 nodes in AVBP, JAGUAR has the possibility to use different values of Ne depending
on the polynomial degree p to keep the DOF value close to 400 as summed up in Table 7.2.

p 3 4 5 6
Ne 100 80 67 57

Table 7.2. – Values of Ne for each degree p to keep the DOF number around 400.

7.2.1.2. Results

After a transient phase due to the transition from a constant pressure (CANTERA solution) to
a compressible solution, convergence is reached and final profiles of density, velocity, pressure and
temperature are represented in Figure 7.5 for CANTERA, AVBP and JAGUAR with p = 4 and
p = 6. Major species mass fractions are plotted in Figure 7.6 for CANTERA and JAGUAR at p = 4
only since JAGUAR at p = 6 and AVBP show the same results.
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Figure 7.5. – Comparison of ρ, u, P and T profiles between CANTERA, AVBP and JAGUAR for a 1D
methane-air premixed flame using the CH4/Air-2S-BFER chemical scheme at ϕ = 0.8.

All 4 profiles are in excellent agreement. The pressure jump through the flame front is captured by
both JAGUAR and AVBP while CANTERA runs at constant pressure. Theoretically, this pressure
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Figure 7.6. – Comparison of major species mass fractions profiles between CANTERA and JAGUAR
at p = 4 for a 1D methane-air premixed flame using the CH4/Air-2S-BFER chemical
scheme at ϕ = 0.8.

drop is given by [3]:

P b − P f = ρf
(
S0
L

)2
(

1 − T b

T f

)
(7.13)

where P b and P f are respectively the pressure in burnt and fresh gases. Using values of Table 7.1, Eq. (7.13)
leads to a pressure drop of −0.511 Pa, i.e., very close to the value of −0.512 Pa measured from JAGUAR
and AVBP solutions. Finally flame speeds based on the consumption speed (see Eq. (2.29)), are com-
pared in Table 7.3 for both AVBP and JAGUAR solutions where ϵrel is the relative error compared to
the CANTERA reference value given in Table 7.1. Flame speeds estimated by JAGUAR are in very

Code AVBP JAG (p = 3) JAG (p = 4) JAG (p = 5) JAG (p = 6)
S0
L [cm.s−1] 28.31 28.17 28.16 28.16 28.15
ϵrel in % 0.568 0.071 0.036 0.036 0.0

Table 7.3. – Comparison of flame speed obtained with AVBP and JAGUAR (abbreviated by JAG) at
different polynomial degrees p for a 1D methane-air premixed flame using the CH4/Air-
2S-BFER chemical scheme at ϕ = 0.8.

good agreement with the value given by CANTERA which demonstrates its capability to well-capture
the flame front. Note that the error is always smaller with JAGUAR than with AVBP, and decreases
for higher p values, showing the benefit of high-order methods.

7.2.2. One-dimensional methane/air flame using Analytically Reduced Chemistry
7.2.2.1. Presentation of the case and numerical setup

The objective of this test case is to simulate the previous 1D premixed flame with JAGUAR using
a more detailed chemistry, including more species to transport than the two-reactions mechanism
employed in paragraph 7.2.1. The chemical scheme considered here is the CH4_16_250_10_QC
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ARC mechanism already mentioned in paragraph 2.3.3. It is composed of 16 transported species,
250 chemical reactions and 10 species in QSS. These QSS species have a very small characteristic
timescale so that their net chemical source term is considered equal to zero. Their concentration is
then computed from the concentrations of the other species, without solving a transport equation
which reduces the computational time. The characteristics of this flame are given in Table 7.4. Note
that for this case the equivalence ratio is ϕ = 1. The flame thickness is almost the same as the one

ϕ [-] T f [K] T b [K] P [Pa] δ0
L [m] S0

L [cm.s−1]
1.0 300 2210 100000 4.39 × 10−4 37.86

Table 7.4. – Characteristics of the 1D methane-air premixed flame using an ARC mechanism. T b, S0
L

and δ0
L are the values given by the CANTERA solution.

obtained with the CH4/Air-2S-BFER at ϕ = 0.8 already simulated in paragraph 7.2.1. Therefore the
same 1D segment of length Lx = 0.02 m is used and discretized with the same umber of DOF, here
with Ne = 80 elements and a polynomial degree set to p = 4. Note that in the general case, ARC
schemes may be stiffer than global chemical schemes due to the presence of fast intermediate species.
This is however note the case for methane-air combustion.

7.2.2.2. Results

Final profiles of density, velocity, pressure and temperature are represented in Figure 7.7 and some
species mass fractions profiles are represented in Figures 7.8 and 7.9. JAGUAR results are very close
to AVBP and CANTERA results which shows its capability to simulate more complex chemistry. The
pressure profile of the JAGUAR solution has very small pressure oscillations of the order of 0.1 Pa like
in the contact discontinuity case of paragraph 7.1.2. It comes again from Eq. (7.12) that is not verified
but this does not impact the flame structure in this case. Moreover, the flame speeds predicted by
JAGUAR (38.06 cm.s−1) and AVBP (38.09 cm.s−1) are almost identical meaning that JAGUAR gives
comparable results to a well established combustion solver.
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Figure 7.7. – Comparison of ρ, u, P and T profiles between CANTERA, AVBP and JAGUAR for
a 1D methane-air premixed flame using the CH4_16_250_10_QC ARC mechanism at
ϕ = 1.0.
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Figure 7.8. – Comparison of species mass fractions profiles of H2, H, O and OH between CAN-
TERA, AVBP and JAGUAR for a 1D methane-air premixed flame using the
CH4_16_250_10_QC ARC mechanism at ϕ = 1.0.

7.2.3. One-dimensional hydrogen/air flame using a skeletal mechanism

7.2.3.1. Presentation of the case and numerical setup

H2/Air flames have recently gained more attraction in the low-carbon energy context. They differ
significantly from hydrocarbon flames, due to the light and very reactive hydrogen molecule, and it
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Figure 7.9. – Comparison of species mass fractions profiles of HO2, H2O2, CH2O and C2H4 be-
tween CANTERA, AVBP and JAGUAR for a 1D methane-air premixed flame using
the CH4_16_250_10_QC ARC mechanism at ϕ = 1.0. Profiles are shown between
xmin = 5.85 mm and xmax = 8.5 mm for clarity.

is interesting to evaluate JAGUAR also on such flames. The chemical scheme considered here is the
so-called San Diego skeletal mechanism [136], named here as H2AIR_9_21_0_SD. It is composed
of 9 transported species reacting through 21 chemical reactions. The characteristics of this flame are
given in Table 7.5.

ϕ [-] T f [K] T b [K] P [Pa] δ0
L [m] S0

L [m.s−1]
1.0 300 2361 101325 3.11 × 10−4 2.24

Table 7.5. – Characteristics of the 1D hydrogen-air premixed flame using a skeletal mechanism. T b,
S0
L and δ0

L are the values given by the CANTERA solution.

As it can be seen, H2/Air flames have a much higher flame speed than hydrocarbon/air flames: S0
L

is almost ten times higher than for CH4/air flames shown in paragraphs 7.2.1 and 7.2.2. The flame
thickness δ0

L is also much reduced for H2/Air flames, around 30% smaller than the thickness of the
CH4/Air flames of paragraphs 7.2.1 and 7.2.2. The computational domain is here of length Lx = 0.01
m and is discretized with Ne = 65 elements and p = 4 ending up with 325 DOF. Based on the value
of δ0

L in Table 7.5, this leads to approximately ten points inside the flame front.

7.2.3.2. Results

Final profiles of density, velocity, pressure and temperature are represented in Figure 7.10 and
all species mass fractions profiles, except for N2, are represented in Figures. 7.11 and 7.12. Again,
JAGUAR results are similar to the ones of AVBP and CANTERA showing that it is also able to
simulate hydrogen combustion. Only small differences appear between JAGUAR and AVBP profiles
of HO2 and H2O2: the shapes are the same but the AVBP profiles are slightly shifted to the left.
Finally, flame speeds are almost the same for both codes: 2.136 m.s−1 for JAGUAR and 2.144 m.s−1

for AVBP.
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Figure 7.10. – Comparison of ρ, u, P and T profiles between CANTERA, AVBP and JAGUAR for
a 1D hydrogen-air premixed flame using the H2AIR_9_21_0_SD skeletal mechanism
at ϕ = 1.0.
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Figure 7.11. – Comparison of species mass fractions profiles of H2, H, O2 and OH between CAN-
TERA, AVBP and JAGUAR for a 1D hydrogen-air premixed flame using the
H2AIR_9_21_0_SD skeletal mechanism at ϕ = 1.0.

7.2.4. Conclusion on one-dimensional laminar premixed flames results

The results obtained for all 1D laminar premixed flames presented above validate the implementation
of multi-species transport and combustion thermochemistry in JAGUAR, including the combustion
source terms computation, the resolution of species transport equations, the implementation of JANAF
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Figure 7.12. – Comparison of species mass fractions profiles of O, H2O, HO2 and H2O2 between
CANTERA, AVBP and JAGUAR for a 1D hydrogen-air premixed flame using the
H2AIR_9_21_0_SD skeletal mechanism at ϕ = 1.0. Profiles of HO2 and H2O2 are
shown between xmin = 3 mm and xmax = 4 mm for clarity reasons.

thermochemical tables and the inlet and outlet NSCBC in 1D multi-species case. Moreover, it also
shows that the TUPY approach for interpolating variables from SP to FP, seems sufficient to stabilize
the SD method in combustion simulations.

7.3. Two-dimensional laminar premixed flames
To go a step further in the validation, 2D laminar premixed flames have been simulated using

JAGUAR. Two configurations are studied: a 2D burner-attached steady flame and a 2D circular
propagating flame. The objective of this section is to see if JAGUAR is able to reproduce more realistic
flame configurations with other boundary conditions than NSCBC, such as walls and symmetries. In
all cases JAGUAR results will be again compared with results obtained with the AVBP solver using the
TTGC scheme for convective fluxes and a finite element scheme of order 2 for diffusive fluxes. As for
the 1D premixed flames, the JAGUAR simulations use the average approach and the SSP-ERK(3,3)
scheme for respectively the interface diffusion fluxes and the time integration.

7.3.1. Two-dimensional methane/air burner computed with a two-reactions chemistry

7.3.1.1. Presentation of the case and numerical setup

The geometry of this test case is described in Figure 7.13. Fresh gases enter the burner axially
(x-axis) through a NSCBC subsonic inflow imposing a parabolic profile given by Eq. (7.14):

u (y) = Ucl

(
1 − y2

h2

)
(7.14)

where Ucl = 4 m.s−1 and h = 0.65 mm. The two-steps mechanism is again the CH4/Air-2S-BFER
with equivalence ratio and fresh gas temperature also set respectively to 0.8 and 300 K at the inlet
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Figure 7.13. – Computational domain and boundary conditions for the 2D burner case.

so that flame characteristics are the ones in Table 7.1. At the outlet, a subsonic outflow imposing
P = 101325 Pa is employed. From x = 0 to x = 10 mm (injection tube) side walls are adiabatic
and from x = 10 mm to x = 30 mm (combustion chamber) symmetry boundary conditions are
applied. The way symmetry and adiabatic no-slip walls are set using the SD method is explained in
Section 5.2. For the JAGUAR simulation, the domain is discretized using 1216 uniform quadrilateral
elements of characteristic size ∆e = 2.27 × 10−4 m. The polynomial degree within each element is set
to p = 4 ending up with a total of 30400 DOF and eight points inside the flame front. The AVBP
computational domain is discretized with almost the same number of DOF (31574 nodes in that case)
for a fair comparison.

7.3.1.2. Results

JAGUAR and AVBP calculations are initialized using the same procedure which consists in setting
hot burnt gases in the region between x = 10 mm and x = 30 mm whereas cold fresh gases are kept
for x < 10 mm. Figure 7.14 shows the 2D heat release rate field obtained with JAGUAR, showing an
attached flame of conical shape. The theoretical flame length can be calculated using Eq. (7.15) [290]:

Lthf = h

tan (α) with α = sin−1
(
S0
L

Ub

)
and Ub = 1

2h

∫ h

−h
u (y) dy = 2

3Ucl (7.15)

In Eq. (7.15), Ub = 2.667 m.s−1, α = 0.106 (computed with S0
L = 0.2815 m.s−1) so that Lthf = 6.11

mm which is very close to the value of 6 mm obtained with JAGUAR and measured on Figure 7.14.
Vertical profiles of both JAGUAR and AVBP solutions at x = 10.1 mm (close to injector outlet) and
at x = 12 mm in Figures 7.15 and 7.16 are merely identical. Horizontal profiles along the centerline
y = 0 are also represented in Figure 7.17 for completeness showing also excellent agreement between
the two solvers. Finally, Table 7.6 shows that both codes predict the same burnt gas temperature T b
and almost the same maximum heat release rate. CANTERA results obtained for the equivalent 1D
flame are also added as reference values.
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Figure 7.14. – 2D heat release rate field obtained with JAGUAR for the 2D burner case.
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Figure 7.15. – Comparison between JAGUAR and AVBP of temperature, heat release rate, axial and
vertical velocity profiles at x = 10.1 mm along y-axis for the 2D burner case.

Code T b [K] ω̇maxT [W.m−3]
JAGUAR 2012 3.69 × 109

AVBP 2012 3.60 × 109

CANTERA 2010 3.71 × 109

Table 7.6. – Comparison between JAGUAR and AVBP of burnt gas temperatures T b and maximum
heat release rates ω̇maxT obtained in the 2D burner case using the CH4/Air-2S-BFER
scheme at ϕ = 0.8. CANTERA values obtained on a 1D flame in the same conditions are
also shown for reference.

7.3.2. Two-dimensional methane/air circular flame computed with a two-reactions
chemistry

In this paragraph, an unsteady propagating flame is considered. This is a more challenging test
case, allowing to evaluate the performance of JAGUAR in transient situations.
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Figure 7.16. – Comparison between JAGUAR and AVBP of temperature, heat release rate, axial and
vertical velocity profiles at x = 12 mm along y-axis for the 2D burner case.
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Figure 7.17. – Comparison between JAGUAR and AVBP of temperature, heat release rate, axial and
vertical velocity profiles at y = 0 mm along x-axis for the 2D burner case.

7.3.2.1. Presentation of the case and numerical setup

The considered case is a 2D circular flame, as introduced in Bonhomme et al. in the context
of flame speed measurements [291]. The geometry and the boundary conditions are represented in
Figure 7.18. The computational domain is a square of size Lx = Ly = 10 cm with NSCBC outlet on
all sides maintaining P = 101325 Pa. A disk of burnt gases is initialized at the domain center with a
radius r0 = Lx/100 = 1 mm as in Bonhomme et al. [291]. Fresh gases are surrounding this disk for
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r > r0. More precisely, at t = 0, temperature and species mass fractions in the whole domain are set
following Eq. (7.16).

T (r, t = 0) = T f +
(
T b − T f

)
exp

(
−r2

r2
0

)
, Yk (r, t = 0) = Y f

k +
(
Y b
k − Y f

k

)
exp

(
−r2

r2
0

)
for k = 1, Ns

(7.16)

Figure 7.18. – Computational domain and boundary conditions for the 2D circular flame case.

With such initialization, a propagating flame forms at the disk contour and the disk of burnt gases
grows in time. According to previous studies [291, 292] on the same configuration:

• once r becomes higher than 5.5 mm, the flame has grown enough and is not anymore influenced
by the initial condition. This corresponds approximately to t = 2 ms here.

• The flame remains perfectly spherical without any impact of the boundary conditions until
r < 26.5 mm.

That is why, the physical time simulated for all simulations is set to 6 ms since at that time r ≈ 12.5
mm. Again, the two-steps mechanism is the CH4/Air-2S-BFER with ϕ = 0.8 and T f = 300 K
then flame characteristics are the ones shown in Table 7.1. JAGUAR simulations have been carried
out using a mesh composed of Ne = 16000 uniform quadrilateral elements (400 1D elements in each
direction) with p = 4. It ends up with 4 × 106 DOF. The AVBP grid is also composed of 4 × 106

DOF distributed in a uniform Cartesian mesh with 2000 nodes along each direction. Thus, based on
the value of δ0

L in Table 7.1, JAGUAR and AVBP discretizations have eight points inside the flame
front. This number of points was shown sufficient in paragraphs 7.2.1 and 7.3.1 to well resolve the
flame front for both codes.

7.3.2.2. Results

Figure 7.19 shows the temperature fields and a longitudinal cut of temperature at y = 0 along
x-axis, for both JAGUAR and AVBP simulations, at t = 2 ms, t = 4 ms and t = 6 ms. The fields were
plotted for (x, y) ∈ [−2 cm, 2 cm]2 for clarity since the complete domain is for (x, y) ∈ [−5 cm, 5 cm]2.
The solutions are almost identical for both codes as highlighted on the longitudinal cut of temperature
at y = 0 along x-axis. The cylindrical shape of the flame is kept in time by both solvers.

An interesting quantity to look at is the evolution of the consumption speed with time. It is
represented in Figure 7.20 for both JAGUAR and AVBP calculations. Both solvers actually predict
the same variation of Sc with time until t < 3 ms. After this time AVBP starts to burn slightly faster
than JAGUAR but the difference is very marginal.
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Figure 7.19. – 2D temperature fields obtained with JAGUAR (top) and AVBP (middle), and com-
parison of a longitudinal cut of temperature at y = 0 along x-axis, at t = 2 ms, t = 4
ms and t = 6 ms.

7.3.3. Conclusion on two-dimensional laminar premixed flames results

In both 2D steady and unsteady laminar premixed flames cases, using the CH4/Air-2S-BFER
chemical scheme [130], JAGUAR gives the same results as AVBP similarly to the 1D premixed flames
shown in Section 7.2. This validation allows to further investigate the use of SD for combustion, and
in particular the impact of the hp-refinement on both the solution accuracy and the computational
cost. This is done in the next section.

7.4. Evaluation of p-refinement on combustion cases

In Sections 7.2 and 7.3, the possibility to simulate 1D and 2D laminar premixed flames with
JAGUAR has been demonstrated. Before going towards more complex cases, the potential of the
SD method in the field of combustion is studied in this Section. In particular the impact of increasing
the polynomial degree on the quality of results and the associated computational cost is evaluated,
as well as local polynomial adaptation which is particularly attractive for combustion. Results of
this Section have been accepted for presentation at the 39th international Symposium of combustion
in Vancouver in July 2022, with the title Efficiency of the high-order Spectral Difference method in
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Figure 7.20. – Evolution with time of the consumption speed for JAGUAR and AVBP simulations.

combustion.

7.4.1. Context of the study
As already mentioned in paragraphs 1.3.2 and 1.3.3, only few combustion applications have been

studied using HO discontinuous methods such as DG, SD or FR although there are currently well
established for aerodynamics [96]. Almost all previous publications focused on the development of
stable algorithm, either for DG, SD or FR, for simulating a multi-species reacting flow that handles
pressure oscillations as introduced in paragraphs 1.3.1 and in Section 7.1. However, the gain of
applying HO methods to combustion in comparison to existing methods has not been evaluated.
According to previous studies on aerodynamic applications [112, 113], and compared to other HO
methods, the SD method makes a good compromise between computational cost and accuracy. This
conclusion may not hold for reacting flows as the number of equations to be solved is increased and
additional requirements in terms of accuracy have to be considered. In addition to their high accuracy,
HO discontinuous methods allow the local increase of the polynomial degree in regions of interest as
explained in Section 4.5 for the SD method. This feature is called p-adaptation (or p-refinement)
and has been applied in aerodynamic simulations either with the DG [94, 95] or the SD [96] method.
Its use in combustion remains to be demonstrated and compared with the AMR technique widely
employed in combustion nowadays. To the authors’ knowledge, only Johnson and Kercher [27] have
published a paper where p-adaptation was applied to combustion simulations in the context of the
DG methodology, and nothing was published on p-adaptation using the SD method on combustion
applications.

7.4.2. Test case presentation and reference solution
The test case considered here is the 2D burner case simulated in Section 7.3.1, whose geometry

is shown on Figure 7.13. The same boundary conditions, the same CH4/Air-2S-BFER chemical
scheme and the same numerical approach (average approach for interface diffusion fluxes and SSP-
ERK(3,3) for time integration) are used. A simulation using a very fine mesh is performed to serve
as a reference to measure accuracy, since no full analytical solution is available. The computational
domain is discretized using 4576 uniform quadrilateral elements and a polynomial degree of p = 6
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(order 7). Consequently, the total number of DOF in the computational domain is 224224 as given
by Eq. (4.74). The quadrilateral elements have all the same characteristic size ∆e = 1.32 × 10−4 m
which gives a characteristic distance between the DOF of

∆DOF = ∆e/ (p+ 1) = 1.88 × 10−5 m (7.17)

Thus, based on the value of δ0
L in Table 7.1, the number of computational points in the flame front is

nffpts = 23 which indeed corresponds to a well resolved flame. Two simulations are run with JAGUAR
and AVBP (with the TTGC scheme) respectively, using almost the same number of DOF and the same
value for nffpts. A converged steady solution is obtained after a physical time of tf = 15 ms. Figure 7.21
shows the steady 2D field of heat release rate obtained with both solvers, of which Figure 7.22 plots a
y-cut at x = 12 mm. The results show that both codes reproduce the same flame shape and structure
when the space discretization is very fine. Therefore, either the fine AVBP or JAGUAR solution can
be used as a reference. Since JAGUAR reference solution is of order 7 in space and AVBP reference
solution is only of order 3 in space with the TTGC scheme, it was decided to keep JAGUAR solution
as the reference. Using AVBP reference instead did not make any difference in the results.

Figure 7.21. – Comparison of the steady 2D heat release rate field between JAGUAR (bottom) and
AVBP (top) fine solutions for the 2D burner case.
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Figure 7.22. – Comparison of the steady heat release rate profiles at x = 12 mm between JAGUAR
and AVBP fine solutions for the 2D burner case.

7.4.3. Influence of p on the accuracy of the solution in uniform p cases
Typical values of nffpts in 3D LES combustion cases range between 5 and 10 depending on the

stiffness of the chemistry. For a uniform quadrilateral mesh, Eq. (7.17) highlights the fact that for a
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SD discretization multiple couples of values of ∆e and p, or equivalently Ne and p, give almost the
same ∆DOF and, hence, the same nffpts. In other words, a simulation with a small Ne but a large p has
approximately the same number of DOF than a simulation with a large Ne but a small p, provided
that they verify Eq. (4.74). Thus, the following question arises: for a given number of DOF (or a
given nffpts value), is it better, in terms of accuracy and performance to use large elements with high
values of p or small elements with small values of p? This question has already been answered for
aerodynamic cases: low Ne combined with high p values lead to lower computational time and more
accurate results [5]. For reacting cases, the question remains open and first answers are given by the
analysis below.

As a first step, this question is addressed in terms of the accuracy of the solution. Simulations of
the 2D burner case are run using JAGUAR until t = tf using polynomial degrees from p = 2 to p = 6.
Different values of Ne and p are used in order to keep approximately 30900 and 20100 DOF in the
computational domain. Values of Ne, p, ∆DOF and nffpts are summed up in Tables 7.7 and 7.8 for each
case.

One way to compare calculation results is to compute the L2-error of the 2D heat release rate field
with respect to the reference solution. This error can be defined following the methodology proposed
in recent HO workshops [5]:

ϵω̇T =
[DOF∑
i=1

(
ω̇T,i − ω̇interpT,i,ref

)2
/DOF

]1/2

(7.18)

where ω̇T,i is the heat release rate value at SP i of the considered solution and ω̇interpT,i,ref is the heat
release rate value at SP i from the reference solution interpolated on the considered solution mesh. This
interpolation is done using the inverse distance weighting method. Figure 7.23 shows the evolution of
ϵω̇T /ω̇maxT,ref with respect to p for the two numbers of DOF considered, where ω̇maxT,ref = 3.7×109 W.m−3

is the maximum of heat release rate in the reference solution. The values obtained with AVBP using
the Lax-Wendroff (LW) FV scheme for convective fluxes [199] (second-order in space and time) and
the TTGC scheme are also plotted in Figure 7.23.
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Figure 7.23. – Evolution of ϵω̇T /ω̇maxT,ref with respect to p for two numbers of DOF. The values obtained
with the LW and TTGC schemes at these numbers of DOF are also shown.

As expected, the error decreases when the number of DOF increases for both JAGUAR and AVBP
simulations. For a given number of DOF, the error decreases with the order of the numerical scheme
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also for both codes. For JAGUAR, the same error at high number of DOF and low p is recovered
with the low number of DOF and high p. This means that for reacting flows as well, large elements
with high p give more accurate results. This result is probably due to the polynomial basis that better
describes the flow and flame quantities in the cell when p is high, than a piecewise linear function
corresponding to low p cases. Note that the error with JAGUAR is always lower than the error with
AVBP except at p = 2 where the results are comparable showing the gain of using HO methods.

7.4.4. Influence of p on the computational cost in uniform p cases
The computational cost with respect to the polynomial degree is now assessed. More precisely two

quantities are of interest:
1. The iteration cost per DOF noted κ.
2. The real time taken to simulate 1 ms of physical time noted τ .
Tables 7.7 and 7.8 show the values of κ and τ for each JAGUAR and AVBP simulations whose

errors were computed in paragraph 7.4.3. For both numbers of DOF, τ values of JAGUAR are almost
constant when the polynomial degree increases. This indicates that even in reacting multi-species
cases, the order of the SD method can increase with almost no change of the iteration cost. It comes
from the competition between two main processes in the SD scheme: the interpolation process at FP
and the interface treatment at FP (the Riemann solver for convective fluxes and the diffusion scheme
for viscous fluxes). In a 2D quadrilateral element, there are (p+ 2) (p+ 1) FP per direction so that
there are O(p2) FP inside one element. The interpolation process from SP to FP is done direction
per direction which entails that O(p) operations are needed for FP along ξ-direction and also O(p)
operations for FP along η-direction. Consequently within one quadrilateral element, the interpolation
process at all FP scales as O(p3) and since there are DOF/ (p+ 1)2 elements thanks to Eq. (4.74),
the overall interpolation process in the whole domain scales like O(p) at constant DOF value. On the
other hand, the interface treatment at FP, again if DOF is kept constant, scales as O(1/p) since there
are still DOF/(p+ 1)2 elements and four edges per quadrilateral with p+ 1 interface FP on each. For
low p values, the interface treatment is dominating because there are more interface FP than for high
p values if DOF is kept constant and also more MPI communications since there are more interface
FP shared by two processors. However, when p increases the interface treatment is less costly and
compensates the O(p) increase. At constant DOF, the number of interface FP, noted nIFP , scales as
O(p) and the total number of FP, noted ntotFP , scales as O(p2) so that nIFP /ntotFP varies as O(1/p).
This explains the almost 10% decrease of κ between p = 2 and p = 3 in both Tables 7.7 and 7.8
where nIFP /ntotFP ∼ 0.5 for p = 2 whereas nIFP /ntotFP ∼ 0.33 for p = 3. For p = 4 nIFP /ntotFP ∼ 0.25 so
there is still a noticeable improvement on κ compared to p = 3. For p = 5 and p = 6 this gain from
the interface treatment becomes less important compared to the O(p) increase of the extrapolation
process. Actually, the O(p) increase will not be seen as long as p < 8. For comparison, increasing p in
the DG method entails the use of more expensive quadrature rules [30] to reduce aliasing errors which
can make the calculation unstable for highly turbulent flows. Thus, an increase of p with the DG
method often results in an increase of κ even for p < 8. The same reasoning applies to the comparison
with low-order (LO) methods for which increasing the order of the scheme often results in an increase
of the iteration cost. The comparison between the LW and TTGC schemes (order 2 and 3 in space,
respectively) of AVBP is a good proof of that: the TTGC scheme is 2.5 times more expensive than
the LW scheme [179] as also observed in Tables 7.7 and 7.8. Nevertheless, τTTGC is still lower than all
τ obtained with JAGUAR. This means that the SD method seems more expensive than LO methods.
However, it must be noted that JAGUAR is a new code where coding has not been optimized as much
as in AVBP.

The iteration cost per DOF is not sufficient to evaluate the computational cost of the simulations
as the timesteps used for each simulation may differ. Actually, all HO methods suffer from CFL
restrictions that are more constraining than for LO methods. For instance, in the SD method, the
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JAGUAR
p 2 3 4 5 6
Ne 3437 1930 1236 860 632
κ 8.5 7.7 7.4 7.3 7.1
τ 361 371 407 471 558

AVBP
κLW 2.8 κTTGC 6.3
τLW 106 τTTGC 239

Table 7.7. – Values of κ [µs/ite/DOF] and τ [s] for both AVBP and JAGUAR simulations with differ-
ent values of Ne and p to keep the number of DOF around 30900 (∆DOF = 5.09 × 10−5

m and nffpts = 8).

JAGUAR
p 2 3 4 5 6
Ne 2230 1256 804 558 410
κ 8.2 7.5 7.4 7.2 7.2
τ 182 190 216 247 292

AVBP
κLW 2.8 κTTGC 6.4
τLW 57 τTTGC 128

Table 7.8. – Values of κ [µs/ite/DOF] and τ [s] for both AVBP and JAGUAR simulations with differ-
ent values of Ne and p to keep the number of DOF around 20100 (∆DOF = 6.31 × 10−5

m and nffpts = 6).

CFL limit scales as (p+ 1)−1 [293] and becomes more restrictive as p increases. In this work, for
p = {2, 3, 4, 5, 6}, CFL values were set to 0.36, 0.32, 0.28, 0.24 and 0.20. These CFL values were chosen
from the experience in using the SSP-ERK(3,3) scheme of Gottlieb and Shu [222] with JAGUAR and
are close to the stability limit for each p. Finding the exact CFL limit is out of the scope of this study
and will not change the analysis conducted here. Consequently, this CFL condition has an impact on
computational time as can be observed in Tables 7.7 and 7.8 where τ increases with p. For instance,
τ (p = 6) /τ (p = 2) = 1.55, meaning that the p = 6 case takes 55% more of real time to simulate 1
ms than the p = 2 case. Because the TTGC scheme (and also the LW one) is classically used with
a CFL of 0.7: τ (p = 6) /τTTGC = 2.3 meaning that the p = 6 case takes 2.3 times more than the
TTGC scheme to reach the same final simulated time. For p = 4 (order 5), the ratio τ (p = 4) /τTTGC
is 1.7. These differences in computational time between the SD method and LO methods are high but
probably lower than the differences between the DG method and LO methods since the CFL limit
for DG varies as (2p+ 1)−1 [20]. Note that only the CFL limit was considered since the convective
operator appears to be the limiting term compared to diffusive and chemical operators. For instance,
with CFL = 0.32 for the p = 3 case at 30900 DOF, the convective timestep is ∆tconv = 1.7 × 10−8 s
(see Eq. (4.137)). This value is well smaller than both the diffusive timestep ∆tdiff = 4.1 × 10−7 s
(see Eq. (4.139)) obtained with a Fourier number of 0.1 and the chemical timestep ∆tchem = 1 × 10−4

s (see Eq. (4.141)) which is actually the chemical timescale of the species CO.
Combined with the accuracy analysis conducted in paragraph 7.4.3, for the same level of error, it

is faster to use less DOF with high p rather than more DOF with low p. For instance, Table 7.9
sums up the turnaround times for three different discretizations that have the same level of error
(ϵω̇T /ω̇maxT,ref = 0.02) according to Figure 7.23. It shows that p = 2 in the 30900 DOF case and p = 4
in the 20100 case have the same error but the first one has a turnaround time for the results which
is 67% higher than the second one. Moreover, p = 4 in the 20100 case is slightly faster than the
TTGC scheme in the 30900 case which also has the same error. Therefore, for ϵω̇T /ω̇maxT,ref = 0.02,
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the optimum choice in terms of accuracy and computational cost is p = 4 in the 20100 case. As a

(p = 2) and 30900 DOF (p = 4) and 20100 DOF AVBP (TTGC) 30900 DOF
τ [s] 361 216 239

Table 7.9. – Turnaround times for ϵω̇T /ω̇maxT,ref = 0.02 with different discretization.

summary, JAGUAR has a κ which is a little bit higher than the one of the TTGC scheme of AVBP
but κ does not change when p increases. However, CFL restrictions for HO methods still make their
computational cost high compared to LO methods. This computational cost issue can be strongly
reduced if local p-adaptation is considered as it is highlighted in paragraph 7.4.5.

7.4.5. Local p-adaptation
In paragraphs 7.4.3 and 7.4.4, the SD method was shown to be more accurate with higher polynomial

degree without altering the iteration cost per DOF. However, the overall computational cost is still
high compared to other methods because of the CFL constraints. Increasing the CFL limit is difficult
but reducing the number of DOF of the computational domain is possible without altering the accuracy
of the results by using local p-adaptation presented in Section 4.5. This method consists in placing the
DOF in regions of interest only by adapting the polynomial degree in the mesh elements. Therefore,
computations are run with a non-uniform polynomial degree that changes according to user-defined
criteria.

To illustrate this methodology, the 2D burner case is considered with the mesh composed of Ne =
1236 quadrilateral elements and p = 4 inside each of them. The objective is now to simulate the same
case with p = pmax = 4 only in near-flame elements and p = pmin = 2 elsewhere. The polynomial
degree pe within each element is set according Eq. (4.126) where the sensor value θ̃e ∈ [0, 1] is obtained
thanks to Eq. (4.125). As explained in paragraph 4.5.3, a first simulation at uniform p = 2 in all
elements is performed and used to compute the sensor. This simulation at p = 2 on a mesh initially
designed for p = 4 does not give good results but is sufficient to get acceptable values of θ̃e. Figure 7.24
shows the resulting field of tanh

(
αθ̃e

)
where the grid of elements is shown.

Figure 7.24. – Field of tanh
(
αθ̃e

)
obtained from a uniform p = 2 simulation on the mesh with 1236

elements and α = 100.

A second simulation is then run using the values of tanh
(
αθ̃e

)
in Eq. (4.126) to set the polynomial

distribution illustrated in Figure 7.25. As it can be observed, the flame region is mainly composed of
elements with pe = 4 surrounded by a zone of elements at pe = 3 and the remaining elements where
source terms and gradients are no more observable are at pe = 2. This polynomial distribution does
not well follow the 2D heat release rate field since the sensor is based on ||∇ρ||2 and not on ω̇T but it
is sufficient to show the possibilities of doing p-adapted simulations in combustion.

173



Chapter 7 : Extension of the Spectral Difference method to simulate a multi-species and reacting
gas mixture

Figure 7.25. – Polynomial degree distribution for a calculation with pmin = 2 and pmax = 4 on the
mesh with 1236 elements.

Figures 7.26 and 7.27 show respectively the steady 2D heat release rate field and its y-cut at
x = 12 mm obtained with the p-adapted simulation. Comparison of the profile is done with uniform p
simulations respectively at p = 2 and p = 4 on the same mesh. The flame structure is well retrieved for
the p-adapted case. An improvement of the uniform p = 2 solution is clearly seen in Figure 7.27: the
mesh is not adapted to p = 2 in the flame zone where nffpts = 4 whereas locally switching to p = 4 in
the flame zone gives nffpts = 8 resulting in better results. In terms of accuracy, the normalized L2-error
of the 2D heat release rate field for the p-adapted simulation is ϵω̇T /ω̇maxT,ref = 8.7 × 10−3 and is close
to the error value of 8.1 × 10−3 obtained for the uniform p = 4 case in Section 7.4.3.

Figure 7.26. – Steady 2D heat release rate field obtained with a polynomial order distribution 2 ≤
p ≤ 4 on the mesh with 1236 elements.

As for the computational cost, Table 7.10 shows the values of the number of DOF, κ and τ for the
three calculations of Figure 7.27. The gain in the number of DOF in the varying 2 ≤ p ≤ 4 case
compared to the uniform p = 4 simulation is of about 56% for a similar accuracy of the result and
the computational time is divided by 2. Even adding the cost of the computation at uniform p = 2
(needed for the sensor evaluation), there is still a gain of 33% of the computational time. Similar
observations were done in aerodynamic computations either with the DG [94] or SD methods [96]. Of
course in that case, JAGUAR was used with load-balancing based on the polynomial distribution per
element as stated in paragraph 4.5.2.

These simulations show that the p-adaptation does not solve the issue of CFL restrictions because
the varying 2 ≤ p ≤ 4 case is run at a CFL of 0.28 which is the CFL used at constant p = 4 case. This
explains the still important difference in τ between the uniform p = 2 case (run at a CFL of 0.36)
and the varying 2 ≤ p ≤ 4 case, although the DOF are closed. However, p-adaptation significantly
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Figure 7.27. – Comparison of the steady heat release rate profiles at x = 12 mm, obtained on the same
mesh with 1236 elements, between a computation at uniform p = 2, varying 2 ≤ p ≤ 4
and uniform p = 4.

p = 2 2 ≤ p ≤ 4 p = 4
DOF 10944 13444 30900
κ 8.3 7.9 7.4
τ 96 199 407

Table 7.10. – Values of DOF, κ [µs/ite/DOF] and τ [s] for JAGUAR simulations of the 2D burner
on the same mesh but with different polynomial distributions within elements.

reduces the number of DOF and, hence, the computational time. These first results demonstrate the
capability of the SD method to perform combustion simulations using p-adaptation. Although the
CFL constraints are not resolved, the SD method can easily perform local discretization refinement,
i.e., to significantly accelerate simulations without loosing accuracy or modifying the mesh. It is
therefore easy to make it adaptative and to optimize it during one simulation. Note that it was also
chosen to not compare the p-adapted simulation in terms of τ with the AVBP case at 30900 DOF using
the TTGC scheme since DOF values were not similar. It was not in the scope of this paragraph which
was to show how the p-adaptation can really reduce the SD computational time. The comparison
between p-adaptation and AMR coupled with a FV scheme is the next step to that and is left for
future work.

7.4.6. Conclusions of the study

The present study investigates the potential of the SD method to simulate combustion problems in
terms of accuracy of the results and computational cost. The results show that increasing the order
of the numerical scheme improves the accuracy without increasing the iteration cost as opposed to
LO methods and weak HO discontinuous methods such as the DG method. It is also highlighted
that, as for aerodynamic cases, using large elements with high p values is better in terms of accuracy
and performance for the same level of error than using small elements with low p values. However,
like other HO methods, the SD method suffers from CFL limitations that become more and more
restrictive as p increases. Although these limitations are lighter than in the DG method, it entails
that the SD method with a uniform degree p in all mesh elements is still between 2 to 3 times more
expensive than LO methods. This limitation is overcome with the use of p-adaptation that drastically
reduces the number of DOF by setting high values of p only in regions of interest. Even if the time
step is identical between the uniform p and the varying p cases, the computational cost is reduced by a
factor 2 for the same accuracy of the results. Therefore, with p-adaptation the computational cost of

175



Chapter 7 : Extension of the Spectral Difference method to simulate a multi-species and reacting
gas mixture

the SD method is found comparable to LO methods showing the possibility to increase the numerical
order and improve the results at no extra computational cost.

To the authors’ knowledge, it is the first time that p-adaptation is applied to a reacting flow test
case using the SD method with very encouraging results. This work is a first and necessary step of the
development of p-adaptation methods before applying it to more realistic configurations such as 3D
turbulent flames. Many improvements can still be made, using for example a dynamic sensor which
updates the local p distribution in real time during the computation, avoiding pre-calculations and
allowing non-steady cases. Another sensor built on heat release rate or temperature gradient, which
seem more adapted to combustion phenomena, should also be tested. In this work, only quadrilateral
elements have been considered since the use of triangular elements with high p values in the SD
framework is very recent [52, 116] and not straightforward to be applied in combustion and with p-
adaptation. It is even worst when considering tetrahedral elements since for now in SD, stable schemes
are available for p = 2 at most. Future studies using this kind of elements within the SD method
will allow to fully conclude about the performance of the method. Compared to AMR, also called
h-adaptation, p-adaptation allows to perform local refinement more easily than with LO methods as
it avoids re-meshing. The optimum use of hp-refinement for combustion is the next challenge and is
left for future work.

7.5. Comparison between original and SDLIFT formulations for the
diffusion scheme on 1D and 2D premixed flames using coarse
meshes

A central question when simulating combustion cases is how many grid points (nffpts) are needed
inside the flame front to well-resolve it. In paragraph 3.3.2.1, it was said that nffpts values are commonly
between 5 to 20 depending on the chemistry. However, this general observation depends on the
numerical method and then each CFD code has its own good practices for choosing the appropriate
resolution of the flame front. For instance, in AVBP for CH4/Air chemistries (two-reactions or ARC),
experience has shown that nffpts ≈ 4 − 5 or higher is sufficient to have good estimations of flame speed.
The objective of this section is first to see if nffpts ≈ 4−5 is also sufficient when using the SD method and
secondly if it is possible to go below this value thanks to the increased accuracy. The SSP-ERK(3,3)
scheme of Gottlieb and Shu [222] is employed for time integration in all JAGUAR simulations of this
section.

7.5.1. 1D methane/Air premixed flame with four points inside the flame front using the
original formulation of the diffusion scheme

The same 1D flame introduced in paragraph 7.2.1, whose characteristics are given in Table 7.1,
is considered but this time with 185 DOF, instead of 400. The number of points in δ0

L using this
discretization is nffpts ≈ 4. Three different pairs of (Ne, p) values have been considered to keep DOF ≈
185 and are summed up in Table 7.11. Simulations are carried out with the original formulation of

p 4 5 6
Ne 37 31 27

Table 7.11. – Pairs of (Ne, p) values to keep DOF ≈ 185.

Sun et al. [47] described in paragraphs 4.1.6 and 4.4.1 and results are shown in Figure 7.28a for the
HRR between 0.92 cm and 1 cm for clarity and for the CO mass fraction in Figure 7.28b. The AVBP
solution obtained with the TTGC convective schemes on the same number of DOF (without employing
artificial viscosity) is also added for comparison.
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Figure 7.28. – Comparison of HRR and YCO between JAGUAR calculations at p = 4, p = 5 and p = 6
when nffpts ≈ 4 and the original diffusion scheme is employed and the AVBP simulation.
CANTERA solution is added as reference.

JAGUAR solutions present strong oscillations, especially on YCO, for any value of p whereas the
AVBP result is not oscillating although it underestimates the HRR. However, as highlighted in Sec-
tion 7.4, increasing p at constant DOF improves the quality of the solution and in this case reduces
the intensity of oscillations. Nevertheless, even at p = 6, YCO remains unstable and is still far from
the CANTERA reference value in the burnt gases although it is similar in the AVBP case. The ori-
gin of such problem was hard to identify and the first idea was to test ρUPY approach, mentioned
at the end of paragraph 7.1.2, instead of TUPY approach. Figure 7.29 shows YCO profiles already
plotted in Figure 7.28b but now compared with the ones obtained ρUPY approach at FP. Except for
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Figure 7.29. – Comparison of the CO mass fraction between calculations at p = 4, p = 5 and p = 6
with either TUPY or ρUPY approach at FP on a 1D premixed flame with nffpts ≈ 4.

p = 5 where ρUPY is slightly better than TUPY, this other approach has a behavior even worst than
TUPY approach when the flame front discretization becomes coarser. Therefore TUPY approach was
preferred for all calculations during this work.
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A second idea was to consider a new formulation for the diffusion scheme, the SDLIFT formulation,
which is shown in the next paragraph.

7.5.2. 1D methane/Air premixed flame with four points inside the flame front using
SDLIFT formulation for the diffusion scheme

The 1D premixed flame of paragraph 7.5.1 is again considered in the worst case where Ne = 37 and
p = 4, in order to highlight the impact of using the SDLIFT formulation. This new formulation was
described in paragraphs 4.1.7 and 4.4.2 respectively for 1D and 3D cases. Three parameters define a
SDLIFT process:

1. The chosen diffusion scheme for computing common states and common gradients at interface
FP. In this work BR1 (paragraph 4.1.7.2), BR2 (paragraph 4.1.7.3) and IC (paragraph 4.1.7.4)
schemes have been introduced and tested.

2. The correction function used to have the correct polynomial degree for the normal derivative in
isoparametric space. In this work, two different correction functions, namely gDG and gGa, have
been employed and were explained in paragraph 4.1.7.1.

3. The way tangential derivatives in the isoparametric space are obtained to be used to compute
derivatives in the physical space. Two choices were mentioned in this work at the end of para-
graph 4.4.2: the classical approach or Huynh’s approach. However, in the case of 1D calculations
both approach are necessary equivalent since there are no tangential derivatives in the isopara-
metric space to be used. Thus, this parameter is not consider in this paragraph.

Therefore, there are 3 diffusion schemes that can be coupled with 2 correction functions so that 6
different calculations were simulated. Results are represented in Figure 7.30 for the CO mass fraction
because this species was found the most oscillating variable in paragraph 7.5.1. The results for IC-
scheme used along with gGa correction function is not shown for clarity since they are even worst
than with the original formulation. The first thing to notice is that BR1−gGa gives exactly the same
result as the original approach like it was stated in paragraph 4.1.7.2. The BR1 diffusion scheme
coupled with gDG has strong oscillations but is still better than the original formulation in the burnt
gases. The BR2 diffusion scheme, either with gGa or gDG, is well more stable than the BR1 one with
almost no oscillations within the flame front and a value of YCO in the burnt gases very close to the
CANTERA reference value. Finally, the IC−gDG formulation actually gives the best result in this
case without oscillations and the closest YCO value to the CANTERA reference. Therefore, the use
of the SDLIFT formulation considerably improves the results when the flame front is discretized with
few points. In particular, BR2 and IC diffusion schemes strongly improve the stability of the method.
It shows that, when the flame front is badly discretized, a small stencil (BR2 and IC have a 3 elements
stencil whereas BR1 has a 5 elements stencil as explained in paragraph 4.1.7) for computing common
gradient values is better in terms of stability. Moreover, it also seems that employing gDG, with any
diffusion scheme, ends up with more accurate results. This was also expected from the explanation of
paragraph 4.1.7.1.

7.5.3. Impact of the SDLIFT formulation with ARC schemes
In paragraph 7.5.2, the use of the SDLIFT formulation for computing diffusive fluxes at interface

FP was evalauted for a two-reactions chemical scheme, i.e., without stiff reactions and highly react-
ing species. The observed improvement may not be so clear when using an ARC scheme with low
flame resolution. Keeping the same number of DOF in the flame front, nffpts ≈ 4, the 1D premixed
flame already simulated in paragraph 7.2.2 using the CH4_16_250_10_QC ARC mechanism is con-
sidered here, with Ne = 37 and p = 4 as in paragraphs 7.5.1 and 7.5.2. As the flame thickness is
almost the same for the CH4/Air-2S-BFER flame of Table 7.1 and the CH4_16_250_10_QC flame
of Table 7.4, the same mesh leads to similar flame resolution. Among the 16 transported species of
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Figure 7.30. – Comparison of the CO mass fraction obtained with different pairs of diffusion schemes
and correction functions when using the SDLIFT formulation on a 1D premixed flame
with nffpts ≈ 4.

the CH4_16_250_10_QC ARC mechanism, several highly reacting species are found: C2H4, HO2,
CH2O and H, which are selected to evaluate the SDLIFT formulations. The results are gathered in
Figure 7.31 where, for clarity reasons, a zoom was done around the peak for some species.

Again, the use of diffusion schemes from the SDLIFT formulation really improves JAGUAR results:
the original formulation is very unstable as it can be seen on Figure 7.31d for HO2 species whereas
the two BR2 schemes and the IC scheme are found very stable. The AVBP solution does not show
strong oscillations but some species mass fractions, such as YCH2O and YC2H4

, become negative in the
burnt gases like for the original formulation of JAGUAR. However, none of the diffusion schemes of
the SDLIFT formulation shows such behavior which advocates for their stability properties even in
the presence of a stiff chemical mechanism. Therefore, the SDLIFT formulation seems also well more
robust than the original formulation when stiff reactions and highly reacting species are considered.

7.5.4. Impact of the SDLIFT formulation on a 2D methane/air circular flame

The same 2D circular flame simulated in paragraph 7.3.2 is considered here to evaluate the SDLIFT
formulation in 2D. In paragraph 7.3.2, it was found that JAGUAR and AVBP give almost the same
results on this flame when nffpts ≈ 8. The only very small difference was on the evolution of Sc with
time (see Figure 7.20) but it remained marginal. As for 1D flames, it is proposed to see how smaller
values of nffpts impact this evolution of Sc with time for both codes. Firstly, it is essential to check that
JAGUAR and AVBP give exactly the same results, in terms of Sc, for very fine discretizations before
coarsening the meshes. Consequently, the 2D circular flame was computed with JAGUAR and AVBP
using this time 16×106 DOF in order to have nffpts = 16. JAGUAR simulation was carried out on a
mesh with Ne = 64000 uniform quadrilateral elements (800 1D elements in each direction) with p = 4
inside each of them and for AVBP an uniform Cartesian mesh with 4000 nodes along each direction
has been used. Figure 7.32 represents the evolution of Sc (t) for these very fine discretizations showing
that the two codes give exactly the same results when nffpts = 16. This solution is then referred to the
reference solution for this test case.
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Figure 7.31. – Comparison of YCH2O, YC2H4
, YH and YHO2

profiles between original and several
SDLIFT formulations on a 1D CH4/Air premixed flame using an ARC mechanism
with nffpts ≈ 4. CANTERA solution is added as reference and AVBP solution is also
shown for comparison.
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Figure 7.32. – Evolution of Sc (t) for JAGUAR and AVBP simulations when nffpts = 16.

Going now to coarser discretizations, cases with nffpts = 4 and nffpts = 2 corresponding respectively to
1000 and 500 DOF per direction in the computational domain in Figure 7.18, are considered. JAGUAR
simulations are done here with p = 4 and the IC diffusion scheme coupled with gDG correction function.
As already observed in paragraph 7.5.1, this scheme gives a stable solution, shown in Figure 7.33 with
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a cut of temperature profile at y = 0 along x-axis at t = 6 ms. Results obtained with JAGUAR for
nffpts = 8 and with AVBP for the same flame resolutions are also reported for comparison. Surprisingly,
JAGUAR and AVBP do not show any oscillating behavior whatever the value of nffpts and without
artificial viscosity for AVBP simulations. However, the flame propagation deviates from the reference
solution when nffpts decreases. This deviation is more important with AVBP than with JAGUAR.
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Figure 7.33. – Cut of temperature profile at y = 0 along x-axis obtained with JAGUAR and AVBP
at t = 6 ms when nffpts = 2, nffpts = 4 and nffpts = 8.

These deviations reflect on the evolution of Sc (t) plotted in Figure 7.34 for all cases. For nffpts = 4,
the AVBP simulation has a consumption speed higher than the reference whereas the JAGUAR sim-
ulation at the same nffpts value is still following the reference. When nffpts = 2, the AVBP solution
propagates well faster than the reference whereas the JAGUAR solution for this nffpts value under-
predicts significantly the flame propagation. However, in absolute value, JAGUAR results are more
accurate and seem less sensitive to the value of nffpts.

7.6. Summary of this chapter

In this chapter, an extension of the SD method for considering a thermally multi-species perfect gas
is presented. It is demonstrated that the usual SD algorithm extrapolating conservative variables from
SP to FP is unstable for such gas. It appeared that computing primitive variables from conservatives
at SP and then extrapolating primitive variables at FP is much more stable and seemed sufficient for
the cases considered in this work.

One-dimensional laminar premixed flames using different chemistries of increasing stiffness were
firstly carried out to validate chemical source terms computation, implementation of thermodynamics
for a multi-species gas and the resolution of species transport equations. Results were in excellent
agreement with the ones given by reference combustion solvers AVBP and CANTERA. Going a
step further in the validation, two-dimensional laminar premixed flames have been conducted with
additional boundary conditions such as walls and symmetries. As for the one-dimensional flames,
results were similar to the ones of the AVBP solver.

The interest and the potential of using the SD method in combustion was studied on a two-
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Figure 7.34. – Evolution of Sc (t) for JAGUAR and AVBP simulations when nffpts = 2, nffpts = 4 and
nffpts = 8.

dimensional laminar burner case. It was found that the use of small Ne with high p values gives
same error level with less DOF than by using large Ne with small p values. Consequently, it is also
faster to employ small Ne with high p values to reach the same error level. At a constant DOF value,
the iteration cost of the SD method is almost constant with p and is nowadays close to the one of
the TTGC convective solver in AVBP. This property is new compared to what was usually observed
for classical numerical methods where an increase of the scheme order often results in an increase of
the iteration cost. The current issue with the SD method, and more generally with HO methods, is
that the timestep has to be decreased with increasing p values for stability reasons. Thus, turnaround
times are still higher than with classical numerical methods. However, it was shown that using local
polynomial adaptation drastically reduces the number of DOF while keeping the same accuracy level
leading to more than a 30% gain in computational time for the same result. It clearly advocates for
pursing the development of local polynomial adaptation for HO methods to remain competitive in
terms of computational time compared to classical numerical methods since they already show their
capability of obtaining better results for the same resolution.

Finally, laminar one and two-dimensional premixed flames were simulated with very coarse dis-
cretizations to see the lower limit in terms of nffpts for the SD method. These test cases have shown that
the original formulation for the diffusion scheme of Sun et al. [47] is very unstable when nffpts ≤ 4−5. It
has motivated the development of the SDLIFT formulation which allows to use other diffusion schemes
such as BR2 or IC schemes. They proved to be well more more stable when nffpts is low compared to
the original formulation. This observation is not dependent on the stiffness of the chemical scheme.
Moreover, the SD method using SDLIFT formulation better predicts flame propagation for very coarse
discretization than the AVBP solver as highlighted in paragraph 7.5.4.
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Chapter 8 : Simulations of turbulent premixed combustion using the Spectral Difference method

This chapter is dedicated to the simulation of turbulent premixed flames using the SD method. The
implementation of the TFLES model within the SD formalism is described and first validations for
the flame thickening are performed on 1D and 2D laminar flames. Then, details are given on the
implementation of a positivity-preserving limiter, needed for stabilizing the 3D turbulent combustion
cases presented in this chapter. Finally, two simulations of 3D turbulent premixed flames are presented:
the Cambridge flame burner and the VOLVO configuration.

8.1. TFLES model in the context of the Spectral Difference method
The TFLES model was introduced in Section 3.3 in a general way, independently of the numerical

method. The objective of this section is to explain the implementation of the TFLES model within a
SD discretization. Details are given on how the diffusion coefficients and combustion source terms are
modified, how the relaxation flame sensor is calculated and how the SGS velocity used in the efficiency
model is evaluated.

8.1.1. Implementation of the TFLES model within the SD framework
As described in paragraph 3.3.3, the TFLES model modifies diffusion coefficients λ and Dk as well

as species source terms ω̇k following Eq. (3.41). For a SD discretization, λ and Dk are evaluated at
FP, because they are needed for the computation of diffusive fluxes, whereas ω̇k are evaluated at SP.
Thus, values of E and F must be available at FP, noted EFP and FFP , and at SP, noted ESP and FSP .
In this work, it was chosen to compute ESP and FSP and to interpolate them at FP as it is done for
the solution vector. The next two paragraphs explain the calculation of these four quantities in both
constant thickening and dynamic thickening cases.

8.1.1.1. Constant thickening case

As mentioned in paragraph 3.3.1, the constant thickening model applies the same thickening value
F everywhere in the computational domain. Consequently, as FFP and FSP are both equal to F no
interpolation is required. This is not the case for efficiency E , which is first evaluated at SP using
either Eq. (3.55) (non-saturated Charlette’s model) or Eq. (3.57) (saturated Charlette’s model) and
then interpolated at FP to get EFP . Note that in the case of saturated Charlette’s model with constant
β, since ∆ = Fδ0

L :

EFP = ESP = Fβ = E (8.1)

8.1.1.2. Dynamic thickening case

In the dynamic thickening model, a flame sensor S (x, t) is employed. The relaxation flame sensor
of Jaravel et al. [175] used in this work was explained in paragraph 3.3.2.2. Since this sensor is based
on the transport of a fictive species ψ, the resolution of Eq. (3.35) was implemented in JAGUAR. It
has been checked that both AVBP and JAGUAR show exactly the same solution to this equation on
a given case (see paragraph 8.1.2). The different steps to apply the TFLES model with the relaxation
flame sensor and Charlette’s model, using a constant β value, are summed up in Algorithm 7 of
Section B.5. Basically, it needs as inputs: nffpts, δ0

L, S0
L, |ω̇F |max1D , αcold, αhot, Scψ, the β value needed

in Charlette’s model and the type of Charlette’s formulation. At the very first time iteration (not a
restart solution), there is no field of ψ in the domain so that FSP is initialized as follows:

1. ω̇F is evaluated at all SP assuming FSP = ESP = 1.
2. S at all SP is computed, noted SSP , based on Eq. (3.34).
3. Then, the fictive species is initialized at SP with S by setting [ρψ]SP = [ρS]SP .
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4. Finally, FSP is initialized using Eq. (3.38) with ŜSP = SSP .
For perfect restart, ρψ is saved in the solution files so that Eq. (3.37) and Eq. (3.38) can be successively
employed to get FSP . ESP does not need specific treatment at initialization because either Eq. (3.55)
or Eq. (3.57) can be computed.

It should be mentioned that this implementation assumes implicitly that δ0
L, S0

L and |ω̇F |max1D are
constant during the computation. However, for flames that are not perfectly premixed, that is if ϕ
changes locally, δ0

L, S0
L and |ω̇F |max1D vary and have to be computed on the fly during the computation

at each SP. In that case, τ1,cold and Fmax also vary and steps 2 and 3 of Algorithm 7 have to be done
at all SP at each time step. Usually, δ0

L, S0
L and |ω̇F |max1D are pre-tabulated as functions of ϕ. This

tabulation was not implemented in JAGUAR during this work and is left for future developments.

8.1.2. One-dimensional Methane/Air flame using a two-reactions chemistry and the
thickened flame model

The objective of this test case is to validate the implementation in JAGUAR of the TF model
described in paragraph 8.1.1, firstly for a two-reactions chemistry. In particular, it will be checked
that the expected thickening factor is reached and that the fictive species for the relaxation sensor
is correctly transported. The same one-dimensional methane-air premixed flame of Table 7.1 is con-
sidered. The computational domain is discretized with Ne = 20 elements and a polynomial degree
p = 4 leading to 100 DOF in the domain. This is four times less resolution than the case presented
in paragraph 7.2.1, so that the flame will be thickened by a factor four. For the constant thickening
case, this means that Fmax = 4 and FSP = FFP = Fmax = 4. For the dynamic thickening case,
Fmax = 4 and FSP and FFP are computed following the methodology described in paragraph 8.1.1.2
where flame sensor parameters are given in Table 8.1. The flame thickness and flame speed used to
compute τ1 with Eq. (A.35) are the ones of Table 7.1. The value of nffpts is not needed here since
Fmax is imposed to 4 at all SP for easier validation. Finally, the efficiency function E is kept to one
everywhere because the case is laminar.

Scψ [-] αcold [-] αhot [-] |ω̇F |max1D [W.m−3]
0.2 0.1 0.01 74

Table 8.1. – Flame sensor parameters for the dynamic thickening of the one-dimensional methane-air
premixed flame using the CH4/Air-2S-BFER chemical mechanism at ϕ = 0.8.

Figure 8.1 shows the heat release rate profiles for both AVBP and JAGUAR simulations with the
same constant and dynamic thickening. CANTERA (non thickened) solution is also reported for
comparison. As expected, in simulations with the TF model the flame region is well thickened and
the maximum of heat release rate is four times smaller than the maximum value given by CANTERA
without thickening. Constant and dynamic thickening models give the same results since in this
perfectly premixed case no diffusion occurs outside the reaction zone. In order to check that the
thickening of the flame does not affect the flame structure, a transformation of the space variable can
be done following Eq. (8.2) [175]:

x∗ =
∫ Lx

0

dx

F (x) (8.2)

In the x∗-space, the thickened flames must have the same structure than the non-thickened flames in
the x-space (the one of CANTERA). This is indeed the case in Figure 8.2 comparing temperature
profiles of all JAGUAR and AVBP solutions in x∗-space to the CANTERA solution in x-space. Finally,
Figure 8.3 compares the fictive species mass fraction profiles of AVBP and JAGUAR which appear to
be identical meaning that Eq. (3.35) is well-resolved by JAGUAR. To conclude on the implementation,
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Figure 8.1. – Comparison of heat release rate profiles between AVBP and JAGUAR for a thickened 1D
premixed methane-air flame using the CH4/Air-2S-BFER chemical scheme at ϕ = 0.8.
Non-thickened CANTERA solution is also plotted for comparison.
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Figure 8.2. – Comparison of temperature profiles between AVBP and JAGUAR for a thickened 1D
premixed methane-air flame using the CH4/Air-2S-BFER chemical scheme at ϕ = 0.8
in the x∗-space. Non-thickened CANTERA solution in the x-space is plotted for com-
parison.

flame speeds are reported in Table 8.2. By construction, both the non-thickened and the thickened
flame simulations must give the same flame speed. This is exactly verified by JAGUAR, whereas AVBP
shows small differences between the two TF approaches and between the thickened and non-thickened
approaches.
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Figure 8.3. – Comparison of fictive species mass fraction profiles between AVBP and JAGUAR for a
thickened 1D premixed methane-air flame using the CH4/Air-2S-BFER chemical mech-
anism at ϕ = 0.8.

Code JAGUAR dyn TF/cte TF/no TF AVBP dyn TF/cte TF/no TF
S0
L [cm.s−1] 28.16/28.16/28.16 28.33/28.35/28.31

Table 8.2. – Comparison of flame speeds between JAGUAR and AVBP for dynamic, constant thicken-
ing and without any thickening for a 1D premixed methane-air flame using the CH4/Air-
2S-BFER chemical mechanism at ϕ = 0.8.

8.1.3. One-dimensional Methane/Air flame using Analytically Reduced Chemistry and
the thickened flame model

The objective of this test case is to validate the implementation in JAGUAR of the TF model de-
scribed in paragraph 8.1.1 for an ARC mechanism. The same one-dimensional methane-air premixed
flame of Table 7.4 is considered. To apply the TF model, the computational domain is now discretized
with Ne = 20 elements and a polynomial degree of p = 4. Thus, Fmax is again set to 4 and constant
and dynamic thickening of the flame front are considered. Flame sensor parameters used here are
summed up in Table 8.3 and flame thickness and flame speed used to compute τ1 are the ones of
Table 7.4. Finally, the efficiency function E is again set to one everywhere since the flame is not
turbulent. Temperature profiles in the x∗-space for both AVBP and JAGUAR using constant and dy-

Scψ [-] αcold [-] αhot [-] |ω̇F |max1D [W.m−3]
0.2 0.1 0.01 133

Table 8.3. – Flame sensor parameters for the dynamic thickening of the one-dimensional methane-air
premixed flame using an ARC chemical mechanism at ϕ = 1.0.

namic thickening are shown in Figure 8.4 along with the reference CANTERA non-thickened solution.
Contrary to the CH4/Air-2S-BFER case, the constant and dynamic thickenings now give different
results in the burnt gases. This comes from the fact that with ARC mechanisms, the post-flame is
still a reacting zone slowly progressing towards equilibrium. Therefore, as constant thickening applies
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F > 1 also in this zone, it slows down the chemistry there and this slow-down is not compensated by
over-diffusion as temperature and species gradients are close to zero. On the contrary the dynamic
model, by keeping unchanged the post-flame zone, allows to recover CANTERA reference results.
This however has a minor impact on the flame speed prediction, shown in Table 8.4: flame speeds are
very close between constant and dynamic thickenings for both JAGUAR and AVBP.
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Figure 8.4. – Comparison of temperature profiles between AVBP and JAGUAR for a thickened 1D
premixed methane-air flame using an ARC chemical mechanism at ϕ = 1.0 in the x∗-
space. Non-thickened CANTERA solution in the x-space is plotted for comparison.

Code JAGUAR dyn TF/cte TF/no TF AVBP dyn TF/cte TF/no TF
S0
L [cm.s−1] 37.94/37.98/38.06 38.01/37.93/38.09

Table 8.4. – Comparison of flame speeds between JAGUAR and AVBP for dynamic, constant thick-
ening and without any thickening for a thickened 1D premixed methane-air flame using
an ARC chemical mechanism at ϕ = 1.0.

8.1.4. Two-dimensional Methane/Air burner using a two-reactions chemistry and the
thickened flame model

The objective of this test case is to simulate the same 2D burner presented in Figure 7.13 now using
the TF model in its dynamic formulation. This allows to check the TF model behavior in the presence
of walls and symmetries. All boundary conditions remain unchanged and the CH4/Air-2S-BFER
scheme at ϕ = 0.8 is still considered. However, as the aim is to thicken the flame front, a coarser
discretization is employed with this time only 486 quadrilateral elements with again a polynomial
degree of p = 4. The total number of DOF for the JAGUAR simulation is 12150 and AVBP simulation
is discretized with 12182 DOFs to have a fair comparison. The element characteristic size is around
∆e = 6.8 × 10−4 m which is almost three times higher than the ∆e of paragraph 7.3.1. The maximum
thickening was computed using Eq. (3.32) with nffpts = 8 which gives Fmax around 2.95 for both AVBP
and JAGUAR. Finally, values for Scψ, αcold, αhot and |ω̇F |max1D are the ones of Table 8.1 and flame
speed and thickness are still those shown in Table 7.1. Figure 8.5 shows the 2D heat release rate fields
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obtained with both JAGUAR and AVBP when steady state is reached. The agreement between AVBP
and JAGUAR is very good, with a well thickened flame front. Figure 8.6 compares temperature and

Figure 8.5. – Comparison between JAGUAR (top) and AVBP (bottom) of the 2D heat release rate
field for the 2D burner case using the TF model.

heat release rate vertical profiles at x = 12 mm between JAGUAR and AVBP: both profiles are in
accordance meaning that the TF model is correctly implemented in JAGUAR.
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Figure 8.6. – Comparison between JAGUAR and AVBP of temperature and heat release rate profiles
at x = 12 mm along y-axis for the 2D burner case using the TF model.

8.1.5. Validation of the subgrid-scale velocity computation
8.1.5.1. Position of the problem and presentation of the validation test case

In the case of the saturated Charlette’s model (see paragraph 3.3.4.4), E is directly obtained from
F since ∆/δ0

L = F . However, for the non-saturated formulation (see paragraph 3.3.4.2), the SGS
velocity u′

∆, evaluated with the operator ||∇2 (∇ × ũ) ||2 (see Eq. (3.53)) is needed. In this paragraph,
the validation of this operator using the SD discretization is detailed. To that purpose, the velocity
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field corresponding to an incompressible and non-viscous vortex is used, given by Eq. (8.3) [294]:

u (r) = Cr

R2
c

exp
(

−r2

2R2
c

)
eθ ≡ uθ (r) eθ (8.3)

where C determines the vortex strength, Rc is the vortex radius and r the radial coordinate with the
origin taken at the vortex center. In Eq. (8.3), eθ is the unit vector in the orthoradial direction of the
cylindrical basis so that: eθ = − sin (θ) ex + cos (θ) ey. Taking the derivative of Eq. (8.3) with respect
to r gives:

duθ (r)
dr

= C

R2
c

(
1 − r2

R2
c

)
exp

(
−r2

2R2
c

)
(8.4)

Then, all maximum values are located at r = Rc for which:

umaxθ ≡ uθ (r = Rc) = C

Rc
exp

(−1
2

)
(8.5)

Consequently, this vortex velocity field can be defined with Rc and umaxθ . In this case, Eq. (8.3) is
employed with Rc = 6 mm and umaxθ = 1 m.s−1. The corresponding velocity field is represented in
Figure 8.7a along with a radial profile on the horizontal centerline for r ≥ 0 in Figure 8.7b. The
computational domain is a cube of size L = 6 cm discretized with 75 uniform segments along x and y
directions and only 1 segment in the z direction, and a polynomial degree p = 4.

(a) Contour plot of uθ (r).
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(b) Radial profile of uθ (r) along y = 0 for r ≥ 0.

Figure 8.7. – Contour plot (left) and radial profile along y = 0 for r ≥ 0 (right) of uθ when Rc = 6
mm and umaxθ = 1 m.s−1.

8.1.5.2. Analytical solution

It is possible to compute ||∇2 (∇ × u) ||2 analytically for the velocity field in Eq. (8.3), allowing
to validate the numerical operator of JAGUAR. Firstly, ∇ × u is computed using formula for the
rotational operator in cylindrical coordinates:

∇ × u = 1
r

∂

∂r
(ruθ) ez = C

R2
c

exp
(

−r2

2R2
c

)[
2 − r2

R2
c

]
ez (8.6)

Then, the gradient in cylindrical coordinates of Eq. (8.6) is employed ending up with a 3 × 3 matrix
A whose components are zero except for A31 which is given by:

∇ (∇ × u) = A31 = ∂

∂r
(∇ × u) = −Cr

R4
c

[
4 − r2

R2
c

]
exp

(
−r2

2R2
c

)
(8.7)
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Finally, the divergence in cylindrical coordinates of Eq. (8.7) is taken ending up with a vector along
ez for ∇2 (∇ × u) = ∇. [∇ (∇ × u)]:

∇2 (∇ × u) =
(
∂A31
∂r

+ A31
r

)
ez = 8C

R4
c

(
−1 + r2

R2
c

− r4

8R4
c

)
ez (8.8)

The L2-norm of Eq. (8.8) is the analytical solution expected to be obtained after one time iteration
with the SD method.

8.1.5.3. Subgrid-scale velocity calculation with the SD method and validation

The computation of ||∇2 (∇ × u) ||2 at SP is done as follows:
1. The gradient of the velocity vector with respect to physical coordinates, noted ∇xu, is known

at all FP along ξ, η and ζ directions either from the original or the SDLIFT formulation.
2. From ∇xu, the rotational of u with respect to physical coordinates is obtained at all these FP

through Eq. (8.9):

∇x × u =



∂w

∂y
− ∂v

∂z
∂u

∂z
− ∂w

∂x
∂v

∂x
− ∂u

∂y

 ≡ ω (8.9)

where ω = (ωx, ωy, ωz)T is the notation used here for the rotational vector of u.
3. As for the conservative or primitive variables, the gradient with respect to physical coordinates

of ω is computed at all FP along ξ, η and ζ directions either using the original or the SDLIFT
formulation. It ends up with ∇xω which is a 3 × 3 matrix stored at each FP along ξ, η and ζ
directions.

4. Then, Eq. (4.71) is employed to compute ∇x. (∇xω) at SP since:

∇x. (∇xω) = 1
|J |

∇ξ.
(
|J |J−1∇xω

)
(8.10)

5. Finally, the L2-norm of Eq. (8.10) is computed to get ||∇2 (∇ × u) ||2 at SP.
Because in Eq. (3.53) it is actually ∆3

x||∇2 (∇ × u) ||2 that is needed, the division by the Jacobian
at SP in Eq. (8.10) is not done in practice since ∆3

x = |J |. It was only the case for computing
||∇2 (∇ × u) ||2 here with JAGUAR following the five steps detailed above.

Results after one time iteration, for the discretization described in paragraph 8.1.5.1, are shown in
Figure 8.8. A perfect agreement between JAGUAR solution and the L2-norm of Eq. (8.8) can be seen.
Therefore, the SD discretization computes very well the operator ||∇2 (∇ × u) ||2 and thus also u′

∆.

8.2. Positivity-preserving limiter
In order to ensure the positivity of mass fractions, pressure and temperature, a limiting proce-

dure, firstly introduced in the DG context for compressible Euler equations by Zhang and Shu [91]
and extended in the SD framework for shock-capturing [90] and multi-species Euler equations [89],
is employed. Zhang and Shu [91] demonstrated that this limiting procedure is conservative if the
reconstructed variables after the limitation procedure are the conservatives variables. Therefore the
same method is used here. The limiter was not necessary for the laminar cases presented in Chapter 7
but for the turbulent cases considered in this chapter, its use greatly improves the numerical stability.
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Figure 8.8. – Comparison between ∇xu obtained with the methodology of paragraph 8.1.5.3 and the
L2-norm of Eq. (8.8).

Its implementation slightly differs from the current literature: this point is discussed at the end of this
section. Without loss of generality, the method is described for a given element Ωe which was flagged
for limiting process. Firstly, the spatial average of conservative variables over SP in Ωe noted Ue is
computed and ρek (x) is replaced by:

ρ̂ek (x) = θk (ρek (x) − ρek) + ρek for k = 1, Ns (8.11)

with:

θk = min
(

ρek
ρek − ρek,min

, 1
)

for k = 1, Ns (8.12)

where ρek,min = min
α

(ρk) for k = 1, Ns and α is the set of SP and FP in Ωe. This operation guarantees
the positivity of mass fractions. Density at each SP is then recomputed using Eq. (2.92) to get ρ̂e (x)
ensuring Yk ≤ 1 for k = 1, Ns. The following vector in Ωe is now defined:

Ûe (x) ≡



Û e1 (x)
U e2 (x)
U e3 (x)
U e4 (x)
U e5 (x)
Û e5+k (x)


=



ρ̂e (x)
(ρu)e (x)
(ρv)e (x)
(ρw)e (x)
(ρE)e (x)
ρ̂ek (x)


(8.13)

In order to always keep the pressure above a user-defined minimum value ϵP , at each α where
P
(
Ûe,α

)
< ϵP , the following equation for a variable tαϵ ∈ [0, 1] is solved [91]:

P
[
(1 − tαϵ ) Ue + tαϵ Ûe,α

]
= ϵP ⇐⇒ P

[
Ue + tαϵ

(
Ûe,α − Ue

)]
= ϵP (8.14)

otherwise tαϵ = 1 if P
(
Ûe,α

)
≥ ϵP . This actually avoids the pressure at any point α to go below

ϵP . Eq. (8.14) is a second-order algebraic equation in tαϵ under the approximation that sensible
enthalpies are computed at a fixed temperature T

(
Ûe,α

)
as it is shown in paragraph A.7.1. It can

be solved either analytically or using an iterative procedure such as Ridders’ iterative algorithm [295]
as suggested by Lodato [90]. The use of this algorithm avoids the approximation made on sensible
enthalpies but there is also a risk that the iterative procedure does not converge well. In this work
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the solving was done analytically. Once each tαϵ is found, the corrected conservative variables at SP
in the flagged element can be computed:

Ũe (x) = θ2
(
Ûe (x) − Ue

)
+ Ue (8.15)

with θ2 = min
α

(tαϵ ). In some cases, it was also found that limiting the temperature field obtained
with Ũe (x) also offers a gain in stability. The equation is very similar to the pressure equation since
P = ρRgasT :

ρRgasT
[
Ue + tαϵ

(
Ũe,α − Ue

)]
= ρRgasϵT (8.16)

and is solved at each α where T
(
Ũe,α

)
< ϵT avoiding temperature to go below ϵT . Eq. (8.16) is

also a second-order algebraic equation in tαϵ without approximation this time since the temperature at
which the hsk, used in ĥe,αs (defined in paragraph A.7.1), are computed is fixed to ϵT . This equation is
derived in paragraph A.7.2. Then, new corrected conservative variables at SP in the flagged element
are obtained: ˜̃Ue

(x) = θ3
(
Ũe (x) − Ue

)
+ Ue (8.17)

where θ3 = min
α

(tαϵ ). This methodology is applied at each RK stage and has the following differences
from what is mentioned in the literature [89, 90] in the SD context:

• There is no limiting procedure applied at FP to modify conservative variables at these points.
The values at FP are only used to spot minimum values of ρk, P and T in an element and check
if they are respectively above 0, ϵP and ϵT in order to compute θk, θ2 and θ3. Only conservative
variables at SP are modified using these values of θk, θ2 and θ3.

• The numerator in Eq. (8.12) is not set to ρek − ϵY , with ϵY ≈ 10−13, since it is possible to have
Yk = 0 for some species and then ρek is really zero.

• A limitation procedure for temperature was needed additionally to the classical one applied for
pressure. It might come from the non-linear character of Eq. (8.14) because of the sensible
enthalpies needed in the multi-species case. It is not something that was taken into account in
Zhang and Shu paper [91] who worked with calorically perfect gases and no mention of this issue
was reported in Tofaili et al. [89] even if they were using multi-species thermally perfect gases.

8.3. Simulation of the Cambridge flame burner
8.3.1. Presentation of the case

The Cambridge burner, firstly studied by Sweeney et al. [120], is an academic configuration which
is composed of two co-axial tubes surrounding a central bluff-body as shown on Figure 8.9 where
burner dimensions and injected streams are illustrated. Inner (indexed i) and outer (indexed o) inlet
streams contain CH4/Air mixtures and are controlled independently in terms of bulk velocity Ub,i/o and
equivalence ratio ϕi/o. The last stream is a co-flow (indexed cf) of air (ϕcf = 0) at Ub,cf = 0.4 m.s−1

used to isolate the flame from ambient perturbations. Finally, all injected streams are at T0 = 298
K. This burner has been widely studied experimentally with different levels of CH4/Air stratification
(variations of ϕi and ϕo) and different values of swirl providing an abundant experimental database
of fifteen different cases denoted from SwB1 to SwB15 [119, 120, 296–298]. Consequently, it has been
also much investigated numerically with LES [182, 290, 299, 300] and DNS [301, 302]. The numerical
simulations in this work focus on two non-swirled cases for which operating conditions are indicated in
Table 8.5: a non-reacting configuration SwBc and a premixed (ϕi = ϕo) reactive configuration SwB1.
The bulk Reynolds numbers of the inner and outer streams are Reb,i ≈ 5960 and Reb,o ≈ 11500
respectively [298], i.e., lead to a turbulent flame.
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Figure 8.9. – Sketch of the Cambridge burner with associated dimensions and injected streams. The
white area corresponds to the computational domain.

Case ϕi [−] ϕo [−] ϕcf [−] Ub,i [m.s−1] Ub,o [m.s−1] Ub,cf [m.s−1]
SwBc 0 0 0 8.31 18.7 0.4
SwB1 0.75 0.75 0 8.31 18.7 0.4

Table 8.5. – Operating conditions considered in this work for the simulations of the Cambridge burner.

8.3.2. Computational domain

The computational domain has the following characteristics:
• The injector streams start at z = −65.4 mm as illustrated on Figure 8.9 and are of length
Linj = 6Dbb, where Dbb = 12.7 mm is the bluff-body diameter, ending up at z = 0. This length
was shown sufficient to have an established turbulent flow inside the injectors.

• The co-flow stream starts at z = −20 mm.
• The domain is extended 250 mm downstream of the injector exits in the z-direction so that the

length of the chamber is Lch = 250 mm. The radius of the chamber is set to Rch = 140 mm.

8.3.3. Boundary conditions

Inlet and outlet boundary conditions are imposed through the NSCBC methodology described in
paragraph 5.1.3. For the inlet of the injection tubes at z = −65.4 mm, an analytic power-law profile
is imposed for the mean axial velocity of the form [286]:

wi/o
(
ri/o

)
= Ucl,i/o

1 −

2ri/o −
(
r1,i/o + r2,i/o

)
r2,i/o − r1,i/o

4 , r ∈ [r1,i/o, r2,i/o] (8.18)

where r1,i/o and r2,i/o are the radius of respectively the inner and outer walls of the injected stream
and Ucl,i/o is the centerline velocity. Values of Ucl,i/o are determined to recover the expected bulk
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velocity in each injector, following Eq. (A.57) of Section A.8:

Ucl,i = 10.38 m.s−1 and Ucl,o = 23.37 m.s−1 (8.19)

Homogeneous isotropic turbulence is superimposed to these mean velocity profiles using the synthetic
random Fourier method detailed in paragraph 6.4.2 with a VKP energy spectrum using N = 300
logarithmically distributed turbulent modes generated with urms,i/o = 0.1Ub,i/o and an integral length
scale Le = 1 mm for both injector streams. These parameters result from a sensitivity analysis
performed on a reduced domain to find the values that best fit measurements directly downstream
of injector streams at z = 2 mm. Mass fractions are set in the injection streams so as to obtain the
equivalence ratios defined in Table 8.5, i.e., for the SwBc case:

YO2,i/o
= 0.2226 , YN2,i/o

= 0.7774 and Yk,i/o = 0 for the remaining species (8.20)

and for the SwB1 case:

YCH4,i/o
= 0.042 , YO2,i/o

= 0.2232 , YN2,i/o
= 0.7348 and Yk,i/o = 0 for the remaining species

(8.21)

For the inlet co-flow at z = −20 mm, a uniform axial flow at Ub,cf is imposed with species mass fractions
set to YO2,cf

= 0.2226 and YN2,cf
= 0.7774. Outlet boundary conditions imposing P = 101325 Pa are

prescribed on the sides of the chamber and at outlet. Finally, all walls are treated with the adiabatic
no-slip boundary condition imposed following the approach explained in paragraph 5.2.3.2.

8.3.4. Mesh discretization

In order to study the impact of the scheme order on the results, two different discretizations were
considered with both a characteristic distance between two DOF of ∆x = 0.3 mm in the flame region
downstream of the injected streams. The first mesh is built to have p = 2 (order 3) in all elements
and is composed of Ne = 378424 second-order hexahedral elements ending up with approximately 10.2
millions of DOF. The second mesh is built to have p = 3 (order 4) in all elements and is composed of
Ne = 205070 second-order hexahedral elements ending up with approximately 13.1 millions of DOF.

8.3.5. Chemistry and combustion model

The chemical scheme that is employed is the two-reactions CH4/Air-2S-BFER [130]. Previous
numerical studies have employed more detailed mechanisms such as the one of Lindstedt [303] used in
Mercier et al. [182, 304] or the GRI-3.0 scheme [305] considered in Proch and Kempf [300] and Proch
et al. [301, 302]. In these cases, detailed mechanisms were affordable thanks to a tabulated chemistry
approach where only the mixture fraction Z and the progress variable C are computed in the LES
or DNS. However, it has been demonstrated [130] that the CH4/Air-2S-BFER mechanism is able
to reproduce the correct evolution of velocity, temperature, laminar flame speed and major species
which are the measured quantities used for validation. The TFLES combustion model introduced in
Section 8.1 with the relaxation flame sensor and the saturated Charlette’s model at a constant β is
considered. The maximum thickening is determined so as to have at least seven points in the flame
front, and is found around 4.4 since ∆x = 0.3 mm and δ0

L = 0.48 mm for the CH4/Air-2S-BFER
scheme at ϕ = ϕi = ϕo = 0.75.

8.3.6. Other numerical parameters

For the non-reacting case SwBc, the average approach of Sun et al. [47] for the diffusion scheme is
employed since it is faster than the SDLIFT formulation and gives enough satisfying results. However,
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concerning the premixed reacting case SwB1, the SDLIFT formulation is needed to stabilize the
numerical solution in shear layers compared to the average formulation which showed high numerical
instabilities as depicted in Section 7.5. The SDLIFT formulation was employed with the IC scheme
coupled with gDG correction function in this case. Moreover, the use of the positivity-preserving
limiter introduced in Section 8.2 also helped to avoid undesired numerical behavior for the reacting
case. Finally, for both non-reacting and reacting simulations, time integration was carried out by
the SSP-ERK(5,4) scheme of Spiteri and Ruuth [226], convective fluxes at interfaces were handled
by the HLLC scheme [201] and no turbulent subgrid-scale model was employed, as explained in
paragraph 3.2.2.4.

8.3.7. Post-treatment

All simulations were run first for 10 convective times to evacuate transient phenomena. Based on
Linj and Ub,i this corresponds to 79 ms. Then, simulations were restarted for another 10 convective
times to collect time-average statistics. Because the configuration is axisymetric, azimuthal averaging
was finally applied to further enrich the statistics in 2D (r, z) maps.

8.3.8. Results analysis on case SwBc

Simulations of the SwBc case have been performed on the two discretizations mentioned in para-
graph 8.3.4. Radial profiles of the statistics of axial and radial velocities at different downstream
locations from the burner exit are illustrated in Figure 8.10 for the cases p = 2 and p = 3. They
are compared with Laser Doppler Anemometry (LDA) data of Zhou et al. [298] and numerical results
from the LES of Mercier [286] on their finer mesh with ∆x = 0.25 mm in the flame region, very
close to the value of 0.3 mm employed here. This LES was carried out using the YALES2 low-Mach
number and unstructured finite volume flow solver [306]. A general good agreement is observed be-
tween JAGUAR results and experimental data and also with other numerical results. The differences
between simulations and measurements are almost the same for both JAGUAR and YALES2, only
the radial velocity RMS is better predicted by JAGUAR. Comparing the two JAGUAR discretiza-
tions, it appears that mean velocities are not much impacted by p, whereas RMS velocities especially
the radial one are better predicted with p = 3. This demonstrates that for a given mesh, a higher
polynomial degree improves the quality of the results. Nevertheless, both discretizations tested with
JAGUAR are sufficient to capture the statistics of the aerodynamic fields. Finally, as explained in
paragraph 3.2.2.4, it is possible to check if discretizations employed were sufficient to capture ap-
proximately 80% of the TKE without using a subgrid-scale model. Figure 8.11 shows the evolution
of Pope’s criterion (see Eq. (3.26)), computed with the Vreman model [157] using CSGS = 0.10, on
the p = 2 discretization in the burner mid-section. It should be mentioned that this criterion was
computed on the fly at SP, only for post-processing purposes, without applying the Vreman model
at FP for flux computation. According to Figure 8.11, since Pope’s criterion requires M < 0.2, the
p = 2 discretization is sufficient for a good LES computation without the necessity of adding a SGS
turbulent model.

8.3.9. Results analysis on case SwB1

The premixed reacting case SwB1 is now considered using the two discretizations described in para-
graph 8.3.4. Simulations are initialized from a first run with only cold gases which are ignited by a
small sphere of burnt gases and of diameter Dbb introduced at the bluff-body level. Preliminary tests
have shown that β = 0.4 for the Charlette’s efficiency function gives the best results for JAGUAR sim-
ulations. Contour plots in the burner mid-section of temperature, heat release rate, equivalence ratio
and axial velocity are shown in Figure 8.12. The flame is anchored at the burner bluff-body because of
the adiabatic conditions as already observed in Mercier [286] while experiments predict a lifted flame
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Figure 8.10. – Radial profiles of the statistics of axial and radial velocities at different distances from
the burner exit for the non-reacting case SwBc. Legends: JAGUAR p = 2 ( ),
JAGUAR p = 3 ( ), numerical results of Mercier [286] (−−) and experimental
data [298] (•).

due to the non-adiabaticity of the bluff-body surface. It can be seen that the velocity downstream
the bluff-body is very stable without turbulent fluctuations, attributed to re-laminarisation effects of
combustion, which was already highlighted in previous works on this configuration [290, 298, 301, 304].

Radial profiles of the statistics of axial and radial velocities at different downstream locations from
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Figure 8.11. – Evolution of Pope’s criterion, computed with the Vreman model [157] using CSGS =
0.10, on the p = 2 discretization in the burner mid-section.

Figure 8.12. – Contour plots in the burner mid-section of instantaneous temperature T (top-left),
heat release rate ω̇T (top-right), equivalence ratio ϕ (bottom-left) and axial velocity
(bottom-right) obtained with JAGUAR for the p = 3 case.

the burner exit are illustrated in Figure 8.13 for the cases p = 2 and p = 3. They are compared
with Laser Doppler Anemometry (LDA) data of Zhou et al. [298] and numerical results from the
LES of Proch and Kempf [300] on their finer mesh with ∆x = 0.25 mm in the flame region very
close to the value of 0.3 mm employed here. The LES of Proch and Kempf was conducted using
their in-house FV code PsiPhi [307, 308]. As in the non-reacting case, JAGUAR results are in good
agreement with both experimental and numerical data. Looking at the mean axial velocity at z = 10
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mm, it seems that JAGUAR slightly overpredicts the recirculation zone behind the bluff-body. This
overprediction was also present in Proch and Kempf results, but is more pronounced with JAGUAR. It
was said in their paper [300] to originate from the numerically attached vs experimentally lifted flame
due to the different wall heat flux at the bluff body and was also observed in Nambully et al. [290].
Finally, radial profiles of temperature and of mean equivalence ratio statistics, at the same downstream
distances from the burner exit, are represented in Figure 8.14 again for p = 2 and p = 3 cases
simulated with JAGUAR, along with Proch and Kempf [300] results. Experimental data come from
Rayleigh-measurements provided by Sweeney et al. [296]. Both mean temperature and equivalence
ratio obtained with JAGUAR are in good agreement with both experimental and numerical results.
However, temperature fluctuations are significantly smaller than the measurements. This is attributed
to the TFLES combustion model which by construction deletes part of the resolved fluctuations and
recovers them with the efficiency function. This effect is less important when using the TFLES model
with a premixed flamelet tabulation method as in the LES of Proch’s [309]. This tendency is less
visible on the p = 3 simulation especially in z = 10 mm and z = 30 mm. It shows that, for a given
mesh size in the flame region, increasing the spatial order of the scheme improves the prediction of
the wrinkling even if the thickening factor is almost identical. Consequently, the limitations of the
TFLES model can be compensated by using higher order schemes advocating for the use of high-order
methods in combustion.

This test case has shown that the SD method developed in this work for reacting flows, is able
to simulate three dimensional turbulent flames with satisfying results close to the ones previously
obtained with classical numerical methods doing LES of combustion. It also highlights the fact that
coarser mesh discretizations can be employed using high-order methods for the same results: ∆x was
set to 0.3 mm in the flame region for JAGUAR with a maximum of 13.1 × 106 DOF using p = 3
whereas Proch and Kempf [300] had a ∆x of 0.25 mm in this region but with more than 103.2 × 106

DOF. This high difference is due to the use of equidistant orthogonal cartesian grids in the LES of
Proch and Kempf whereas in this work the mesh is refined only in the flame region. Other LES of
the Cambridge burner, made with unstructured FV meshes refined only in the flame region, were also
considered [182, 310] and had a number of DOF between 6 × 106 to 17 × 106 for a minimum ∆x value
of 0.25 mm. Therefore, the discretizations employed in this work are also in this range of DOF values.

8.3.10. Computational cost
The Cambridge burner is a good test case to analyze the computational cost of JAGUAR between

non-reacting and reacting flow simulations on a realistic 3D turbulent flame. The discussion will be
oriented on the iteration cost κ, introduced in paragraph 7.4.4, since time steps were very similar
for all simulations. Table 8.6 sums up the iteration costs for SwBc and SwB1 cases for p = 2 and
p = 3 discretizations. The SwBc case presented in paragraph 8.3.8 was simulated with only the

Polynomial degree p 2 3
SwBc with Ns = 0, Average approach, no limiter 10.1 8.9
SwBc with Ns = 3, Average approach, no limiter 17.3 15.6

SwBc with Ns = 3, Average approach, with limiter 18.1 15.8
SwBc with Ns = 3, SDLIFT approach, no limiter 29.5 25.9

SwB1 with Ns = 7, SDLIFT approach, with limiter 48.3 43.5

Table 8.6. – Iteration cost κ [µs.ite−1.DOF−1] for SwBc and SwB1 cases for p = 2 and p = 3 dis-
cretizations with different numerical treatments. The SwBc case with Ns = 0 was added
to estimate the cost of adding one transport equation. All computations were done on
760 processors provided by the same cluster.

reactants CH4, O2 and N2 so that Ns = 3 in this case whereas the first line in Table 8.6 corre-
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Figure 8.13. – Radial profiles of the statistics of axial and radial velocities at different distances from
the burner exit. Legends: JAGUAR p = 2 ( ), JAGUAR p = 3 ( ), numerical
results of Proch and Kempf [300] (−−) and experimental data [298] (•).

sponds to the exact same case with only pure air that is Ns = 0. Comparing these two test cases
allows to find an estimation of the iteration cost of adding one transport equation in JAGUAR which
seems to be around 2.4 µs.ite−1.DOF−1 for p = 2 and 2.2 µs.ite−1.DOF−1 for p = 3. The SwB1
case is well more costly firstly because four more species have to be transported: the three prod-
ucts of combustion CO2, CO and H2O and the fictive species needed for the relaxation sensor ψ.
Thus, from the SwBc case at Ns = 3, κ is increased by a value of 9.6 µs.ite−1.DOF−1 (respectively
8.8 µs.ite−1.DOF−1) due to the transport of additional species for p = 2 (respectively p = 3). It
brings the iteration cost of SwB1 around 26.9 µs.ite−1.DOF−1 (respectively 24.4 µs.ite−1.DOF−1) for
p = 2 (respectively p = 3) case. However, in Table 8.6, the iteration cost for SwB1 case at p = 2
(respectively p = 3) is 48.3 µs.ite−1.DOF−1 (respectively 43.5 µs.ite−1.DOF−1). Consequently, there
is still 21.3 µs.ite−1.DOF−1 (respectively 19.1 µs.ite−1.DOF−1) for p = 2 (respectively p = 3) which
does not come from the transport of additional species. Actually, simulations of the SwB1 case differ
from the SwBc in three main ways:

• The use of the SDLIFT formulation for the SwB1 case, instead of the average approach for the
SwBc case.

• The use of the positivity-preserving limiter for the SwB1 case which is not activated for the
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Figure 8.14. – Radial profiles of the statistics of temperature and of mean equivalence ratio at different
distances from the burner exit. Legends: JAGUAR p = 2 ( ), JAGUAR p = 3 ( ),
numerical results of Proch and Kempf [300] (−−) and experimental data [296](•).

SwBc case.
• The calculation of combustion source terms only considered in the SwB1 case.

Thus, simulations of the SwBc case with Ns = 3 have been carried out either with the SDLIFT formu-
lation (IC diffusion scheme with gDG correction function here) or the limiter activated. Corresponding
iteration costs have been reported in the fourth and fifth lines of Table 8.6 for p = 2 and p = 3 cases.
According to these results it can be concluded that:

• The positivity-preserving limiter increases κ by 4.6% for p = 2 and by 1.3% for p = 3. This
difference between p = 2 and p = 3 probably comes from the fact that p = 3 has 46% less elements
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than p = 2 in the domain so probably less troubled elements. Nevertheless, the increase of κ due
to the limiter seems not to be the main responsible for the large difference of κ between SwBc
and SwB1 cases. However, these values are probably higher in the reacting case since there are
surely more troubled elements where the limiting process has to be activated.

• The SDLIFT formulation increases κ by 71% for p = 2 and by 66% for p = 3 which is a lot.
Again, the small difference between the two orders is probably due to the lower number of
interfaces in the p = 3 case since it has less elements.

Therefore, the SDLIFT formulation is the main responsible parameter for the increase in iteration
cost between SwBc and SwB1 cases simulated with JAGUAR. For instance in the p = 2 case,
adding four transported species brings the iteration cost for SwB1 to 26.9 µs.ite−1.DOF−1 as stated
above. Then, using only the SDLIFT formulation, this iteration cost increases by 70% ending up
with 45.7 µs.ite−1.DOF−1 quite close to 48.3 µs.ite−1.DOF−1 written in Table 8.6. The remaining
differences probably originate from the limiter and the calculation of combustion source terms.

Notice finally that, in all cases because DOF is kept constant, κ at p = 3 is approximately 10%
smaller than at p = 2 as already highlighted in paragraph 7.4.4.

Working on optimizing this very new formulation is unavoidable for the future of JAGUAR in
combustion. Indeed, the implementation of combustion equations in JAGUAR does not follow the
usual ways that allow to accelerate it by Cassagne et al. [115] that is:

1. The use of matrix/matrix products with optimized memory placement.
2. The use of cache blocking by packing contiguous elements with same polynomial degree p with

a cache value equal to the cash value of the considered machine to avoid useless copies.
With such features, JAGUAR has gained more than 30% of performance that is why the expected
gain for the SDLIFT formulation is probably huge. This optimization work was not done during this
thesis since it was needed to see first if the SDLIFT formulation was able to improve the results and
also because the optimization process requires to review some parts of the code which will impact all
JAGUAR users. Therefore, it has to be made carefully and not enough time was available during the
thesis for such work.

8.3.11. Perspectives for future works on case SwB1 using local polynomial adaptation

The results on the SwB1 case have shown that increasing the polynomial degree within each element,
at the same number of points in the flame front, better predicts the flame wrinkling when TFLES
is employed. Indeed, reducing the thickening of the flame, and so the value of nffpts, produces more
wrinkling of the flame as highlighted in Figure 8.15 where temperature fluctuations are represented in
the p = 2 discretization case for both nffpts = 7 (original computation) and nffpts = 10. Thus, simulations
of the exact same premixed reacting case can be performed on the mesh built for p = 2 but using
local polynomial adaptation in order to have p = 4 in the flame region, instead of p = 2, to reduce the
thickening of the flame and therefore the impact of the TFLES model. The key point is how to set
the polynomial distribution within each element and especially on which criteria. In paragraph 7.4.5,
the use of the time-averaged of the norm of the density gradient, as a sensor, was employed on
a 2D premixed laminar burner showing a good potential to locate where to refine the flame region.
However, other sensors based on the HRR (similar to the one used in TFLES) or temperature gradient
can be also considered. These three sensors have been computed on simulations of the Cambridge
burner with p = 2 inside each element following the methodology described in paragraph 4.5.1. Their
corresponding polynomial distribution for pmin = 2 and pmax = 4 are illustrated in Figure 8.16 along
with the total number of DOF they have in the computational domain.

All three sensors capture well the flame region. The sensors based on the HRR and ||∇ρ||2 having
less DOF compared to the ||∇T ||2 sensor may be preferred. Recalling that the original discretization
with p = 2 everywhere has 10.2M DOF, polynomial distributions based on HRR and ||∇ρ||2 add
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Figure 8.15. – Comparison of temperature fluctuations
√
T ′2 at different distances from the burner

exit in the p = 2 discretization case for both nffpts = 7 (original computation) and
nffpts = 10. Legends: JAGUAR nffpts = 7 ( ), JAGUAR nffpts = 10 ( ), numerical
results of Proch and Kempf [300] (−−) and experimental data [296] (•).

(a) On ω̇T (14.4M DOF). (b) On ||∇ρ||2 (14.8M DOF). (c) On ||∇T ||2 (17.8M DOF).

Figure 8.16. – Comparison of polynomial distributions obtained with different sensors on the Cam-
bridge burner when pmin = 2 and pmax = 4. The computation of sensor values is done
using a first run at constant p = 2.

around 50% DOF but ∆x in the flame region is reduced by a factor of 3/5 ending up to a value of
0.18 mm. The new maximum thickening therefore goes from 6 to 3.6 which leads to a more wrinkled
thickened flame, better catching experiment results in Figure 8.14b. This is probably the best way for
simulating turbulent combustion cases with the SD method at a correct computational cost as it was
already concluded at the end of Section 7.4:

1. Start with a mesh built for a low polynomial degree p.
2. Run a first simulation with this low p value in all elements for computing sensor values for each

element.
3. Start a new simulation with a varying polynomial degree per element set thanks to the already

computed sensor on the first simulation.
In the original guidelines of this work, it was not expected to do local polynomial adaptation on
reacting cases since a lot of work was first needed for doing combustion cases at constant p values.
However, it appeared that the use of local polynomial adaptation was essential for keeping the method
competitive in terms of computational cost. Consequently, some combustion cases were simulated
using p-adaptation in this work to show the potential of the method but there was not enough time
for simulating the three discretizations presented on Figure 8.16.
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8.4. Simulation of the VOLVO configuration
These simulations were made in collaboration with a sixth-months intern, Arthur Berthelot.

8.4.1. Presentation of the case
The VOLVO burner is a configuration firstly introduced experimentally by Sjunnesson et al. [121,

122]. It is composed of a rectangular chamber of constant cross section 0.12 m×0.24 m in the yz-plane
with a bluff-body equilateral triangle flame holder of edge length Dbb = 0.04 m located at x = xbb =
0.82 m downstream of the inlet as shown in Figure 8.17. The total length of the configuration is Lx =

Figure 8.17. – Sketch of the VOLVO burner in the xy-plane with associated dimensions and locations
of experimental data in both x and x⋆ spaces.

1.55 m. Three experimental elements are commonly not considered in numerical simulations [311, 312]:
the fuel feeding line, the seeding and the honeycomb used to generate a turbulence level of 3% of the
inlet bulk velocity [121]. In numerical simulations, premixed air and propane (C3H8) are injected at
Tin = 288 K either at Ub = 16.6 m.s−1 or Ub = 17.3 m.s−1 respectively for the non-reacting and reacting
cases. The amount of C3H8 and air injected at the inlet is determined to have an inlet equivalence
ratio set to ϕin = 0.65 in this work corresponding to a stable operating point without thermoacoustic
instabilities [311]. This configuration is too large for DNS and multiple LES were carried out using
several numerical methods such as FV [311–314], DG [26] and very recently LBM [111]. Although the
non-reacting flow is similarly predicted by all methods [315], the results obtained in the reacting case
differ significantly between the solvers. The reasons for that are quite complex but it appears that
employing more accurate chemical schemes with fully dynamic turbulent combustion models and HO
numerical schemes improve the results [312]. Consequently, this configuration is an excellent validation
test case for the SD algorithm. In this work, both the non-reacting and the reacting cases, in the
stable operating point ϕin = 0.65, are simulated with SD and compared to:

• experimental data [121, 122]: mean axial velocity u, y-profiles of several variables at x1, x2, x3,
x4, x5, x′

4, and x′
5 (see Figure 8.17) and along the chamber centerline (y = 0) from xbb.

• LES results of several numerical methods [26, 111, 311] for the reacting case only, at the same
locations as experimental data, which have the closer modeling in terms of chemical scheme and
turbulent combustion models to have a fair comparison.
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8.4.2. Mesh discretization
For the non-reacting simulations, discretizations are built to have a characteristic distance between

two DOF in the xy-plane of ∆x = ∆y = 0.5 mm and ∆z = 2 mm in the spanwise direction. Three
different discretizations respectively at p = 2, p = 3 and p = 4 are used. They end up with a number
of DOF between 15 and 16 millions within the computational domain as shown in Table 8.7 where
values of Ne, p and DOF are given for each case. Concerning the reacting case, a mesh where the

p 2 3 4
Ne 597800 237540 120624

DOF [×106] 16.1 15.2 15.1

Table 8.7. – Values of Ne, p and DOF for the three different discretizations used for the non-reacting
case of the VOLVO burner at ϕin = 0.65.

polynomial distribution was set by hand, represented in Figure 8.27 in the bluff-body region, was
employed. It is composed of three different zones:

• One zone with x ∈ [0.77 m, 1.0 m] where p = 4 in order to have ∆x = ∆y = 0.6 mm in this
region. It is also refined in terms of mesh elements as depicted in Figure 8.26.

• One zone with x ∈ [1.0 m, 1.1 m] where p = 3 and a mesh element size equal to twice the one in
the bluff-body refined zone.

• The remaining of the mesh, that is x < 0.77 m and x > 1.1 m, is at p = 2 and is also made of
bigger elements.

Finally, 80 1D uniform segments are used to discretize the spanwise direction giving a characteristic
distance between two DOF in this direction for the bluff-body region of ∆z = 0.6 mm. Thus, the
discretization is isotropic in the bluff-body region for the reacting case and the total number of DOF
in the domain is around 24.5 millions. More details about this discretization for the reacting case are
given in paragraph 8.4.8.1

8.4.3. Boundary conditions
Inlet and outlet boundary conditions are imposed through the NSCBC methodology described in

paragraph 5.1.3. For the inlet, the axial velocity profile injected is given by Eq. (6.38) with n = 7,
h = 0.06 m and Ucl = 18.97 m.s−1 (respectively Ucl = 19.77 m.s−1) for the non-reacting (respectively
reacting) case obtained from Eq. (6.39) to have the expected bulk velocity. As opposed to what was
done in previous studies [111, 311, 312], no turbulence injection appeared to be needed in this work.
Species mass fractions at the inlet are specified to have ϕin = 0.65:

YC3H8,in
= 0.04 , YN2,in

= 0.7363 , YO2,in
= 0.2237 (8.22)

At the outlet, static pressure is imposed at 101325 Pa and finally the bluff-body and all chamber sides
are modeled as adiabatic no-slip walls using the approach detailed in paragraph 5.2.3.2.

8.4.4. Chemistry and combustion model
The chemical scheme considered for all reactive simulations is the two-reactions C3H8/Air mech-

anism developed in [311] especially for the VOLVO configuration. The TFLES combustion model
introduced in Section 8.1 with the relaxation flame sensor and the saturated Charlette’s model with
a constant β set to 0.5 is employed. The maximum thickening is computed to have at least 7 points
in the flame front which is around 7 in the bluff-body region since δ0

L = 0.61 mm for the C3H8/Air
mechanism at ϕin = 0.65.
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8.4.5. Other numerical parameters
As for the Cambridge burner, the non-reacting case is simulated using the average approach of Sun

et al. [47] for the diffusion scheme whereas the reacting case employs the SDLIFT formulation using
IC scheme coupled with gDG correction function for the diffusion scheme. The positivity-preserving
limiter introduced in Section 8.2 is also activated in the reacting case to stabilize the numerical
solution. Finally, for both non-reacting and reacting simulations, time integration was carried out by
the SSP-ERK(5,4) scheme of Spiteri and Ruuth [226], convective fluxes at interfaces were handled by
the HLLC scheme [201] and no turbulent subgrid scale model was employed.

8.4.6. Post-treatment
For non-reacting simulations, all calculations were run first for 1 convective time, based on Lx

and Ub = 16.6 m.s−1 which corresponds to 93 ms, to evacuate the transient flow. Then, these
simulations were restarted for another 3 convective times to collect time-average statistics which were
finally spatially averaged in the z-direction. Concerning the reacting case, simulations were run for
0.5 convective times based on Lx and Ub = 17.3 m.s−1 and then statistics were collected during
one convective time only due to the cost of this simulation. However, Rochette et al. [312] reported
convergence for the reacting case after around 52 ms of physical time, which is half of the present
averaging time.

8.4.7. Results analysis on the non-reacting case
Figure 8.18 presents the vortex shedding structures obtained in the simulations, visualized with

an iso-contour of Q-criterion colored by v. A von Karman-like flow, already observed in previous
studies [111, 311, 315], can be seen. In Figures 8.19-8.24, JAGUAR results for p = 2, p = 3 and
p = 4 are compared against experimental data for the mean axial velocity along the centerline y = 0
in x⋆-space defined on Figure 8.17, and y-profiles of mean and RMS velocities at five different axial
locations x1-x5 also represented on Figure 8.17. The recirculation zone behind the bluff-body is
very well captured for any value of p as shown on Figure 8.19. Moreover, y-profiles of the different
velocities are also in very good agreement with experimental data. Finally, as for the Cambridge flame
burner, Pope’s criterion (see Eq. (3.26)) can be plotted to see if VOLVO discretizations are sufficient
to have most of the TKE spectrum. It is illustrated on Figure 8.25 for the p = 3 case, near the
bluff-body region, where the Vreman model with CSGS = 0.10 was used to estimate the SGS TKE
at SP. The criterion M < 0.2 is respected almost everywhere in the flow region and especially in
the region of interest downstream of the bluff-body. Thus, similarly to the Cambridge flame burner,
the discretization considered is sufficient for a LES computation without necessarily employing a SGS
turbulent model. It ends the validation of the non-reacting VOLVO configuration with JAGUAR.
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Figure 8.18. – Vortex shedding structure for the non-reacting case visualized using an iso-contour of
Q-criterion at 7 × 107 s−1 colored by instantaneous transverse velocity.
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Figure 8.19. – u/Ub along y = 0 in the non-reacting case.
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Figure 8.20. – y-profiles of u/Ub in the non-reacting case at x1 − x5. See Figure 8.19 for legends.
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Figure 8.25. – Evolution of Pope’s criterion, computed with the Vreman model [157] using CSGS =
0.10, on the p = 3 discretization near the bluff-body region.
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8.4.8. Results analysis on the reacting case
8.4.8.1. Comments on the discretization

As explained in paragraph 8.4.2, the use of local polynomial adaptation was necessary to keep a
reasonable number of DOF within the computational domain. The mesh elements and the zones with
different polynomial degrees, set by hand in this case, are represented respectively in Figures 8.26
and 8.27.

Figure 8.26. – View of the mesh elements near the bluff-body region for the reacting case in the xy-
plane.

Figure 8.27. – Polynomial degree distribution near the bluff-body region for the reacting case in the
xy-plane.

The need for p-adaptation for the reacting flow is attributed to the following reasons:
• Firstly, the TFLES model requires to not thicken the flame too much near the bluff-body oth-

erwise it will not stay attached. Keeping the non-reacting discretizations ∆z of 2 mm induced
a too strong thickening in this direction, leading to flame blow-off. Thus, a refinement in the
spanwise direction was needed so as to not exceed a maximum thickening of the flame of 7 with
7 points inside the flame front.

• However, due to the use of the Gmsh mesh generator [316] with only hexahedral elements, this
refinement in the spanwise direction applies all over the computational domain. This leads to a
very high number of DOF that is not affordable unless local polynomial degree distribution is
employed.

The three different refinement zones illustrated on Figure 8.27 have been chosen to have most of the
experimental probes in refined zones. Measurements from x1 to x4 are indeed in the very refined zone.
However x5, x′

4 and x′
5 probes where the average temperature is measured are in the coarsened zone.

Finally, the discretization was slightly coarsened in the xy-plane in the very refined zone close to
the bluff-body to also reduce the number of DOF ending up with ∆x = ∆y = ∆z = 0.6 mm in this
region.

8.4.8.2. Results

Reacting simulations are initialized with a non-reacting solution which is ignited by either surround-
ing the bluff-body with burnt gases or by filling all the right side of the chamber, from x = xbb to the
outlet, with burnt gases.
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Figure 8.28 shows an iso-surface of progress variable, based on temperature, at c = 0.5, and colored
by the instantaneous wrinkling factor. The temperature increase due to the combustion process has
entailed the creation of high viscosity and large density ratio regions eliminating the vortex shedding
pattern observed in Figure 8.18 as already noticed in previous studies [111, 312]. Figure 8.29 shows

Figure 8.28. – Iso-surface of progress variable c = 0.5 colored by instantaneous wrinkling factor.

the evolution of the mean axial velocity along the centerline y = 0 in the x⋆-space for the present
JAGUAR simulation, experiment [121, 122] and other LES performed using the same two-reactions
chemical scheme for propane:

• Ghani et al. [311] used the AVBP solver [179, 283] with the TTGC scheme for convective fluxes.
Their mesh was composed of 37M of DOF with ∆x = 2 mm in the bluff-body region. The
TFLES model was used with the original flame sensor of Legier et al. [174] and the Charlette’s
model [178, 181] for the efficiency function but without specifying if it is the saturated version
and if β is constant or dynamically computed. They used the Sigma model [158] as SGS model.

• Tayyab et al. [111] have employed a LBM solver that was recently extended to multi-species
reacting flows [109, 110]. They had 17.5M of DOF with ∆x = 1 mm in the bluff-body region.
Again, the TFLES model was used but with the generic flame sensor [176] and Charlette’s
model [178, 181] for the efficiency function also without specifying the Charlette’s version and
the way β is obtained. They used the Vreman model [157] as SGS model.

• Lv et al. [26] used a DG algorithm at constant p = 3 in the whole domain. Their discretization
was composed of only 2.5M of DOF with ∆x = 3 mm in the bluff-body region. However, their
domain was half smaller in axial direction and of one third only in the spanwise direction of
the usual width represented in Figure 8.17. Moreover, there is no mention of any turbulent
combustion model or SGS model. This is questionable especially for the combustion model since
their ∆x is far from being sufficient to resolve the flame front.

All these parameters are summed up in Table 8.8.
The evolution of the mean axial velocity along y = 0 is globally well-captured by JAGUAR:
• The recirculation zone is slightly shifted compared to experiments but other numerical methods

also predict such shift.
• The flow acceleration, due to gas expansion in the reacting case, is correctly captured with a small

underestimation for x⋆ > 9 ⇐⇒ x > 1.18 m. It might be due to the JAGUAR discretization
that is coarsened from x = 1.10 m to the outlet.

In Figure 8.30-8.34, y-profiles of mean and RMS velocities at the five axial locations x1 − x5 obtained
with JAGUAR are illustrated and compared with experimental data. A general good agreement is
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Numerical Method DOF [×106] ∆x [mm] Mod combu Mod SGS
AVBP (TTGC), Ghani et al. [311] 37 2 TF-Class-Char-?-? Sigma

LBM, Tayyab et al. [111] 17.5 1 TF-Gener-Char-?-? Vreman
DG p = 3, Lv et al. [26] 2.5 3 ? ?

JAGUAR 24.5 0.6 TF-Relax-Char-Sat-β = 0.5 None

Table 8.8. – Summary numerical methods used in previous works and this work for comparison on
the reacting VOLVO burner. Question tags indicate that no information is available.
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DG p = 3, Lv et al.

JAGUAR

Figure 8.29. – u/Ub along y = 0 in the reacting case.

observed even at x = x5 where the discretization is coarse. Finally, Figure 8.35 presents y-profiles
of the mean temperature at the three axial locations x4, x′

4 and x′
5. Again, the mean temperature

profile is globally well captured at each of these three locations. The differences with experimental
data at x′

4 and x′
5 locations have already been observed in previous studies [312, 314]. Employing a

more detailed chemical scheme and a dynamic β formulation for the saturated Charlette model can
also improve the results as evidenced by Rochette et al. [312]. Finally, the use of a better polynomial
distribution in the future, based on an appropriate sensor (see the discussion in paragraph 8.3.11),
will probably help to better discretize x′

4 and x′
5 regions without increasing the total number of DOF

in the domain.
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Figure 8.30. – y-profiles of u/Ub in the reacting case at x1 − x5 obtained with JAGUAR.
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Figure 8.31. – y-profiles of v/Ub in the reacting case at x1 − x5 obtained with JAGUAR.
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Figure 8.33. – y-profiles of
√
v′2/Ub in the reacting case at x1 − x5 obtained with JAGUAR.
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8.5 Summary of this chapter

8.4.8.3. Discussion on computational cost

Since JAGUAR and AVBP are two codes developed at CERFACS which use same species transport
approach and same combustion source terms computation, it is possible to compare their iteration cost
in the non-reacting and reacting cases for the VOLVO configuration. In particular, in paragraph 8.3.10
it was shown that JAGUAR iteration cost highly increases for reacting simulations and that this
increase is not only due to the additional transport of combustion products and the calculation of
combustion source terms. Table 8.9 sums up the iteration costs of both non-reacting and reacting flow
simulations of the VOLVO configuration using JAGUAR and AVBP with either the LW or TTGC
convection scheme. It should be mentioned that non-reacting JAGUAR simulations are the ones of
p = 3 case. As in the Cambridge burner case, reacting simulations with JAGUAR are well more
costly than non-reacting ones although the cost of one transport equation seems still to be around
2 µs.ite−1.DOF−1. AVBP also shows a large increase of the iteration cost between non-reacting and
reacting simulations, for both convection schemes, but this increase is less important. The cost of
one transport equation is around 0.78 µs.ite−1.DOF−1 and 1.23 µs.ite−1.DOF−1 respectively for the
LW and the TTGC scheme which in both cases is smaller than for JAGUAR. This analysis shows
that there is still a high potential for improvement for reducing the cost of transport equations in
JAGUAR.

Code JAGUAR (p = 3) AVBP (LW) AVBP (TTGC)
VOLVO non-reacting Ns = 0 11.2 9.46 18.5
VOLVO non-reacting Ns = 3 17.6 11.8 22.2

VOLVO reacting Ns = 7 42.0 15.2 30.1

Table 8.9. – Iteration costs κ [µs.ite−1.DOF−1] for non-reacting and reacting VOLVO simulations with
JAGUAR for the p = 3 discretization and AVBP. All computations were done on 760
processors provided by the same cluster.

8.5. Summary of this chapter

In this chapter, the use of the TFLES model with the relaxation flame sensor and saturated
Charlette’s efficiency function at a constant β value is detailed in the context of the SD discretization.
Since two sets of points are employed in the SD method, thickening factors and efficiency functions
are calculated at both SP and FP. Simulations of 1D and 2D laminar premixed flames on coarse
meshes with flame thickening, have shown that the relaxation flame sensor and the thickening factor
are very well computed by JAGUAR and in perfect agreement with AVBP results. Validation on a
canonical test case for the operator used in the expression of u′

∆ was also performed with a perfect
match between numerical and analytical solutions.

For the turbulent combustion cases, the use of positivity-preserving limiter was needed to stabilize
the solution. The implementation of such limiter was therefore detailed and some differences with the
usual algorithms presented in the literature are discussed. Basically, the main difference in its use
during this work was the necessity of having, besides limitations on species mass fractions and pressure,
a limitation on the temperature. It is attributed to the non-linear dependence on temperature of the
equations considered in the limitations process due to the temperature dependence of enthalpies in
the multi-species case. Moreover, the original versions of this limiter were almost never applied in a
multi-species turbulent reacting flow context where this additional constraint on temperature might
be crucial.

Then, simulations of the Cambridge flame burner have been presented using two different discretiza-
tions, respectively at constant p = 2 and p = 3 in the whole domain, with both a characteristic distance
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between two DOF of 0.3 mm in the flame region. Firstly, non-reacting simulations were carried out
to see if both discretizations correctly capture the aerodynamic fields. This was indeed the case since
results were in very good agreement with experiments and other LES available in the literature on the
same case. The premixed Cambridge flame was simulated afterwards and again results were found
in good accordance with experimental data and other LES except for the RMS of temperature which
were underestimated by JAGUAR. This effect was said to be originated from the use of the TFLES
model entailing a loss of the wrinkling due to the thickening of the flame. However, it was observed
that working at a higher p value diminishes this effect, although the flame front is similarly discretized.
This highlights the fact that the resolved wrinkling of the flame seems to vary with p. Further in-
vestigations, out of the scope of this work, should be considered to see if there is a need to take into
account the value of p when computing the efficiency function E . It is inline with the work of Chapelier
and Lodato [159] who developed a SGS turbulent model which adapts the sub-grid dissipation locally
to an element based on the polynomial energy spectrum within each element. A comparison of the
iteration cost between non-reacting and reacting simulations performed with JAGUAR show that:

• The iteration cost for adding an additional transported species in the flow is 2.4 µs.ite−1.DOF−1

for p = 2 and 2.2 µs.ite−1.DOF−1 for p = 3.
• The SDLIFT formulation is extremely expensive for now with respectively 71% and 66% of

increase for p = 2 and p = 3 cases compared with calculations using the average approach of
Sun et al. [47]. It is the main reason why reacting simulations of the Cambridge burner were
much more costly than non-reacting ones with JAGUAR since the average approach which is
not stable for reacting cases could not be used. The implementation of the SDLIFT formulation
needs to be optimized using both matrix/matrix products with appropriate memory placement
and cache blocking.

Finally, some guidelines for using local polynomial adaptation in the future on the Cambridge burner
were given in order to put high polynomial degrees only in the flame region to reduce the thickening
and better capture the flame wrinkling.

Another 3D turbulent premixed flame, the VOLVO configuration, was computed with JAGUAR
firstly in the non-reacting case with constant p = 2, p = 3 and p = 4 discretizations and in a second
time in the reacting case using a discretization with 2 ≤ p ≤ 4. The non-reacting case is very
well reproduced for any value of p with JAGUAR. Results on the reacting simulation are in a good
agreement with both experimental data and other LES results on the same configuration. Finally, a
comparison between JAGUAR and AVBP in terms of iteration cost on this configuration has revealed
that:

• Like JAGUAR, AVBP reacting simulations are well more costly than non-reacting ones but the
increase is less important with AVBP.

• AVBP iteration cost for one transport equation is around 0.78 µs.ite−1.DOF−1 for the LW
scheme and 1.23 µs.ite−1.DOF−1 for the TTGC scheme. These values are respectively three and
two times smaller than JAGUAR ones although both codes use the same transport modeling.
Therefore, it is concluded that there is a large potential to reduce JAGUAR iteration cost in
combustion by working on optimizing the resolution of transport equations in JAGUAR.
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Chapter 9
Conclusion and perspectives
9.1. Discussion

The global objective of this thesis was the extension of the SD method to combustion applications
and the study of its interest and the new possibilities it offers compared to already existing numerical
methods. To achieve this, it was necessary to develop a stable SD formulation when applied to the
reacting multi-species NSE. Then, a thorough numerical validation of this algorithm was performed
from 1D laminar premixed flames to 3D turbulent premixed flames showing very satisfying results
compared to already existing methods.

The development of a SD algorithm able to simulate multi-species reacting flows started by showing
that the classical SD discretization creates strong pressure oscillations when dealing with a thermally
perfect gas in the context of a contact discontinuity. This behavior originates from the reconstruction
of pressure at FP from the interpolated conservative variables on these points due to the non-linearity
in the equation linking ρE and P for a thermally perfect gas. This issue was corrected by firstly
evaluating pressure at SP and then interpolating this same pressure at FP ending up with the TUPY
SD formulation. With this new formulation associated to extended characteristic and wall bound-
ary conditions to multi-species gas, 1D and 2D laminar premixed flames have been simulated with
both simplified two-reactions or semi-detailed ARC chemical schemes. Results were similar to those
obtained with well-established combustion solvers CANTERA and AVBP.

Performances of the SD method in combustion were then investigated. A first study conducted
on a 2D laminar burner has shown that, for the same error level, it is better in terms of accuracy
and computational cost to employ large elements with high p values and not the contrary. This
study also demonstrated the usefulness of local p-adaptation which allows to significantly reduce the
computational cost of the SD method, making it very competitive with already existing ones, without
loosing accuracy. A second study made on several 1D and 2D laminar premixed flames with very coarse
discretizations highlighted the unstable property of the average approach for the diffusion scheme at
interface FP, leading to the development of the SDLIFT formulation. Using this new formulation,
an improvement of the stability was observed making the SD method less sensitive to the number of
points inside the flame front than the AVBP solver. Such result is very interesting in the context of
turbulent combustion where usually it is way too costly to have a large number of points inside the
flame front.

Simulations of turbulent combustion cases required first simulations of non-reacting turbulent flows
with the SD code JAGUAR employed in this thesis. In particular, the implementation of a turbulent
inlet boundary condition was needed. A synthetic random Fourier method was chosen to generate
turbulent perturbations at the inlet and was validated on several test cases with different geometries.
It is a good compromise in terms of quality of the generated turbulence and computational cost
compared to other existing methods for injecting turbulence at an inlet of a domain. Moreover, its
formalism allows the use of any kind of turbulent spectrum making it very flexible. However, this
methodology is not optimum for reproducing near-wall turbulence but it can be easily coupled to an
artificial tripping approach or extended to inject non-homogeneous and anisotropic turbulence which,
in both cases, has exhibited to improve near-wall turbulence description.

In order to move to reacting turbulent flows, the implementation of a turbulent combustion model
in JAGUAR was needed. The TFLES model was then adapted to the SD formalism and incorporated
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in JAGUAR. After checking that this model performed as expected on simple 1D and 2D laminar
flames, simulations of two academic 3D turbulent burners were carried out namely the Cambridge
flame burner and the VOLVO configuration. Concerning the Cambridge burner, results were found
in very good agreement with both experiments and other existing LES showing the capability of
the SD method developed in this work to simulate complex turbulent combustion. One significant
observation is that, at constant number of points inside the flame front, a higher value of p better
predicts the wrinkling of the flame that is lost due to thickening. Thus, it clearly advocates for the
use of local p-adaptation in the future in order to reduce the thickening of the flame front at a lower
computational cost. Nevertheless, this test case has also highlighted that the SDLIFT formulation
remains extremely costly in the current JAGUAR implementation making reacting computations very
expensive compared to non-reacting ones which can be run without this formulation. This is due to
its very young implementation in JAGUAR that does not benefit from matrix/matrix operations and
cache blocking. Finally, the VOLVO configuration was correctly simulated with JAGUAR, in both
non-reacting and reacting cases, where most of the results show very good agreement with experimental
data and other LES previously published. For the reacting case, local p-adaptation was employed to
make the simulation affordable and with sufficient accuracy in the zones of interest.

9.2. Future work
This thesis has demonstrated that the SD method can handle simulations of multiple premixed com-

bustion cases and give new alternatives to better resolve the flame front, at a smaller cost compared
to the constant p case, using local p-adaptation. Consequently, it is very important to keep working
on local p-adaptation and especially on finding the appropriate sensors for the flame resolution. Com-
parisons with the current state of the art in combustion, which is using a FV method coupled with
the AMR technique, is a necessary step that needs to be done in the next years. Moreover, since the
polynomial degree seems to have an influence on the resolved flame wrinkling, it could be interesting
to work on the adaptation of the efficiency function in the TFLES model to account for this effect.

The work conducted here also brought to light the limitations in terms of iteration cost of JAGUAR
especially in the reacting turbulent cases. It is still a very young CFD code which needs to be
optimized to remain competitive for simulating complex reacting turbulent flows. The main sources
of this increase of iteration cost were identified and needs now to be treated with surely an important
improvement of JAGUAR performances.

The development of the SDLIFT formulation, as a new way to evaluate interface states and gradients
for viscous fluxes, demonstrated the impact of the diffusion scheme on the results in the multi-species
reacting case. Thus, there is a need to understand precisely why the stability limit of the usual
average approach of Sun et al. [47] seems lower than for the SDLIFT approach. Consequently, a
stability analysis between these two formulations would be of great interest.

A last point also requires to be tackle for the future of the SD method in combustion which is to deal
with simplex elements (triangles and tetrahedra) rather than only tensor-product elements (quadri-
laterals and hexahedra) like in this thesis. Indeed, real combustion chambers have very complicated
geometries which are easily meshed using tetrahedra cells. This will require firstly to find stable FP
locations on tetrahedra for p ≥ 3 since the current state of the art works for p = 2 at most. Secondly,
the adaptation of characteristic boundary conditions is necessary because, for now, the treatment uses
the direction per direction property of tensor-product elements to impose flux derivatives. Finally,
since local p-adaptation seems to be essential for the future of the SD method in combustion, simplex
elements must support local p-adaptation which to the author’s knowledge, has never been published
in the SD literature.
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Appendix A
Useful calculations
A.1. Quadrature rule for Gauss-Chebyshev points of the first kind in SD

The Gauss-Chebyshev quadrature rule, using N Gauss-Chebyshev quadrature points of the first
kind, has the objective to compute: ∫ 1

0

h (ξ)√
1 − ξ2dξ =

N∑
j=1

ωjh (ξj) (A.1)

where ξj is given by Eq. (4.14) and the weights ωj on [0, 1] are set as:

ωj = π

2N (A.2)

However, in the SD framework, it is only h (ξ) that needs to be integrated on N = p + 1 SP defined
by the ξj ’s. Thus, the weights ωj presented in Eq. (A.2) cannot be used since they were derived when√

1 − ξ2 was at the denominator of the integrated function. Consequently, new values of ωj , such
that a polynomial of degree p at most must be integrated exactly, have to be found. There are p+ 1
unknowns for the ωj then p+ 1 equations are needed to find the corresponding weights associated to
each ξj . These p+ 1 equations can be obtained by considering the integration of ξp,. . ., ξ0 = 1:∫ 1

0
ξpdξ =

p+1∑
j=1

ωjξ
p
j = 1

p+ 1
...∫ 1

0
ξ0dξ =

p+1∑
j=1

ωjξ
0
j = 1

1

(A.3)

This system of equations can be put into matrix form:

1 . . . 1 . . . 1
...

...
...

...
...

ξ1 . . . ξj . . . ξp+1
...

...
...

...
...

ξp1 . . . ξpj . . . ξpp+1





ω1
...
ωj
...

ωp+1


=



1
...

1/j
...
1

p+ 1


(A.4)

where the matrix in the left-hand-side is a Vandermonde matrix. Solving Eq. (A.4) for each value of
p will give the values of the ωj ’s to use for the integration of any polynomial of degree p at most using
Gauss-Chebyshev quadrature points of the first kind. Here is an example for p = 2 where there are 3
SP which have the following locations given by Eq. (4.14):

ξ1 = 1
2

(
1 −

√
3

2

)
, ξ2 = 1

2 , ξ3 = 1
2

(
1 +

√
3

2

)
(A.5)
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The 3 weights values will be given by solving: ω1
ω2
ω3

 =

 1 1 1
ξ1 ξ2 ξ3
ξ2

1 ξ2
2 ξ2

3


−1  1

1/2
1/3

 =⇒

 ω1
ω2
ω3

 =

 0.222222222
0.555555556
0.222222222

 (A.6)

A.2. Compute normal vector at a given FP

A.2.1. Link between the isoparametric and physical normal vectors

The objective here is to find a relation between the normal vector at an interface FP in the isopara-
metric domain n̂ = (nξ, nη, nζ)T and the normal vector at this same interface FP in the physical domain
n = (nx, ny, nz)T. Starting from the definition of n̂ saying that for any tangent vector t̂ = (tξ, tη, tζ)T

to this FP:

n̂ • t̂ = 0 ⇐⇒ n̂T.t̂ = 0 (A.7)

where • means the dot product between 2 vectors and . means the product between 2 tensors. Using
the components of each vector it can be viewed as:

nξtξ + nηtη + nζtζ = 0 ⇐⇒ (nξ, nη, nζ) .

 tξ
tη
tζ

 = 0 (A.8)

This is more a general case that is written here compared to the SD case where n̂ can take only three
possible vector values: (1, 0, 0)T for ξ-FP, (0, 1, 0)T for η-FP or (0, 0, 1)T for ζ-FP. Now, J and J−1

are introduced in the right side of Eq. (A.7) following:

n̂T.J−1J.t̂ = 0

⇐⇒ n̂T.

[[
J−1

]T]T
.J.t̂ = 0

⇐⇒
[[
J−1

]T
.n̂
]T
.J.t̂ = 0

⇐⇒
[
J−1

]T
.n̂ • J.t̂ = 0

(A.9)

so that by identification:

n =
[
J−1

]T
.n̂ (A.10)

t = J.t̂ (A.11)

with t = (tx, ty, tz)T an arbitrary tangent vector to the interface FP in the physical domain.

A.2.2. Physical normal vector at interface FP along ξ-direction

In this case, n̂FP = (1, 0, 0)T so that Eq. (A.10) gives:

nFP =

 ξx
ξy
ξz

 (A.12)
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A.3 Tangential vectors for a given normal vector

Usually, unit normal vector are preferred and nFP is replaced by:

nuFP = nFP
||nFP ||2

= 1√
ξ2
x + ξ2

y + ξ2
z

 ξx
ξy
ξz

 (A.13)

In Eq. (A.13),
√
ξ2
x + ξ2

y + ξ2
z = AFP is the area at the interface FP.

A.2.3. Physical normal vector at interface FP along η-direction
In this case, n̂FP = (0, 1, 0)T so that the unit normal vector and the area at the interface FP are:

nuFP = 1√
η2
x + η2

y + η2
z

 ηx
ηy
ηz

 and AFP =
√
η2
x + η2

y + η2
z (A.14)

A.2.4. Physical normal vector at interface FP along ζ-direction
In this case, n̂FP = (0, 0, 1)T so that the unit normal vector and the area at the interface FP are:

nuFP = 1√
ζ2
x + ζ2

y + ζ2
z

 ζx
ζy
ζz

 and AFP =
√
ζ2
x + ζ2

y + ζ2
z (A.15)

A.3. Tangential vectors for a given normal vector

Given an unit normal vector nu =
(
nux, n

u
y , n

u
z

)T
at a boundary FP, two unit vectors can be defined

to create a local orthonormal basis at the boundary FP:
• If |nuz | < 0.7:

tu1 = 1√
(nux)2 +

(
nuy

)2

 nuy
−nux

0

 and tu2 = 1√
(nux)2 +

(
nuy

)2


−nuxnuz
−nuynuz

(nux)2 +
(
nuy

)2

 (A.16)

• Else:

tu1 = 1√(
nuy

)2
+ (nuz )2

 0
−nuz
nuy

 and tu2 = 1√(
nuy

)2
+ (nuz )2


(
nuy

)2
+ (nuz )2

−nuxnuy
−nuxnuz

 (A.17)

A.4. Expression of total energy for a thermally perfect gas similar to the
one of a calorically perfect gas

For a thermally perfect gas, total energy is expressed as:

ρE = ρhs − P + ρ
||u||22

2 (A.18)

In the case of a calorically perfect gas with constant γ = Cp/Cv, Eq. (A.18) becomes:

ρE = P

γ − 1 + ρ
||u||22

2 (A.19)
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because hs = CpT . However, for a thermally perfect gas, hs is given by Eq. (2.14) recalled here for
clarity:

hs =
Ns∑
k=1

Yk

T∫
T0

Cpk
(
T ′) dT ′ (A.20)

By introducing the effective heat capacity at constant pressure:

C̃pk (T ) = 1
T − T0

T∫
T0

Cpk
(
T ′) dT ′ (A.21)

Eq. (A.18) is now given by:

ρE = ρ (T − T0)
Ns∑
k=1

YkC̃pk − ρRT
Ns∑
k=1

Yk
Wk

+ ρ
||u||22

2 (A.22)

To simplify Eq. (A.22), the reference temperature is defined to be T0 = 0 K so that:

ρE = ρT
Ns∑
k=1

Yk

(
C̃pk − R

Wk

)
+ ρ

||u||22
2 = PW

R

Ns∑
k=1

Yk

(
C̃pk − R

Wk

)
+ ρ

||u||22
2 (A.23)

By identification, Eq. (A.23) is similar to Eq. (A.19) if an effective heat capacity ratio γ̃ (not to be
confused with the one of Eq. (4.111) for the Roe’s average of the heat capacity ratio) is introduced
such that:

γ̃ − 1 = R

W
Ns∑
k=1

Yk
(
C̃pk − R

Wk

) ⇐⇒ γ̃ =

Ns∑
k=1

YkC̃pk

Ns∑
k=1

Yk
(
C̃pk − R

Wk

) (A.24)

A.5. System of equations for a NSCBC inlet imposing velocities,
temperature and species mass fractions

The objective is to obtain time-derivatives expressions of the primitive variables Q = (ρ, u, v, w, P, Yk)T

as a function of N and S. To do so, Eq. (5.24) is multiplied by P−1
Q = RAξ

defined in Eq. (F.42)
ending up with:

|J |∂ρ
∂t

= −nux (N ∗
1 + S1) − nuy (N ∗

2 + S2) − nuz (N ∗
3 + S3) − ρ√

2c
(
N ∗

+ + S+ + N− + S−
)

(A.25)

|J |∂u
∂t

= nuz c

ρ
(N ∗

2 + S2) −
nuyc

ρ
(N ∗

3 + S3) − nux√
2
(
N ∗

+ + S+ − N− − S−
)

(A.26)

|J |∂v
∂t

= −nuz c

ρ
(N ∗

1 + S1) + nuxc

ρ
(N ∗

3 + S3) −
nuy√

2
(
N ∗

+ + S+ − N− − S−
)

(A.27)

|J |∂w
∂t

=
nuyc

ρ
(N ∗

1 + S1) − nuxc

ρ
(N ∗

2 + S2) − nuz√
2
(
N ∗

+ + S+ − N− − S−
)

(A.28)

|J |∂P
∂t

= − ρc√
2
(
N ∗

+ + S+ + N− + S−
)

(A.29)

|J |∂Yk
∂t

= −
(
N ∗

5+k + S5+k
)

for k = 1, Ns (A.30)
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Then, time-derivatives of u, v and w are given in Eq. (A.26)-Eq. (A.28) and those of Yk in Eq. (A.30).
It remains to find an expression for |J | (∂T/∂t). Thanks to Eq. (2.16) the differential of T is given by:

∂T = T

P
∂P − T

ρ
∂ρ− TW∂

( 1
W

)
= T

P
∂P − T

ρ
∂ρ− TW

Ns∑
k=1

∂Yk
Wk

⇒ |J |∂T
∂t

= T

P
|J |∂P

∂t
− T

ρ
|J |∂ρ

∂t
− TW

Ns∑
k=1

1
Wk

|J |∂Yk
∂t

⇒ |J |∂T
∂t

= − Tρc√
2P

(
N ∗

+ + S+ + N− + S−
)

+ T

ρ

[
nux (N ∗

1 + S1) + nuy (N ∗
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3 + S3) + ρ√
2c
(
N ∗

+ + S+ + N− + S−
)]

+ TW
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k=1

N ∗
5+k + S5+k

Wk

⇒ |J |∂T
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= T

ρ

[
nux (N ∗

1 + S1) + nuy (N ∗
2 + S2) + nuz (N ∗

3 + S3)
]

− T√
2

(
ρc

P
− 1
c

)
︸ ︷︷ ︸

γ−1
c

(
N ∗

+ + S+ + N− + S−
)
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Ns∑
k=1

N ∗
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⇒ |J |∂T
∂t

= T
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2 + S2) + nuz (N ∗
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+ + S+ + N− + S−
)

+ TW
Ns∑
k=1
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(A.31)

A.6. How to choose parameters of the relaxation flame sensor
There is a need to explain how to choose the different values of ψ0, τ0, τ1 and Dψ used in the flame

sensor. Starting from the one-dimensional analysis it can be shown that the filter width varies as
[175]:

∆filt ∼
√
Dψτ1 log (ψ0) ∼

√
Dψτ1 (A.32)

by neglecting the logarithmic dependence on ψ0. Eq. (A.32) shows that τ0 and ψ0 have very small
influence on ∆filt so that they are commonly set at the following values:

τ0 = 20∆t (A.33)
ψ0 = 20 (A.34)

The time τ1 can be taken proportional to the chemical timescale:

τ1 = ατchem = α
δ0
L

S0
L

(A.35)

The diffusion coefficient Dψ can be taken proportional to the thermal diffusivity DT through Eq. (A.36)
or by considering a species Schmidt number Scψ with Eq. (A.37):

Dψ = βDT (A.36)

Scψ = Pr

β
(A.37)
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Since flame parameters δ0
L, S0

L and thermal diffusion coefficient are almost constant for given flame
conditions, the filter width can be controlled roughly by α and β because:

∆filt ∼
√
Dψτ1 ∼

√
βDTατchem ∼

√
αβδ0

L (A.38)

using δ0
L ∼

√
DT τchem. Eq. (A.38) shows that the filter width and the thermal flame thickness are

proportional to
√
αβ which makes it easier to parametrize.

A.6.1. Choosing α

This parameter will set the value of τ1. Actually, to have an easier control of ∆filt in both fresh
and burnt gases, there are a value for α in the fresh gases noted αcold and a value for α in the burnt
gases noted αhot. The recommendations proposed in [175] are:

αcold ≈ 0.1 and αhot ≈ αcold
10 ≈ 0.01 (A.39)

but these values might be slightly different depending on the chemical scheme considered. Numerically,
the switch between fresh and burnt gases is done at a temperature Tswitch = 1600 K as advised in [175].

A.6.2. Choosing β

This parameter will be set through Scψ and is recommended to be taken as:

Scψ = min
k

(Sck) (A.40)

which is usually around ScH ≈ 0.12.

A.7. Algebraic equations for the positivity-preserving limiter

A.7.1. For the limitation of pressure

For a multi-species perfect gas, pressure is expressed following Eq. (A.41):

P =
Ns∑
k=1

ρYkhsk − ρE + u2 + v2 + w2

2ρ =
Ns∑
k=1

U5+khsk − U5 + U2
2 + U2

3 + U2
4

2U1
(A.41)

where the Ui are the components of U. Eq. (8.14) using the pressure definition in Eq. (A.41) can be
written as:
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(A.42)
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where by introducing hes =
Ns∑
k=1

U
e
5+khsk and ĥe,αs =

Ns∑
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Û e,α5+khsk:
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D = 2ϵP
(
U
e
1 + tαϵ

(
Û e,α1 − U

e
1
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(A.46)

such that Eq. (A.42) is:

A−B + C = D (A.47)

By identification, to have an equation of the form:

a (tαϵ )2 + btαϵ + c = 0 (A.48)

a, b and c have the following values:
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It should be mentioned that an approximation is made in Eq. (A.42) due to hsk in ĥe,αs that is evaluated
at temperature T

(
Ûe,α

)
to avoid solving a non-linear equation.

A.7.2. For the limitation of temperature
In this paragraph, Ûe,α is used for Ũe,α without loss of generality but for clarity purposes. Us-

ing Eq. (A.41), Eq. (8.16) can be written as:
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where A, B and C have been defined in Eq. (A.43)-Eq. (A.45) so that only D is different from pressure

equation. In this case, by introducing (ρ/W )e =
Ns∑
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Therefore, coefficients a, b and c for an equation as in Eq. (A.48) are:
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Û e,α1 − 2U e1

)
h
e
s + U

e
1

(
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In that case, no approximation is done in Eq. (A.52) because the temperature at which the hsk, used
in ĥe,αs , are computed is really fixed to ϵT .

A.8. Link between centerline and bulk velocities for the axial velocity
field set in Cambridge burner simulations

The mean velocity profiles imposed at the inlet of both inner and outer injectors of the Cambridge
burner follows an analytical power-law profile given by Eq. (8.18) introduced in paragraph 8.3.3. In
this Section, r1,i/o, r2,i/o, Ucl,i/o and Ub,i/o will be denoted respectively by r1 and r2, Ucl and Ub for
clarity purposes. The value of Ucl is computed to satisfy:
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Appendix B
Algorithms
B.1. Algorithms to compute species and heat fluxes in the multi-species

case under Hirschfelder and Curtiss approximation
This section gives the algorithms to compute species and energy fluxes introduced respectively in

paragraphs 2.4.3.3 and 2.4.4.

B.1.1. Algorithm to compute species flux
Under Hirschfelder and Curtiss approximation, M = [Mk]1≤k≤Ns

is usually computed at each point
following Algorithm 1.

Algorithm 1 Algorithm to compute M at a given point
1: Get values of Y = [Yk]1≤k≤Ns

and ∇Y = [∇Yk]1≤k≤Ns
.

2: Compute ∇ (1/W ) using Eq. (2.70).
3: Compute Vc using Eq. (2.71) and save Dk (∇Yk − YkW∇ (1/W )) into Mk for k = 1, Ns.
4: Get final Mk by doing Mk = ρ (Mk − YkVc) according to Eq. (2.72) for k = 1, Ns.

B.1.2. Algorithm to compute the energy flux
The main steps to compute the energy flux when species flux is under Hirschfelder and Curtiss

approximation are summed up in Algorithm 2.

Algorithm 2 Algorithm to compute q at a given point
1: Get values of Y = [Yk]1≤k≤Ns

and of ∇Y = [∇Yk]1≤k≤Ns
.

2: Compute ∇ (1/W ), Vc and M following Algorithm 1.
3: Get T , P , ρ, ∇P , ∇ρ and hsk (T ).
4: Compute W using Eq. (2.9).
5: Compute q using Eq. (2.77).
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B.2. Algorithm for gradient computation with SDLIFT formulation
The main steps to compute the gradients in Cartesian coordinates of conservatives variables at ξ-FP

in 3D using the SDLIFT formulation (see paragraph 4.4.2) are summed up in Algorithm 3.

Algorithm 3 Computation of gradients in Cartesian coordinates at ξ-FP with SDLIFT formulation
1: U at SP in the isoparametric domain, Ûe

(j1,j2,j3), and discontinuous U at FP in the physical
domain, U(k1,j2,j3), are known.

2: Compute (∂Ue
h/∂ξ)(k1,j2,j3) by using Eq. (4.116) evaluated at ξ-FP.

3: if BR1 or BR2 is used then
4: From interface values of U(k1,j2,j3), compute common states using Eq. (4.27).
5: From common states, compute Ũe

h(k1,j2,j3) using Eq. (4.122) and
(
∂Ũe

h/∂ξ
)

(k1,j2,j3)
using

Eq. (4.117).
6: if BR1 is used then
7: From

(
∂Ũe

h/∂ξ
)

(k1,j2,j3)
values, compute common normal derivatives using Eq. (4.30).

8: else if BR2 is used then
9: From interface values of (∂Ue

h/∂ξ)(k1,j2,j3) and common states, compute
(
∂Ũe,L

h /∂ξ

)
and(

∂Ũe,R
h /∂ξ

)
at each interface FP using the last equal signs in Eq. (4.44) and Eq. (4.45).

10: Compute common normal derivatives using Eq. (4.43).
11: end if
12: else if IC is used then
13: From interface values of U(k1,j2,j3) and (∂Ue

h/∂ξ)(k1,j2,j3) compute common states using
Eq. (4.49).

14: From common states, compute Ũe
h(k1,j2,j3) using Eq. (4.122) and

(
∂Ũe

h/∂ξ
)

(k1,j2,j3)
using

Eq. (4.117).
15: From interface values of (∂Ue

h/∂ξ)(k1,j2,j3) and common states, compute also common normal
derivatives based on Eq. (4.46).

16: end if
17: Compute (∂U/∂ξ)C(k1,j2,j3) using Eq. (4.119) evaluated at ξ-FP.
18: Compute tangential derivatives (∂U/∂η) and (∂U/∂ζ) at ξ-FP using either classical or Huynh’s

approach.
19: Compute gradients in Cartesian coordinates using Eq. (4.113).
20: At interface FP, average the gradients in Cartesian coordinates between the left and right states.

230



B.3 Algorithms for Navier-Stokes Characteristic Boundary Conditions in generalized coordinates

B.3. Algorithms for Navier-Stokes Characteristic Boundary Conditions in
generalized coordinates

This section gives the algorithms to employ characteristic boundary conditions using either Kim
and Lee or Fievet et al. formulation described respectively in paragraphs 5.1.2 and 5.1.3.

B.3.1. Kim and Lee’s formulation
The main steps to compute characteristic boundary conditions in generalized coordinates using Kim

and Lee [234, 235] formulation are summed up in Algorithm 4.

Algorithm 4 Kim and Lee algorithm to apply characteristic boundary conditions in generalized
coordinates

1: Use Eq. (5.17) to compute an initial value of L.
2: Some values of L are modified to account for the NSCBC treatment. This gives new ξ-convective

characteristics L∗.
3: A new value of

(
∂Êc/∂ξ

)
, noted

(
∂Êc/∂ξ

)∗
, is obtained by using Eq. (5.17) with L∗.

4: Finally,
(
∂Êc/∂ξ

)∗
is put back into Eq. (5.6) to march Û in time.

B.3.2. Fievet et al. formulation
The main steps to compute characteristic boundary conditions in generalized coordinates using the

recent Fievet et al. [117] formulation are summed up in Algorithm 5.

Algorithm 5 Fievet et al. algorithm to apply characteristic boundary conditions in generalized
coordinates

1: Evaluate initial guesses for N and S at NSCBC FP in ξ = 1 using Eq. (5.25) and Eq. (5.26).
2: Modify some values of N to account for the NSCBC treatment. This gives N ∗.
3: Compute new values of

(
∂Ê/∂ξ

)
(1) by inverting Eq. (5.25) with N ∗. This gives

(
∂Ê/∂ξ

)∗
(1).

4: Compute the new flux value Êp+2 using Eq. (5.28). This gives Ê∗
p+2.

5: Compute the new value of
(
∂Ê/∂ξ

)∗
(SP ) which will be put back into Eq. (4.84) to march Û in

time.
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B.4. Global algorithm to generate synthetic Fourier turbulence
The turbulent velocity vector given by Eq. (6.69) in paragraph 6.4.2 is generated following Algo-

rithm 6 where Lref is a characteristic size of the domain where turbulence is generated and Lcut is
the smallest size of vortices that the mesh can resolved.

Algorithm 6 Algorithm for computing the turbulent velocity vector using a synthetic random Fourier
method

1: The user gives urms, Le, a reference length Lref , a cutting length Lcut, a number of Fourier modes
N , the type of energy spectrum ispe = 0 for PP or ispe = 1 for VKP and the kind of repartition
for modes irep = 0 for linear or irep = 1 for logarithmic. The kinematic viscosity of the fluid ν is
also assumed to be known.

2: Compute κe and ϵ depending on the type of spectrum chosen:
3: if ispe = 0 then
4: κe = 2π/Le and ϵ is obtained with Eq. (6.60)
5: else if ispe = 1 then
6: κe and ϵ are obtained with respectively Eq. (6.64) and Eq. (6.66)
7: end if
8: Compute κ1 = 2π/Lref , κN = min (κKol, 2π/Lcut) where κKol is given by Eq. (6.65).
9: if irep = 0 then

10: Compute ∆κlin with Eq. (6.71)
11: else if irep = 1 then
12: Compute ∆κlog with Eq. (6.72)
13: end if
14: for n = 1, . . . , N do
15: if irep = 0 then
16: Compute κn = κ1 + (n− 1) ∆κlin
17: else if irep = 1 then
18: Compute κn = exp (ln (κ1) + (n− 1) ∆κlog)
19: end if
20: Compute ∆κn and then utn using Eq. (6.70).
21: Compute ϕn and ψn using the probabilities defined in Eq. (6.75).
22: Compute θn using Eq. (6.77).
23: Compute Cartesian components of κn using Eq. (6.78).
24: Construct σn following Eq. (6.79).
25: end for
26: u′

in (x) can be computed using Eq. (6.69).
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B.5. Algorithm for applying TFLES model with relaxation flame sensor
using a SD discretization

The dynamic TFLES model using the relaxation flame sensor introduced in Section 3.3, and applied
in a SD context in paragraph 8.1.1.2, is summed up in Algorithm 7. As highlighted in paragraph 8.1.1.2,
this implementation assumes implicitly that δ0

L, S0
L and |ω̇F |max1D are constant during the computation

which will become untrue if flames are not perfectly premixed.

Algorithm 7 TFLES model using relaxation flame sensor for a SD discretization

1: The user gives nffpts, δ0
L, S0

L, |ω̇F |max1D , αcold, αhot, Scψ, β and the type of Charlette’s formulation
used ich = 0 for the non-saturated or ich = 1 for the saturated one.

2: Compute τ1,cold and τ1,hot using Eq. (A.35) with respectively αcold and αhot.
3: Compute Fmax using Eq. (3.32), where ∆x is given by Eq. (4.138), and set ψ0 = 20.
4: if not_restart then
5: Set SSP (x, t = 0) = ESP (x, t = 0) = 1 and compute ω̇F,SP at all SP.
6: Compute SSP (x, t = 0) using Eq. (3.34) at all SP.
7: Initialize [ρψ]SP at all SP by doing: [ρψ (x, t = 0)]SP = [ρS (x, t = 0)]SP .
8: Compute FSP (x, t = 0) at all SP with Eq. (3.38) where ŜSP (x, t = 0) = SSP (x, t = 0).
9: else

10: Compute SSP (x, t) at all SP using Eq. (3.34).
11: Compute ŜSP (x, t) at all SP using Eq. (3.37).
12: Compute FSP (x, t) at all SP using Eq. (3.38).
13: if ich = 0 then
14: Compute u′

∆,SP at all SP using Eq. (3.53).
15: Compute ∆SP = FSP δ

0
L at all SP.

16: Compute Re∆,SP at all SP using Eq. (3.52).
17: Compute ESP at all SP using Eq. (3.55).
18: else if ich = 1 then
19: Compute ESP at all SP using Eq. (3.57) with ∆SP /δ

0
L = FSP .

20: end if
21: Interpolate FSP and ESP at all FP to get FFP and EFP .
22: Average FFP and EFP at interface FP.
23: Multiply all diffusion coefficients at all FP by FFPEFP .
24: Compute diffusive fluxes at all FP for reacting NSE equations and for Eq. (3.35).
25: Compute ω̇k,SP at all SP and multiply them by ESP /FSP .
26: Compute ω̇ψ,SP at all SP using Eq. (3.36) and multiply it by ESP /FSP only if SSP < 0.05.
27: Update conservative variables in time.
28: end if
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Appendix C
Definitions and results on some
families of orthogonal polynomials
C.1. Space of polynomial

On interval I = [−1, 1], let’s define the L2-inner product of two polynomials f and g defined on I
by:

⟨f, g⟩ =
∫ 1

−1
f (ξ) g (ξ) dξ (C.1)

For an integer m ≥ 0, let’s also denote by Pm (I) the space of polynomials of degree m or less on I.
Pm (I) is a vector space of dimension m+1 on which a simple basis is

(
ξ0, ξ1, . . . , ξm

)T
. A polynomial

f defined on interval I = [−1, 1] is orthogonal to Pm (I) if it is orthogonal to a basis of Pm (I):〈
f, ξk

〉
=
∫ 1

−1
f (ξ) ξkdξ = 0 for 0 ≤ k ≤ m (C.2)

Eq. (C.2) shows that being orthogonal to Pm (I) provides m+ 1 conditions for building f .

C.2. Legendre polynomials
C.2.1. Definition

Still on I = [−1, 1] and for an integer k ≥ 0, the Legendre polynomial Pk is defined as the unique
polynomial of degree k that is orthogonal to P k−1 (I) and verifies Pk (1) = 1. Consequently, for k > m,
Pk is orthogonal to Pm. Additionally, since Pk is of degree k, it has exactly k zeros in I which are
refer to as Gauss-Legendre points.

C.2.2. Quadrature rule
The k Gauss-Legendre points, noted [ξi]T1≤i≤k, are used in the Gauss-Legendre quadrature rule for

integrating any smooth function h on I with [189]:∫ 1

−1
h (ξ) dξ ≈

k∑
i=1

ωih (ξi) (C.3)

where ωi is the weight associated to the i-th quadrature point ξi. For Gauss-Legendre points, it can
be obtained analytically through:

ωi = 2(
1 − ξ2

i

) [
P ′
k (ξi)

]2 (C.4)

In practice, values of ξi and ωi are tabulated for each degree k. Eq. (C.3) is exact if h is a polynomial
of degree 2k − 1 or less. It is the best interest of using such quadrature rule since it is the only one
that has this property. Other quadrature rules with k points cannot integrate exactly a polynomial of
degree 2k − 1.
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Chapter C : Definitions and results on some families of orthogonal polynomials

C.2.3. Recurrence formula
The Legendre polynomials can be obtained using the recurrence formula [317]:

(k + 1)Pk+1 (ξ) = (2k + 1) ξPk (ξ) − kPk−1 (ξ) for k ≥ 2
P0 = 1 and P1 = ξ

(C.5)

Legendre polynomials and their corresponding Gauss-Legendre points up to k = 4 are represented in
Figure C.1 on I = [−1, 1]. It can be seen from Figure C.1 that for any Legendre polynomials, its zeros,

−1.0 −0.5 0.0 0.5 1.0

ξ

−1.0

−0.5

0.0

0.5

1.0

P
k

P0
P1
P2

P3 P4

Figure C.1. – Legendre polynomials and Gauss-Legendre points on [−1, 1]

which are Gauss-Legendre points, are strictly inside I.

C.2.4. Some useful properties
At the end points of I, Pk and its derivative P ′

k take the following values:

Pk (−1) = (−1)k and Pk (1) = 1 (C.6)

P ′
k (−1) = (−1)k−1 k (k + 1)

2 and P ′
k (1) = k (k + 1)

2 (C.7)

Finally, the L2-norm of Pk is given by:

||Pk||2 =
√

⟨Pk, Pk⟩ =
√

2
2k + 1 (C.8)

where one should note that by construction of Legendre polynomials: ⟨Pk, Pl⟩ = 0 for k ̸= l.

C.2.5. Shifted Legendre polynomials
Shifted Legendre polynomials correspond to Legendre polynomials defined on [0, 1] rather than on

[−1, 1] as introduced above. It is recalled here for clarity since usually Legendre polynomials are intro-
duced on [−1, 1] but the SD method presented in this manuscript work on [0, 1]. The transformation

ξ
(
ξ̃
)

= 2ξ̃ − 1 ⇐⇒ ξ̃ (ξ) = 1 + ξ

2 (C.9)

with ξ ∈ [−1, 1] and ξ̃ ∈ [0, 1] bijectly maps [0, 1] into [−1, 1] and vice-versa so that Pk (ξ) can be
evaluated from ξ̃ values using

Pk (ξ) = Pk
(
2ξ̃ − 1

)
(C.10)
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C.3 Radau polynomials

Therefore, the recurrence formula written on [−1, 1] in paragraph C.2.3, can be used on [0, 1] with ξ̃:

(k + 1)Pk+1
(
2ξ̃ − 1

)
= (2k + 1)

(
2ξ̃ − 1

)
Pk
(
2ξ̃ − 1

)
− kPk−1

(
2ξ̃ − 1

)
for k ≥ 2

P0 = 1 and P1 = 2ξ̃ − 1
(C.11)

Eq. (C.9) also shows how to compute Gauss-Legendre points on [0, 1] from their values on [−1, 1].
It is very useful for locating interior FP on [0, 1] for the SD method as they correspond to these
Gauss-Legendre points (see paragraph 4.1.2.2). Finally, the weights of integration given in Eq. (C.4)
are simply divided by two if the quadrature rule is used with Shifted Legendre polynomials. It is due
to the change of variable from the original integral done on [−1, 1] to the new integral that will be
considered on [0, 1]: ∫ 1

−1
h (ξ) dξ =

k∑
i=1

ωih (ξi) = 2
∫ 1

0
h
(
ξ̃
)
dξ̃ = 2

k∑
i=1

ω̃ih
(
ξ̃i
)

=⇒ ω̃i = ωi
2

(C.12)

C.3. Radau polynomials
Radau polynomials are used in some correction functions employed in the FR framework and also

for gradient computation in the SD context in this work. That is why there are considered in this
section. The notations follow the ones used by Huynh in his original FR paper [57].

C.3.1. Definition of Radau points based on a quadrature rule
Radau polynomials come from the Radau quadrature rule that uses a set of k ≥ 1 points, where

one of them is one of the two boundary points (ξ = −1 or ξ = 1), for the integration of a function on
I = [−1, 1]. Thus, this quadrature rule is different from the Gauss-Legendre one where all the Gauss-
Legendre points are strictly inside I as shown in paragraph C.2.3. If the right boundary is include
in the quadrature points, meaning that ξk = 1, the right Radau quadrature rule can be written for
integrating any smooth function h on I with [57]:∫ 1

−1
h (ξ) dξ ≈

k∑
i=1

ωih (ξi) where ξk = 1 (C.13)

Thus, there are k weights and k−1 integration points to find. Consequently, a total of 2k−1 unknowns
have to be found which is solved by setting h = ξi, for i = 0, 1, . . . , 2k − 2, in Eq. (C.13). The k − 1
points obtained solving this system plus ξk = 1 are called the right Radau points [57]. Similarly, the
left Radau points and quadrature are defined in the same manner but the right boundary point is
replaced by the left one. The left Radau points are actually the symmetry points about 0 of the Right
Radau points [57]. Both these quadrature rules using k points can integrate exactly a polynomial of
degree 2k − 2 or less (one degree less than Gauss-Legendre quadrature rule).

C.3.2. Expressions of Radau polynomials
The right (respectively left) k Radau points are the roots of right (respectively left) Radau polyno-

mial RR,k (respectively RL,k) of degree k. It can be shown that Radau polynomials can be expressed
using Legendre polynomials [57]:

RR,k = (−1)k

2 (Pk − Pk−1) (C.14)

RR,k (−1) = 1 and RR,k (1) = 0 (C.15)
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and for the left Radau polynomial [57]:

RL,k = Pk + Pk−1
2 (C.16)

RL,k (−1) = 0 and RL,k (1) = 1 (C.17)

Therefore, according to Eq. (C.14) and Eq. (C.16), Radau polynomials are polynomials of degree k
which are orthogonal to P k−2 space because of the presence of Pk−1 in their expressions. Left and right
Radau polynomials, along with their corresponding Radau points, up to 1 ≤ k ≤ 4 are represented in
Figures C.2a and C.2b.
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(a) Left Radau polynomials and points
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(b) Right Radau polynomials and points

Figure C.2. – Radau polynomials and points on I = [−1, 1] for 1 ≤ k ≤ 4.
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Appendix D
Projection matrices for local
polynomial adaptation
D.1. Projection matrices in 2D

D.1.1. Position of the problem

In 2D, the mortar element is a 1D line. Without loss of generality, an interface at constant ξ between
two elements is considered as in Figure 4.16 with a left element at pL and a right element at pR ̸= pL.
The process will be described here for the convective fluxes treatment at an interface since there are
only two projection steps (one on Mortar and one from Mortar) whereas there are four projection steps
(two on Mortar and two from Mortar) for the diffusive fluxes treatment. For the left (respectively
right) element, there are pL+1 (respectively pR+1) FP on this interface which are located at the same
ξ value but have different η coordinates. In each element, these η coordinates of interface FP are the
same as the η coordinates of the SP within this element. Consequently, a 1D continuous polynomial
of degree pL (respectively pR) along η direction can be built using the values of the solution at these
interface FP and the Lagrange polynomial basis built at SP along η direction:

UΩL (η) =
pL+1∑
j2=1

UΩL
j2
lΩL
j2

(η), η ∈ [0, 1] (D.1)

UΩR (η) =
pR+1∑
j2=1

UΩR
j2
lΩR
j2

(η), η ∈ [0, 1] (D.2)

where UΩL
j2

(respectively UΩR
j2

) are the values of the conservative variables in the interface at constant ξ
in element ΩL (respectively ΩR). It is worth mentioning that since pL ̸= pR, the Lagrange polynomials
are necessary different: lΩL

j2
̸= lΩR

j2
.

D.1.2. Projection from the face to the mortar element

As mentioned in paragraph 4.5.4, the Riemann problem is solved on the Mortar interface between
a left state UM,L and a right state UM,R both defined as:

UM,L (η) =
pM +1∑
j2=1

UM,L
j2

lMj2 (η), η ∈ [0, 1] (D.3)

UM,R (η) =
pM +1∑
j2=1

UM,R
j2

lMj2 (η), η ∈ [0, 1] (D.4)

where pM = max (pL, pR) is the polynomial degree on the Mortar element and the lMj2 are the Lagrange
polynomials built at Mortar points. Still assuming that pL < pR, it can be written that

• pM = pR and lMj2 = lΩR
j2

∀j2 ∈ J1, pM + 1K.

239



Chapter D : Projection matrices for local polynomial adaptation

• Right Mortar solution is equal to the solution on the right element interface: UM,R
j2

= UΩR
j2

∀j2 ∈
J1, pM + 1K.

• Left Mortar solution is given by the unweighted L2-projection of UΩL onto the Mortar which
reads as:∫ 1

0

(
UΩL (η) − UM,L (η)

)
lMm (η) dη = 0 for m ∈ J1, pM + 1K

=⇒
∫ 1

0

pL+1∑
j2=1

UΩL
j2
lΩL
j2

(η)lMm (η) dη =
∫ 1

0

pM +1∑
j2=1

UM,L
j2

lMj2 (η)lMm (η) dη for m ∈ J1, pM + 1K

=⇒
pL+1∑
j2=1

UΩL
j2

∫ 1

0
lΩL
j2

(η) lMm (η) dη =
pM +1∑
j2=1

UM,L
j2

∫ 1

0
lMj2 (η) lMm (η) dη for m ∈ J1, pM + 1K

(D.5)

Eq. (D.5) is a system of pM +1 equations that is used to determine the UM,L
j2

for j2 ∈ J1, pM +1K.
Introducing rectangular matrix ΣL and square matrix Π:

ΣL
m,j2 =

∫ 1

0
lΩL
j2

(η) lMm (η) dη for (m, j2) ∈ J1, pM + 1K × J1, pL + 1K (D.6)

Πm,j2 =
∫ 1

0
lMj2 (η) lMm (η) dη for (m, j2) ∈ J1, pM + 1K2 (D.7)

Eq. (D.5) can be written in matrix form:

ΣL.UΩL = Π.UM,L

=⇒ UM,L = Π−1.ΣL.UΩL
(D.8)

D.1.3. Back projection from the mortar element to the left face
Once UM,L has been obtained, a Riemann problem is solved that ends up with the convective fluxes

on the Mortar FP FM
c,n and this convective flux is projected back on both elements. For the right

element FΩR
c,n = FM

c,n since pM = pR. For the left element, a back unweighted L2-projection is done to
find FΩL

c,n :∫ 1

0

(
FΩL
c,n (η) − FM

c,n (η)
)
lΩL
m (η) dη = 0 for m ∈ J1, pL + 1K

=⇒
pL+1∑
j2=1

FΩL
c,n,j2

∫ 1

0
lΩL
j2

(η) lΩL
m (η) dη =

pM +1∑
j2=1

FM
c,n,j2

∫ 1

0
lMj2 (η) lΩL

m (η) dη for m ∈ J1, pL + 1K
(D.9)

Eq. (D.9) is a system of pL + 1 equations that is used to determine the FΩL
c,n,j2

for j2 ∈ J1, pL + 1K.
Introducing square matrix ΠL and rectangular matrix Σ:

ΠL
m,j2 =

∫ 1

0
lΩL
j2

(η) lΩL
m (η) dη for (m, j2) ∈ J1, pL + 1K2 (D.10)

Σm,j2 =
∫ 1

0
lMj2 (η) lΩL

m (η) dη for (m, j2) ∈ J1, pL + 1K × J1, pM + 1K (D.11)

Eq. (D.9) can be written in matrix form and solved for FΩL
c,n :

FΩL
c,n =

(
ΠL
)−1

.Σ.FM
c,n (D.12)
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In Eq. (D.8) and Eq. (D.12), all matrices are calculated once in pre-processing using Gauss-Legendre
quadrature rule at Gauss-Legendre points in [0, 1] for computing integrals. Actually by construction,
these Gauss-Legendre points are the locations of the p-interior FP on a given element of degree
p so that integration points are already available for the evaluations of integrals in Eq. (D.8) and
Eq. (D.12). Since minimum and maximum polynomial order are set by the user, all matrices are
stored for pmin ≤ pL, pM ≤ pmax to have all possible Mortar treatments that can happen between two
elements whose degrees are between pmin and pmax. If an interface at constant η is considered, the
same projection matrices are obtained since Legendre points are located at the same positions along ξ
direction. Moreover, the process was described here for the convective fluxes where the solution on left
element is first projected on the Mortar and then the Riemann flux is projected back on left element
but for the diffusive fluxes where there are one more projection on Mortar and one more projection
from the Mortar, the same matrices are employed.

D.2. Projection matrices in 3D

D.2.1. Position of the problem

In 3D, the mortar element is a 2D interface and again without loss of generality, it is assumed to
be located at a constant ξ position between two elements with different degrees pL and pR still with
pL < pR. Again the process is described for the convective fluxes treatment as in the 2D case for
clarity. For the left (respectively right) element, there are (pL + 1)2 (respectively (pR + 1)2) FP on
this interface which are located at the same ξ value but have different η and ζ coordinates. In each
element, these η and ζ coordinates of interface FP are the same as the η and ζ coordinates of the SP
within this element. Consequently, a continuous polynomial of degree pL (respectively pR) along η
and ζ directions can be built using the values of the solution at these interface FP and the Lagrange
polynomial basis built at SP along η and ζ directions:

UΩL (η, ζ) =
pL+1∑
j2=1

pL+1∑
j3=1

UΩL

(j2,j3)l
ΩL
j2

(η) lΩL
j3

(ζ), (η, ζ) ∈ [0, 1]2 (D.13)

UΩR (η, ζ) =
pR+1∑
j2=1

pR+1∑
j3=1

UΩR

(j2,j3)l
ΩR
j2

(η) lΩR
j3

(ζ), (η, ζ) ∈ [0, 1]2 (D.14)

The left and right solutions on the Mortar element are now defined by:

UM,L (η, ζ) =
pM +1∑
j2=1

pM +1∑
j3=1

UM,L
(j2,j3)l

M
j2 (η) lMj3 (ζ), (η, ζ) ∈ [0, 1]2 (D.15)

UM,R (η, ζ) =
pM +1∑
j2=1

pM +1∑
j3=1

UM,R
(j2,j3)l

M
j2 (η) lMj3 (ζ), (η, ζ) ∈ [0, 1]2 (D.16)

D.2.2. Projection from the left face to the mortar element

As in the 2D case for pL < pR, UM,R
(j2,j3) = UΩR

(j2,j3) ∀ (j2, j3) ∈ J1, pM + 1K2 and the left Mortar
solution is again obtained through an unweighted L2-projection of UΩL onto the Mortar given here
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by: ∫ 1

0

∫ 1

0

(
UΩL (η, ζ) − UM,L (η, ζ)

)
lMm (η) lMn (ζ) dηdζ = 0 for (m,n) ∈ J1, pM + 1K2

=⇒
∫ 1

0

∫ 1

0

pL+1∑
j2=1

pL+1∑
j3=1

UΩL

(j2,j3)l
ΩL
j2

(η) lΩL
j3

(ζ)

 lMm (η) lMn (ζ) dηdζ =

∫ 1

0

∫ 1

0

pM +1∑
j2=1

pM +1∑
j3=1

UM,L
(j2,j3)l

M
j2 (η) lMj3 (ζ)

 lMm (η) lMn (ζ) dηdζ for (m,n) ∈ J1, pM + 1K2

=⇒
pL+1∑
j2=1

∫ 1

0
lΩL
j2

(η) lMm (η) dη
pL+1∑
j3=1

UΩL

(j2,j3)

∫ 1

0
lΩL
j3

(ζ) lMn (ζ) dζ =

pM +1∑
j2=1

∫ 1

0
lMj2 (η) lMm (η) dη

pM +1∑
j3=1

UM,L
(j2,j3)

∫ 1

0
lMj3 (ζ) lMn (ζ) dζ for (m,n) ∈ J1, pM + 1K2

(D.17)

Eq. (D.17) is a system of (pM + 1)2 equations that is used to determine the UM,L
(j2,j3) for (j2, j3) ∈

J1, pM + 1K2. There are two more matrices, compared to the 2D case, that can be introduced since
the two integrals in η correspond respectively to ΣL and Π defined in Eq. (D.6) and Eq. (D.7) in the
2D case. The two new matrices needed in 3D are:

ΘL
j3,n =

∫ 1

0
lΩL
j3

(ζ) lMn (ζ) dζ for (j3, n) ∈ J1, pL + 1K × J1, pM + 1K (D.18)

Ξj3,n =
∫ 1

0
lMj3 (ζ) lMn (ζ) dζ for (j3, n) ∈ J1, pM + 1K2 (D.19)

Using ΣL, Π, ΘL and Ξ, Eq. (D.17) can be written in matrix form:

ΣL.UΩL .ΘL = Π.UM,L.Ξ
=⇒ UM,L = Π−1.ΣL.UΩL .ΘL.Ξ−1 (D.20)

Since the integration process is the same for η and ζ directions, it can be noticed that:

ΘL =
[
ΣL
]T

and Ξ = Π (D.21)

so that ΘL.Ξ−1 in Eq. (D.20) is actually:

ΘL.Ξ−1 =
[
ΣL
]T
.Π−1 =

[
ΣL
]T
.
[
Π−1

]T
=
[
Π−1.ΣL

]T
(D.22)

where the second equality comes from the fact that Π is a symmetric matrix. Therefore, Eq. (D.20)
is computed using:

UM,L = Π−1.ΣL.UΩL .
[
Π−1.ΣL

]T
(D.23)

D.2.3. Back projection from the mortar element to the left face

Like in the 2D case, when UM,L has been obtained, a Riemann problem is solved that ends up
with the convective fluxes on the Mortar FP FM

c,n and this convective flux is projected back on both
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elements. For the right element the projection is still identity: FΩR
c,n = FM

c,n since pM = pR. For the
left element, a back unweighted L2-projection is again used to find FΩL

c,n :∫ 1

0

∫ 1

0

(
FΩL
c,n (η, ζ) − FM

c,n (η, ζ)
)
lΩL
m (η) lΩL

n (ζ) dηdζ = 0 for (m,n) ∈ J1, pL + 1K2

=⇒
pL+1∑
j2=1

∫ 1

0
lΩL
j2

(η) lΩL
m (η) dη

pL+1∑
j3=1

FΩL

c,n,(j2,j3)

∫ 1

0
lΩL
j3

(ζ) lΩL
n (ζ) dζ =

pM +1∑
j2=1

∫ 1

0
lMj2 (η) lΩL

m (η) dη
pM +1∑
j3=1

FM
c,n,(j2,j3)

∫ 1

0
lMj3 (ζ) lΩL

n (ζ) dζ for (m,n) ∈ J1, pL + 1K2

(D.24)

Eq. (D.24) is a system of (pL + 1)2 equations that is used to determine the FΩL

c,n,(j2,j3) for (j2, j3) ∈
J1, pL + 1K2. As for the projection on Mortar, there are two more matrices compared to the 2D case
that can be introduced in addition to Σ and ΠL defined in Eq. (D.11) and Eq. (D.10) in the 2D case.
The two new matrices needed in 3D are:

ΞLj3,n =
∫ 1

0
lΩL
j3

(ζ) lΩL
n (ζ) dζ for (j3, n) ∈ J1, pL + 1K2 (D.25)

Θj3,n =
∫ 1

0
lMj3 (ζ) lΩL

n (ζ) dζ for (j3, n) ∈ J1, pM + 1K × J1, pL + 1K (D.26)

with also:

Θ = ΣT and ΞL = ΠL (D.27)

Consequently, the matrix form of Eq. (D.24) is:

ΠL.FΩL
c,n .ΠL = Σ.FM

c,n.ΣT

=⇒ FΩL
c,n =

(
ΠL
)−1

.Σ.FM
c,n.

[(
ΠL
)−1

.Σ
]T (D.28)

Again as in 2D, the matrices appearing in Eq. (D.23) and Eq. (D.28) are computed once in pre-
processing using Gauss-Legendre quadrature at Gauss points in [0, 1]. The main difference between
the 2D case is that the transpose of matrices Π−1.ΣL, for Eq. (D.23), and of

(
ΠL
)−1

.Σ, for Eq. (D.28),
are also needed.
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Appendix E
Coefficients of Runge-Kutta schemes
used in this work
E.1. SSP-ERK(3,3) scheme of Gottlieb and Shu

The Shu-Osher matrices for this scheme are summed in Table E.1 [222].

αqj βqj 1 0 0
3/4 1/4 0
1/3 0 2/3


 1 0 0

0 1/4 0
0 0 2/3


Table E.1. – Coefficients of matrices α and β of the SSP-ERK(3,3) scheme.

The equivalent Butcher tableau, obtained from its Shu-Osher representation, for this scheme is
written in Table E.2.  0

1
0.5


 0 0 0

0 1/4 0
0 0 2/3


(1/6, 1/6, 2/3)T

Table E.2. – Butcher tableau of the SSP-ERK(3,3) scheme.

E.2. SSP-ERK(5,4) scheme of Spiteri and Ruuth

The Shu-Osher matrices for this scheme are summed in Table E.3 [226].
1 0 0 0 0

0.44437049406734 0.55562950593266 0 0 0
0.62010185138540 0 0.37989814861460 0 0
0.17807995410773 0 0 0.82192004589227 0
0.00683325884039 0 0.51723167208978 0.12759831133288 0.34833675773694




0.39175222700392 0 0 0 0
0 0.36841059262959 0 0 0
0 0 0.25189177424738 0 0
0 0 0 0.54497475021237 0
0 0 0 0.08460416338212 0.22600748319395


Table E.3. – Coefficients of matrices α (top) and β (bottom) of the SSP-ERK(5,4) scheme.
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The equivalent Butcher tableau, obtained from its Shu-Osher representation, for this scheme is
written in Table E.4.

0
0.39175223
0.58607969
0.47454236
0.93501063




0 0 0 0 0

0.391752230 0 0 0
0.2176691 0.36841059 0 0 0
0.08269209 0.1399585 0.25189177 0 0
0.06796628 0.1150347 0.2070349 0.54497475 0


(0.14681188, 0.24848291, 0.10425883, 0.2744389, 0.22600748)T

Table E.4. – Butcher tableau of the SSP-ERK(5,4) scheme.
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Appendix F
Diagonalization of the 3D Euler
equations for a multi-species gas in
isoparametric coordinates

F.1. Governing equations for conservative variables in the physical space

The 3D Euler equations for a multi-species gas composed of Ns species can be written as:

∂U
∂t

+ ∂Ec

∂x
+ ∂Fc

∂y
+ ∂Gc

∂z
= 0 (F.1)

where U = (ρ, ρu, ρv, ρw, ρE, ρYk)T = (U1, U2, U3, U4, U5, U5+k)T, with k ∈ J1, NsK, is the vector of
conservative variables and the convective fluxes as a function of U are given by:

Ec =



ρu

P + ρu2

ρuv
ρuw

u (P + ρE)
ρuYk


=



U2
P + U2

2 /U1
U2U3/U1
U2U4/U1

U2 (P + U5) /U1
U5+kU2/U1


, Fc =



ρv
ρuv

P + ρv2

ρvw
v (P + ρE)

ρvYk


=



U3
U2U3/U1
P + U2

3 /U1
U3U4/U1

U3 (P + U5) /U1
U5+kU3/U1



Gc =



ρw
ρuw
ρvw

P + ρw2

w (P + ρE)
ρwYk


=



U4
U2U4/U1
U3U4/U1
P + U2

4 /U1
U4 (P + U5) /U1
U5+kU4/U1


(F.2)

ρE is the sum of sensible and kinetic energies per unit of volume whose expression for a thermally
perfect gas (Cp and Cv depend on T ) is:

ρE = ρ
Ns∑
k=1

Yk

(∫ T

T0
Cpk

(
T

′)
dT

′
)

−P +ρ
u2 + v2 + w2

2 = ρ
Ns∑
k=1

Ykhsk (T )−P +ρ
u2 + v2 + w2

2 (F.3)

where the pressure is given by the perfect gas law introduced in Eq. (2.16).
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F.2. Governing equations for primitive variables in the physical space

The diagonalization process is easier to do when working with primitive variables Q = (ρ, u, v, w, P, Yk)T =
(Q1, Q2, Q3, Q4, Q5, Q5+k)T. Applying the chain rule with respect to Q to Eq. (F.1) allows to write:

∂U
∂Q .

∂Q
∂t

+ ∂Ec

∂Q .
∂Q
∂x

+ ∂Fc

∂Q .
∂Q
∂y

+ ∂Gc

∂Q .
∂Q
∂z

= 0

⇒ ∂Q
∂t

+ ∂Q
∂U .

∂Ec

∂Q .
∂Q
∂x

+ ∂Q
∂U .

∂Fc

∂Q .
∂Q
∂y

+ ∂Q
∂U .

∂Gc

∂Q .
∂Q
∂z

= 0

⇒ ∂Q
∂t

+A
∂Q
∂x

+B
∂Q
∂y

+ C
∂Q
∂z

= 0

(F.4)

where A = (∂Q/∂U) . (∂Ec/∂Q), B = (∂Q/∂U) . (∂Fc/∂Q) and C = (∂Q/∂U) . (∂Gc/∂Q) are three
Jacobian matrices that have to be determined. Firstly, the passage matrix from conservative to
primitive ∂Q/∂U is computed by inverting ∂U/∂Q (passage matrix from primitive to conservative)
which is easier to obtain. Secondly, flux Jacobian matrices with respect to Q namely ∂Ec/∂Q, ∂Fc/∂Q
and ∂Gc/∂Q are computed. Finally expressions of A, B and C are obtained.

F.3. Computation of Jacobian matrices A, B and C

F.3.1. Computation of ∂U/∂Q matrix

This matrix is defined by:

∂U
∂Q ≡ ∂ (ρ, ρu, ρv, ρw, ρE, ρYk)

∂ (ρ, u, v, w, P, Yk)
(F.5)

The four first lines and the 5 + k lines, with k ∈ J1, NsK, can be easily computed: the only difficulties
rely in the fifth line for the terms ∂ρE/∂ρ, ∂ρE/∂P and ∂ρE/∂Yk.

F.3.1.1. Computation of ∂ρE/∂ρ for ∂U/∂Q matrix

Differentiating Eq. (F.3) with respect to ρ gives:

∂ρE

∂ρ
=

Ns∑
k=1

Ykhsk (T )︸ ︷︷ ︸
hs(T )

+ρ
Ns∑
k=1

YkCpk
∂T

∂ρ︸︷︷︸
−T

ρ

− R

W

T + ρ
∂T

∂ρ︸︷︷︸
−T

ρ


︸ ︷︷ ︸

=0

+ u2 + v2 + w2

2︸ ︷︷ ︸
||u||22

2

⇒ ∂ρE

∂ρ
= hs (T ) − T

Ns∑
k=1

YkCpk︸ ︷︷ ︸
Cp(T )

+ ||u||22
2

⇒ ∂ρE

∂ρ
= hs (T ) − TCp (T ) + ||u||22

2

(F.6)
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F.3.1.2. Computation of ∂ρE/∂P for ∂U/∂Q matrix

In that case, Eq. (F.3) is differentiated with respect to P to get:

∂ρE

∂P
= ρ

Ns∑
k=1

YkCpk
∂T

∂P︸︷︷︸
W

ρR

− 1 = W

R
Cp (T ) − 1 = Cp (T )

Cp (T ) − Cv (T ) − 1 = 1
1 − 1

γ

− 1 = γ − γ + 1
γ − 1 = 1

γ − 1

(F.7)
which is the same results for ∂ρE/∂P when the gas is calorically perfect (constant Cp and Cv).

F.3.1.3. Computation of ∂ρE/∂Yk for ∂U/∂Q matrix

In that case, Eq. (F.3) is differentiated with respect to Yk to get:

∂ρE

∂Yk
= ρ

hsk (T ) +
Ns∑
k′ =1

Yk′Cpk′
∂T

∂Yk︸︷︷︸
−T W

Wk

− ρR

T
∂
(

1
W

)
∂Yk︸ ︷︷ ︸

1
Wk

+ 1
W

∂T

∂Yk︸︷︷︸
−T W

Wk


︸ ︷︷ ︸

=0

⇒ ∂ρE

∂Yk
= ρ

(
hsk (T ) − TCp (T ) W

Wk

)
(F.8)

F.3.1.4. Final expression for ∂U/∂Q matrix

Following these previous calculations, the passage matrix from primitive to conservative variables
∂U/∂Q for a multi-species thermally perfect gas is given by:

∂U
∂Q =



1 0 0 0 0 0
u ρ 0 0 0 0
v 0 ρ 0 0 0
w 0 0 ρ 0 0

hs − TCp + ||u||22
2 ρu ρv ρw

1
γ − 1 ρ

(
hsk − TCp

W

Wk

)
Yk 0 0 0 0 ρ


(F.9)

F.3.2. Computation of ∂Q/∂U matrix

Matrix ∂Q/∂U is the inverse matrix of ∂U/∂Q introduced in Eq. (F.9):

∂Q
∂U =



1 0 0 0 0 0
−u
ρ

1
ρ

0 0 0 0
−v
ρ

0 1
ρ

0 0 0
−w
ρ

0 0 1
ρ

0 0
(γ − 1) ||u||22

2 (1 − γ)u (1 − γ) v (1 − γ)w γ − 1 (1 − γ)
(
hsk − TCp

W

Wk

)
−Yk
ρ

0 0 0 0 1
ρ


(F.10)
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F.3.3. Flux Jacobian matrices with respect to Q

Differentiating Ec, Fc and Gc, given in Eq. (4.51), with respect to Q variables gives:

∂Ec

∂Q =



u ρ 0 0 0 0
u2 2ρu 0 0 1 0
uv ρv ρu 0 0 0
uw ρw 0 ρu 0 0

u

(
hs − TCp + ||u||22

2

)
ρ

(
hs + ||u||22

2 + u2
)

ρuv ρuw
γu

γ − 1 ρu

(
hsk − TCp

W

Wk

)
uYk ρYk 0 0 0 ρu


(F.11)

∂Fc

∂Q
=



v 0 ρ 0 0 0
uv ρv ρu 0 0 0
v2 0 2ρv 0 1 0
vw 0 ρw ρv 0 0

v

(
hs − TCp + ||u||22

2

)
ρuv ρ

(
hs + ||u||22

2 + v2
)

ρvw
γv

γ − 1 ρv

(
hsk − TCp

W

Wk

)
vYk 0 ρYk 0 0 ρv


(F.12)

∂Gc

∂Q
=



w 0 0 ρ 0 0
uw ρw 0 ρu 0 0
vw 0 ρw ρv 0 0
w2 0 0 2ρw 1 0

w

(
hs − TCp + ||u||22

2

)
ρuw ρvw ρ

(
hs + ||u||22

2 + w2
)

γw

γ − 1 ρw

(
hsk − TCp

W

Wk

)
wYk 0 0 ρYk 0 ρw


(F.13)
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F.3.4. Final expressions of matrices A, B and C

Since passage matrices from conservative to or from primitive variables and flux Jacobian matrices
with respect to Q have been computed, the Jacobian matrices A, B and C can be obtained:

A ≡ ∂Q
∂U .

∂Ec

∂Q =



u ρ 0 0 0 0
0 u 0 0 1/ρ 0
0 0 u 0 0 0
0 0 0 u 0 0
0 γP 0 0 u 0
0 0 0 0 0 u


(F.14)

B ≡ ∂Q
∂U .

∂Fc

∂Q =



v 0 ρ 0 0 0
0 v 0 0 0 0
0 0 v 0 1/ρ 0
0 0 0 v 0 0
0 0 γP 0 v 0
0 0 0 0 0 v


(F.15)

C ≡ ∂Q
∂U .

∂Gc

∂Q =



w 0 0 ρ 0 0
0 w 0 0 0 0
0 0 w 0 0 0
0 0 0 w 1/ρ 0
0 0 0 γP w 0
0 0 0 0 0 w


(F.16)

where γP = ρ (γ − 1)TCp even for a thermally multi-species perfect gas. These flux Jacobians are
almost the same than the ones obtain for a calorically perfact gas.

F.4. Diagonalization and wave equation in isoparametric space
Now that 3D Euler equations are completely expressed with primitive variables in the physical

space, the transformation to the isoparametric space can be done. Once the equations will be written
in the isoparametric domain, the diagonalization will be considered.

F.4.1. Governing equations for primitive variables in isoparametric space

Starting from Eq. (F.4) and using the chain rule with respect to the isoparametric coordinates:

∂Q
∂t

+A

(
ξx
∂Q
∂ξ

+ ηx
∂Q
∂η

+ ζx
∂Q
∂ζ

)
+B

(
ξy
∂Q
∂ξ

+ ηy
∂Q
∂η

+ ζy
∂Q
∂ζ

)
+ C

(
ξz
∂Q
∂ξ

+ ηz
∂Q
∂η

+ ζz
∂Q
∂ζ

)
= 0

⇒ ∂Q
∂t

+Aξ
∂Q

∂ξ
+Aη

∂Q

∂η
+Aζ

∂Q

∂ζ
= 0

(F.17)

where:

Aξ = ξxA+ ξyB + ξzC , Aη = ηxA+ ηyB + ηzC , Aζ = ζxA+ ζyB + ζzC (F.18)

To determine the waves traveling in ξ, η and ζ directions, the matrices Aξ, Aη and Aζ have to be diag-
onalized. Since this diagonalization is almost identical for these three directions, it will be explained
here for Aξ only but the reasoning is exactly equivalent for Aη and Aζ . Thus, the diagonalization of
Aξ will give the expressions of the waves crossing a boundary with a ξ-normal direction.
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F.4.2. Diagonalization of Aξ

F.4.2.1. Expression of Aξ

The matrix Aξ can be explicitly expressed thanks to Eq. (F.18) and Eq. (F.14)-Eq. (F.16):

Aξ =



û ξxρ ξyρ ξzρ 0 0
0 û 0 0 ξx/ρ 0
0 0 û 0 ξy/ρ 0
0 0 0 û ξz/ρ 0
0 ξxγP ξyγP ξzγP û 0
0 0 0 0 0 û


(F.19)

with û = ξxu+ ξyv + ξzw.

F.4.2.2. Compute eigenvalues of Aξ

The computation of the eigenvalues of Aξ, noted λ here, gives the following results:

det (Aξ − λI) = (û− λ)4
[
(û− λ)2 − c2

(
ξ2
x + ξ2

y + ξ2
z

)]
= (û− λ)4

[
(û− λ)2 − ĉ2

]
(F.20)

where ĉ = c
√
ξ2
x + ξ2

y + ξ2
z and det stands for the determinant application. Thus, the 5+Ns eigenvalues

are:
λ1 = λ2 = λ3 = λ5+k = û with k ∈ J1, NsK , λ4 = û+ ĉ and λ5 = û− ĉ (F.21)

Finally, the eigenvalues expressed in Eq. (F.21) are usually divided by
√
ξ2
x + ξ2

y + ξ2
z in order to

introduce the unit normal vector defined in Eq. (A.13). Then, Eq. (F.21) becomes:

λ1 = λ2 = λ3 = λ5+k = un with k ∈ J1, NsK , λ4 = un + c and λ5 = un − c (F.22)

That is why, the matrix Aξ is usually written in terms of un by dividing it by
√
ξ2
x + ξ2

y + ξ2
z and from

now, Aξ will be referred to as Aξ/
√
ξ2
x + ξ2

y + ξ2
z .

F.4.2.3. Compute right eigenvectors of Aξ for eigenvalue un

The eigenvalue un is of multiplicity 3 + Ns which means that 3 + Ns right eigenvectors associated
to this eigenvalue have to be found. Starting from

Aξ − unI =



0 nuxρ nuyρ nuzρ 0 0
0 0 0 0 nux/ρ 0
0 0 0 0 nuy/ρ 0
0 0 0 0 nuz/ρ 0
0 nuxρc

2 nuyρc
2 nuzρc

2 0 0
0 0 0 0 0 0


(F.23)

where γP was changed into ρc2. The columns numbered 5 + 1 to 5 +Ns in Eq. (F.23) are null which
indicates that Ns right eigenvectors can be taken following:

R(5+k) = (0, . . . , 0, 1, 0 . . . , 0)T for k ∈ J1, NsK (F.24)

where the 1 is located on the k-th component of R(5+k). Consequently, it remains to find 3 right
eigenvectors of Aξ−unI. Under the general form R(i) =

(
r

(i)
1 , r

(i)
2 , r

(i)
3 , r

(i)
4 , r

(i)
5 , r

(i)
5+k

)T
with k ∈ J1, NsK

252



F.4 Diagonalization and wave equation in isoparametric space

and i ∈ J1, 3K. According to Eq. (F.23), these vectors satisfy (page 175 of Hirsch’s book [318]):

r
(i)
1 and r

(i)
5+k are arbitrary (F.25)

r
(i)
5 = 0 (F.26)

r
(i)
2 nux + r

(i)
3 nuy + r

(i)
4 nuz = 0 (F.27)

The common choice is to consider [318]:

R(1) =
(
nux, 0, (c/ρ)nuz ,− (c/ρ)nuy , 0, 0, . . . , 0

)T
(F.28)

R(2) =
(
nuy ,− (c/ρ)nuz , 0, (c/ρ)nux, 0, 0, . . . , 0

)T
(F.29)

R(3) =
(
nuz , (c/ρ)nuy ,− (c/ρ)nux, 0, 0, 0, . . . , 0

)T
(F.30)

where the constant c/ρ was chosen for units reason as it is explained in paragraph F.4.3.

F.4.2.4. Compute right eigenvector of Aξ for eigenvalue un + c

The eigenvalue un + c is of multiplicity 1 which means that 1 right eigenvector associated to this
eigenvalue has to be found. It corresponds to R(4) and satisfies:

[Aξ − (un + c) I] .R(4) = 0 ⇐⇒



−c nuxρ nuyρ nuzρ 0 0
0 −c 0 0 nux/ρ 0
0 0 −c 0 nuy/ρ 0
0 0 0 −c nuz/ρ 0
0 nuxρc

2 nuyρc
2 nuzρc

2 −c 0
0 0 0 0 0 −c


.



r
(4)
1
r

(4)
2
r

(4)
3
r

(4)
4
r

(4)
5
r

(4)
5+k


=



0
0
0
0
0
0


(F.31)

From Eq. (F.31), it can be written that:

r
(4)
1 =

ρ
(
nuxr

(4)
2 + nuyr

(4)
3 + nuzr

(4)
4

)
c

(F.32)

r
(4)
2 = nux

ρc
r

(4)
5 (F.33)

r
(4)
3 =

nuy
ρc
r

(4)
5 (F.34)

r
(4)
4 = nuz

ρc
r

(4)
5 (F.35)

r
(4)
5 = ρc

(
nuxr

(4)
2 + nuyr

(4)
3 + nuzr

(4)
4

)
(F.36)

r
(4)
5+k = 0 for k ∈ J1, NsK (F.37)

Combining Eq. (F.32) and Eq. (F.36) gives:

r
(4)
5 = c2r

(4)
1 (F.38)

so that r(4)
2 , r(4)

3 and r
(4)
4 can be expressed as function of r(4)

1 only:

r
(4)
2 = nuxc

ρ
r

(4)
1 , r(4)

3 =
nuyc

ρ
r

(4)
1 , r(4)

3 = nuz c

ρ
r

(4)
1 (F.39)
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The common choice for r(4)
1 is ρ/

(√
2c
)

[318]. Therefore, R(4) has the following expression:

R(4) =
(
ρ/
(√

2c
)
, nux/

√
2, nuy/

√
2, nuz/

√
2, ρc/

√
2, 0, . . . , 0

)T
(F.40)

F.4.2.5. Compute right eigenvector of Aξ for eigenvalue un − c

As for eigenvalue un+c, the eigenvalue un−c is of multiplicity 1 so that 1 right eigenvector associated
to this eigenvalue has also to be found corresponding to R(5) here. Following the same methodology
detailed in F.4.2.4, R(5) is taken as:

R(5) =
(
ρ/
(√

2c
)
,−nux/

√
2,−nuy/

√
2,−nuz/

√
2, ρc/

√
2, 0, . . . , 0

)T
(F.41)

F.4.2.6. Synthesis

The right (its columns are right eigenvectors of Aξ) and left (its rows are left eigenvectors of Aξ)
eigenvectors matrices are given by (extension of the work of Warming et al. [319] to a multi-species
gas):

RAξ
=
(
R(1),R(2),R(3),R(4),R(5),R(5+k)

)T
=



nux nuy nuz ρ/
(√

2c
)

ρ/
(√

2c
)

0
0 −nuz c/ρ nuyc/ρ nux/

√
2 −nux/

√
2 0

nuz c/ρ 0 −nuxc/ρ nuy/
√

2 −nuy/
√

2 0
−nuyc/ρ nuxc/ρ 0 nuz/

√
2 −nuz/

√
2 0

0 0 0 ρc/
√

2 ρc/
√

2 0
0 0 0 0 0 1


(F.42)

LAξ
=
(
L(1),L(2),L(3),L(4),L(5),L(5+k)

)T
=



nux 0 nuzρ/c −nuyρ/c −nux/c2 0
nuy −nuzρ/c 0 nuxρ/c −nuy/c2 0
nuz nuyρ/c −nuxρ/c 0 −nuz/c2 0
0 nux/

√
2 nuy/

√
2 nuz/

√
2 1/

(√
2ρc

)
0

0 −nux/
√

2 −nuy/
√

2 −nuz/
√

2 1/
(√

2ρc
)

0
0 0 0 0 0 1


(F.43)

where LAξ
= R−1

Aξ
. Therefore, Aξ is expressed using LAξ

, RAξ
and ΛAξ

= diag (λ1, λ2, λ3, λ4, λ5, λ5+k):

Aξ = RAξ
.ΛAξ

.LAξ
(F.44)

F.4.3. Wave equation along ξ-direction for 3D Euler equations in isoparametric
coordinates

Using the decomposition of Aξ in Eq. (F.44), Eq. (F.17) is given by:

∂Q
∂t

+RAξ
ΛAξ

LAξ
.
∂Q
∂ξ

+Aη
∂Q
∂η

+Aζ
∂Q
∂ζ

= 0 (F.45)

Multiplying Eq. (F.45) on the left by LAξ
, it ends up with:

LAξ

∂Q
∂t

+ ΛAξ
LAξ

.
∂Q
∂ξ

= −LAξ

(
Aη

∂Q
∂η

+Aζ
∂Q
∂ζ

)
(F.46)
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Eq. (F.46) is a wave equation of the form:

∂W
∂t

+ L = T (F.47)

with ∂W the vector of characteristic variables, L the wave strengths and T representing transverse
terms all defined as:

∂W = LAξ
∂Q =



nux∂ρ+ (nuzρ/c) ∂v −
(
nuyρ/c

)
∂w −

(
nux/c

2
)
∂P

nuy∂ρ− (nuzρ/c) ∂u+ (nuxρ/c) ∂w −
(
nuy/c

2
)
∂P

nuz∂ρ+
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(F.48)

L = ΛAξ

∂W
∂ξ

(F.49)

T = −LAξ

(
Aη

∂Q
∂η

+Aζ
∂Q
∂ζ

)
(F.50)

Vector ∂W is composed of 3 + Ns entropy waves namely ∂W1, ∂W2, ∂W3, ∂W5+1, . . . , ∂W5+Ns ,
propagating at un and of two acoustic waves ∂W+ and ∂W− propagating respectively at un + c and
un − c. Note the presence of the ratio ρ/c in the 3 first lines of Eq. (F.48) coming from the choice of
the constant for vectors R(1), R(2) and R(3) done in paragraph F.4.2.3. Thanks to this choice, the
units in the 3 first lines of Eq. (F.48) are correct. Finally, Eq. (F.48) allows to introduce the passage
matrix from primitive to characteristic variables noted PQ in the manuscript:

PQ ≡ ∂W
∂Q = LAξ

(F.51)
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Appendix G
Compute constants in VKP spectrum

The objective is to obtain analytical expressions for the two constants used in Eq. (6.62) namely α
and κe,VKP and also for ϵVKP.

G.1. Compute α

This constant will be obtained to satisfy:

∫ ∞

0

α u2
rms

κe,VKP

(κ/κe,VKP)4(
1 + (κ/κe,VKP)2

)17/6 exp
[
−2
(

κ

κKol

)2
]
dκ

 = 3
2u

2
rms

⇒ α

∫ ∞

0

 1
κe,VKP

(κ/κe,VKP)4(
1 + (κ/κe,VKP)2

)17/6 exp
[
−2
(

κ

κKol

)2
]
dκ

 = 3
2

(G.1)

Now, let’s use the following change of variable in the integral: x = κ/κe,VKP ⇐⇒ dκ = κe,VKPdx. By
introducing z = 2 (κe,VKP/κKol)2, Eq. (G.1) becomes:

α

∫ ∞

0

(
x4

(1 + x2)17/6 exp
[
−zx2

]
dx

)
= 3

2 (G.2)

Then, another change of variable is used by setting: y = x2 ⇐⇒ dx = dy/ (2√
y) and the new integral

expressed for variable y is:

α

∫ ∞

0

(
y2

2√
y (1 + y)17/6 exp [−zy] dy

)
= 3

2

⇒ α

∫ ∞

0

(
y3/2 (1 + y)−17/6 exp [−zy] dy

)
= 3

(G.3)

The integral defined in Eq. (G.3) can be calculated under certain assumptions using a mathematical
result concerning the gamma function [259]:

∫ ∞

0
ya−1 (1 + y)b−a−1 exp [−zy] dy =


Γ (a) Γ (1 − b)
Γ (1 + a− b) if a > 0 , b < 1 and z → 0

Γ (b− 1) z1−b if a > 0 , b > 1 and z → 0
(G.4)
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Chapter G : Compute constants in VKP spectrum

In the case of Eq. (G.3): a = 5/2 and b− a− 1 = −17/6 ⇐⇒ b = 2/3. Consequently, if it is assumed
that (ke,VKPkKol)2 → 0 ⇐⇒ z → 0, Eq. (G.3) can be approximated by:

α
Γ (5/2) Γ (1/3)

Γ (17/6) = 3

⇒ α
3
2

1
2Γ (1/2) Γ (1/3)

11
6

5
6Γ (5/6)

= 3

⇒ α
3
2

1
2Γ (1/2) Γ (1/3)

11
6

5
6Γ (5/6)

= 3

⇒ α
27
55

√
πΓ (1/3)
Γ (5/6) = 3

⇒ α = 55Γ (5/6)
9
√
πΓ (1/3)

(G.5)

where the following properties of the gamma function were employed: Γ (1 + x) = xΓ (x) ∀x > 0 and
Γ (1/2) =

√
π.

G.2. Compute κe,VKP

This constant will be obtained to satisfy:

π

2u2
rms

∫ ∞

0

α u2
rms

κe,VKP

(κ/κe,VKP)4

κ
(
1 + (κ/κe,VKP)2

)17/6 exp
[
−2
(

κ

κKol

)2
]
dκ

 = Le (G.6)

⇒ πα

2κe,VKP
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0

 (κ/κe,VKP)4

κ
(
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)17/6 exp
[
−2
(

κ

κKol

)2
]
dκ

 = Le (G.7)

⇒ πα

2κe,VKP

∫ ∞

0

(
x3

(1 + x2)17/6 exp
[
−zx2

]
dx

)
= Le (G.8)

still by setting x = κ/κe,VKP and z = 2 (κe,VKP/κKol)2. Then, the same change of variable as in
Section G.1 y = x2 is used to have an integral that can be computed with gamma functions:

πα

2κe,VKP

∫ ∞

0

(
y3/2

2√
y (1 + y)17/6 exp [−zy] dy

)
= Le

⇒ πα

4κe,VKP

∫ ∞

0

(
y (1 + y)−17/6 exp [−zy] dy

)
= Le

(G.9)

Consequently, applying Eq. (G.4) this time with a = 2 and b = 1/6 and under the assumption that
z → 0, Eq. (G.9) becomes:

πα

4κe,VKP

Γ (2) Γ (5/6)
Γ (17/6) = Le

⇒ πα

4κe,VKP

1 × Γ (5/6)
55
36Γ (5/6)

= Le

⇒κe,VKP = 9πα
55Le

(G.10)
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G.3 Compute ϵVKP

G.3. Compute ϵVKP

Starting from the definition of the turbulent dissipation rate for HIT:

ϵVKP = 2ν
∫ ∞

0

κ2α
u2
rms

κe,VKP

(κ/κe,VKP)4(
1 + (κ/κe,VKP)2

)17/6 exp
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2
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0
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]
dx
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2
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∫ ∞

0
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y (1 + y)17/6 exp [−zy] dy
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⇒ϵVKP = ναu2
rmsκ

2
e,VKP

∫ ∞

0

(
y5/2 (1 + y)−17/6 exp [−zy] dy

)

(G.11)

Thus in that case Eq. (G.4) is used with a = 7/2 and b = 5/3 > 1 and still assuming z → 0:

ϵVKP = ναu2
rmsκ

2
e,VKPΓ (2/3)

[
2
(
κe,VKP
κKol

)2
]−2/3

⇒ϵVKP = ναu2
rmsκ

2/3
e,VKPΓ (2/3) 2−2/3κ

4/3
Kol

(G.12)

Finally, the link between ϵVKP and κKol is employed to isolate κKol:

κKol = ϵ
1/4
VKP
ν3/4 ⇒ κ

4/3
Kol = ϵ

1/3
VKP
ν

(G.13)

Therefore, Eq. (G.12) becomes:

ϵVKP = αu2
rmsκ
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(G.14)
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