1,785 research outputs found

    On the vulnerability of iris-based systems to a software attack based on a genetic algorithm

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-33275-3_14Proceedings of 17th Iberoamerican Congress, CIARP 2012, Buenos Aires, ArgentinaThe vulnerabilities of a standard iris verification system to a novel indirect attack based on a binary genetic algorithm are studied. The experiments are carried out on the iris subcorpus of the publicly available BioSecure DB. The attack has shown a remarkable performance, thus proving the lack of robustness of the tested system to this type of threat. Furthermore, the consistency of the bits of the iris code is analysed, and a second working scenario discarding the fragile bits is then tested as a possible countermeasure against the proposed attack.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) from Spanish MICINN, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Efficient software attack to multimodal biometric systems and its application to face and iris fusion

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 36, (2014) DOI: 10.1016/j.patrec.2013.04.029In certain applications based on multimodal interaction it may be crucial to determine not only what the user is doing (commands), but who is doing it, in order to prevent fraudulent use of the system. The biometric technology, and particularly the multimodal biometric systems, represent a highly efficient automatic recognition solution for this type of applications. Although multimodal biometric systems have been traditionally regarded as more secure than unimodal systems, their vulnerabilities to spoofing attacks have been recently shown. New fusion techniques have been proposed and their performance thoroughly analysed in an attempt to increase the robustness of multimodal systems to these spoofing attacks. However, the vulnerabilities of multimodal approaches to software-based attacks still remain unexplored. In this work we present the first software attack against multimodal biometric systems. Its performance is tested against a multimodal system based on face and iris, showing the vulnerabilities of the system to this new type of threat. Score quantization is afterwards studied as a possible countermeasure, managing to cancel the effects of the proposed attacking methodology under certain scenarios.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Full text link
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    Iris image reconstruction from binary templates: An efficient probabilistic approach based on genetic algorithms

    Full text link
    This is the author’s version of a work that was accepted for publication in Computer Vision and Image Understanding. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Vision and Image Understanding, 117, 10, (2013) DOI: 10.1016/j.cviu.2013.06.003A binary iriscode is a very compact representation of an iris image. For a long time it was assumed that the iriscode did not contain enough information to allow for the reconstruction of the original iris. The present work proposes a novel probabilistic approach based on genetic algorithms to reconstruct iris images from binary templates and analyzes the similarity between the reconstructed synthetic iris image and the original one. The performance of the reconstruction technique is assessed by empirically estimating the probability of successfully matching the synthesized iris image against its true counterpart using a commercial matcher. The experimental results indicate that the reconstructed images look reasonably realistic. While a human expert may not be easily deceived by them, they can successfully deceive a commercial matcher. Furthermore, since the proposed methodology is able to synthesize multiple iris images from a single iriscode, it has other potential applications including privacy enhancement of iris-based systems.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MECD, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Multimodal biometric fusion: A study on vulnerabilities to indirect attacks

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41827-3_45Proceedings of 18th Iberoamerican Congress, CIARP 2013, Havana, CubaFusion of several biometric traits has traditionally been regarded as more secure than unimodal recognition systems. However, recent research works have proven that this is not always the case. In the present article we analyse the performance and robustness of several fusion schemes to indirect attacks. Experiments are carried out on a multimodal system based on face and iris, a user-friendly trait combination, over the publicly available multimodal Biosecure DB. The tested system proves to have a high vulnerability to the attack regardless of the fusion rule considered. However, the experiments prove that not necessarily the best fusion rule in terms of performance is the most robust to the type of attack considered.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica

    Reversing the Irreversible: A Survey on Inverse Biometrics

    Full text link
    With the widespread use of biometric recognition, several issues related to the privacy and security provided by this technology have been recently raised and analysed. As a result, the early common belief among the biometrics community of templates irreversibility has been proven wrong. It is now an accepted fact that it is possible to reconstruct from an unprotected template a synthetic sample that matches the bona fide one. This reverse engineering process, commonly referred to as \textit{inverse biometrics}, constitutes a severe threat for biometric systems from two different angles: on the one hand, sensitive personal data (i.e., biometric data) can be derived from compromised unprotected templates; on the other hand, other powerful attacks can be launched building upon these reconstructed samples. Given its important implications, biometric stakeholders have produced over the last fifteen years numerous works analysing the different aspects related to inverse biometrics: development of reconstruction algorithms for different characteristics; proposal of methodologies to assess the vulnerabilities of biometric systems to the aforementioned algorithms; development of countermeasures to reduce the possible effects of attacks. The present article is an effort to condense all this information in one comprehensive review of: the problem itself, the evaluation of the problem, and the mitigation of the problem. The present article is an effort to condense all this information in one comprehensive review of: the problem itself, the evaluation of the problem, and the mitigation of the problem.Comment: 18 pages, journal, surve

    Selected Computing Research Papers Volume 1 June 2012

    Get PDF
    An Evaluation of Anti-phishing Solutions (Arinze Bona Umeaku) ..................................... 1 A Detailed Analysis of Current Biometric Research Aimed at Improving Online Authentication Systems (Daniel Brown) .............................................................................. 7 An Evaluation of Current Intrusion Detection Systems Research (Gavin Alexander Burns) .................................................................................................... 13 An Analysis of Current Research on Quantum Key Distribution (Mark Lorraine) ............ 19 A Critical Review of Current Distributed Denial of Service Prevention Methodologies (Paul Mains) ............................................................................................... 29 An Evaluation of Current Computing Methodologies Aimed at Improving the Prevention of SQL Injection Attacks in Web Based Applications (Niall Marsh) .............. 39 An Evaluation of Proposals to Detect Cheating in Multiplayer Online Games (Bradley Peacock) ............................................................................................................... 45 An Empirical Study of Security Techniques Used In Online Banking (Rajinder D G Singh) .......................................................................................................... 51 A Critical Study on Proposed Firewall Implementation Methods in Modern Networks (Loghin Tivig) .................................................................................................... 5

    On the Security Risk of Cancelable Biometrics

    Full text link
    Over the years, a number of biometric template protection schemes, primarily based on the notion of "cancelable biometrics" (CB) have been proposed. An ideal cancelable biometric algorithm possesses four criteria, i.e., irreversibility, revocability, unlinkability, and performance preservation. Cancelable biometrics employed an irreversible but distance preserving transform to convert the original biometric templates to the protected templates. Matching in the transformed domain can be accomplished due to the property of distance preservation. However, the distance preservation property invites security issues, which are often neglected. In this paper, we analyzed the property of distance preservation in cancelable biometrics, and subsequently, a pre-image attack is launched to break the security of cancelable biometrics under the Kerckhoffs's assumption, where the cancelable biometrics algorithm and parameters are known to the attackers. Furthermore, we proposed a framework based on mutual information to measure the information leakage incurred by the distance preserving transform, and demonstrated that information leakage is theoretically inevitable. The results examined on face, iris, and fingerprint revealed that the risks origin from the matching score computed from the distance/similarity of two cancelable templates jeopardize the security of cancelable biometrics schemes greatly. At the end, we discussed the security and accuracy trade-off and made recommendations against pre-image attacks in order to design a secure biometric system.Comment: Submit to P
    corecore