9 research outputs found

    Decomposition of Decidable First-Order Logics over Integers and Reals

    Full text link
    We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposition splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation

    Omega-Regular Model Checking

    Full text link
    peer reviewed"Regular model checking" is the name of a family of techniques for analyzing infinite-state systems in which states are represented by words or trees, sets of states by finite automata on these objects, and transitions by finite automata operating on pairs of state encodings, i.e. finite-state transducers. In this context, the central problem is then to compute the iterative closure of a finite-state transducer. This paper addresses the use of regular model-checking like techniques for systems whose states are represented by infinite (omega) words. Its main motivation is to show the feasibility and usefulness of this approach through a combination of the necessary theoretical developments, implementation, and experimentation. The iteration technique that is used is adapted from recent work of the authors on the iteration of finite-word transducers. It proceeds by comparing successive elements of a sequence of approximations of the iteration, detecting an "increment" that is added to move from one approximation to the next, and extrapolating the sequence by allowing arbitrary repetitions of this increment. By restricting oneself to weak deterministic Buchi automata, and using a number of implementation optimizations, examples of significant size can be handled. The proposed transducer iteration technique can just as well be exploited to compute the closure of a given set of states by the transducer iteration, which has proven to be a very effective way of using the technique. Examples such as a leaking gas burner in which time is modeled by real variables have been handled completely within the automata-theoretic setting

    Bounds on the Automata Size for Presburger Arithmetic

    Full text link
    Automata provide a decision procedure for Presburger arithmetic. However, until now only crude lower and upper bounds were known on the sizes of the automata produced by this approach. In this paper, we prove an upper bound on the the number of states of the minimal deterministic automaton for a Presburger arithmetic formula. This bound depends on the length of the formula and the quantifiers occurring in the formula. The upper bound is established by comparing the automata for Presburger arithmetic formulas with the formulas produced by a quantifier elimination method. We also show that our bound is tight, even for nondeterministic automata. Moreover, we provide optimal automata constructions for linear equations and inequations

    On the Use of Weak Automata for Deciding Linear Arithmetic with Integer and Real Variables

    Full text link
    peer reviewedThis paper considers finite-automata based algorithms for handling linear arithmetic with both real and integer variables. Previous work has shown that this theory can be dealt with by using finite automata on in finite words, but this involves some difficult and delicate to implement algorithms. The contribution of this paper is to show, using topological arguments, that only a restricted class of automata on in finite words are necessary for handling real and integer linear arithmetic. This allows the use of substantially simpler algorithms and opens the path to the implementation of a usable system for handling this combined theory
    corecore