6,231 research outputs found

    Dense Quantum Coding and a Lower Bound for 1-way Quantum Automata

    Full text link
    We consider the possibility of encoding m classical bits into much fewer n quantum bits so that an arbitrary bit from the original m bits can be recovered with a good probability, and we show that non-trivial quantum encodings exist that have no classical counterparts. On the other hand, we show that quantum encodings cannot be much more succint as compared to classical encodings, and we provide a lower bound on such quantum encodings. Finally, using this lower bound, we prove an exponential lower bound on the size of 1-way quantum finite automata for a family of languages accepted by linear sized deterministic finite automata.Comment: 12 pages, 3 figures. Defines random access codes, gives upper and lower bounds for the number of bits required for such (possibly quantum) codes. Derives the size lower bound for quantum finite automata of the earlier version of the paper using these result

    Certified Context-Free Parsing: A formalisation of Valiant's Algorithm in Agda

    Get PDF
    Valiant (1975) has developed an algorithm for recognition of context free languages. As of today, it remains the algorithm with the best asymptotic complexity for this purpose. In this paper, we present an algebraic specification, implementation, and proof of correctness of a generalisation of Valiant's algorithm. The generalisation can be used for recognition, parsing or generic calculation of the transitive closure of upper triangular matrices. The proof is certified by the Agda proof assistant. The certification is representative of state-of-the-art methods for specification and proofs in proof assistants based on type-theory. As such, this paper can be read as a tutorial for the Agda system

    Green's Relations in Finite Transformation Semigroups

    Get PDF
    We consider the complexity of Green's relations when the semigroup is given by transformations on a finite set. Green's relations can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes then correspond to the strongly connected components. It is not difficult to show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for constant alphabet is rather involved. Our results also apply to automata and their syntactic semigroups.Comment: Full version of a paper submitted to CSR 2017 on 2016-12-1

    A Characterization of ET0L and EDT0L Languages

    Get PDF
    There exists a PT0L language L0L_0 such that the following holds. A language LL is an ET0L language if and only if there exists a mapping TT induced by an a-NGSM (nondeterministic generalized sequential machine with accepting states) such that L=T(L0)L = T(L_0). There exists an infinite collection of EPDT0L languages Dmn⊆Σmn⋆D_{mn}\subseteq\Sigma_{mn}^\star (n≥m≥1n\geq m\geq 1) such that the family EDT0L is characterized in the following way. A language LL is an EDT0L language if and only if there exists n≥m≥1n\geq m\geq 1, a homomorphism hh and a regular language R⊆Σmn⋆R \subseteq \Sigma_{mn}^\star such that L=h(Dmn∩R)L = h(D_{mn} \cap R).\u

    Information Flow Control in WebKit's JavaScript Bytecode

    Get PDF
    Websites today routinely combine JavaScript from multiple sources, both trusted and untrusted. Hence, JavaScript security is of paramount importance. A specific interesting problem is information flow control (IFC) for JavaScript. In this paper, we develop, formalize and implement a dynamic IFC mechanism for the JavaScript engine of a production Web browser (specifically, Safari's WebKit engine). Our IFC mechanism works at the level of JavaScript bytecode and hence leverages years of industrial effort on optimizing both the source to bytecode compiler and the bytecode interpreter. We track both explicit and implicit flows and observe only moderate overhead. Working with bytecode results in new challenges including the extensive use of unstructured control flow in bytecode (which complicates lowering of program context taints), unstructured exceptions (which complicate the matter further) and the need to make IFC analysis permissive. We explain how we address these challenges, formally model the JavaScript bytecode semantics and our instrumentation, prove the standard property of termination-insensitive non-interference, and present experimental results on an optimized prototype

    The Computational Complexity of Symbolic Dynamics at the Onset of Chaos

    Full text link
    In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behaviour of cellular automata, that the computational basis for modelling this region is the Universal Turing Machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.Comment: 1 reference corrected, 1 reference added, minor changes in body of manuscrip

    On the Descriptional Complexity of Limited Propagating Lindenmayer Systems

    Full text link
    We investigate the descriptional complexity of limited propagating Lindenmayer systems and their deterministic and tabled variants with respect to the number of rules and the number of symbols. We determine the decrease of complexity when the generative capacity is increased. For incomparable families, we give languages that can be described more efficiently in either of these families than in the other.Comment: In Proceedings DCFS 2010, arXiv:1008.127
    • …
    corecore