
Logical Methods in Computer Science
Vol. 12(2:6)2016, pp. 1–28
www.lmcs-online.org

Submitted Jul. 3, 2014
Published Jun. 13, 2016

CERTIFIED CONTEXT-FREE PARSING:

A FORMALISATION OF VALIANT’S ALGORITHM IN AGDA

JEAN-PHILIPPE BERNARDY AND PATRIK JANSSON

Chalmers University of Technology & University of Gothenburg, Sweden
e-mail address: {bernardy, patrikj}@chalmers.se

Abstract. Valiant (1975) has developed an algorithm for recognition of context free
languages. As of today, it remains the algorithm with the best asymptotic complexity
for this purpose. In this paper, we present an algebraic specification, implementation,
and proof of correctness of a generalisation of Valiant’s algorithm. The generalisation can
be used for recognition, parsing or generic calculation of the transitive closure of upper
triangular matrices. The proof is certified by the Agda proof assistant. The certification is
representative of state-of-the-art methods for specification and proofs in proof assistants
based on type-theory. As such, this paper can be read as a tutorial for the Agda system.

Introduction

Context-free grammars [Chomsky, 1957] are the standard formalism to express and study
the syntactic structure of programming languages. While numerous algorithms are used for
parsing context-free inputs, the subject of this paper is a generalisation of the recognition
algorithm discovered by Valiant [1975]. (For simplicity we call the generalisation simply
“Valiant’s algorithm” below.)

Valiant’s algorithm has many qualities. First, it is efficient: it is the parsing algorithm
with the best worst-case asymptotic complexity [Lee, 2002] (O(n3)). Further, it has recently
been identified that its performance in common average cases is also excellent [Bernardy
and Claessen, 2015]: in the presence of a hierarchical input, and given some care in the
representation of grammars and data structures, it behaves linearly, and can be parallelized.
Second, Valiant’s algorithm is abstract and general. While its main application is parsing,
it solves the problem of finding the transitive closure of a generalised relation W given
as an upper-triangular matrix, where the underlying element operation is not necessarily
associative. Third, Valiant’s algorithm is relatively simple: we will see that it can be
expressed as two mutually defined functions by induction on the size of the matrix.

The combined qualities of Valiant’s algorithm (importance of the problem solved,
efficiency, generality and simplicity) make it, in our opinion, one of the top ten algorithms
that every computer scientist should learn. As such, it is a good candidate for being given a

2012 ACM CCS: [Theory of computation]: Logic—Automated reasoning; Formalisms—Rewrite
systems.

Key words and phrases: Context-Free Parsing, Valiant’s algorithm, Proof, Agda.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(2:6)2016
c© J.-P. Bernardy and P. Jansson
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70617926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses

2 J.-P. BERNARDY AND P. JANSSON

fully certified-correct implementation. Such an implementation is the main contribution of
this paper.

The medium chosen for our proof is the Agda proof assistant [Norell, 2007]. One
motivation for this choice is that Agda is based on type-theory, and using type-theory as a
core means that our proof can be verified by a type-checker, which can itself be subject to
formal verification. This chain of certification, relying ultimately on a small trusted base
shared with many other proofs makes us very confident that our development is correct.
(Even though the core of Agda is not currently verified, there is ongoing effort in this
direction.)

A secondary goal of this work is to provide an exemplary proof: we have taken particular
care to make the proof approachable. In particular: 1. the algorithm is derived from its
specification (instead of being first implemented and proved after the fact). 2. the core of
formal proof is close to a semi-formal proof developed earlier [Bernardy and Claessen, 2013].
Further, because we assume little knowledge of the Agda proof assistant, our development
can be used as a tutorial on algorithm specification and derivation in Agda.

The rest of the paper is organised as follows. In section 1, we review how Valiant’s
algorithm reduces parsing to the computation of transitive closure. Section 2 introduces
Agda’s syntax and some basic formalisation concepts. Sections 3 to 8 contain the formal
development. We review related work in section 9 and conclude with possible extensions in
section 10.

1. Parsing as Transitive Closure

In this section we review the basic idea underlying Valiant’s algorithm, namely that context-
free parsing can be specified as computing a transitive closure.

1.1. Chomsky Normal Form. The simplest implementation of Valiant’s algorithm takes
as input a grammar in Chomsky Normal Form [Chomsky, 1959]. In Chomsky Normal From,
hereafter abbreviated CNF, the production rules are restricted to one the following forms.

A0 ::= A1A2 (binary)

A ::= t (unary)

S ::= ε (nullary)

Any context-free grammar G = (N,Σ, P, S) generating a given language can be converted to
a grammar G′ in CNF generating the same language. (N is the set of non-terminals, Σ is
the alphabet, P is the set of productions, S is the start symbol and we use A to range over
elements of N .) Hence we will assume from now on a grammar provided in CNF. Moreover,
because it is easy to handle the empty string specially, we conventionally exclude it from the
input language and thus exclude the nullary rule S ::= ε from the set of production rules.
The reader avid of details is directed to Lange and Leiß [2009] for a pedagogical account of
the process of reduction to CNF.

Given a grammar specified as above, the problem of parsing is reduced to finding a
binary tree such that each leaf corresponds to a symbol of the input (and a suitable unary
rule) and such that each branch corresponds to a suitable binary rule. Essentially, parsing is
equivalent to considering all possible bracketings of the input, and finding one (or more)
that form a valid parse.

CERTIFIED CONTEXT-FREE PARSING 3

1.2. Charts. Let w be a vector of input symbols. We define the operations 0,+, · and σ as
follows.

Definition 1.1 (0,+, · on P(N)).

0 = ∅ x+ y = x ∪ y x · y = {A0 | A1 ∈ x,A2 ∈ y, (A0 ::= A1A2) ∈ P}
σi = {A | (A ::= w[i]) ∈ P}

The above operations can be lifted to matrices, in the usual way (and we do so formally in
section 6.) The (·) operation fully characterises the binary production rules of the grammar,
while σ captures the unary ones. We will then use a matrix of sets of non-terminals to
record which non-terminals can generate a given substring. Such a matrix is called a chart.

If C is a (complete) chart, A ∈ Cij iff A
∗−→ w[i..j]. See figure 1 for an illustration. The

operation σ is used to construct an initial chart I(w) such that

I(w)i,i+1 = σi

I(w)i,j = 0 if j 6= i+ 1

The matrix W = I(w) is a partial chart: it contains the correct non-terminals for strings of
length one, stored at positions (i, i+ 1) in the chart. All other positions are empty (zero).
Computing the transitive closure of W will complete the chart; so that at position (0, n)
one will find the non-terminals generating the whole input.

Definition 1.2 (Transitive closure). If it exists, the transitive closure of a matrix W , written
W+, is the smallest matrix C such that

C = W + C · C

The equation means that C contains all possible associations of W multiplied by itself 1:

C = W + C · C
= W + (W + C · C) · (W + C · C)

= W +WW +W · (C · C) + (C · C) ·W + (C · C) · (C · C) by distributivity

= . . .

= W +WW +W · (W ·W) + (W ·W) ·W + (W ·W) · (W ·W) + . . . by dist. & comm.

Therefore, if a parse tree (possible bracketing) exists, the algorithm will find it. Furthermore,
because C is the least matrix satisfying the equation, it will not contain any non-terminal
which does not generate the input.

The above procedure specifies a recogniser: by finding the closure of I(w) one finds if w
is parsable, but not the corresponding parse tree. However, one can obtain a proper parser
by using sets of parse trees (instead of non-terminals) and extending (·) to combine parse
trees.

1If (·) were associative, then a simpler formula for the transitive closure could be given, and a much more
efficient technique could be used to compute it, but then all bracketings would be equivalent and (·) could
not capture the binary rules of a context-free grammar.

4 J.-P. BERNARDY AND P. JANSSON

A

B

i

j
k

l

X

Y

Z

Figure 1: Example charts. In each chart a point at position (r, c) corresponds to a substring
starting at r and ending at c. The first parameter (r for row) grows downwards
and the second one (c for column) rightwards. The input string w is represented
by the diagonal line. Dots in the upper-right part represent non-terminals. The

first chart witnesses A
∗−→ w[i..j] and B

∗−→ w[k..l]. An instance of the rule
Z ::= XY is exemplified on the second chart.

2. Agda preliminaries

This section introduces the elements of Agda necessary to understand the upcoming sections.
We present both the language itself, and some definitions which are part of the standard
library. Throughout the paper, we will use a literate-programming style. The body of this
section is a single module Preliminaries which contains “specification building blocks” — a
number of definition for later use.

module Preliminaries where

In Agda code, scoping is indicated by indentation. Indentation is rather hard to visualise
in a paper which spans over several pages, so we will instead give scoping hints in the text
when necessary. The scope of the current module extends to the end of the section.

Propositions-as-types. The philosophy behind Agda is that each proposition is expressed
as a type. That is, proving that a proposition P holds means finding an inhabitant (an
element) of P (read as a type). With this in mind, we define the type of relations over an
underlying type A as functions mapping two elements of type A to a another type (a Set in
Agda parlance).

Rel : Set → Set1
Rel A = A → A → Set

Hence, an element of type Rel A is a binary relation on A. For example Rel A will be
inhabited by equivalence relations and orderings. A consequence of the above definition
is that our relations are constructive: to show that a pair (x, y) is in a relation R we must
provide a witness of type R x y. (In passing, the type of relations is a so-called big set (Set1),
because it contains Sets itself. This distinction is necessary for the consistency of the logical
system.)

As another example, we can define the existential quantifier connective as follows:

CERTIFIED CONTEXT-FREE PARSING 5

record ∃ {A : Set} (P : A→ Set) : Set1 where

constructor ,

field

proj1 : A

proj2 : P proj1

That is, the existence of an element satisfying P can be written ∃ (\x → P x) (or,
equivalently, ∃ P), and proving this proposition means to find a witness x : A and an
inhabitant p : P x. The constructor keyword here introduces the name , as the two-
argument constructor of the record type. Infix operators are declared using underscores on
both sides of the name so an infix comma (,) can now be used as in the following example:
(x , p) : ∃ P. Note that only the last argument (P) of the ∃ symbol is written, the first (A) is
left for Agda to infer: we say that it is implicit. Implicit parameters are marked by placing
them in braces at the declaration site. An implicit argument can be supplied explicitly at a
call site, if the programmer encloses it with braces. This syntax can be useful if Agda fails
to infer the argument in a certain context.

Entire relations. A binary relation from a set A to a set B is called entire if every element
of A is related to at least one element of B, and we can encode this definition as follows.

Entire : {A B : Set} → (R : A → B → Set) → Set

Entire R = ∀ a → ∃ λ b → a R b

Here, again, the use of underscores around R makes it an infix operator (in its scope). Fixity
is just a presentation issue, so an equivalent, but shorter, definition is Entire R = ∀ a →
∃ (R a) where R is prefix and R a is a partial application. A consequence of proving that a
relation R is entire in our constructive setting is that we get a function contained in R. We
can extract the function using the first field of the ∃ record.

fun : {A B : Set} → { R : A → B → Set} → Entire R → A → B

fun ent a = proj1 (ent a)

The proof that the function is contained in R can be obtained from the second field of ∃:
correct : {A B : Set} → { R : A → B → Set} → (ent : Entire R) →

let f = fun ent in ∀ {a : A} → a R (f a)

correct ent {a} = proj2 (ent a)

The above pattern generalises to relations of any number of arguments. In this paper we
need the following version:

Entire3 : {A B C D : Set} → (R : A → B → C → D → Set) → Set

Entire3 R = ∀ x y z → ∃ (R x y z)

with corresponding definitions of fun3 and correct3.

6 J.-P. BERNARDY AND P. JANSSON

Uniqueness. An element of UniqueSolution ' P is a proof that the predicate P has (at
most) a unique solution relative to some underlying relation ' .

UniqueSolution : {A : Set} → Rel A → (A → Set) → Set

UniqueSolution ' P = ∀ {x y} → P x → P y → x ' y

A proof usP : UniqueSolution ' P is thus a function which given two hidden arguments of
type A and two proofs that they satisfy P returns a proof that they are related by ' .

Least solutions. In optimisation problems, one often wants to find the least solution with
respect to some order ≤ . We use LowerBound ≤ P for the predicate that holds for an
a : A iff a is smaller than all elements satisfying P. If a lower bound is in the set (satisfies
the predicate P) it is called least.

LowerBound : {A : Set} → Rel A → (A → Set) → (A → Set)

LowerBound ≤ P a = ∀ z → (P z → a ≤ z)

Least : {A : Set} → Rel A → (A → Set) → (A → Set)

Least ≤ P a = P a × LowerBound ≤ P a

Note that a proof alP : Least ≤ P a is a pair of a proof that a is in P and a function
albP : LowerBound ≤ P a. And, in turn, albP is a function that takes any z : A (with a
proof that z is in P) to a proof that a ≤ z.

Records and modules. The upcoming proof makes extensive use of records, which we review
now in detail. Agda record types contain fields and helper definitions. Fields refer to data
which is stored in the record, while helper definitions provide values which can be computed
from such data. Because Agda treats proofs (of propositions) as data, one can require the
fields to satisfy some laws, just by adding (proofs of) those laws as fields. Our first record
type example, ∃ P, has two fields; one element proj1 and a proof that it satisfies the property
P. As a more complex record type example we use the following (simplified) version of
IsCommutativeMonoid from Algebra.Structures in the standard library. The record type is
parametrised over a carrier set, a relation, a binary operation and its identity element:

record IsCommutativeMonoid {A : Set} (≈ : Rel A)

(• : A → A → A) (ε : A) : Set1 where

field

isSemigroup : IsSemigroup ≈ •
identityl : LeftIdentity ≈ ε •
comm : Commutative ≈ •

The fields capture the requirements of being a commutative monoid, in terms of three other
properties. Here, the first field (isSemigroup) is also of record type; it is in fact common in
Agda to define deeply nested record structures.

In Agda every record type also doubles as a module parametrised over a value of
that type. For example, within the scope of the above record, given a value isNP :
IsSemigroup {N} ≈ + , the phrase IsSemigroup isNP is meaningful in a context where
Agda expects a module. It denotes a module containing a declaration for each field and
helper definition of the IsSemigroup record type. Hence, within the scope of the above record,
one can access the (nested) fields of isSemigroup in the module IsSemigroup isSemigroup. In

CERTIFIED CONTEXT-FREE PARSING 7

fact, it is very common for a record type to re-export all the definitions of inner records.
This can be done with the following declaration (still inside the record):

open IsSemigroup isSemigroup public

open means that the new names are brought into scope for later definitions inside the
record type (module) and public means the new names are also exported (publicly visible).
This means that the user can ignore the nesting when fetching nested fields (but not when
constructing them).

Equality proofs. We finish this section with an example of a helper definition that also serves
as an introduction to equality-proof notation. A helper definition of IsCommutativeMonoid is
the right identity proof identityr, which is derivable from commutativity and left identity.
We can define it as follows (still inside the record IsCommutativeMonoid):

identityr : ∀ x → (x • ε) ≈ x

identityr x =

begin

x • ε
≈〈 comm x ε 〉
ε • x

≈〈 identityl x 〉
x

�

The above is merely the composition by transitivity of (comm x ε) and (identityl x), but by
using special purpose operators the user can keep track of the intermediate steps in the
proof in a style close to pen-and-paper proofs.

3. Formal Development Overview

In the following sections we expose our formalisation of the specification of the transitive
closure algorithm, its implementation (Valiant’s algorithm) and the proof of correctness.
The algorithm falls out from a calculational refinement of the specification rather than being
exposed ex nihilo and proved separately. The development is presented in a number of
stages:

• We define the ring-like algebraic structure where we set our development (section 4),
• We give the specification of the transitive closure (section 5),
• We define the concrete data structures that the algorithm manipulates (section 6),
• We derive Valiant’s algorithm from part of that specification (section 7),
• We conclude by showing that the algorithm satisfies the rest of the specification (section 8).

In figure 2 we present the mapping between the order of presentation in the paper and in
the Agda development. The paper starts from a simplified presentation of the development
including the top level algorithm and only then builds up to include all the properties and
proofs needed for the full formalization. This makes the proof easier to follow and lets us
explain step by step the full algebra needed. The Agda code, on the other hand, introduces
the full algebra earlier and only gets to the top level algorithm on the last line of the file.

8 J.-P. BERNARDY AND P. JANSSON

Code
section

Paper
section Heading Page

C1 4 SemiNearRing 8
C1.1 4 Carriers, operators 8
C1.2 4 Commutative monoid (+, 0) 9
C1.3 5 Distributive, idempotent, . . . 12
C1.4 4 Exporting commutative monoid operations 10
C1.5 4 Setoid, . . . 10
C1.6 5 Lower bounds 13
C2 4.1 SemiNearRing2 11
C2.1 4.1 Plus and times for u, . . . 11
C2.2 7.2 Linear equation L 21
C2.3 8 Properties of L 23
C3 5 ClosedSemiNearRing 13
C3.1 5 Quadratic equation Q + properties 13
C3.2 5 Closure function and correctness 13
C3.3 7.2 Function for L and its correctness 21
C3.4 8 Ordering properties of L and Q 23
C4 6 2-by-2 block matrix, preserving ClosedSemiNearRing 14
C4.1 6 Square matrix 15
C4.2 6 Upper triangular matrix 15
C4.3 6 Laws 16
C4.4 7.1 Lifting Q and its proof 18
C4.5 8 Lifting orders and their properties 23
C4.6 7.2 Lifting the proof of L 21
C4.7 8 Proofs for ordering L-solutions 24
C5 6 One-by-one matrix 17
C5.1 7.2 Base case for L 22
C5.2 8 Base case for least Q 25
C6 6 Top level recursion for square matrices 17
C6.1 7.2 Top level algorithm extraction 22

Figure 2: Mapping from code sections to paper sections.

4. Algebra

We begin by defining a record type called SemiNearRing, whose fields and helper definitions
capture the algebraic structure that we need for the algorithm development. First we
introduce a carrier set s with an equivalence relation, a zero, addition and multiplication.

record SemiNearRing : Set1 where -- C1: SemiNearRing

field -- C1.1: Carriers, operators

s : Set

's : s→ s→ Set

0s : s

+s : s→ s→ s

·s : s→ s→ s

CERTIFIED CONTEXT-FREE PARSING 9

Sets of non-terminals form a SemiNearRing with finite sets of non-terminals for s and its
operations for the other fields (the usual equality, the empty set as zero, set union as addition
and “cross product filtered by the grammar” as multiplication).

Further, the charts (from section 1), also form a SemiNearRing. Indeed, lifting the
operations on matrices preserve the SemiNearRing structure, as we formally prove in section 6.

At this stage they are “raw” operations without laws. Here is a summary of the laws
needed. We require that (0,+) forms a commutative monoid. We also require that 0 is
absorbing for (·), that (·) distributes over (+) and that (+) is idempotent. Note that the
product is not necessarily associative; in fact, if it were, computing the transitive closure
would be much easier and parsing would not be an application.

x+ 0 = x = 0 + x x+ y = y + x x+ (y + z) = (x+ y) + z (now)

x · 0 = 0 = 0 · x x+ x = x x · (y + z) = x · y + x · z (later)

(It is easy to check that the definitions given in section 1 have these properties.) We could
specify these properties individually, but instead we take advantage of “specification building
blocks” from the Algebra modules in the Agda standard library [Danielsson and The Agda
Team, 2013]. More specifically we use the record IsCommutativeMonoid from the library
module Structures and we use the left and right zero laws from the parametrised module
FunctionProperties specialised to the underlying equivalence ('s) on our carrier set s.

open Algebra.Structures using (IsCommutativeMonoid)

open Algebra.FunctionProperties 's using (LeftZero; RightZero)

Armed with these properties we now continue the SemiNearRing record type by specifying
(as new fields in the record) the laws we require of our operations: +s is a commutative
monoid with 0s as the unit, 0s is also a multiplicative zero of ·s and multiplication preserves
equivalence.

field -- C1.2: Commutative monoid (+, 0)

isCommMon : IsCommutativeMonoid 's +s 0s

zerol : LeftZero 0s ·s -- expands to ∀ x→ (0s ·s x) 's 0s
zeror : RightZero 0s ·s -- expands to ∀ x→ (x ·s 0s) 's 0s
<·> : ∀ {x y u v} → (x 's y)→ (u 's v)→ (x ·s u 's y ·s v)

The rest of the record type consists of helper declarations which are useful to have in scope
when working with the specification. They will be put in scope whenever we access an
instance of the record in the definition of the algorithm or in its proof. Also inside the record
type we specify the precedence of operators using the following declarations:

infix 4 's ; infixl 6 +s ; infixl 7 ·s

Exporting inner names. As we mentioned in section 2 the module Algebra.Structures includes
a record (IsCommutativeMonoid) which contains the commutative monoid laws, and doubles
up as a parametrised module. In the SemiNearRing record type that we are defining there is
already a field isCommMon which, in turn, contains the proofs of the monoid laws so that a
user with a value snr : SemiNearRing can access all these proofs by indexing through the
two record layers. But two (and later more) levels of records is inconvenient to use so we
include short hand names for the inner record fields as follows.

10 J.-P. BERNARDY AND P. JANSSON

-- C1.4: Exporting commutative monoid operations

open Algebra.Structures.IsCommutativeMonoid isCommMon public

hiding (refl)

renaming

(isEquivalence to isEquivs
; assoc to assocs
; comm to comms

; •-cong to <+>

; identityl to identityls
)

identityrs = proj2 identity

Recall that open means that the new names are brought into scope for later definitions
inside the record type and public means the new names are also exported (publicly visible).
We rename (with a subscript s-suffix) to avoid clashes when we add most of the same for
another set u later. The infix notation <+> for congruence is useful in equality proofs: if
we have proofs ap : a 's a′ and bp : b 's b′ we get a proof of (a +s b) 's (a′ +s b′)
which can be layed out nicely:

begin

a +s b

≈〈 ap <+> bp 〉
a′ +s b′

�

Finally sSetoid packages up the carrier set s, the relation 's and the proof that it
is an equivalence. This is useful not only for documentation purposes (s is a setoid), but
certain parts of the standard library require properties to be packaged in such a manner, for
example the module giving convenient syntax for equality proofs, which we use later. We
write 0L for universe level 0.

sSetoid : Setoid 0L 0L -- C1.5: Setoid, . . .

sSetoid = record {Carrier = s;

≈ = 's ;

isEquivalence = isEquivs}

open IsEquivalence isEquivs public

hiding (reflexive) renaming (refl to refls; sym to syms; trans to transs)

The open public of isEquivs is (again) to avoid the need for multiple layers of record
projections.

To summarise, a record value snr : SemiNearRing contains as fields a carrier set s, the
operations ('s , 0s, +s , ·s) and the proofs of the properties (isCommMon, zerol, zeror,
<·>). We will later return to this record type and add a few more fields (in section 5)

and helpers (in section 7.2 and section 8) to capture the full specification of the closure
algorithm, but for now this will do.

CERTIFIED CONTEXT-FREE PARSING 11

4.1. Matrix Algebra(s). Valiant’s algorithm works on square matrices. We carry on and
define the algebraic structures required on matrices for Valiant’s algorithm to work. Some
of the structure of these matrices is the same as that required of elements, and we will later
(in section 6) show that the additional properties follow from just a SemiNearRing structure
on the elements.

The name of the carrier set (s) defined earlier was in reference to square matrices.
However, Valiant’s algorithm works only on (strictly) upper triangular matrices— that is,
those whose elements at and below the diagonal are zero. We could have defined upper
triangular matrices as the type of square matrices satisfying the triangularity predicate.
However, such a definition yields a large amount of tedious work to manipulate the extra
predicate.

Instead, we enforce the property of upper-triangularity axiomatically, by defining a
separate type u (for upper triangular matrix) and require an embedding from u to s (square
matrix). We package the types u and s, together with all their properties, in a single record
SemiNearRing2. This packaging helps, because we later build structures by induction, and
the inductive case for u depends on the induction hypothesis for s and vice-versa. (Yet we
keep SemiNearRing as a separate entity, as it is an adequate specification of the elements of
the matrices.)

record SemiNearRing2 : Set1 where -- C2: SemiNearRing2

field

snr : SemiNearRing

open SemiNearRing snr public -- public = export the ”local” names from SemiNearRing

field -- C2.1: Plus and times for u, . . .

u : Set

+u : u→ u→ u

·u : u→ u→ u

u2s : u→ s

Beside the type u and an embedding into s, we require addition and multiplication over u: this
is a simple specification of the property that those operations preserve upper-triangularity.
Note that we require no relation between +u and +s , no relation between ·u and
·s and no algebraic properties of the u-operations. Most of the link between u and s will

become manifest when we see the recursive structure tying them together. The rest of the
record contains helper definitions to lift the structure of s onto u using u2s. The lifting of
binary relations is provided for us by the standard library via the infix operator Function.on.

'u : u→ u→ Set

'u = 's Function.on u2s

u·s : u→ s→ s

u·s u s = u2s u ·s s

s·u : s→ u→ s

s·u s u = s ·s u2s u

The operator precedences and a Setoid instance follow, for completeness.

12 J.-P. BERNARDY AND P. JANSSON

monoTimesLeft : ∀ {a} {b} {c} → (a ≤s b)→ ((a ·s c) ≤s (b ·s c))

monoTimesLeft {a} {b} {c} a≤b =

begin

(a ·s c) +s (b ·s c)

≈〈 sym (distr) 〉
(a +s b) ·s c

≈〈 a≤b <·> refls 〉 -- a ≤ b means a + b = b

b ·s c

�

Figure 3: Monotonicity for multiplication follows from distributivity.

infix 4 'u ; infixl 6 +u ; infixl 7 ·u u·s s·u
uSetoid : Setoid 0L 0L
uSetoid = record { isEquivalence = Relation.Binary.On.isEquivalence u2s isEquivs}

To summarise, a record value snr2 : SemiNearRing2 contains the s-operations from a subrecord
snr, the corresponding operations for u (but no laws) and the embedding u2s : u → s.

5. Specification

Recall that Valiant’s algorithm aims at finding the smallest matrix C such that C = W+C ·C.
Our goal is to find a function computing C, and to prove it correct. The first step is to
formally transcribe the definition of transitive closure. Hence we revisit and extend the
SemiNearRing structure with a few more components needed to define the closure relation.
First we need an order to define “smallest”. Remember that, for parsing, a value of type s is
a set of non-terminals, or a matrix thereof. Hence, parsing uses set inclusion for the preorder
and set union for addition and in this context a ⊆ b iff a ∪ b = b. A natural generalisation
is to define a partial order where x ≤s y iff x +s y 's y. For the relation ≤s to be a
preorder we need idempotence of addition (which implies reflexivity and transitivity). With
this order addition is automatically monotonous, but for multiplication to be monotonous
we need distribution laws: that ·s distributes over +s (see figure 3).

open Algebra.FunctionProperties 's

using (Idempotent; DistributesOverl ; DistributesOverr)

field -- C1.3: Distributive, idempotent, . . .

idem : Idempotent +s

distl : ·s DistributesOverl +s

distr : ·s DistributesOverr +s

-- expands to ∀ a b c→ (a +s b) ·s c 's (a ·s c) +s (b ·s c)

infix 4 ≤s

≤s : s → s → Set

x ≤s y = x +s y 's y

The algebraic structure we have specified so far in this record type is nearly, but not quite,
an idempotent semiring. We just lack (and don’t want) associativity (and unit) of our

CERTIFIED CONTEXT-FREE PARSING 13

multiplication. (Remember that for our motivating example, parsing, the multiplication
operation is normally not associative.)

As the last addition to the SemiNearRing record type we define lower bound with respect
to this order:

LowerBounds = LowerBound ≤s -- C1.6: Lower bounds

In SemiNearRing2 we obtain a suitable ordering on u by lifting the ordering on s.

≤u : u→ u→ Set

≤u = ≤s Function.on u2s

Closure. We have now seen the first layer SemiNearRing specifying the underlying carrier
set s for square matrices and the second layer SemiNearRing2 specifying the set u for upper
triangular matrices. The third layer ClosedSemiNearRing specifies the transitive closure and
Valiant’s algorithm for computing it.

record ClosedSemiNearRing : Set1 where -- C3: ClosedSemiNearRing

field

snr2 : SemiNearRing2 -- includes s, u and corresponding operations

open SemiNearRing2 snr2

We can now finally give the specification and we do it in three steps: the relation Q capturing
the “quadratic” equation, the relation Closure capturing only the “least” solutions of Q and
finally Entire Q which says that there is a total function inside the relation.

Q : u→ u→ Set -- C3.1: Quadratic equation Q + properties

Q w c = w +u c ·u c 'u c

Closure : u → u → Set

Closure w c = Least ≤u (Q w) c

field

entireQ : Entire Q

From the entireQ field (which we will populate later) we can extract the closure algorithm
(closure) and part of its correctness proof (closureHasAll).

closure : u→ u -- C3.2: Closure function and correctness

closure = fun entireQ

closureHasAll : ∀ {w : u} → Q w (closure w)

closureHasAll = correct entireQ

Proving Entire Closure means to show that closure yields the smallest possible solution, and
is deferred until section 8.

open SemiNearRing2 snr2 public

14 J.-P. BERNARDY AND P. JANSSON

6. Matrices

In the specification and implementation we make heavy use of square matrices of size m × m
for different values of m. For concision we make the simplifying assumption that m is a
power of two (m = 2n) — handling the general case involves indexing matrices with their
sizes, which is straightforward but clutters the development (section 10.1).

There are many different ways to represent matrices. As usual when working with
dependent types, some definitions yield a concise presentation, while others require large
amounts of boilerplate, obscuring the intent. A judicious choice is thus in order. Possibilities
include:

• A vector of vectors of elements, where a vector is

data Vec a n where

Nil : Vec a 0

Cons : a → Vec a n → Vec a n → Vec a (1 + n)

• A function from (two) indices to elements Bin n → Bin n → a (where Bin stands for a
binary number of n bits)
• A recursive data-type (a quad tree):

data Mat a n where

Unit : a → Mat a 0

Quad : Mat a n → Mat a n → Mat a n → Mat a n → Mat a (1 + n)

• A function from n to Set:

Mat a 0 = OneByOne a

where OneByOne a = a

Mat a (suc n) = Square (Mat a n)

where Square t = t × t × t × t

Here we choose the last approach, which is specifically tailored to the problem at hand.
Indeed, the advantage of doing so is that Square is a functor. This approach allows to extend
the Square functor with all the axiomatisation we need, including ring-like structures and
up to the full closure specification. In fact, most of the rest of the paper is devoted to the
definition of that functor: when it is fully defined we have a proven-correct implementation
of Valiant’s algorithm. In this section we show the abstraction over SemiNearRing and the
construction of matrices, up to the full definition of Mat. In the base case OneByOne (shown
later in section 6 on page 17) we lift a SemiNearRing to a ClosedSemiNearRing and in the
inductive case and we apply Square which preserves the ClosedSemiNearRing structure.

The main functor: Square. We attack the recursive case right away by defining the function
Square which lifts our algebraic structure (the types s and u, the operations on them and all
the laws) from elements to 2-by-2 (block) matrices. It can be seen as an implementation of
a (first-class, but otherwise) ML-style functor.

-- C4: 2-by-2 block matrix, preserving ClosedSemiNearRing

Square : ClosedSemiNearRing → ClosedSemiNearRing

Square csnr = CSNR where

open ClosedSemiNearRing csnr

CERTIFIED CONTEXT-FREE PARSING 15

The rest of this section is the body of this where clause where all operations and laws from
csnr are in scope.

Lifting types. We start by defining two types U and S, instantiating the u and s types for
two-by-two (block) matrices. Throughout the rest of the paper, we use the convention of
using capitals for the values of the fields of the record created (the target of the functor).

For type S we could use S = s × s × s × s but we prefer to use a record type for clarity.
The constructor name uses angle brackets to lift any ambiguity.

record S : Set where -- C4.1: Square matrix

constructor 〈 , , , 〉
field

s00 : s; s01 : s

s10 : s; s11 : s

infix 4 〈 , , , 〉
The two-by-two upper triangular matrix is composed of two (smaller) upper-triangular

matrices, and a square matrix for the top-right corner. (The bottom-left corner is zero.)
Basically, U = u × s × u but again, regular nested pairs obscure the intent. Here we add a
box inside the name of the record constructor, as a reminder that the bottom left corner is
empty.

record U : Set where -- C4.2: Upper triangular matrix

constructor 〈 , , •, 〉
field

uu00 : u; us01 : s;

uu11 : u

infix 4 〈 , , •, 〉

Lifting operations. We lift the operations 0,+, · from the underlying semi-near-ring to
matrices over that semi-near-ring, in the usual manner.

+S : S→ S→ S

+S 〈 a , b , c , d 〉
〈 a′ , b′ , c′ , d′ 〉 =

〈 a +s a′ , b +s b′ , c +s c′ , d +s d′ 〉
Matrix multiplication is defined as expected.

·S : S→ S→ S

·S 〈 a , b ,

c , d 〉 〈 a′ , b′ ,

c′ , d′ 〉 = 〈 (a ·s a′) +s (b ·s c′) , (a ·s b′) +s (b ·s d′)

, (c ·s a′) +s (d ·s c′) , (c ·s b′) +s (d ·s d′) 〉
infixl 6 +S

infixl 7 ·S
Zero is defined similarly.

16 J.-P. BERNARDY AND P. JANSSON

zerS : S

zerS = 〈 0s , 0s ,

0s , 0s 〉
We can then define the operations on upper-triangular matrices. In particular, we give

full definitions of point-wise upper triangular matrix addition and multiplication. Having to
define operations both for U and S is an consequence of our choice of separating u and s in
the algebraic structure. This may look redundant, but in fact the definitions for U serve the
purpose of proving that upper-triangularity is preserved by those operations. In particular,
not that u-operations are used on the (block-) diagonal and s-operations are used in the the
“square corner”.

+U : U→ U→ U

+U 〈 xl , xm , •, xr 〉 〈 yl , ym , •, yr 〉 = 〈 xl +u yl , xm +s ym , •, xr +u yr 〉
·U : U→ U→ U

·U 〈 xl , xm

, •, xr 〉 〈 yl , ym

, •, yr 〉 = 〈 xl ·u yl , xl u·s ym +s xm s·u yr

, •, xr ·u yr 〉
Equivalence is structural: two matrices are equivalent if all the elements are equivalent.

'S : S→ S→ Set

'S 〈 a , b , c , d 〉 〈 a′ , b′ , c′ , d′ 〉 = (a 's a′) × (b 's b′)

× (c 's c′) × (d 's d′)

infix 4 'S

Embedding upper triangular matrices as (regular) matrices is straightforward:

U2S : U→ S

U2S 〈 uu00 , us01 , •, uu11 〉 = 〈 u2s uu00 , us01 ,

0s , u2s uu11 〉

Lifting laws. At this point we must verify that the above constructions preserve the laws
seen so far. Most of this verification (of symS, transS, congS, etc.) is by straightforward,
and omitted, lifting of the proofs from the underlying structure, for example reflS:

reflS : {x : S} → x 'S x -- C4.3: Laws

reflS = refls , refls ,

refls , refls

To prove the preservation of distributivity we use the following lemma about commutativity
(proving it is an easy equational reasoning exercise in Agda).

swapMid : ∀ {a b c d} → (a +s b) +s (c +s d)

's (a +s c) +s (b +s d)

distlS : (x y z : S)→ x ·S (y +S z) 'S x ·S y +S x ·S z

distlS = distrHelp , distrHelp , distrHelp , distrHelp

CERTIFIED CONTEXT-FREE PARSING 17

where distrHelp : ∀ {a b c d e f } → a ·s (b +s c) +s d ·s (e +s f)

's (a ·s b +s d ·s e) +s (a ·s c +s d ·s f)

distrHelp = transs (distl <+> distl) swapMid

The record value of type Square should eventually contain all the fields, including the
proof of closure — but we leave the rest to the upcoming sections. Thus we leave the
definition of the functor Square for now and instead give the the base case of the inductive
structure.

Base case: 1-by-1 matrices. Any strictly upper triangular matrix is by definition zero on
(and below) the diagonal. At size 1-by-1 that means the only element is zero so need not
store any element. We represent this case by the unit type (tt : >) and it is therefore
trivially equipped with closure.

OneByOne : SemiNearRing → ClosedSemiNearRing -- C5: One-by-one matrix

OneByOne snr = record {snr2 = record {snr = snr; u = >; +u = λ → tt;

u2s = λ → 0s; ·u = λ → tt}
}

where open SemiNearRing snr using (0s)

Finally we give the recursion schema, following the pattern that we hinted at the beginning
of the section: we define Mat n as the semi-near-ring structures lifted n + 1 times.

Mat : N→ SemiNearRing→ ClosedSemiNearRing -- C6: Top level recursion for matrices

Mat zero el = OneByOne el

Mat (suc n) el = Square (Mat n el)

The fields of Mat n el are of special interest to us. In particular the u field is the type of
(strictly upper triangular) matrices of size 2n, which we will soon show how to equip with a
closure operation.

Upper : N→ SemiNearRing→ Set

Upper n el = ClosedSemiNearRing.u (Mat n el)

(The expression ClosedSemiNearRing.u csnr extracts the field u from the record csnr of type
ClosedSemiNearRing.)

7. Transitive closure: derivation

We have now completed the definition of all the structures necessary to develop our proof.
In this section we describe (and partially prove) the closure algorithm.

We do so by deriving it from the specification Closure w c = Least ≤u (Q w) c,
where Q w c = w +u c ·u c 'u c and we start with the equational part, the Entire Q
requirement, and return to Least in section 8. Technically, we give a definition for the
entireQ : Entire Q field in both the OneByOne and Square cases of the Mat function.

We first proceed semi-formally, to show what a non-certified proof of the algorithm
looks like, and to be able to compare it with the fully formal, certified Agda proof that we
subsequently present.

18 J.-P. BERNARDY AND P. JANSSON

7.1. Closure of triangular matrices. Recall that our task is to find a function + which
maps an upper triangular matrix W to its transitive closure C = W+.

If W is a 1 by 1 matrix, C = W = 0. Otherwise, let us divide W and C in blocks as
follows:

W =

[
A Y
0 B

]
C =

[
A′ X ′

0 B′

]
Then the condition that C satisfies Q becomes:[

A Y
0 B

]
+

[
A′ X ′

0 B′

]
·
[
A′ X ′

0 B′

]
=

[
A′ X ′

0 B′

]
Applying matrix multiplication and addition block-wise:

A+A′A′ = A′

Y +A′X ′ +X ′B′ = X ′

B +B′B′ = B′

Because A and B are smaller matrices than W (and still upper triangular), we know how to
compute A′ and B′ recursively (A′ = A+, B′ = B+). Before showing how X ′ is computed,
we show how to formalise the above reasoning in Agda. The main job is to populate the
entireQ field in the ClosedSemiNearRing record. We have to do so both for the base case and
the recursive case of the Mat construction. The base case being trivial, we show here the
inductive case.

We first define the Q relation for 2-by-2 (block-)matrices:

QU = λ W C → (W +U (C ·U C)) 'U C -- C4.4: Lifting Q and its proof

and then we proceed with the proof that it is Entire: for any input matrix W we construct
another matrix C and a proof that it is a closure (strictly speaking, so far only that it satisfies
QU W C). One remarkable feature is that Agda can infer the solution matrix (C =), from
the proof. The proof follows exactly the semi-formal development given at the beginning of
the subsection.

entireQStep : ∀W → ∃ (QU W)

entireQStep W = C , proof where

C : U

C =

open EqReasoning (SemiNearRing2.uSetoid SNR2)

proof : (W +U (C ·U C)) 'U C

proof = begin

(W +U (C ·U C))

≡〈 refl 〉 -- expand matrix components

let 〈 A , Y , •, B 〉 = W

〈 A′ , Y′ , •, B′ 〉 = C in

〈 A , Y , •, B 〉 +U (〈 A′ , Y′ , •, B′ 〉 ·U 〈 A′ , Y′ , •, B′ 〉)
≡〈 refl 〉 -- expand definition of ·U
〈 A , Y , •, B 〉 +U 〈 A′ ·u A′ , (A′ u·s Y′ +s Y′ s·u B′)

, •, B′ ·u B′ 〉
≡〈 refl 〉 -- by def. of +U

CERTIFIED CONTEXT-FREE PARSING 19

〈 A +u A′ ·u A′ , Y +s (A′ u·s Y′ +s Y′ s·u B′)

, •, B +u B′ ·u B′ 〉
≈〈 congU closureHasAll completionHasAll closureHasAll 〉
〈 A′ , Y′ , •, B′ 〉
≡〈 refl 〉

C

�

The definition C = works because Agda unifies the type of the proof that it infers
with the type that we give ((W +U (C ·U C)) 'U C). The left-hand-side of the equivalence
inferred type is given by each step in the proof: C = 〈 A′ , Y′ , •, B′ 〉, and so on. If we
expand those steps this is the core algorithm:

C = let 〈 A , Y , •, B 〉 = W

(A′ , proofA) = entireQ A

(B′ , proofB) = entireQ B

(Y′ , proofY) = entireL A′ Y B′

in 〈 A′ , Y′ , •, B′ 〉
The use of equational reasoning in proof shows another very useful feature of the proof
notation: using a normal let-in expression together with the distfix transitivity operator
≡〈 〉 we can do what is often done in paper-proofs: introduce new names in the middle of

the reasoning chain. The new names (here A, Y, B etc.) are in scope in the rest of the proof.
Another interesting feature of this proof is that many of the steps can be justified simply by
refl : x ≡ x. Indeed, Agda automatically expands definitions during type-checking, and thus
automatically expands the definitions of operators on block matrices. In fact, because refl is
“the unit of transitivity”, Agda would be just as happy with only:

proof = congU closureHasAll completionHasAll closureHasAll

Yet, this one line still holds the full proof of the inner induction (completionHasAll) which
is the topic of section 7.2. (Remember that closureHasAll = correct entireQ from section 5
(page 13) plays the role of induction hypothesis for the closure of triangular matrices.)

The base case is completely trivial; a 1-by-1 upper triangular matrix contains no non-zero
element and is represented by the unit type. Thus entireQBase tt = tt , refls.

7.2. Completion of square matrices. As in the previous subsection, we first proceed
semi-formally. The problem is to find a recursive function V which maps A, Y and B to
X = V (A, Y,B), such that X = Y + A ·X + X · B. In terms of parsing, the function V
combines the chart A of the first part of the input with the chart B of the second part of
the input, via a partial chart Y concerned only with strings starting in A and ending in B,
and produces a full chart X. We proceed as before and divide each matrix into blocks:

X =

[
X11 X12

X21 X22

]
Y =

[
Y11 Y12
Y21 Y22

]
A =

[
A11 A12

0 A22

]
B =

[
B11 B12

0 B22

]
The condition on X then becomes[

X11 X12

X21 X22

]
=

[
Y11 Y12
Y21 Y22

]
+

[
A11 A12

0 A22

]
·
[
X11 X12

X21 X22

]
+

[
X11 X12

X21 X22

]
·
[
B11 B12

0 B22

]

20 J.-P. BERNARDY AND P. JANSSON

Step 2:
A11

A22

A12

B12B11

B22

X21

Y11

Y22

Y12

Step 4:
A11

A22

A12

B12B11

B22

X21

X11

X22

Y12

Step 1:
A11

A22

A12

B12B11

B22

Y21

Y11

Y22

Y12

Step 3:
A11

A22

A12

B12B11

B22

X21

X11

Y22

Y12

Figure 4: The recursive step of function V . The charts A and B are already complete. To complete
the matrix Y , that is, compute X = V (A, Y,B), one splits the matrices and performs 4
recursive calls. Each recursive call is depicted graphically. In each figure, to complete
the dark-gray square, multiply the light-gray rectangles and add them to the dark-gray
square, then do a recursive call on triangular matrix composed of the completed dark-gray
square and the triangles.

By applying matrix multiplication and addition block-wise:

X11 = Y11 + A11X11 + A12X21 + X11B11 + 0
X12 = Y12 + A11X12 + A12X22 + X11B12 + X12B22

X21 = Y21 + 0 + A22X21 + X21B11 + 0
X22 = Y22 + 0 + A22X22 + X21B12 + X22B22

By commutativity of (+) and 0 being its unit:

X11 = Y11 +A12X21 + A11X11 + X11B11

X12 = Y12 +A12X22 +X11B12 + A11X12 + X12B22

X21 = Y21 + A22X21 + X21B11

X22 = Y22 +X21B12 + A22X22 + X22B22

Now we have four equations, all of the form that V can compute solutions to. Because each
of the sub-matrices is smaller and because of the absence of circular dependencies, X can be
computed recursively by V . The internal dependencies dictate the order: start computing

CERTIFIED CONTEXT-FREE PARSING 21

X21, use that to compute X11 and X22 (possibly in parallel) and finally compute X12:

X21 = V (A22, Y21 , B11)
X11 = V (A11, Y11 +A12X21 , B11)
X22 = V (A22, Y22 +X21B12 , B22)
X12 = V (A11, Y12 +A12X22 +X11B12, B22)

A graphical summary is shown in fig. 4.
We proceed to certify this proof step in Agda. The problem is to solve the equation

L, defined as follows. (We pick the name L for linear equation as we used Q for quadratic
earlier.)

L : u→ s→ u→ s→ Set -- C2.2: Linear equation L

L a y b x = y +s (a u·s x +s x s·u b) 's x

We must prove that the relation L is entire, and thus get an algorithm (to compute the last
argument) as well as its correctness proof. To this end, we add the appropriate field to the
ClosedSemiNearRing record. We now reap the full benefits of using a record structure, which
frees us from repeating the recursion pattern.

field -- C3.3: Function for L and its correctness

entireL : Entire3 L

completion : u→ s→ u→ s

completion = fun3 entireL

completionHasAll : ∀ {a y b} → L a y b (completion a y b)

completionHasAll = correct3 entireL

Again, the bulk of the proof is the recursive case (part of the definition of Square), the lifting
of completionHasAll to 2-by-2 block matrices. Here as well, the semi-formal proof is faithfully
represented in Agda.

-- C4.6: Lifting the proof of L

entireLS : ∀ (A : U) (Y : S) (B : U)→ ∃ (λ X→ Y +S (A U ·S X +S X S ·U B) 'S X)

entireLS A Y B = X , proof where

X : S

X = -- filled in by unification with Y +S (U2S A ·S X +S X ·S U2S B)

proof : Y +S (U2S A ·S X +S X ·S U2S B) 'S X

open EqReasoning (SemiNearRing2.sSetoid SNR2)

proof = -- continued below to fit the width of the paper (it is still in the where clause)

begin

(Y +S (A U ·S X +S X S ·U B))

≡〈 refl 〉 -- name the components

let 〈 a00 , a01 , •, a11 〉 = A

〈 b00 , b01 , •, b11 〉 = B

〈 y00 , y01 , y10 , y11 〉 = Y

〈 x00 , x01 , x10 , x11 〉 = X

in Y +S (A U ·S X +S X S ·U B)

22 J.-P. BERNARDY AND P. JANSSON

≡〈 refl 〉 -- expand U ·S and S ·U and use components

let A·X = 〈 a00 u·s x00 +s a01 ·s x10 , a00 u·s x01 +s a01 ·s x11
, 0s ·s x00 +s a11 u·s x10 , 0s ·s x01 +s a11 u·s x11 〉

X·B = 〈 x00 s·u b00 +s x01 ·s 0s , x00 ·s b01 +s x01 s·u b11

, x10 s·u b00 +s x11 ·s 0s , x10 ·s b01 +s x11 s·u b11 〉
in Y +S (A·X +S X·B)

≡〈 refl 〉 -- Expand 'S , +S and collect components

〈 y00 +s ((a00 u·s x00 +s a01 ·s x10) +s (x00 s·u b00 +s x01 ·s 0s))

, y01 +s ((a00 u·s x01 +s a01 ·s x11) +s (x00 ·s b01 +s x01 s·u b11))

, y10 +s ((0s ·s x00 +s a11 u·s x10) +s (x10 s·u b00 +s x11 ·s 0s))

, y11 +s ((0s ·s x01 +s a11 u·s x11) +s (x10 ·s b01 +s x11 s·u b11)) 〉

≈〈 congS zeroLemma00 zeroLemma01 zeroLemma10 zeroLemma11 〉
-- assoc. and comm. of +; zero absorption.

〈 y00 +s a01 ·s x10 +s (a00 u·s x00 +s x00 s·u b00)

, y01 +s a01 ·s x11 +s x00 ·s b01 +s (a00 u·s x01 +s x01 s·u b11)

, y10 +s (a11 u·s x10 +s x10 s·u b00)

, y11 +s x10 ·s b01 +s (a11 u·s x11 +s x11 s·u b11) 〉

≈〈 congS completionHasAll completionHasAll completionHasAll completionHasAll 〉
〈 x00 , x01 , x10 , x11 〉
≡〈 refl 〉

X

�

The series of zeroLemmas use that zeros are absorbing, in addition to commutativity and
associativity of addition. One more time, the actual solution of the equation X can be
inferred by Agda on the basis of the proof. The base case is a mere application of the
properties of zero.

open import ZeroLemmas snr -- C5.1: Base case for L

entireLBase : (a : >) (y : s) (b : >)→ ∃ (λ x→ y +s (a u·s x +s x s·u b) 's x)

entireLBase tt y tt = y , zerolrLemma y y y

We have now completely specified Valiant’s algorithm, and it can be accessed via the
appropriate field of Mat n:

-- C6.1: Top level algorithm extraction

valiantAlgorithm : (el : SemiNearRing)→ ∀ n→ Upper n el→ Upper n el

valiantAlgorithm el n u = ClosedSemiNearRing.closure (Mat n el) u

CERTIFIED CONTEXT-FREE PARSING 23

8. smallest

Only one bit of proof remains to obtain full correctness: namely, we should prove that the
solution computed by our algorithm is a lower bound of all solutions of the Q equation. The
proof is as follows. We have three lemmas. The first lemma is that the L equation (recall
L a y b x = y +s (a u·s x +s x s·u b) 's x) admits a single solution for x. (This is not
surprising, as it is a linear equation.) Being unique, this solution is thus necessarily the
smallest. The second lemma is that the L relation is a congruence in its second argument.
The third lemma is that the completion function is monotonous. The theorem (lower bound)
and the two lemmas are proved by induction, as before.

We start by stating the two first lemmas: 1. the relation L admits a unique solution in
its last argument and 2. the relation L is a congruence in its second argument.

-- C2.3: Properties of L

UniqueL = ∀ {a y b} → UniqueSolution 's (L a y b)

CongL = ∀ {a x b} → ∀ {y y′} → y 's y′ → L a y b x → L a y′ b x

We then prove those two lemmas, as well as monotonicity of completion and the main
theorem of this section (closureIsLeast), and we do so by induction on the matrix structure.
Formally, we proceed as before: the induction pattern is encoded by adding fields to our
ClosedSemiNearRing record. The fields to add are as follows:

field -- C3.4: Ordering properties of L and Q

uniqueL : UniqueL

congL : CongL

completionMono : ∀ {a a′ y y′ b b′} → a ≤u a′ → y ≤s y′ → b ≤u b′ →
completion a y b ≤s completion a′ y′ b′

closureIsLeast : {w : u} → LowerBound ≤u (Q w) (closure w)

We then formalize our above remark: the uniqueness of L immediately implies that completion
gives a least solution. We do this in the ClosedSemiNearRing structure, in order to get this
result for every induction step.

open OrderLemmas snr public

completionIsLeast : ∀ (a : u) (y : s) (b : u) → LowerBounds (L a y b) (completion a y b)

completionIsLeast a y b z p = 'sTo≤s (uniqueL completionHasAll p)

We then proceed with the induction proofs. First, we prove the induction case of our main
theorem, from the induction hypotheses. As usual, the upper-right corner is the difficult
case, and requires the monotonicity lemma.

≤U = SemiNearRing2. ≤u SNR2 -- C4.5: Lifting orders and their properties

≤S = SemiNearRing2. ≤s SNR2

closureIsLeastS : ∀ {W} → LowerBound ≤U (QU W) (fun entireQStep W)

closureIsLeastS Z QUWZ =

let 〈 z00 , z01 , •, z11 〉 = Z -- every matrix Z

(p00 , p01 , , p11) = QUWZ -- which satisfies (QU W Z)

q10 = identityls 0s
q00 = closureIsLeast z00 p00 -- is bigger than C = fun entireQStep W

q11 = closureIsLeast z11 p11

24 J.-P. BERNARDY AND P. JANSSON

vs01 = completionIsLeast z01 p01

mono01 = completionMono q00 ('sTo≤s refls) q11

in (q00 , ≤−transs mono01 vs01

, q10 , q11)

We can then prove the induction case of the uniqueness of L. The proof uses the induction
hypotheses, replicating the structure derived in the previous section. The only slight difficulty
is to use the identity of 0 at the appropriate places.

uniqueLS : SemiNearRing2.UniqueL SNR2 -- C4.7: Proofs for ordering L-solutions

uniqueLS (p00 , p01 , p10 , p11) (q00 , q01 , q10 , q11) = eq00 , eq01 , eq10 , eq11

where mutual

s00 = congL (refls <+> (refls <·> sym eq10))

s11 = congL (refls <+> (sym eq10 <·> refls))

s01 = congL ((refls <+> (refls <·> sym eq11)) <+> (sym eq00 <·> refls))

r10 = trans (sym zeroLemma10) q10

r00 = s00 (trans (sym zeroLemma00) q00)

r11 = s11 (trans (sym zeroLemma11) q11)

r01 = s01 (trans (sym zeroLemma01) q01)

eq10 = uniqueL (trans (sym zeroLemma10) p10) r10
eq00 = uniqueL (trans (sym zeroLemma00) p00) r00
eq11 = uniqueL (trans (sym zeroLemma11) p11) r11
eq01 = uniqueL (trans (sym zeroLemma01) p01) r01

Completion monotonicity (induction case) is also straightforward, as is the base case. (The
operators [+] and [∗] are monotonicity for sum and product.)

completionMonoS : ∀ {a a′ y y′ b b′} → a ≤U a′ → y ≤S y′ → b ≤U b′ →
proj1 (entireLS a y b) ≤S proj1 (entireLS a′ y′ b′)

completionMonoS (p00 , p01 , p10 , p11) (q00 , q01 , q10 , q11)

(r00 , r01 , r10 , r11) = m00 , m01 , m10 , m11

where m10 = completionMono p11 q10 r00
m00 = completionMono p00 (q00 [+] p01 [∗] m10) r00
m11 = completionMono p11 (q11 [+] m10 [∗] r01) r11
m01 = completionMono p00 (q01 [+] p01 [∗] m11 [+] m00 [∗] r01) r11

congLS : SemiNearRing2.CongL SNR2

congLS P Q = transS (symS P <+S> reflS) Q

CSNR : ClosedSemiNearRing

CSNR = record {
snr2 = SNR2;

entireQ = entireQStep;

closureIsLeast = closureIsLeastS;

entireL = entireLS;

uniqueL = uniqueLS;

congL = congLS;

completionMono = completionMonoS}

CERTIFIED CONTEXT-FREE PARSING 25

The base cases of lemmas are trivial and omitted. For the main theorem, we have:

leastQBase = λ → identityls 0s -- C5.2: Base case for least Q

This concludes our proof. The complete development is checked by Agda 2.4, and is
available as supplementary material for this paper. The set of Agda files is written in literate
programming style, and doubles up as the input for the typesetting program.

9. Related Work

9.1. Efficient Parsing. One of the main motivations for this work is the discovery that
Valiant’s algorithm is not only interesting theoretically (as it gives an upper bound on the
complexity of context-free recognition), but also practically.

Indeed Bernardy and Claessen [2013, 2015] have recently shown that the divide and
conquer structure of Valiant’s parsing algorithm yields an efficient parallel algorithm, given
commonly occurring conditions on the input. In sum, if the input is organised hierarchically,
then the conquer step is O(log2 n), instead of being as complex as matrix multiplication.

9.2. Certified Parsing. Several certified parsers exist. Firsov and Uustalu [2013], Coquand
and Siles [2011] have implemented parsers for regular languages. Jourdan et al. [2012] have
implemented a parser for LR languages. Two certifications of full context-free parsers have
been produced while the present paper was in submission.

Ridge [2014] has produced a novel, fully verified parser that also has good practical
performance. Firsov and Uustalu [2014] have verified the CYK parsing algorithm (a precursor
of Valiant’s).

While Valiant’s algorithm gives the best asymptotic bounds and is also known to behave
well in many practical situations [Bernardy and Claessen, 2015], we have not measured the
practical performance of (the Agda version of) our implementation. As we write, we expect
it to be very bad: the program extraction mechanism of Agda is not mature and we cannot
expect good results.

A previous formalisation of Valiant’s algorithm was carried by B̊åath Sjöblom [2013]
under the supervision of the authors of this paper. The present work is a redevelopment
of the proof from scratch. Indeed, the proof produced by B̊åath Sjöblom is opaque: its
structure does not match the informal proof. A close match between the formal and the
informal proof was enabled by two key design choices: 1. our representation of matrices as
an (extensible) record with all the necessary lemmas and 2. the use of two different types
for square and upper triangular matrices (instead of using sigma types). In particular, using
sigma types mean that every triangular matrix would be composed of two fields (a square
matrix and a proof of triangularity). In turn, using this structure requires to writes a proof
whenever such a matrix is produced. Baking triangularity into the structure of types avoids
this complication.

26 J.-P. BERNARDY AND P. JANSSON

9.3. Certified Parsing Combinators. In functional programming, one often uses parsing
combinators as a language formalism. This means that the grammar is represented directly
as code in the host language, instead of data structures. On the one hand, combinator
parsing is generally less efficient than context-free parsing: the latter technique has access to
the full grammar data, including its recursive structure, and thus more intelligent processing
of the input is possible. On the other hand, combinators can in principle describe languages
which are not context free.

Danielsson [2010] has formalised combinator parsing in Agda. The expressivity of
Danielsson’s formalism is maximal: it can express all languages which can be decided by an
Agda algorithm.

While the parser of [Ridge, 2014], provides also a combinator interface, it begins by
converting the grammar to a first order representation.

9.4. Algebra of Programming. The idea of deriving programs from specifications comes
from the school of “Algebra of Programming” (AoP) [Bird and de Moor, 1997]. While
AoP uses relational algebra, our setting is Agda. This paper is thus a direct descendent of
“Algebra of Programming in Agda” [Mu et al., 2008, 2009], and as such leverages the power
not only of Agda, but of an extensive set of standard libraries, developed over last decade
mainly by Danielsson and The Agda Team [2013]. These libraries have already been used
for several applications.

Yet, during the maturation of the present work we have found the AoP canon too limited
for our purposes, and have departed from it significantly. We have not derived the algorithm
from the full specification, as AoP prescribes, but only part of it (Equation Q).

Further, while the AoP school prescribes to perform derivations outside the recursive
structure (and thus makes extensive usage of catamorphisms and their properties), we have
first expanded the recursive structure, and used equational derivations for the inductive
case. This primary unrolling of recursion significantly simplified our proof, as every theorem
(and lemma) proved using the same induction pattern is simply added as a component of a
record (coding up the induction hypothesis).

10. Extensions

10.1. General size for matrices. In order to deal with matrices of general sizes (not only
2n × 2n), we need to define the following type for the size of matrices:

data Shape : Set where

Leaf : Shape -- One

Bin : Shape → Shape → Shape -- Sum of the two shapes

In addition to the size, the above type gives the way to divide a matrix into submatrices.
It is a good idea to use the above structure instead of a (unary or binary) natural number,
because the combination of sizes requires no computation.

Then, every type for matrices needs to be indexed on such a Shape, and in particular
the functor generating matrices becomes a doubly-indexed functor, and the proof needs
special cases when one of the dimensions is One.

CERTIFIED CONTEXT-FREE PARSING 27

data Mat : Shape → Shape → Set → Set where

Quad : Mat x1 y1 a → Mat x2 y1 a →
Mat x1 y2 a → Mat x2 y2 a →
Mat (Bin x1 x2) (Bin y1 y2) a

OneByOne : a → Mat Leaf Leaf a

Row : Mat x1 Leaf a → Mat x2 Leaf a → Mat (Bin x1 x2) Leaf a

Col : Mat Leaf y1 a → Mat Leaf y2 a → Mat Leaf (Bin y1 y2) a

10.2. Boolean Grammars. Okhotin [2014] has shown how to extend Valiant’s algorithm to
parse Boolean grammars. Boolean grammars allow to define the generation of non-terminals
not only by union of production rules, but also intersection and complement. They can
characterise non context-free languages, such as {anbncn | n ∈ N}. In this case, the ring-like
structure that we have used is not sufficient: one must apply a Boolean function to all
possible combination of non-terminals before obtaining the parses of a given substring.

We believe that a straightforward extension of our proof to Okhotin’s variant is possible.

10.3. Semirings and relatives. Our formalisation work showed that the specification
could be generalised to work for (matrices over) arbitrary closed semirings [Dolan, 2013] and
even further. Comparing to the theory explored in Dolan’s paper they mention already on
their page 1: “If we have an affine map x→ ax+ b in some closed semiring, then x = a∗ b
is a fixpoint”. It appears that our linear equation x = y + a x + x b in section 7.2 is the
natural generalisation of the affine map fixed point to the case of non-commutative algebra
and that (the corner case V of) Valiant’s algorithm computes this fixed point for upper
triangular matrices. Future work includes exploring this relation in more detail and perhaps
generalise out development to arbitrary (non-triangular) matrices.

10.4. Sparse matrices. The efficiency of Valiant’s algorithm in the average case relies on
using sparse matrices [Bernardy and Claessen, 2015]. The above proof does not deal with
sparseness. Yet, it is straightforward to support sparseness as outlined by Bernardy and
Claessen [2015]: one needs to change the U type to be a disjunction between the 2-by-2 case
and the empty matrix case.

References

J.-P. Bernardy and K. Claessen. Efficient divide-and-conquer parsing of practical context-free
languages. In Proc. of ICFP 2013, pages 111–122, 2013.

J.-P. Bernardy and K. Claessen. Efficient parallel and incremental parsing of practical
context-free languages. J. of Funct. Prog., 25, 2015. ISSN 1469-7653. doi: 10.1017/
S0956796815000131.

R. Bird and O. de Moor. Algebra of Programming, volume 100 of International Series in
Computer Science. Prentice-Hall International, 1997.

T. B̊åath Sjöblom. An Agda proof of the correctness of Valiant’s algorithm for context free
parsing. MSc thesis, Chalmers University of Tech., 2013.

N. Chomsky. Syntactic Structures. Mouton de Gruyter, 1957.
N. Chomsky. On certain formal properties of grammars. Information and control, 2(2):

137–167, 1959.

28 J.-P. BERNARDY AND P. JANSSON

T. Coquand and V. Siles. A decision procedure for regular expression equivalence in type
theory. In Certified Programs and Proofs, pages 119–134. Springer, 2011.

N. A. Danielsson. Total parser combinators. In Proc. of ICFP 2010, ICFP ’10, pages 285–296.
ACM, 2010.

N. A. Danielsson and The Agda Team. The Agda standard library, version 0.7, 2013.
S. Dolan. Fun with semirings: A funct. pearl on the abuse of linear algebra. In Proc. of

the 18th ACM SIGPLAN International Conf. on Funct. Prog., ICFP ’13, pages 101–110.
ACM, 2013.

D. Firsov and T. Uustalu. Certified parsing of regular languages. In Certified Programs and
Proofs, pages 98–113. Springer, 2013.

D. Firsov and T. Uustalu. Certified CYK parsing of context-free languages. J. Log. Algebr.
Meth. Program., 83(5-6):459–468, 2014.

J. Jourdan, F. Pottier, and X. Leroy. Validating LR(1) parsers. In ESOP 2012, pages
397–416, 2012.

M. Lange and H. Leiß. To CNF or not to CNF? an efficient yet presentable version of the
CYK algorithm. Informatica Didactica (8)(2008–2010), 2009.

L. Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. of
the ACM (JACM), 49(1):1–15, 2002.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types.
In Mathematics of Program Construction, volume 5133/2008 of LNCS, pages 268–283.
Springer, 2008. doi: 10.1007/978-3-540-70594-9 15.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types
for relational program derivation. J. Funct. Program., 19:545–579, 2009. doi: 10.1017/
S0956796809007345.

U. Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers Tekniska Högskola, 2007.

A. Okhotin. Parsing by matrix multiplication generalized to boolean grammars. Theor.
Comp. Sci., 516(0):101 – 120, 2014.

T. Ridge. Simple, efficient, sound and complete combinator parsing for all context-free
grammars, using an oracle. In Soft. Language Engineering - 7th International Conf., SLE
2014, Väster̊as, Sweden, September 15-16, 2014. Proc., pages 261–281, 2014.

L. Valiant. General context-free recognition in less than cubic time. J. of computer and
system sciences, 10(2):308–314, 1975.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Parsing as Transitive Closure
	1.1. Chomsky Normal Form
	1.2. Charts

	2. Agda preliminaries
	3. Formal Development Overview
	4. Algebra
	4.1. Matrix Algebra(s)

	5. Specification
	6. Matrices
	7. Transitive closure: derivation
	7.1. Closure of triangular matrices
	7.2. Completion of square matrices

	8. smallest
	9. Related Work
	9.1. Efficient Parsing
	9.2. Certified Parsing
	9.3. Certified Parsing Combinators
	9.4. Algebra of Programming

	10. Extensions
	10.1. General size for matrices
	10.2. Boolean Grammars
	10.3. Semirings and relatives
	10.4. Sparse matrices

	References

