
Green’s Relations in
Finite Transformation Semigroups

Lukas Fleischer and Manfred Kufleitner

FMI, University of Stuttgart?

Universitätsstraße 38, 70569 Stuttgart, Germany
{fleischer,kufleitner}@fmi.uni-stuttgart.de

Abstract. We consider the complexity of Green’s relations when the
semigroup is given by transformations on a finite set. Green’s relations
can be defined by reachability in the (right/left/two-sided) Cayley graph.
The equivalence classes then correspond to the strongly connected com-
ponents. It is not difficult to show that, in the worst case, the number of
equivalence classes is in the same order of magnitude as the number of
elements. Another important parameter is the maximal length of a chain
of components. Our main contribution is an exponential lower bound for
this parameter. There is a simple construction for an arbitrary set of
generators. However, the proof for constant alphabet is rather involved.
Our results also apply to automata and their syntactic semigroups.

1 Introduction

Let Q be a finite set with n elements. There are nn mappings from Q to Q. Such
mappings are called transformations and the elements of Q are called states.
The composition of transformations defines an associative operation. If Σ is
some arbitrary subset of transformations, we can consider the transformation
semigroup S generated by Σ; this is the closure of Σ under composition.1 The
set of all transformations on Q is called the full transformation semigroup on Q.
One can view (Q,Σ) as a description of S. Since every element s of a semigroup S
defines a transformation x 7→ x · s on S1 = S ∪ {1}, every semigroup S admits
such a description (S1, S); here, 1 either denotes the neutral element of S or, if S
does not have a neutral element, we add 1 as a new neutral element. Essentially,
the description (S1, S) is nothing but the multiplication table for S. On the other
hand, there are cases where a description as a transformation semigroup is much
more succinct than the multiplication table. For instance, the full transformation
semigroup on Q can be generated by a set Σ with three elements [7]. In addition
to the size of S, it would be interesting to know which other properties could be
derived from the number n of states.
? This work was supported by the DFG grants DI 435/5-2 and KU 2716/1-1.
1 When introducing transformation semigroups in terms of actions, then this is the
framework of faithful actions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288362272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Green’s relations are an important tool for analyzing the structure of a semi-
group S. They are defined as follows:

s 6R t if sS1 ⊆ tS1, s 6L t if S1s ⊆ S1t, s 6J t if S1sS1 ⊆ S1tS1.

We write s R t if both s 6R t and s 6R t; and we set s <R t if s 6R t but not
s R t. The relations L, <L, J and <J are defined analogously. The relations R,
L, and J form equivalence relations. The equivalence classes corresponding to
these relations are called R-classes (resp. L-classes, J -classes) of S. Instead of
ideals, one could alternatively also use reachability in the right (resp. left, two-
sided) Cayley graph of S for defining 6R (resp. 6L, 6J). We note that s <R t
implies s <J t and, symmetrically, s <L t implies s <J t. The complexity of
deciding Green’s relations for transformation semigroups was recently shown to
be PSPACE-complete [1]. When considering a transformation semigroup on n
states, one of our first results shows that the maximal number of J -classes is
in nΘ(n). In particular, the number of equivalence classes is in the same order
of magnitude as the size of the transformation semigroup. Since every J -class
contains at least one R- and one L-class, the same bound holds for R and L.

Another important parameter is the maximal length ` such that there are
elements s1, . . . , s` with s1 >R · · · >R s`, called the R-height. Similarly, we are
interested in the L- and J -height. Many semigroup constructions such as the
Rhodes expansion and variants thereof rely on this parameter; see e.g. [2, 3, 6].
We show that the maximal R-height is in 2Θ(n); for the maximal L-height and
J -height we only have 2Ω(n) as a lower bound. Proving the lower bounds for
a fixed number of generators is much more involved than for arbitrarily many
generators. The exponential lower bounds are quite unexpected in the following
sense: If the transformation semigroup is small, then the number of equivalence
classes (and hence, the lengths of chains) cannot be big. On the other hand, the
transformation semigroup is maximal if it is full. And an equivalence class in
the full transformation semigroup only depends on the number of states in the
image; this is because we can apply arbitrary permutations. In particular, the
number of equivalence classes in these two extreme cases is small.

There is a tight connection between deterministic automata and transforma-
tion semigroups. Roughly speaking, a transformation semigroup is an automaton
without initial and finial states. The main difference is that for automata, one
usually is interested in the syntactic semigroup rather than the transformation
semigroup; the syntactic semigroup is the transformation semigroup of the min-
imal automaton. We show that the above bounds on the number of equivalence
classes and heights also apply to syntactic semigroups.

Theorem 1. For each n ∈ N, there exists a minimal automaton An with n
states over an alphabet of size 5 such that the number of J -classes (resp. R-
classes, L-classes) of the transformation semigroup T (An) is at least (n−4)n−4.

Theorem 2. There exists a sequence of minimal automata (An)n∈N over a fixed
alphabet such that An has n states and the R-height (resp. L-height, J -height)
of the transformation semigroup T (An) is in Ω(2n/n9.5).

2 Preliminaries

A semigroup is a set S equipped with an associative operation · : S × S → S.
A subsemigroup of S is a subset T such that s1s2 ∈ T for all s1, s2 ∈ T . It is
called completely isolated if the converse implication holds, i.e., s1s2 ∈ T implies
s1 ∈ T and s2 ∈ T for all s1, s2 ∈ S. The opposite semigroup of S is obtained
by replacing the operation with its left-right dual ◦ : S × S → S defined by
x ◦ y = y · x.

In general, Green’s relations in a subsemigroup T of S do not coincide with
the corresponding relations in S. However, if T is a completely isolated subsemi-
group, the following property holds:

Proposition 3. Let S be a semigroup and let T be a completely isolated sub-
semigroup of S. Let K be one of the relations 6R, 6L, 6J , R, L or J . Then,
for all x, y ∈ T , we have x K y in S if and only if x K y in T .

Proof. We will only prove the statement for the preorder 6R. For the implication
from right to left, we have xS1 ⊆ xT 1S1 ⊆ yT 1S1 ⊆ yS1. For the converse
implication, suppose that xS1 ⊆ yS1, i.e., there exists some z ∈ S1 such that
yz = x. Since T is completely isolated, we have z ∈ T 1, which yields zT 1 ⊆ T 1

and thus, xT 1 = yzT 1 ⊆ yT 1. ut

An R-chain is a sequence (s1, . . . , s`) of elements of S such that si+1 <R si for
all i ∈ {1, . . . , `− 1}; ` is called the length of the R-chain. The maximal length
of an R-chain of S is called the R-height of S. The notions L-chains, J -chains,
L-height and J -height are defined analogously.

A partial transformation on a set Q is a partial function f : Q → Q. If the
domain of f is all of Q, i.e., if f is a total function, f is called a transformation.
A partial transformation f : Q → Q is called injective if f(p) 6= f(q) whenever
p 6= q and both f(p) and f(q) are defined. The elements of Q are often called
states. In the following, we use the notation q · f instead of f(q) to denote the
image of an element q ∈ Q under f . For R ⊆ Q let R · f = {q · f | q ∈ R}.
Note that for all subsets R ⊆ Q and all partial transformations f : Q → Q, the
inequality |R · f | 6 |R| holds; we will implicitly use this property throughout
the paper. The composition fg of two transformations f : Q→ Q and g : Q→ Q
is defined by q · fg = (q · f) · g. The composition is associative.

The set of all partial transformations (resp. transformations) on a fixed set Q
forms a semigroup with composition as the binary operation. It is called the full
partial transformation semigroup (resp. full transformation semigroup) on Q.
Subsemigroups of full (partial) transformation semigroups are called (partial)
transformation semigroups and are often specified in terms of generators. Partial
transformation semigroups and transformation semigroups are strongly related.
On one side, every transformation semigroup also is a partial transformation
semigroup. In the other direction a slightly weaker statement holds:

Proposition 4. Let P be a partial transformation semigroup on n states. Then
there exists a transformation semigroup on n+1 states which is isomorphic to P .

A partial transformation semigroup is called injective if it is generated by a set
of injective partial transformations. An important property of injective partial
transformation semigroups is that they have a left-right dual:

Proposition 5. The opposite semigroup of an injective partial transformation
semigroup is a partial transformation semigroup.

Transformation semigroups naturally arise when considering deterministic finite
automata. Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton. Then,
each letter a ∈ Σ can be interpreted as a transformation a : Q → Q where
q · a = δ(q, a). The transformation semigroup on Q generated by all letters in Σ
is denoted by T (A) and it is called the transition semigroup of A. Conversely,
given a transformation semigroup T on a finite set Q and a finite set of generators
Σ, for each q0 ∈ Q and F ⊆ Q, one can define a deterministic finite automaton
A = (Q,Σ, δ, q0, F) where δ : Q×Σ → Q is defined as δ(q, a) = q · a.

A well-known approach for translating bounds on the size of a transformation
semigroup to syntactic monoids is to make an automaton minimal. This can be
done by introducing a new generator c with qi · c = qi+1 for Q = {q1, . . . , qn}
and qn+1 = q1; moreover, one chooses some arbitrary state to be both initial
and final. We adapt this construction to also work with Green’s relations.

Proposition 6. Let T be a transformation semigroup on n states, generated
by a finite set Σ. Then there exists a minimal (n+ 1)-state deterministic finite
automaton A over an alphabet of size |Σ|+1 such that T is a completely isolated
subsemigroup of T (A).

Proof. Let T be a transformation semigroup on a set of states Q = {q1, . . . , qn},
generated by Σ. LetA = (Q∪{q0} , Σ∪{c} , δ, q0, {qn}) be the automaton defined
by δ(q0, a) = q0 and δ(qi, a) = qi · a for i > 1 and all a ∈ Σ. The transitions
for the letter c are defined by δ(qi, c) = qi+1 for i < n and δ(qn, c) = q1. This
automaton is minimal: for two different states qi, qj ∈ Q ∪ {q0} with i > j, we
have δ(qi, cn−i) = qn but δ(qj , cn−i) 6= qn.

By construction, T is a subsemigroup of T (A). To see that T is completely
isolated within T (A), note that we have δ(q0, u) = q0 if and only if u ∈ Σ∗. ut

3 Bounds for the Number of Classes

Let K be any of the relations R, L or J . The naïve upper bound for the number
of K-classes of a transformation semigroup T on n states is given by the size of
T itself. Since there are nn different functions from Q to Q, the semigroup T
contains at most nn elements. It is well known that this bound is tight even for a
constant number of generators, since for each n > 1 there exists a transformation
semigroup of size nn generated by a set Σ with three elements; see e.g. [7].

As each R-class (resp. L-class, J -class) consists of at least one element, the
number of such classes is also bounded by nn. We now show that this upper
bound is tight up to a constant factor.

Proposition 7. Let T be a transformation semigroup on n states, generated by
a finite set Σ. Then there exists a transformation semigroup on n + 3 states
which is generated by |Σ|+ 1 elements and has at least |T | different J -classes.
Proof. Let T be a semigroup of transformations on a set of states Q, generated
by a finite set Σ, and let q0 be an arbitrary element from Q. Let q1, q2, q3 be new
states not inQ and let c be a new generator not inΣ. Let U be the transformation
semigroup on Q∪{q1, q2, q3} obtained by extending the transformations of T as
follows: for each a ∈ Σ and q ∈ Q, let q · c = q, q1 · a = q3 · a = q3 · c = q0,
q1 · c = q2 · a = q2, and q2 · c = q3.

Let u, v ∈ Σ∗ be different elements of T . Then cuc and cvc are different in U .
We claim that cuc 66J cvc in U . For the sake of contradiction, suppose that there
exist x, y ∈ (Σ ∪ {c})∗ such that cuc = xcvcy in U . Clearly, q1 · cuc = q3 6∈ Q.
Moreover, at least one of the words x or y must be non-empty and therefore
q1 · xcucy ∈ Q. This shows that cuc 6= xcvcy, as desired. ut
Combining the result with statements from the previous section, we obtain a
lower bound for the number of J -classes of the transition semigroup of an au-
tomaton.
Proof (Theorem 1). As we mentioned before, it is well known that there exists
a 3-generator transformation semigroup on n states of size nn. If we first apply
Proposition 7 and then Proposition 6 to T , we obtain the claim by Proposition 3.
The statement extends to R-classes (resp. L-classes) because each J -class con-
tains at least one R-class (resp. L-class). ut

4 Bounds for the Length of Chains

Let K be any of the relations R, L or J . As with the number of K-classes, the
naïve upper bound for the length of K-chains is given by the maximal size nn
of the transformation semigroup on n states. In this section, we improve this
upper bound for R-chains and later give a lower bound that matches up to a
polynomial gap.
Lemma 8. Let P be a partial transformation semigroup on a finite set Q of
cardinality n. Let x, y ∈ P such that Q · x = Q · xy. Then x R xy.
Proof. Let ω = n! and let z = yω−1. It suffices to show that xyz = x in P ,
i.e., for all q ∈ Q, we have q · x = q · xyz. By assumption, the restriction of y to
the set Q · x is bijective. Thus, the mapping yω acts as identity on Q · x. This
yields q · xyz = q · xyω = (q · x) · yω = q · x. ut
Proposition 9. Let P be a partial transformation semigroup on n states. Then
the R-height of P is at most 2n.
Proof. Let P be a partial transformation semigroup on a set of states Q with
|Q| = n. Let (u1, u2, . . . , u`) be anR-chain of P . We show that all sets Q·ui must
be pairwise distinct which yields the desired bound. Suppose that Q ·ui = Q ·uj
for 1 6 i < j 6 `. Since uj <R ui, there exists v ∈ P with uiv = uj . Lemma 8
yields uj R ui which implies ui+1 R ui, a contradiction. ut

4.1 Token Computations in Transformation Semigroups

In this subsection, we introduce the building blocks for the lower bound on the
height. A token machine is a pair (C, I) where C is a finite set and I is a set of
partial transformations on C. The elements of the set C are called cells, subsets
of C are called configurations and the generators I are called instructions.

A program is a finite word over the alphabet I and a computation is a sequence

R0
ι1−→ R1

ι2−→ R2 · · ·
ι`−→ R`

where all Ri ⊆ C have the same cardinality and Ri−1 ·ιi = Ri. The configuration
R0 is called initial configuration and R` is called the final configuration of the
computation. The program ι1ι2 · · · ι` is the label of the computation and ` is
its length. It is progressing if all configurations appearing in the computation
are pairwise distinct and for each i ∈ {1, . . . , `} and each ι ∈ I \ {ιi}, we have
|Ri−1 · ι| < |Ri|. It is maximal if |R` · ι| < |R`| for all ι ∈ I.

A language over programs L ⊆ I∗ is called deterministic on a configuration
R ⊆ C if |R · u1| = |R| = |R · u2| implies u1 = u2 for all u1, u2 ∈ L.

The focal idea of token machines is captured in the following proposition
which states that computations in token machines naturally yield lower bounds
for the length of R-chains.

Proposition 10. Let (C, I) be a token machine and let P be the partial trans-
formation semigroup on C generated by I. If there exists a maximal progressing
computation of length `, then the R-height of P is at least `.

Proof. Let R0
ι1−→ R1

ι2−→ R2 · · ·
ι`−→ R` be a maximal progressing computation.

For each i ∈ {1, . . . , `}, we let ui = ι1ι2 · · · ιi. It remains to show that (u1, . . . , u`)
is an R-chain. By definition, we immediately obtain ui+1 6R ui. Assume, for
the sake of contradiction, that ui 6R ui+1 for some i ∈ {1, . . . , `− 1}, i.e., there
exists v ∈ I∗ with ui = ui+1v. Without loss of generality, we may assume that
i is maximal with this property. If |v| = 0, then Ri = R0 · ui = R0 · ui+1 =
Ri+1, contradicting the premise of progression. Thus, |v| > 1 and since the
computation is progressing and maximal, we have i < ` − 1 and v = ιi+2w for
some w ∈ I∗. This yields ui+2wιi+1 = ui+1ιi+2wιi+1 = ui+1vιi+1 = uiιi+1 =
ui+1, contradicting the maximality of i. ut

4.2 Lower Bounds over a Growing Instruction Set

Before describing the technical ingredients required in our main result, we prove
a slightly weaker statement. In contrast to the result presented later, it relies on
an alphabet that grows exponentially with the number of elements.

Theorem 11. For all even n ∈ N, there exists a token machine with n cells
which admits a maximal progressing computation of length at least

(
n
n/2
)
− 1.

Proof. Let C = {1, 2, . . . , n}. Let ` =
(
n
n/2
)
− 1 and let {R0, R1, . . . , R`} be the

set of n/2-element subsets of C. For each i ∈ {1, . . . , `}, let ιi : Ri−1 → Ri be a
bijection. Note that in the context of the present proof, it does not matter which
of the (n/2)! bijections is chosen; for example, one can always choose the unique
bijection ιi such that ιi(j) < ιi(k) if and only if j < k. Each ιi can be viewed as
a partial transformation on C which is undefined for all c ∈ C \ Ri−1. We now
show that in the token machine (C, I) with I = {ιi | 1 6 i 6 `}, the sequence

R0
ι1−→ R1

ι2−→ R2 · · ·
ι`−→ R`

is a maximal progressing computation. It is a valid computation by the definition
of the instructions ιi. Consider i ∈ {0, . . . , `} and j ∈ {1, 2, . . . , `}\{i+ 1}. Since
Rj−1 6= Ri, the instruction ιj is undefined on at least one element of Ri and
thus, |Ri · ιj | < |Ri|. This shows that the computation is both progressing and
maximal. ut

The theorem has a series of interesting consequences which will be outlined in
Section 4.4, after proving an improved variant of the theorem with fixed alphabet.

4.3 Tapes and Binary Counters
A sub-machine of a token machine (C, I) is a subset S ⊆ C such that for each
configuration R and for each instruction ι ∈ I with |R · ι| = |R|, we also have
|(R ∩ S) · ι| = |R ∩ S|. In other words, each computation stays a computation
when restricted to S. The union of two token machines (C, I) and (C ′, I ′) with
C∩C ′ = ∅ is the token machine (C∪C ′, I∪I ′) where the instructions in I \I ′ are
extended to act as identity on C ′ and the instructions in I ′\I are extended to act
as identity on C. The cells C and C ′ of the original machines are sub-machines
of the union.

An n-bit tape T is a token machine (C, I) with n cells and an arbitrary (but
fixed) order (c0, c1, . . . , cn−1). One can interpret configurations R ⊆ C as bit
strings bn−1bn−2 · · · b0 where bi = 1 if and only if ci ∈ R and bi = 0 otherwise, and
think of T as a ring buffer with a read/write head at position 0. An instruction
ιTrotl can be used to move the tape head to the right (or, actually, retain the
head position but left-rotate the buffer). For each i ∈ {0, . . . , n− 2}, we let
ci ·ιTrotl = ci+1 and cn−1 ·ιTrotl = c0. The instruction ιTrotr is defined analogously and
moves in the opposite direction. An instruction ιT=0 can be used to check whether
the head is scanning a zero and halt the program otherwise. It is undefined on
c0 and defined as the identity on {c1, . . . , cn−1}. Conversely, the ιTsync instruction
is defined as the identity on c0 and undefined on every other cell. An instruction
ιTmvl maps c0 to c1, acts as the identity on {c2, c3, . . . , cn−1} and is undefined on
c1. Analogously, ιTmvr maps c0 to cn−1, acts as the identity on {c1, c2, . . . , cn−2}
and is undefined on cn−1. The value of T under a configuration R is

∑
ci∈R 2i.

An n-bit binary counter N is constructed as follows. Three new n-bit tapes
S, T and T are introduced. Their cells are (d0, d1, . . . , dn−1), (c0, c1, . . . , cn−1)
and (c0, c1, . . . , cn−1), respectively. Then, the union of S, T and T is constructed
and the following instructions are added:

– ιNrotl = ιTrotlι
T
rotlι

S
rotl,

– ιNrotr = ιTrotrι
T
rotrι

S
rotr,

– ιN=0 = ιT=0,
– ιN=1 = ιT=0,

– ιNsync = ιSsync,
– ιNoff = ιS=0,

– ιNinc with c0 · ιNinc = c0 and c0 · ιNinc undefined and c · ιNinc = c for all c 6∈ {c0, c0},
– ιNdec with c0 · ιNdec = c0 and c0 · ιNdec undefined and c · ιNdec = c for all c 6∈ {c0, c0}.

Following this, the original instructions of S, T and T are removed from I. Thus,
a binary counter provides exactly eight instructions. A configuration R of N is
valid if |R ∩ S| = 1 and for each i ∈ {0, . . . , n− 1}, we have ci ∈ R if and only
if ci 6∈ R.

Lemma 12. Let R be a valid configuration of a binary counter N and let u ∈ I∗
such that |R · u| = |R|. Then R · u is a valid configuration of N .

Proof. By induction on the length of u, it suffices to prove that the action of
instructions on R preserves validity.

The instructions ιNrotl and ιNrotr cyclically rotate the tapes T , T and S. Thus,
if R is valid, then R · ιNrotl and R · ιNrotr are valid as well.

For each ι ∈
{
ιN=0, ι

N
=1, ι

N
sync, ι

N
off
}
, we have either |R · ι| < |R| or R · ι = R.

If
∣∣R · ιNinc

∣∣ = |R|, then R does not contain c0. If, moreover, R is a valid
configuration, it contains c0. But then, R · ιNinc contains c0 and does not contain
c0. It coincides with R on all other cells. Thus, R · ιNinc is valid as well. By a
symmetric argument, the instruction ιNdec preserves validity. ut

We now define three regular languages

LNreset = ιNsync((ιN=0 | ιNdec)ιNrotrι
N
off)∗(ιN=0 | ιNdec)ιNrotrι

N
sync,

LNinc = ιNsync(ιNdecι
N
rotrι

N
off)∗ιNinc(ιNoffι

N
rotr)∗ιNsync and

LNdec = ιNsync(ιNincι
N
rotrι

N
off)∗ιNdec(ιNoffι

N
rotr)∗ιNsync.

Lemma 13. The languages LNreset, LNinc and LNdec are deterministic on all valid
configurations.

Proof. Suppose there are two different words u1, u2 ∈ LNreset and a valid con-
figuration R such that |R · u1| = |R|. Since LNreset is prefix-free, there exist a
unique word p ∈ I∗ and different instructions ι1, ι2 ∈ I such that u1 ∈ pι1I∗ and
u2 ∈ pι2I∗. A careful analysis of the structure of the regular expression for LNreset
shows that either {ι1, ι2} =

{
ιN=0, ι

N
dec
}
or {ι1, ι2} =

{
ιNoff , ι

N
sync
}
.

In the first case, we may assume without loss of generality that ι1 = ιN=0 and
ι2 = ιNdec. From |R · pι1| = |R · p|, we deduce c0 6∈ R · p because ιN=0 is undefined
on c0. This implies c0 ∈ R · p since R · p is a valid configuration by Lemma 12.
Since ιNdec is undefined on c0, it follows that |R · u2| 6 |R · pι2| < |R · p| 6 |R|.

In the second case, we may assume that ι1 = ιNoff and ι2 = ιNsync. Since
|R · pι1| = |R · p| and since ιNoff is undefined on d0, we have d0 6∈ R·p. This implies
di ∈ R · p for some i ∈ {1, . . . , n− 1} because R · p is valid by Lemma 12. The
instruction ιNsync is undefined on {d1, d2, . . . , dn−1} which yields |R · u2| < |R|, as
above.

The proofs for LNinc and LNdec follow by a similar reasoning. ut

Let R be a configuration of N . We say that the counter is synchronized under R
if d0 ∈ R. The value of N under R is the value of T under R∩{c0, c1, . . . , cn−1}.

In addition to the eight counter instructions defined above, for any fixed
constant k ∈ {0, . . . , 2n − 1} one can define an instruction ιNval=k which asserts
that the value of the counter equals k as follows. For each i ∈ {0, . . . , n− 1}
with k mod 2i+1 > 2i, we let ci · ιNval=k = ci and let ci · ιNval=k be undefined.
Symmetrically, we let ci · ιNval=k = ci and ci · ιNval=k undefined if k mod 2i+1 < 2i.

Lemma 14. Let R be a valid configuration and let u ∈ LNreset such that |R · u| =
|R|. Then, under R · u, the counter is synchronized and its value is zero.

Proof. It is easy to see that each word u ∈ LNreset with |R · u| = |R| cyclically
rotates the three tapes of N exactly n times and after each cyclic rotation, either
ιN=0 or ιNdec is applied. The codomains of both ιN=0 and ιNdec do not contain c0 and
thus, we have R · u ∩ {c0, c1, . . . , cn−1} = ∅ which is equivalent to saying that
the value under R · u is zero. To see that the counter is synchronized, note that
applying ιNsync to a valid configuration preserves the number of elements if and
only if the configuration is synchronized. ut

Lemma 15. Let R be a valid configuration and let u ∈ LNinc such that |R · u| =
|R|. If v is the value of the counter under R and v′ is its value under R · u, we
have v′ = v + 1 6 2n − 1.

Proof. Let us first assume that v < 2n − 1. Let i ∈ {0, . . . , n− 1} be minimal
such that ci 6∈ R and let

w = ιNsync(ιNdecι
N
rotrι

N
off)iιNinc(ιNoffι

N
rotr)n−iιNsync.

We claim that u = w. By Lemma 13, it suffices to show that |R · w| = |R|. Let
us first investigate the instructions operating on S. The word starts with an ιNsync
instruction, each ιNoff instruction is applied after R has been rotated cyclically 1
to n − 1 times and the second ιNsync instruction is applied after exactly n cyclic
rotations. We deduce

∣∣R · ιNsync
∣∣ = |R| from |R · u| = |R|, and thus, the counter

is synchronized on both R and on the configuration reached before the last ιNsync
instruction. Moreover, whenever a ιNoff instruction is applied to a configuration
R′, we have di ∈ R′ for some i ∈ {1, . . . , n− 1}. Note that the case v = 2n − 1
can be excluded since in order for the ιNinc instruction to preserve the number
of elements in the configuration, it would have to be preceded by at least n
ιNrotrι

N
off-factors and one of those factors would reduce the number of elements.
The instruction ιNdec is applied exactly once before each of the first i cyclic

rotations. Since {c0, c1, . . . , ci−1} ⊆ R, we have c0 ∈ R · ιNsync(ιNdecι
N
rotrι

N
off)j for all

j ∈ {0, . . . , i− 1}. Moreover, since ci 6∈ R, we have c0 6∈ R · ιNsync(ιNdecι
N
rotrι

N
off)i

which implies c0 ∈ R · ιNsync(ιNdecι
N
rotrι

N
off)i by Lemma 12. Consequently, the oc-

currences of ιNdec and ιNinc in w do not reduce the number of elements in the
configuration. The above observations also show that

R · u = R · w = {ci} ∪ (R ∩ {ci+1, ci+2, . . . , cn−1})

which is equivalent to the claim v′ = v + 1. ut

For the ιNdec instruction, a symmetric version of the lemma holds.

Lemma 16. Let R be a valid configuration and let u ∈ LNdec such that |R · u| =
|R|. If v is the value of the counter under R and v′ is its value under R · u, we
have v′ = v − 1 > 0.

4.4 Main Result

Let n ∈ N be an even number. Let T be an n-bit tape with cells (t0, t1, . . . , tn−1).
The union of T with three dlog2 ne-bit counters P , Q and Z forms a token
machine, henceforth referred to as U . A configuration of U is valid if it is valid
when restricted to each of the three counters.

Informally, the idea of our construction is the following: as in the proof of
Theorem 11, we enumerate all n/2-element subsets of an n-element set on the
tape T . In order to do so with a constant number of generators, this enumeration
needs to be done in a very specific way. We say that a word Y ∈ {0, 1}∗ is a
successor of X ∈ {0, 1}∗ if there exist p ∈ {0, 1}∗, i > 1 and j > 0 such that
X = p01i0j and Y = p10j+11i−1. For each m ∈ {0, 1, . . . , n} one can define a
sequence of bit strings (X0, X1, . . . , X`) as stated in the following lemma:

Lemma 17. For all n ∈ N and m ∈ {0, 1, . . . , n}, there exists a unique sequence
(X0, X1, . . . , X`) such that
– X0 = 0n−m1m,
– for each k ∈ {1, . . . , `}, Xk is a successor of Xk−1 and
– X` does not have a successor.

The terms of this sequence are pairwise distinct, each term contains exactly m
occurrences of the letter 1, and we have ` =

(
n
m

)
as well as X` = 1m0n−m.

Proof. First observe that if a word X ∈ {0, 1}∗ can be factorized as X = p01i0j
with p ∈ {0, 1}∗ and i > 1 and j > 0, then this factorization is unique. As a
consequence, the sequence defined above is unique and its terms are pairwise
distinct. It is also easy to see that if Y is a successor of X, then X and Y
contain the same number of 1’s. The remaining two properties ` =

(
n
m

)
and

X` = 1m0m−n clearly hold if n = 0 or m ∈ {0, n}.
We now assume n > 1, as well as m ∈ {1, . . . , n− 1} , and proceed by in-

duction on n. Let s ∈ {0, . . . , n} such that X0, X1, . . . , Xs ∈ 0 {0, 1}n−1 and
Xs+1, Xs+2, . . . , X` ∈ 1 {0, 1}n−1. Applying the induction hypothesis to the
suffixes of length n − 1 of X0, X1, . . . , Xs, we know that s =

(
n−1
m

)
and

Xs = 01m0(n−1)−m. This yields Xs+1 = 10n−m1m−1 and by applying induc-
tion again to the suffixes of Xs+1, Xs+2, . . . , X`, we obtain ` − s =

(
n−1
m−1

)
as well as X` = 11m−10(n−1)−(m−1) = 1m0n−m. Note that by Pascal’s rule,
` = `− s+ s =

(
n−1
m−1

)
+
(
n−1
m

)
=
(
n
m

)
which concludes the proof. ut

Note that the sequence corresponds to binary counting and deleting all
counter values not having m bits equal 1. Since we are interested in enumer-
ating n/2-element subsets, we only consider the case m = n/2. Interpreting

the bit strings Xk as n/2-element subsets of an n-element set, the sequence
(X0, X1, . . . , X`) describes our enumeration order. Thus, all configurations ap-
pearing in the computation always contain n/2 elements when restricted to T .
The counter P keeps track of the position of the head on T . It is needed for
moving a block of 1-bits as far to the right as possible when transitioning from
Xk−1 to Xk. The volatile counters Q and Z are only used by the following macro
that checks whether the bit below the tape head of T is 1.

L=1 = ιTrotr((ε | ιT=0L
Z
inc)ιTrotrL

Q
inc)∗ι

Q
val=n−1ι

Z
val=n/2L

Q
resetL

Z
reset.

Roughly speaking, a word from L=1, which preserves the cardinality of the con-
figuration, rotates the tape T cyclically n times. The counter Q is used to ensure
that neither more nor less rotations are performed. After each rotation, except
for the last one, the counter Z is increased non-deterministically if the bit under
the tape head is 0. Then, the value of Z is checked to be exactly n/2. Since we
know that the number of 0-bits on T is n/2 and since the bit under the tape
head cannot contribute to the value of Z, this is only possible if the bit under
the tape head is set. More precisely, the following lemma holds.

Lemma 18. Let R be a valid configuration such that |R ∩ T | = n/2, the coun-
ters P and Q are synchronized and the values of P and Q are zero. Then there
exists a word u ∈ L=1 with |R · u| = |R| if and only if t0 ∈ R. Moreover, if such
a word u exists, it is unique and we have R · u = R.

Proof. For i ∈ {0, 1, . . . , n− 1}, let mi = 1 if ti 6∈ R and let mi = 0 otherwise.
By Lemma 15, the ιQval=n−1 instruction in a word w ∈ L=1 preserves the

number of elements in a valid configuration if and only if w contains exactly
n − 1 occurrences of LQinc. Therefore, each word that preserves the number of
elements when applied to R contains the instruction ιNrotr exactly n times. Since
each occurrence of LZinc is paired with a ιT=0 instruction, LZinc is applied at most
mi times after the i-th rotation, i.e., every program that does not reduce the
number of elements when applied to R has the form

ιTrotr

n−1∏
i=1

((ιT=0L
Z
inc)kiιTrotrL

Q
inc)ι

Q
val=n−1ι

Z
val=n/2L

Q
resetL

Z
reset

for some ki ∈ {0, 1} with ki 6 mi. Moreover, the ιZval=n/2 instruction preserves the
cardinality of the configuration if and only if the sum of all ki with 1 6 i 6 n−1
equals n/2. Therefore, any choice of values ki must also satisfy

n/2 =
n−1∑
i=1

ki 6
n−1∑
i=1

mi = n/2−m0

where the last equality follows from the assumption that |R ∩ T | = n/2. This is
only possible if m0 = 0, i.e., t0 ∈ R, and ki = mi for all i ∈ {1, 2, . . . , n− 1}.
By letting ki = mi in the program above, we obtain the unique word u such
that |R · u| = |R|. To see that R · u = R, note that after n cyclic rotations, the

tape T returns to its original state. Moreover, by Lemma 14, both Q and Z are
synchronized and have value zero. ut

We also let Lrotl = LPdecι
T
rotl and Lrotr = LPincι

T
rotr. The language L is now defined

as L = LPresetL
Q
resetL

Z
reset(L=1Lrotr)∗ιT=0Lrotl(ιTmvl(L1 | L2 | L3))∗ιPval=n−1 with

L1 = (ιPval=0 | Lrotlι
T
=0Lrotr)Lrotr(L=1Lrotr)∗ιT=0Lrotl,

L2 = (LrotlL=1)+ιPval=0(L=1Lrotr)+ιT=0Lrotl,

L3 = (LrotlL=1)+Lrotlι
T
=0LrotrLrotr(K1 | K2K

∗
3K4),

K1 = ιT=0Lrotl(ιTmvrLrotl)∗ιPval=0,

K2 = L=1Lrotl(ιTmvrLrotl)∗ιPval=0Lrotr(ιT=0Lrotr)∗L=1Lrotr,

K3 = L=1Lrotl(ιTmvrLrotl)∗LrotlL=1LrotrLrotr(ιT=0Lrotr)∗L=1Lrotr,

K4 = ιT=0Lrotl(ιTmvrLrotl)∗LrotlL=1Lrotr.

The following lemma is the technical main ingredient for Theorem 20.

Lemma 19. There exists a valid initial configuration R such that L is deter-
ministic on R. Moreover, there exists a word u ∈ L of length at least

(
n
n/2
)
such

that |R · u| = |R|.

A proof of the lemma can be found in the full version of this paper [5]. Here,
we only give a sketch of the arguments. To show that L is deterministic, one can
use case distinctions similar to those in the proof of Lemma 13. It then suffices
to prove the existence of a word which enumerates the subsets corresponding
to the sequence (X0, X1, . . . , X`) defined above. An important invariant is that
after each application of a factor from ιTmvr(L1 | L2 | L3), the tape head points
at the leftmost bit of the rightmost 1-block of T . Each such factor replaces the
subset corresponding to Xk−1 by the subset corresponding to Xk on T .

The last missing piece is a component that imposes the language L on the
labels of valid computations. To this end, let A = (Q, I, δ, q0, F) be the minimal
deterministic automaton of L. We remove the sink state from Q and let all
transitions leading to that state be undefined instead. Then, as long as there
exists a state which has two ingoing transitions labeled by the same letter, we
create a copy of the state and redirect one of the transitions to the copy. When
interpreting the letters of I as actions on Q, the tuple (Q, I) then forms a token
machine which we call control unit. By construction, all instructions are injective.

Theorem 20. For all n ∈ N, there exists a token machine with n+ 9 dlogne+
O(1) cells and 32 instructions which admits a maximal progressing computation
of length at least

(
n
bn/2c

)
.

Proof. It suffices to prove the theorem for even numbers n. Let V be the union of
U and the control unit. Any word, which is not a prefix of a word in L, empties
the configuration when applied to the initial configuration {q0} in the control
unit. Thus, by taking the union of the initial configuration from Lemma 19 and
{q0}, we obtain a maximal progressing computation of the desired length in V .

The only instructions required in the construction are ιTrotl, ιTrotr, ιTmvl, ιTmvr,
ιT=0, ιPval=0, ι

Q
val=n−1, ιZval=n/2 and eight additional instructions for each of the

three binary counters. Since L is a fixed language, the control unit has c cells
for a constant c ∈ N (independent of n), and U has n + 9 dlogne cells: n cells
for the tape T and dlogne cells for each of the three tapes of the three binary
counters. Therefore, the number of cells of V is n+ 9 dlogne+ c. ut

Corollary 21. There exists a sequence of transformation semigroups (Tn)n∈N
with a fixed number of generators such that Tn has n states and the R-height
(resp. L-height, J -height) of Tn is in Ω(2n/n9.5).

Proof. For the R-height, the result is an immediate consequence of Theorem 20,
Proposition 10 and Proposition 4. The statement also holds for J -height be-
cause every R-chain also is a J -chain; see e.g. [8, Proposition 1.4]. An equivalent
statement for the L-height follows from Proposition 5 and the fact that all in-
structions used in the construction are injective. By Stirling’s formula, we have(
n
n/2
)
∈ Ω(2n/n0.5); see [9, 4]. Thus, we obtain the desired bound. Note that the

bound in Theorem 20 is for n+ 9 dlogne+O(1) cells and not just n cells. This
yields the factor n9 in the denominator. ut

We can now prove our second main result.

Proof (Theorem 2). In view of Proposition 6 and Proposition 3, the theorem
immediately follows from Corollary 21. ut

Acknowledgments. We thank the anonymous referees for several useful sug-
gestions which helped to improve the presentation of this paper.

References
1. Ch. Brandl and H. U. Simon. Complexity analysis: Transformation monoids of finite

automata. In I. Potapov, editor, DLT 2015, Proceedings, volume 9168 of Lecture
Notes in Computer Science, pages 143–154. Springer-Verlag, 2015.

2. O. Carton and M. Michel. Unambiguous Büchi automata. Theoretical Computer
Science, 297(1):37–81, 2003.

3. S. Eilenberg. Automata, Languages, and Machines, volume B. Academic Press,
1976.

4. W. Feller. An Introduction to Probability Theory and Its Applications: Volume 1.
John Wiley & Sons, New York, 1957.

5. L. Fleischer and M. Kufleitner. Green’s Relations in Finite Transformation Semi-
groups. CoRR, abs/1703.04941, 2017.

6. M. Ganardi, D. Hucke, and M. Lohrey. Querying regular languages over sliding
windows. In FSTTCS 2016, Proceedings, volume 65 of LIPIcs, pages 18:1–18:14.
Dagstuhl Publishing, 2016.

7. M. Holzer and B. König. On deterministic finite automata and syntactic monoid
size. Theoretical Computer Science, 327(3):319–347, Nov. 2004.

8. J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.
9. H. Robbins. A remark on Stirling’s formula. The American Mathematical Monthly,

62:26–28, 1955.

