8 research outputs found

    On the Timing Uncertainty in Delay-Line-based Time Measurement Applications Targeting FPGAs

    No full text

    A portable device for time-resolved fluorescence based on an array of CMOS SPADs with integrated microfluidics

    Get PDF
    [eng] Traditionally, molecular analysis is performed in laboratories equipped with desktop instruments operated by specialized technicians. This paradigm has been changing in recent decades, as biosensor technology has become as accurate as desktop instruments, providing results in much shorter periods and miniaturizing the instrumentation, moving the diagnostic tests gradually out of the central laboratory. However, despite the inherent advantages of time-resolved fluorescence spectroscopy applied to molecular diagnosis, it is only in the last decade that POC (Point Of Care) devices have begun to be developed based on the detection of fluorescence, due to the challenge of developing high-performance, portable and low-cost spectroscopic sensors. This thesis presents the development of a compact, robust and low-cost system for molecular diagnosis based on time-resolved fluorescence spectroscopy, which serves as a general-purpose platform for the optical detection of a variety of biomarkers, bridging the gap between the laboratory and the POC of the fluorescence lifetime based bioassays. In particular, two systems with different levels of integration have been developed that combine a one-dimensional array of SPAD (Single-Photon Avalanch Diode) pixels capable of detecting a single photon, with an interchangeable microfluidic cartridge used to insert the sample and a laser diode Pulsed low-cost UV as a source of excitation. The contact-oriented design of the binomial formed by the sensor and the microfluidic, together with the timed operation of the sensors, makes it possible to dispense with the use of lenses and filters. In turn, custom packaging of the sensor chip allows the microfluidic cartridge to be positioned directly on the sensor array without any alignment procedure. Both systems have been validated, determining the decomposition time of quantum dots in 20 nl of solution for different concentrations, emulating a molecular test in a POC device.[cat] Tradicionalment, l'anàlisi molecular es realitza en laboratoris equipats amb instruments de sobretaula operats per tècnics especialitzats. Aquest paradigma ha anat canviant en les últimes dècades, a mesura que la tecnologia de biosensor s'ha tornat tan precisa com els instruments de sobretaula, proporcionant resultats en períodes molt més curts de temps i miniaturitzant la instrumentació, permetent així, traslladar gradualment les proves de diagnòstic fora de laboratori central. No obstant això i malgrat els avantatges inherents de l'espectroscòpia de fluorescència resolta en el temps aplicada a la diagnosi molecular, no ha estat fins a l'última dècada que s'han començat a desenvolupar dispositius POC (Point Of Care) basats en la detecció de la fluorescència, degut al desafiament que suposa el desenvolupament de sensors espectroscòpics d'alt rendiment, portàtils i de baix cost. Aquesta tesi presenta el desenvolupament d'un sistema compacte, robust i de baix cost per al diagnòstic molecular basat en l'espectroscòpia de fluorescència resolta en el temps, que serveixi com a plataforma d'ús general per a la detecció òptica d'una varietat de biomarcadors, tancant la bretxa entre el laboratori i el POC dels bioassaigs basats en l'anàlisi de la pèrdua de la fluorescència. En particular, s'han desenvolupat dos sistemes amb diferents nivells d'integració que combinen una matriu unidimensional de píxels SPAD (Single-Photon Avalanch Diode) capaços de detectar un sol fotó, amb un cartutx microfluídic intercanviable emprat per inserir la mostra, així com un díode làser UV premut de baix cost com a font d'excitació. El disseny orientat a la detecció per contacte de l'binomi format pel sensor i la microfluídica, juntament amb l'operació temporitzada dels sensors, permet prescindir de l'ús de lents i filtres. Al seu torn, l'empaquetat a mida de l'xip sensor permet posicionar el cartutx microfluídic directament sobre la matriu de sensors sense cap procediment d'alineament. Tots dos sistemes han estat validats determinant el temps de descomposició de "quantum dots" en 20 nl de solució per a diferents concentracions, emulant així un assaig molecular en un dispositiu POC

    Photon Number Resolving Systems and Instrumentation

    Get PDF
    Time correlated single photon counting (TCSPC) is a technique used in many applications such as light detection and ranging, quantum key distribution, medical imaging and more. One inherent problem of this technique is the 10% limit on the detector count rate to avoid distortion in measurements caused by the pile up effect. Essentially, when a conventional single photon avalanche photodiode (SPAD) detects a photon, it is unable to see another photon until its deadtime completes, which gives rise to early photons having a higher probability of detection if the probability of detecting a photon is too high. Photon number resolving detectors offer an alternative to SPAD and be thought of as a two dimensional array of passively quenched SPADs with the outputs summed together. Such detectors offer photon number resolving capabilities (the output pulse amplitude is proportional to the number of incident photons) as each photon will land in a different place in the two-dimensional array. This comes at the expense of increased noise, as the dark count of all detectors will be present on the output in addition to other problems such as optical cross talk. This might preclude such detectors from quantum experiments, but such detectors could offer significant advantages in LiDAR systems, where extended dynamic range and photon number resolving capabilities could increase the acquisition rate by collecting more light and by allowing such systems to operate at higher mean photon levels. In this work silicon photomultipliers are characterised for their number resolving capabilities and used in photon counting. The SiPMs are shown to have capable single photon sensitivity and can resolve the photon number. Subsequently, a novel real-time instrument has been developed to acquire data. Finally, a comparison has been made between SiPM and SPAD LiDAR, showing that SiPMs can retrieve more photons per excitation pulse and offer greater dynamic range

    Rapport annuel 2007-2008

    Get PDF

    Rapport annuel 2006-2007

    Get PDF
    corecore