368 research outputs found

    On the relationship between bilevel decomposition algorithms and direct interior-point methods

    Get PDF
    Engineers have been using bilevel decomposition algorithms to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upperlevel problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to converge even when the starting point is very close to the minimizer. In this paper, we establish a relationship between a particular bilevel decomposition algorithm, which only performs one iteration of an interior-point method when solving the subproblems, and a direct interior-point method, which solves the problem in its original (integrated) form. Using this relationship, we formally prove that the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our analysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition algorithms and the mature theory of direct interior-point methods

    A Distributed Newton Method for Network Utility Maximization

    Full text link
    Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newton-type fast converging algorithm for solving network utility maximization problems with self-concordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition.Comment: 27 pages, 4 figures, LIDS report, submitted to CDC 201

    An interior-point method for mpecs based on strictly feasible relaxations.

    Get PDF
    An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primaldual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation scheme preserves the nonempty strict feasibility of each subproblem even in the limit. Local and superlinear convergence of the algorithm is proved even with a less restrictive strict complementarity condition than the standard one. Moreover, mechanisms for inducing global convergence in practice are proposed. Numerical results on the MacMPEC test problem set demonstrate the fast-local convergence properties of the algorithm

    AN INTERIOR-POINT METHOD FOR MPECs BASED ON STRICTLY FEASIBLE RELAXATIONS.

    Get PDF
    An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primaldual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation scheme preserves the nonempty strict feasibility of each subproblem even in the limit. Local and superlinear convergence of the algorithm is proved even with a less restrictive strict complementarity condition than the standard one. Moreover, mechanisms for inducing global convergence in practice are proposed. Numerical results on the MacMPEC test problem set demonstrate the fast-local convergence properties of the algorithm.

    Local quadratic convergence of polynomial-time interior-point methods for conic optimization problems

    Get PDF
    In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradient proximity measure, which ensures an automatic transformation of the global linear rate of convergence to the local quadratic one under some mild assumptions. Our step-size procedure for the predictor step is related to the maximum step size (the one that takes us to the boundary). It appears that in order to obtain local superlinear convergence, we need to tighten the neighborhood of the central path proportionally to the current duality gapconic optimization problem, worst-case complexity analysis, self-concordant barriers, polynomial-time methods, predictor-corrector methods, local quadratic convergence

    Kontinuierliche Optimierung und Industrieanwendungen

    Get PDF
    [no abstract available

    An interior point algorithm for computing equilibria in economies with incomplete asset markets

    Get PDF
    Computing equilibria in general equilibria models with incomplete asset (GEI) markets is technically difficult. The standard numerical methods for computing these equilibria are based on homotopy methods. Despite recent advances in computational economics, much more can be done to enlarge the catalogue of techniques for computing GEI equilibria. This paper presents an interior-point algorithm that exploits the special structure of GEI markets. We prove that the algorithm converges globally at a quadratic rate, rendering it particularly effective in solving large-scale GEI economies. To illustrate its performance, we solve relevant examples of GEI market
    • …
    corecore