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Abstract. Engineers have been using bilevel decomposition algorithms to solve certain non-
convex large-scale optimization problems arising in engineering design projects. These algorithms
transform the large-scale problem into a bilevel program with one upper-level problem (the master
problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and
numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to
converge even when the starting point is very close to the minimizer. In this paper, we establish a
relationship between a particular bilevel decomposition algorithm, which only performs one iteration
of an interior-point method when solving the subproblems, and a direct interior-point method, which
solves the problem in its original (integrated) form. Using this relationship, we formally prove that
the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our anal-
ysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition
algorithms and the mature theory of direct interior-point methods.
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1. Introduction. Many optimization problems integrate the objective and con-
straint functions corresponding to a set of weakly connected systems. One type of
connectivity occurs when only a few of the variables, known as global variables, are
relevant to all systems, while the remainder are local to a single component. Mathe-
matically, these problems may be stated as follows:

min
x,y1,y2,··· ,yN

F1(x, y1) + F2(x, y2) + · · ·+ FN (x, yN )

s.t. c1(x, y1) ≥ 0,
c2(x, y2) ≥ 0,

...
cN (x, yN ) ≥ 0,

(1.1)

where x ∈ Rn are the global variables, yi ∈ Rni are the ith system local variables,
ci(x, yi) : Rn+ni → Rmi are the ith system constraints, and Fi(x, yi) : Rn+ni → R is
the objective function term corresponding to the ith system. Note that while global
variables appear in all of the objective function terms and constraints, local variables
appear only in the objective function term and constraints corresponding to one of the
systems. Decomposition algorithms exploit the structure of problem (1.1) by breaking
it into a set of smaller independent subproblems, one per system. Then, they use a
so-called master problem to coordinate the subproblem solutions and find the overall
problem minimizer.

A class of large-scale optimization problems that has been extensively analyzed
and may be formulated as problem (1.1) is the stochastic programming (SP) problem,
see [24, 5]. These problems arise, for instance, when a discrete number of scenarios is
used to model the uncertainty of some of the problem parameters. Two main types
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2 DEMIGUEL AND NOGALES

of decomposition approaches have been proposed for the SP problem: cutting-plane
methods and augmented Lagrangian methods. Cutting-plane methods use convex
duality theory to build a linear approximation to the master problem [3, 35, 21,
30].1 Augmented Lagrangian approaches, on the other hand, use an estimate of the
Lagrange multipliers to decompose the stochastic program into a set of subproblems.
Then, the subproblem minimizers are used to update the current estimate of the
Lagrange multipliers [11, 29, 31].

In addition to decomposition approaches, a number of specialized direct methods
have been proposed to solve the SP problem (see [5, Section 5.6] and [4] for two-
stage problems, [6, 7] for multistage problems, and [33] for optimal control problems).
Rather than breaking the problem into a master problem and a set of independent
subproblems, direct methods solve the stochastic program in its original (integrated)
form. But they usually exploit the structure of the problem to decompose the linear
algebra operations required to compute the search direction for the direct method.
Thus, specialized direct methods decompose the problem at the algebra level, rather
than at the optimization level like decomposition methods. This usually leads to
highly efficient methods, but allows for a lower level of decentralization in the solution
than the decomposition approaches mentioned before.

But in this paper we focus on a different class of large-scale optimization problems
that may be stated as problem (1.1) and that has remained largely unexplored by the
operations research community: the Multidisciplinary Design Optimization (MDO)
problem, see [1, 12]. MDO problems arise in engineering design projects that require
the collaboration of several departments within a company. Each department is usu-
ally in charge of the design of one of the systems that compose the overall project.
Moreover, the different departments often rely on sophisticated software codes (known
as legacy codes) that have been under development for many years and whose method
of use is subject to constant modification. Integrating all these codes into a single
platform is judged to be impractical.

As a result, a priority when choosing a method to solve MDOs, as opposed to SPs,
is that the method must allow for a high degree of decentralization in the solution.
This decentralization allows the different departments collaborating on the project
to find the overall optimal design while working as independently from each other as
possible. This precludes the use of specialized direct methods to solve MDOs, because
these methods do not allow for the same degree of modularity that decomposition
algorithms provide.

At first sight, it may seem reasonable to apply the cutting-plane or augmented
Lagrangian decomposition methods available for SP to decompose the MDO prob-
lem. Unfortunately, this may not be a good idea. While most real-world stochastic
programs are linear, or, at least, convex, most real-world MDO problems are noncon-
vex nonlinear problems. This precludes the use of cutting-plane methods, which rely
heavily on convex duality theory, to solve MDO problems. One may feel tempted to
use augmented Lagrangian methods to decompose the MDO problem. Unfortunately,
the convergence theory available for them applies only to convex problems (see [29]).
Moreover, it is well-known that augmented Lagrangian methods may converge slowly
in practice (see [23, 10, 15]).

Pressed by the need to solve MDO problems in a truly decentralized manner, en-
gineers have turned to bilevel decomposition algorithms [34, 8, 15]. Once decomposed

1Another decomposition approach related to cutting-plane methods is bundle based decomposi-
tion [27, 28].
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into a master problem and a set of subproblems, the MDO problem becomes a particu-
lar type of a bilevel program [25, 32, 16]. Just as bilevel programming methods, bilevel
decomposition algorithms apply nonlinear optimization techniques to solve both the
master problem and the subproblems. At each iteration of the algorithm solving
the master problem, each of the subproblems is solved, and their minimizers used to
compute the master problem derivatives and their associated Newton direction.

The local convergence properties of bilevel decomposition algorithms are very
important because, although engineers can usually find good starting points for MDO
problems, it is crucial that, once in a neighborhood of the minimizer, the iterates
generated by the decomposition algorithm converge quickly. Unfortunately, there is
analytical and numerical evidence that certain commonly used bilevel decomposition
algorithms may fail to converge even when the starting point is very close to the
minimizer [2, 13]. Moreover, although there are some local convergence proofs for
certain bilevel decomposition algorithms that solve the subproblems exactly [15], it
is safe to say that the local convergence theory of bilevel decomposition algorithms is
not nearly as satisfactory as that of direct interior-point methods. In this paper, we
establish a relationship between a particular bilevel decomposition algorithm, which
only takes one iteration of an interior-point method to solve the subproblems, and
a direct interior-point method, which solves the problem in its original (integrated)
form. We use this relationship to derive a Gauss-Seidel iteration that ensures the
decomposition algorithm achieves superlinear convergence.

Our contribution is twofold. Firstly, our local convergence analysis bridges the
gap between the incipient local convergence theory of bilevel decomposition algorithms
[2, 15] and the mature local convergence theory of direct interior-point methods [26,
17, 38, 22]. Secondly, we show that bilevel decomposition algorithms that do not solve
the subproblems exactly (or only take one step on the subproblems) are viable at least
from a local convergence point of view. As a result, we hope our work will encourage
researchers and practitioners alike to design and apply other bilevel decomposition
approaches based on inaccurate subproblem solutions.

The paper is organized as follows. Section 2 describes how a direct interior-point
method can be used to solve the MDO problem in its original (integrated) form. In
Section 3, we describe a particular bilevel decomposition algorithm that only takes
one iteration on the subproblems and analyze its relationship to direct interior-point
methods. We use this relationship in Section 4 to show how a Gauss-Seidel iteration
can be used to ensure the decomposition algorithm converges locally at a superlinear
rate. Section 5 presents some numerical experiments and finally, Section 6 states some
conclusions.

2. A Direct Interior-Point Method. In this section, we describe how a direct
primal-dual interior-point method [9, 17, 19, 20, 36] can be applied to solve problem
(1.1) in its original (integrated) form. In doing so, we introduce notation that will help
to understand the decomposition algorithm discussed in Section 3. To facilitate the
exposition and without loss of generality, herein we consider the following simplified
problem composed of only one system:

minimize
x,y,r

F (x, y),

subject to c(x, y)− r = 0,
r ≥ 0,

(2.1)

where x ∈ Rnx are the global variables, y ∈ Rny are the local variables, r ∈ Rm

are the slack variables, and c(x, y) : Rnx+ny → Rm and F (x, y) : Rnx+ny → R are
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smooth functions. Note that, in addition to considering only one system, we have
introduced slack variables so that only equality constraints and nonnegativity bounds
are present.

2.1. The perturbed KKT conditions. The perturbed KKT conditions for
problem (2.1) are derived from the classical logarithmic barrier problem. We follow the
barrier approach because it is useful in the development of the proposed decomposition
algorithm (for other interpretations see [17, 37]). The logarithmic barrier problem is
obtained from problem (2.1) by introducing barrier terms in order to remove the
nonnegativity bounds. The result is the following barrier problem:

minimize
x,y,r

F (x, y)− µ
∑m

i=1 log(ri)

subject to c(x, y)− r = 0,
(2.2)

where r > 0 and µ is the barrier parameter.
Given a suitable constraint qualification holds, a minimizer to problem (2.2) must

satisfy the perturbed KKT conditions:

g(µ) ≡


∇xF (x, y)−∇xc(x, y)T λ
∇yF (x, y)−∇yc(x, y)T λ

−σ + λ
−c(x, y) + r
−Rσ + µ em

 = 0, (2.3)

where R = diag r, λ ∈ Rm are the Lagrange multipliers, σ ∈ Rm are the dual
variables, em ∈ R is the vector whose components are all ones, and the variables
r, λ, σ are strictly positive.

2.2. The Newton search direction. In essence, a primal-dual interior-point
method consists of the application of a modified Newton’s method to find a solution to
the nonlinear system (2.3). At each iteration, the Newton search direction is computed
by solving a linearization of system (2.3). Then, a step size is chosen such that all
nonnegative variables remain strictly positive.

Before we state the Newton linear system, it is useful to realize that the problem
variables can be split into two different components: the global component x and the
local component ŷ = (y, r, λ, σ). Likewise, g(µ)2 can also be split into two different
components

g(µ) =
(

g1

g2(µ)

)
= 0, (2.4)

where

g1 = ∇xF (x, y)−∇xc(x, y)T λ, (2.5)

and

g2(µ) =


∇yF (x, y)−∇yc(x, y)T λ

−σ + λ
−c(x, y) + r
−Rσ + µ em

 . (2.6)

2Note that, to simplify notation, we have omitted the dependence of g on the variables and
multipliers.
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Let wk = (xk, ŷk) be the current estimate of the global and local components.
Then, the Newton search direction, ∆wN

k = (∆xN
k ,∆ŷN

k ), is the solution to the fol-
lowing system of linear equations:(

Wk −ÂT
k

−Âk Mk

)(
∆xN

k

∆ŷN
k

)
= −

(
g1,k

g2,k(µk)

)
, (2.7)

where g1,k and g2,k denote the functions g1 and g2 evaluated at wk, Wk = ∇xg1,k,
Âk = −∇xg2,k(µk) = −(∇ŷg1,k)T , and

Mk = ∇ŷg2,k(µk). (2.8)

For convenience, we rewrite the Newton system (2.7) as

KN
k ∆wN

k = −gk(µk). (2.9)

2.3. The step size. As mentioned above, in addition to computing the Newton
step, interior-point methods choose a step size such that all nonnegative variables
remain strictly positive. In our case, r, λ and σ must remain positive. To ensure this,
we assume that the step sizes are chosen such as those in [38]. Therefore, at iteration
k,

αr,k = min
{
1, γk min{− rki

∆rN
k,i

} s.t. ∆rN
k,i < 0

}
(2.10)

αλ,k = min
{
1, γk min{− λki

∆λN
k,i

} s.t. ∆λN
k,i < 0

}
, (2.11)

ασ,k = min
{
1, γk min{− σki

∆σN
k,i

} s.t. ∆σN
k,i < 0

}
, (2.12)

where γk ∈ (0, 1). Because the global and local variables are not required to be
nonnegative, we can set

αx,k = αy,k = 1. (2.13)

If we define the matrix Λk as

Λk =


αx,kI 0 0 0 0

0 αy,kI 0 0 0
0 0 αr,kI 0 0
0 0 0 αλ,kI 0
0 0 0 0 ασ,kI

 ,

the kth iteration of a primal-dual algorithm has the following form:

wk+1 = wk + Λk ∆wN
k . (2.14)

2.4. Solution of the Newton system via the Schur complement. Assum-
ing Mk is invertible, the Schur complement of Wk is the matrix

Sk = Wk − ÂT
k M−1

k Âk. (2.15)

If Sk is invertible, the global component of the Newton search direction ∆xN
k can

be computed as:

Sk ∆xD
k = −

(
g1,k + ÂT

k M−1
k g2,k(µk)

)
. (2.16)
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Then the local component ∆ŷN
k is

Mk ∆ŷN
k = −

(
g2,k − Âk∆xD

k

)
. (2.17)

Note that, for the general problem (1.1) with N systems, Mk is a block diagonal
matrix composed of N blocks. Thus, the Schur complement allows one to decompose
the linear system (2.17) into N smaller independent linear systems. This is the basis
for many specialized direct methods (see, [5, Section 5.6]). Though these methods are
very efficient, they allow for a lower degree of decentralization than decomposition
algorithms. As discussed before, the main priority when choosing a methodology to
solve an MDO problem, is that it must allow for a high degree of decentralization.
For this reason, the remainder of this paper focuses on decomposition algorithms.

2.5. Convergence. The local convergence theory of this class of algorithms is
developed in the papers by [26, 17, 38] and recently in [22]. These papers establish
conditions on parameters µk and γk under which the iteration (2.14) converges super-
linearly or quadratically to a solution of (2.1) (and under standard assumptions made
in the analysis of interior-point methods). As in this paper our analysis focuses on
the local convergence properties of the algorithms, no procedures are given to ensure
global convergence, though the techniques in [36, 20, 19, 9] could be adapted.

3. The Interior-Point Decomposition Algorithm. In this section, we first
explain how bilevel decomposition algorithms work in general. Then, we describe a
particular bilevel decomposition algorithm that only takes one Newton iteration when
solving the subproblems. Finally, we analyze the relationship between the search direc-
tions provided by this decomposition algorithm and the direct interior-point method
described in the previous section.

3.1. Bilevel decomposition algorithms. Bilevel decomposition algorithms
divide the job of finding a minimizer to problem (2.1) into two different tasks: (i)
finding an optimal value of the local variables y∗(x) for a given value of the global
variables x, and (ii) finding an overall optimal value of the global variables x∗. The
first task is performed by solving a subproblem. Then the subproblem solution is used
to define a master problem whose solution accomplishes the second task.

A general bilevel programming decomposition algorithm for problem (2.1) may
be described as follows. Solve the following master problem:

minimize
x

F ∗(x). (3.1)

where F ∗(x) = F (x, y∗(x)) is the subproblem optimal value function

F ∗(x) = minimum
y,r

F (x, y)− µ
∑m

i=1 log(ri)

subject to c(x, y)− r = 0.
(3.2)

Note that the above master problem depends only on the global variables. The
local variables are kept within the subproblem. In the general case where there are
more than one system, the above formulation allows the different systems to be dealt
with almost independently, and only a limited amount of information regarding the
global variables is exchanged between the master problem and the subproblems. This
makes bilevel decomposition approaches suitable for MDO problems where, as men-
tioned before, it is crucial to allow the different groups participating in a project to
work as independently from each other as possible.
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After breaking the original problem into a master problem and a subproblem,
a bilevel decomposition algorithm applies a nonlinear optimization method to solve
the master problem. At each iteration, a new estimate of the global variables xk

is generated and the subproblem is solved exactly using xk as a parameter. Then,
sensitivity analysis formulae [18] are used to compute the master problem objective
and its derivatives from the exact subproblem minimizer. Using this information, a
new estimate of the global variables xk+1 is computed. This procedure is repeated
until a master problem minimizer is found.

Unfortunately, there is analytical and numerical evidence that certain commonly
used bilevel decomposition algorithms may fail to converge even when the starting
point is very close to the minimizer [2, 13]. Moreover, although there are some local
convergence proofs for certain bilevel decomposition algorithms that solve the sub-
problems exactly [15], it is safe to say that the local convergence theory of bilevel
decomposition algorithms is not nearly as satisfactory as that of direct interior-point
methods.

In the remainder of this section, after stating our assumptions, we state a bilevel
decomposition algorithm that only takes one iteration of an interior-point method to
solve the subproblem. A difficulty is that by taking only one iteration, we obtain
only a rough approximation to the subproblem minimizer and thus it is not straight-
forward to use sensitivity formulae to compute the master problem derivatives. We
overcome this difficulty by showing that the Schur complement iteration (2.16) can
be seen as an approximation to the master problem Newton iteration. Finally, we an-
alyze the relationship between the proposed decomposition algorithm and the direct
method outlined in Section 2. This relationship will be used in Section 4 to derive a
Gauss-Seidel iteration that ensures the decomposition algorithm achieves superlinear
convergence.

3.2. Assumptions. We make the following assumptions. We assume there ex-
ists a minimizer (x∗, y∗, r∗) to problem (2.1) and a Lagrange multiplier vector (λ∗, σ∗)
satisfying the KKT conditions (2.3) with µ = 0. The following conditions are assumed
on the problem functions and on the so-called KKT point

w∗ = (x∗, y∗, r∗, λ∗, σ∗).

A.1 The second derivatives of the functions in problem (2.1) are Lipschitz continuous
in an open convex set containing w∗.

A.2 The linear independence constraint qualification is satisfied at w∗, that is, the
matrix

L =
(
∇xc(x∗, y∗) ∇yc(x∗, y∗) −I

0 0 IN

)
(3.3)

has full row rank, where N is the active set {i : r∗i = 0} and IN is the matrix
formed by the rows of the identity corresponding to indices in N .

A.3 The strict complementary slackness condition is satisfied at w∗; that is, σ∗
i > 0

for i ∈ N .
A.4 The second order sufficient conditions for optimality are satisfied at w∗; that is,

for all d 6= 0 satisfying Ld = 0 we have

dT∇2L(w∗)d > 0, (3.4)

where the Lagrangian function is L(w∗) = F (x∗, y∗)− (λ∗)T (c(x∗, y∗)−r∗)−
(σ∗)T r∗, and ∇2L(w∗) is the Hessian of the Lagrangian function with respect
to the primal variables x, y, r.
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In addition, the following condition is assumed in order to ensure that the sub-
problems iterations are well-defined near the solution, w∗.
C.1 The strong linear independence constraint qualification holds at w∗, that is, the

matrix

L =
(
∇yc(x∗, y∗) −I

0 IN

)
(3.5)

has full row rank.

3.3. The subproblem iteration. The decomposition algorithm takes just one
Newton iteration of a primal-dual interior-point method to solve the subproblems.
Following the notation introduced in Section 2, the subproblem perturbed KKT con-
ditions can be written in compact form as g2(µ) = 0, see (2.6). Then, the Newton
system for the above perturbed KKT conditions is simply

Mk ∆ŷD
k = −g2,k(µk).3 (3.6)

3.4. The master problem iteration. The decomposition algorithm applies
Newton’s method to solve the master problem (3.1). The Newton search direction is
the solution to

∇2
xxF ∗(xk) ∆xD

k = −∇xF ∗(xk). 4 (3.7)

Unfortunately, because the algorithm only takes one iteration to solve the sub-
problem, the exact expressions for ∇2

xxF ∗(xk) and ∇xF ∗(xk) can not be computed
from standard sensitivity formulae as is customary in bilevel decomposition algo-
rithms. In the remainder of this section, we show how approximations to ∇xF ∗(xk)
and ∇2

xxF ∗(xk) can be obtained from the estimate of the subproblem minimizer given
by taking only one Newton iteration on the subproblem. In particular, the following
two propositions show that the right hand side in equation (2.16) can be seen as an
approximation to the master problem gradient ∇xF ∗(xk) and that the Schur com-
plement matrix Sk can be interpreted as an approximation to the master problem
Hessian ∇2

xxF ∗(xk).
Proposition 3.1. Let (x∗, y∗, r∗, λ∗, σ∗) be a KKT point satisfying assumptions

A.1–A.4 and condition C.1 for problem (2.1). Then, for xk close to x∗, the subproblem
optimal value function F ∗(xk) and its gradient ∇xF ∗(xk) are well defined and

‖∇xF ∗(xk)− (g1,k + ÂT
k M−1

k g2,k(µk))‖ = o(‖ŷ(xk)− ŷk‖),

where ŷ(xk) = (y(xk), r(xk), λ(xk), σ(xk)) is the locally unique once continuously dif-
ferentiable trajectory of minimizers to subproblem (3.2) with ŷ(x∗) = (y∗, r∗, λ∗, σ∗)
and ŷk = (yk, rk, λk, σk).

Proof. Note that if Condition C.1 holds at (x∗, y∗, r∗, λ∗, σ∗), then the linear inde-
pendence constraint qualification (LICQ) holds at (y∗, r∗, λ∗, σ∗) for subproblem (3.2)
with x = x∗. Moreover, it is easy to see that if (x∗, y∗, r∗, λ∗, σ∗) is a KKT point sat-
isfying assumptions A.1–A.4, then (y∗, r∗, λ∗, σ∗) is a minimizer satisfying the strict
complementarity slackness (SCS) and second-order sufficient conditions (SOSC) for

3When solving system (3.6), we actually solve the equivalent linear system obtained by first elim-
inating the dual variables σ from the system. The resulting linear system is smaller and symmetric.

4Note that the master problem objective function F ∗(xk) depends also on the barrier parameter
µ. However, we do not write µ explicitely to simplify notation.
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subproblem (3.2) with x = x∗. It follows from [18, Theorem 6] that there exists a
locally unique once continuously differentiable trajectory of subproblem minimizers
ŷ(xk) = (y(xk), r(xk), λ(xk), σ(xk)) satisfying LICQ, SCS and SOSC for the subprob-
lem with x = xk. As a result, the subproblem optimal value function F ∗(xk) can be
defined as F ∗(xk) = F (xk, y(xk)) and it is once continuously differentiable. Moreover,
its gradient is simply

∇xF ∗(xk) =
d[F
(
xk, y(xk), r(xk)

)
− µ

∑m
i=1 log(ri(xk))]

dx
, (3.8)

where d/dx denotes the total derivative. Moreover, because the LICQ holds at the
subproblem minimizer for xk we have,

∇xF ∗(xk) =
d[F
(
xk, y(xk), r(xk)

)
− µ

∑m
i=1 log(ri(xk))]

dx
=

dLy

(
xk, ŷ(xk)

)
dx

, (3.9)

where Ly is the subproblem Lagrangian function:

Ly(x, ŷ(x)) = F (x, y)− µ
m∑

i=1

log(ri)− λT
(
c(x, y)− r

)
. (3.10)

Applying the chain rule, we get:

dLy(xk, ŷ(xk))
dx

= ∇xLy(xk, ŷ(xk)) (3.11)

+∇yLy(xk, ŷ(xk)) y′(xk) (3.12)
+∇rLy(xk, ŷ(xk)) r′(xk) (3.13)
+∇λLy(xk, ŷ(xk)) λ′(xk), (3.14)
+∇σLy(xk, ŷ(xk)) σ′(xk), (3.15)

where y′(xk), r′(xk), λ′(xk), and σ′(xk) denote the Jacobian matrices of y, r, λ,
and σ evaluated at xk, respectively. Note that (3.12) and (3.13) are zero because of
the optimality of ŷ(xk), (3.14) is zero by the feasibility and strict complementarity
slackness of ŷ(xk), and (3.15) is zero because the Lagrangian function does not depend
on σ. Thus, we can write the master problem objective gradient as

∇xF ∗(xk) = ∇xLy

(
xk, ŷ(xk)

)
. (3.16)

If we knew the subproblem minimizer ŷ(xk), we could easily compute the master
problem gradient by evaluating the gradient of the Lagrangian function (3.10) at
xk and ŷ(xk). Unfortunately, after taking only one interior-point iteration on the
subproblem, we do not know ŷ(xk) exactly but rather the following approximation

ŷ(xk) ' ŷk + ∆ŷD
k , (3.17)

where ∆ŷD
k is the subproblem search direction computed by solving system (3.6).

But by Taylor’s Theorem we know that the master problem gradient can be
approximated as:

∇xF ∗(xk) = ∇xLy(xk, ŷk) +∇x,ŷLy(xk, ŷk)(ŷ(xk)− ŷk) + O(‖ŷ(xk)− ŷk‖2).
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Moreover, if ŷk is close enough to ŷ(xk), we know from the local convergence
theory of Newton’s method that ‖ŷ(xk)− (ŷk + ∆ŷD

k )‖ = o(‖ŷ(xk)− ŷk‖) and thus

∇xF ∗(xk) = ∇xLy(xk, ŷk) +∇x,ŷLy(xk, ŷk)∆ŷD
k + o(‖ŷ(xk)− ŷk‖). (3.18)

From A.3, A.4 and C.1, we know that the matrix Mk is nonsingular once the
iterates are close to the minimizer [18, Theorem 14]. Since ∆ŷD

k = −M−1
k g2,k(µk)

and ÂT
k = −∇ŷg1,k = −∇x,ŷLy(xk, ŷk), the result follows from (3.18).

Proposition 3.2. Let (x∗, y∗, r∗, λ∗, σ∗) be a KKT point satisfying assumptions
A.2–A.4 and condition C.1 for problem (2.1). Moreover, assume all functions in
problem (2.1) are three times continuously differentiable. Then, for xk close to x∗,
the Hessian of the subproblem optimal value function ∇2

xxF ∗(xk) is well defined and

‖∇2
xxF ∗(xk)− Sk‖ = O(‖ŷ(xk)− ŷk‖),

where ŷ(xk) = (y(xk), r(xk), λ(xk), σ(xk)) is the locally unique twice continuously dif-
ferentiable trajectory of minimizers to subproblem (3.2) with ŷ(x∗) = (y∗, r∗, λ∗, σ∗),
ŷk = (yk, rk, λk, σk), and Sk is the Schur complement matrix Sk = Wk−ÂT

k M−1
k Âk.

Proof. By the same arguments as in Proposition 3.1, and the assumption that
all problem functions are three times continuously differentiable, we know that the
subproblem optimal value function can be defined as F ∗(xk) = F (xk, y(xk)) and it is
twice continuously differentiable.

Moreover, differentiating expression (3.16), we obtain the following expression for
the optimal value function Hessian:

∇xxF ∗(xk) =
d(∇xLy(xk, ŷ(xk))

dx
(3.19)

= ∇x,xLy

(
xk, ŷ(xk)

)
+∇x,ŷLy

(
xk, ŷ(xk)

)
ŷ′(xk),

where ŷ′(xk) is the Jacobian matrix of the subproblem minimizer with respect to xk.
By A.3, A.4 and C.1, we know that for xk close enough to x∗, ŷ(xk) is a minimizer

satisfying the LICQ, SCS, and SOSC for the subproblem, and thus it follows from
[18, Theorem 6] that:

M∗
k ŷ′(xk) = Â∗

k, (3.20)

where M∗
k and Â∗

k are the matrices Mk and Âk evaluated at ŷ(xk).
If we knew the subproblem minimizer ŷ(xk) exactly, we could use (3.19) and

(3.20) to compute the master problem Hessian. Unfortunately, after taking only one
Newton iteration on the subproblems, we do not know ŷ(xk) exactly. But we can
approximate ŷ′(xk) as the solution to the following system

Mk ŷ′(xk) ' Âk. (3.21)

Note that by A.3, A.4 and C.1, the matrix Mk is nonsingular for (xk, ŷk) close
to (x∗, ŷ∗). Moreover, by the differentiability of all problem functions and Taylor’s
Theorem we know that

‖ŷ′(xk)−M−1
k Âk‖ = ‖(M∗

k )−1Â∗
k −M−1

k Âk‖ = O(‖ŷ(xk)− ŷk‖).

The result follows because Wk = ∇xg1,k = ∇x,xLy

(
xk, ŷk

)
and ÂT

k = −∇ŷg1,k =
−∇x,ŷLy(xk, ŷk).
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Note that Propositions 3.1 and 3.2 show that the Schur complement iteration,

Sk ∆xD
k = −

(
g1,k + ÂT

k M−1
k g2,k(µk)

)
. (3.22)

described in Section 2.4, provides a suitable approximation to the master problem
Newton equation (3.7).

3.5. Decomposition algorithm statement. The decomposition algorithm can
be seen as a particular bilevel decomposition algorithm that only takes one iteration
to solve the subproblems and uses this iteration to approximate the master problem
derivatives as explained in Section 3.4. The interior-point decomposition-algorithm is
stated in Figure 3.1.

Initialization: Choose a starting point wT
0 =

(xT
0 , yT

0 , rT
0 , λT

0 , σT
0 )T such that r0 > 0, λ0 > 0, σ0 > 0.

Set k ← 0 and choose the parameters µ0 ≥ 0 and 0 < γ̂ ≤ γ0 < 1.
Repeat

1. Solve master problem: Form the matrix Sk and com-
pute ∆xD

k from system (3.22). Set xk+1 = xk + ∆xD
k .

2. Solve subproblem:
(a) Search direction: Compute ∆ŷD

k by solving sys-
tem (3.6).

(b) Line search: With γk, compute the diagonal ma-
trix, Λk, from the subproblem step sizes as in (2.10)-
(2.13).

(c) Update iterate: Set ŷk+1 = ŷk + Λk ∆ŷD
k .

3. Parameter update: Set µk ≥ 0, 0 < γ̂ ≤ γk < 1, and
k ← k + 1.

Until convergence

Figure 3.1. Interior-point Decomposition Algorithm

3.6. Relationship to the direct method. The following proposition estab-
lishes the relationship between the search direction of the proposed decomposition
algorithm (∆xD

k ,∆yD
k ) and the search direction of the direct method (∆xN

k ,∆yN
k ).

In particular, we show that the global variable components of both search directions
are identical and we characterize the difference between the local components.

Proposition 3.3. Under assumptions A.1–A.4 and condition C.1,

∆xD
k = ∆xN

k and ∆yD
k = ∆yN

k −M−1
k Âk ∆xN

k . (3.23)

Proof. The first equality follows trivially because we are using a Schur complement
iteration to approximate the master problem search direction. The second equality
follows from (2.17) and (3.6).

Note that the difference between the local components of both search directions
is not surprising because the global variables are just a parameter to the subprob-
lem solved by the decomposition algorithm. As a result, the local component of the
search direction computed by the decomposition algorithm lacks first-order informa-
tion about the global component search direction (in particular, it lacks the following
first-order information −M−1

k Âk ∆xN
k ). In Section 4, we show how a Gauss-Seidel
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strategy can be used to overcome this limitation inherent to bilevel decomposition
approaches.

Finally, it is useful to note that the decomposition algorithm search direction is
the solution to the following linear system:

KD
k ∆wD

k = −gk(µk), (3.24)

where

KD
k =

(
Sk −ÂT

k

0 Mk

)
. (3.25)

Note that the fact that the global variables are a parameter to the subproblems is
evident in the structure of KD

k . In particular, notice that the lower left block in
matrix KD

k is zero instead of Âk as in direct method Newton matrix KN
k . Finally, In

Section 4, we give conditions under which the norm of the matrix (KD
k )−1 is uniformly

bounded away from zero in the neighborhood of the minimizer and thus the iterates
of the proposed decomposition algorithm are well defined.

4. Local convergence analysis. The difference in the local component of the
search directions computed by the decomposition algorithm and the direct Newton
method precludes any possibility of superlinear convergence for the decomposition
algorithm. But in this section we show how one can first compute the global vari-
able component of the search direction, and then use it to update the subproblem
derivative information before computing the local variable component. We show that
the resulting Gauss-Seidel iteration generates a search direction that is equal (up to
second-order terms) to the search direction of the direct method. Moreover, we prove
that the resulting decomposition algorithm converges locally at a superlinear rate.

4.1. The Gauss-Seidel refinement. The decomposition algorithm defined in
Section 3 does not make use of all the information available at each stage. Note that,
at each iteration of the decomposition algorithm, we first compute the master problem
step as the solution to

Sk ∆xG
k = −

(
g1,k + ÂT

k M−1
k g2,k(µk)

)
, (4.1)

and update the global variables as xk+1 = xk + ∆xG
k . At this point, one could

use the new value of the global variables xk+1 to perform a nonlinear update of the
subproblem derivative information and thus, generate a better subproblem step. In
particular, after solving for the master problem search direction, we could compute

g+
2,k(µk) =


∇yF (xk+1, yk)−∇yc(xk+1, yk)T λk

−σk + λk

−c(xk+1, yk) + rk

−Rkσk + µke

 . (4.2)

Then, the subproblem search direction would be given as the solution to

Mk ∆ŷG
k = −g+

2,k(µk). (4.3)

4.2. Relationship to the direct method. The following proposition shows
that the search directions of the proposed Gauss-Seidel decomposition algorithm and
the direct method outlined in Section 2 are equal up to second-order terms.
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Proposition 4.1. Under assumptions A.1–A.4 and condition C.1,

∆xG
k = ∆xN

k and ∆ŷG
k = ∆ŷN

k + O(‖∆xN
k ‖2). (4.4)

Proof. The result for the global components is trivial from (4.1). For the local
components, note that the search direction of the resulting Gauss-Seidel decomposi-
tion algorithm satisfy

∆xG
k = ∆xD

k = ∆xN
k , (4.5)

and

∆ŷG
k = ∆ŷD

k −M−1
k (g+

2,k(µk)− g2,k(µk)). (4.6)

Moreover, from (3.23), we know that

∆ŷG
k = ∆ŷN

k −M−1
k Âk ∆xN

k −M−1
k (g+

2,k(µk)− g2,k(µk))

= ∆ŷN
k −M−1

k (g+
2,k(µk)− g2,k(µk) + Âk ∆xN

k ).

The result is obtained by Taylor’s Theorem and the fact that ÂT
k = −∇x,ŷLy(xk, ŷk).

Proposition 4.1 intuitively implies that the Gauss-Seidel decomposition algorithm
converges locally at a superlinear rate. In Section 4.3 we formally show this is the
case.

The resulting Gauss-Seidel decomposition algorithm is stated in Figure 4.1. It
must be noted that, the only difference between the interior-point decomposition
algorithm with the Gauss-Seidel refinement stated in Figure 4.1 and the algorithm
stated in Figure 3.1 is that in the Gauss-Seidel version, we introduce a nonlinear
update into the derivative information of the subproblem g2,k(µk) using the master
problem step ∆xG

k . As a consequence, the refinement requires one more subproblem
derivative evaluation per iteration. The advantage is that, as we show in the next
section, the Gauss-Seidel refinement guarantees that the proposed algorithm converges
at a superlinear rate.

4.3. Convergence of the Gauss-Seidel approach. In this section, we first
show that the search direction of the Gauss-Seidel decomposition algorithm is well-
defined in the proximity of the minimizer and then, we show that the iterates gen-
erated by the Gauss-Seidel decomposition algorithm converge to the minimizer at a
superlinear rate.

Note that the search directions of the decomposition algorithms with and without
the Gauss-Seidel refinement are related as follows:

∆wG
k = ∆wD

k −Gk(g+
2,k(µk)− g2,k(µk)), (4.7)

where

Gk =
(

0
M−1

k

)
.

Because ∆wD
k = −(KD

k )−1 gk(µk), to show that the Gauss-Seidel search direction
is well-defined, it suffices to show that ‖(KD

k )−1‖ and ‖M−1
k ‖ are uniformly bounded

for wk in a neighborhood of the minimizer w∗.
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Initialization: Choose a starting point wT
0 =

(xT
0 , yT

0 , rT
0 , λT

0 , σT
0 )T such that r0 > 0, λ0 > 0, σ0 > 0.

Set k ← 0 and choose the parameters µ0 ≥ 0 and 0 < γ̂ ≤ γ0 < 1.
Repeat

1. Solve master problem: Form the matrix Sk and com-
pute ∆xG

k from system (4.1). Set xk+1 = xk + ∆xG
k .

2. Solve subproblem:
(a) Search direction: Use xk+1 to update g+

2,k(µk) and
compute ∆ŷG

k by solving system (4.3).
(b) Line search: With γk, compute the diagonal ma-

trix, Λk, from the subproblem step sizes as in (2.10)-
(2.13).

(c) Update iterate: Set ŷk+1 = ŷk + Λk ∆ŷG
k .

3. Parameter update: Set µk ≥ 0, 0 < γ̂ ≤ γk < 1, and
k ← k + 1.

Until convergence

Figure 4.1. Interior-Point Decomposition Algorithm with Gauss-Seidel refinement

Proposition 4.2. Under assumptions A.1–A.4 and condition C.1, ‖(KD
k )−1‖

and ‖M−1
k ‖ are uniformly bounded for wk in a neighborhood of the minimizer w∗.

Proof. Because

(KD
k )−1 =

(
S−1

k S−1
k ÂT

k M−1
k

0 M−1
k

)
, (4.8)

it is sufficient to prove that ‖S−1
k ‖ and ‖M−1

k ‖ are uniformly bounded. Let M∗ be the
matrix Mk defined in (2.8) evaluated at w∗. Then, by A.1-A.4 and C.1 we know that
M∗ is non-singular (see [18, Theorem 14] and [17, Proposition 4.1]). Consequently,
‖M−1

k ‖ is uniformly bounded if wk is close enough to w∗. Likewise, by A.1-A.4, KN∗

is non-singular and ‖(KN
k )−1‖ is uniformly bounded as well as ‖S−1

k ‖ if condition C.1
holds.

We now give a result that provides sufficient conditions on the barrier and the
step size parameter updates to ensure superlinear convergence of the Gauss-Seidel
decomposition algorithm.

Theorem 4.3. Suppose that assumptions A.1-A.4 and condition C.1 hold, that
the barrier parameter is chosen to satisfy µk = o

(
‖gk(0)‖

)
and the step size parameter

is chosen such that 1−γk = o(1). If w0 is close enough to w∗, then the sequence {wk}
described in (4.7) is well-defined and converges to w∗ at a superlinear rate.

Proof. As matrices (KD
k )−1 and M−1

k are well-defined by Proposition 4.2, the
sequence in (4.7) updates the new point as

wk+1 = wk + Λk

[
∆wD

k −Gk(g+
2,k(µk)− g2,k(µk))

]
(4.9)

= wk − Λk (KD
k )−1gk(µk)− Λk Gk (g+

2,k(0)− g2,k(0))

= wk − Λk (KD
k )−1(gk(0)− µ̄k)− Λk Gk (g+

2,k(0)− g2,k(0)) (4.10)
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where µ̄k = (0, 0, 0, 0, µke). Then,

wk+1 − w∗ = wk − w∗ − Λk (KD
k )−1gk(µk)− Λk Gk (g+

2,k(0)− g2,k(0))

= (I − Λk)(wk − w∗)

+ Λk (KD
k )−1

(
KD

k (wk − w∗)− gk(0) + µ̄k

)
− Λk Gk (g+

2,k(0)− g2,k(0)), (4.11)

which may be rewritten as

wk+1 − w∗ = (I − Λk)(wk − w∗)

+ Λk (KD
k )−1µ̄k

+ Λk

(
KD

k )−1(KN
k (wk − w∗)− gk(0))

+ Λk

(
KD

k )−1(KD
k −KN

k )(wk − w∗)

− Λk Gk (g+
2,k(0)− g2,k(0))

)
(4.12)

The first term in (4.12) satisfies (see [38])

‖(I − Λk)(wk − w∗)‖ ≤
(
(1− γk) + O(‖gk(0)‖) + O(µk)

)
‖(wk − w∗)‖. (4.13)

This inequality together with conditions 1−γk = o(1) and µk = o
(
‖gk(0)‖

)
imply

that

‖(I − Λk)(wk − w∗)‖ = o(‖wk − w∗‖). (4.14)

The second term in (4.12) satisfies

‖Λk (KD
k )−1µ̄k‖ ≤ ‖Λk‖ ‖(KD

k )−1‖ ‖µ̄k‖ ≤ β ‖µ̄k‖, (4.15)

which by condition µk = o
(
‖gk(0)‖

)
imply

‖Λk (KD
k )−1µ̄k‖ = o(‖wk − w∗‖). (4.16)

By Taylor’s Theorem, the third term in (4.12) satisfies

‖Λk

(
KD

k )−1(KN
k (wk − w∗)− gk(0))‖ ≤
‖Λk‖ ‖

(
KD

k )−1‖ ‖(KN
k (wk − w∗)− gk(0))‖ = o(‖wk − w∗‖). (4.17)

Finally, because

KD
k = KN

k −
[
Wk − Sk 0
−Âk 0

]
, (4.18)

the fourth term in (4.12) is

Λk

(
KD

k )−1(KD
k −KN

k )(wk − w∗) = −Λk

(
KD

k )−1

[
Wk − Sk 0
−Âk 0

]
(wk − w∗)

= Λk

[
0 0

M−1
k Âk 0

]
(wk − w∗)

= Λk

[
0

M−1
k Âk(xk − x∗)

]
. (4.19)
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Then, adding the fourth and fifth terms in (4.12) and using (4.19) we get

Λk (KD
k )−1(KD

k −KN
k )(wk − w∗)− Λk Gk (g+

2,k(0)− g2,k(0)) =

Λk

[
0

M−1
k

[
Âk(xk − x∗)− (g+

2,k(0)− g2,k(0))
]] . (4.20)

If only the global variable component, x, of equations (4.14), (4.16), (4.17), and
(4.20) is considered, then the following relationship is attained:

‖xk+1 − x∗‖ = o(‖wk − w∗‖). (4.21)

Note that this is not a surprising result because we know that the step taken by
the Gauss-Seidel decomposition algorithm on the global variables, x, is the same as
that of a direct Newton’s method.

To finish the proof, it only remains to show that the local variable component, ŷ,
satisfies a similar relationship. The local component of equation (4.20) can be written
as

Λk,y M−1
k

(
Âk(xk − x∗)− (g+

2,k(0)− g2,k(0))
)

=

Λk,y M−1
k

(
Âk(xk+1 − x∗)− (g+

2,k(0)− g2,k(0))− Âk(xk+1 − xk)
)
, (4.22)

which by Taylor’s Theorem and the fact that Âk = −∇xg2,k(µk) = ∇xg2,k(0) is

Λk,y M−1
k

(
Âk(xk+1 − x∗)−

(
g+
2,k(0)− g2,k(0)

)
− Âk(xk+1 − xk)

)
=

Λk,y M−1
k

(
Âk(xk+1 − x∗) + O(‖xk+1 − xk‖2)

)
(4.23)

Because

xk+1 − xk = ∆xG
k = −(Sk)−1

(
g1,k + ÂT

k M−1
k g2,k(µk)

)
, (4.24)

we conclude that

‖xk+1 − xk‖ = O(||gk(µk)||), (4.25)

and thus, the second term in the right hand side of (4.23) is of order O(‖wk −w∗‖2).
Moreover, we know by (4.21) that the first term in the right hand side of (4.23)

is of order o(‖wk −w∗‖). This, together with the local variable component in (4.14),
(4.16), (4.17), give

‖ŷk+1 − ŷ∗‖ = o(‖wk+1 − w∗‖). (4.26)

Relationships (4.21) and (4.26) prove the result.

5. Numerical Example. In this section, we illustrate the convergence results
given in Section 4 by applying the decomposition algorithm introduced without and
with the Gauss-Seidel refinement to solve a simple quadratic program taken from the
test problem set proposed by DeMiguel and Murray in [14]. The quadratic program
corresponds to an MDO problem with 200 variables and two systems.

Tables 5.1 and 5.2 display the performance of the interior-point decomposition
algorithm without and with the Gauss-Seidel iteration, respectively. The first col-
umn denotes the iteration number, the second column shows the value of the barrier
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parameter at the beginning of the iteration, the third column indicates the relative
difference between the global component of the search directions of the decomposition
and direct methods, the fourth column gives the relative difference in the local com-
ponent, the fifth column shows the maximum step size, and the sixth column presents
the norm of the KKT conditions at the end of the iteration.

Table 5.1
Interior-point decomposition algorithm without Gauss-Seidel refinement.

Iter µk
‖∆xN

k −∆xD
k ‖

‖∆xN
k ‖

‖∆ŷN
k −∆ŷD

k ‖
‖∆ŷN

k ‖
αk ‖gk(0)‖

1 1.0e-001 1.0e-015 6.8e-001 2.5e-001 2.6e+001
2 1.0e-002 5.8e-015 1.0e-001 3.7e-001 1.4e+001
3 1.0e-003 2.6e-015 1.8e-001 6.5e-001 6.6e+000
4 1.0e-004 6.2e-015 7.5e-002 5.3e-001 3.0e+000
5 1.0e-005 6.4e-015 1.1e-001 8.2e-001 8.4e-001
6 1.0e-006 6.4e-015 1.3e-001 9.8e-001 7.8e-002
7 1.0e-007 1.9e-014 4.9e-002 9.9e-001 4.4e-002
8 1.0e-008 9.5e-014 1.2e-002 1.0e+000 2.3e-003
9 1.0e-009 6.4e-012 3.0e-004 1.0e+000 2.8e-005
10 1.0e-010 8.5e-015 6.0e-002 1.0e+000 9.4e-009
11 8.9e-017 1.1e-014 5.8e-002 1.0e+000 1.2e-009
12 1.4e-018 9.2e-011 2.0e-005 1.0e+000 1.2e-010

Table 5.2
Interior-point decomposition algorithm with Gauss-Seidel refinement.

Iter µk
‖∆xN

k −∆xG
k ‖

‖∆xN
k ‖

‖∆ŷN
k −∆ŷG

k ‖
‖∆ŷN

k ‖
αk ‖gk(0)‖

1 1.0e-001 9.3e-016 1.2e-015 5.4e-001 1.7e+001
2 1.0e-002 1.3e-014 1.4e-015 7.2e-001 3.0e+000
3 1.0e-003 4.5e-015 1.7e-015 9.9e-001 2.0e-001
4 1.0e-004 2.3e-015 8.3e-015 1.0e+000 5.9e-003
5 1.0e-005 1.7e-015 2.1e-013 1.0e+000 7.8e-005
6 6.1e-009 5.5e-015 1.1e-011 1.0e+000 4.8e-008
7 2.3e-015 8.8e-015 1.8e-008 1.0e+000 8.0e-012

The results confirm our convergence analysis of previous sections. In particular,
the local components of the direct method and the decomposition algorithm without
Gauss-Seidel refinement are different. Moreover, the convergence of the decomposition
algorithm without the Gauss-Seidel iteration appears to be only linear or perhaps two-
step superlinear. On the other hand, the decomposition algorithm with Gauss-Seidel
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refinement converges superlinearly, and both the global and local components of the
search direction resemble those of the direct method search direction.

6. Conclusions. In this paper, we establish a relationship between a particular
bilevel decomposition algorithm that only takes one iteration to solve the subproblems
and a direct interior-point method. Using the insight gained from this relationship, we
show how a Gauss-Seidel strategy can be used to ensure that the bilevel decomposition
algorithm converges superlinearly.

To the best of our knowledge, this is the first local convergence proof for a bilevel
decomposition algorithm that only takes one iteration to solve the subproblems. One
may argue, however, that the particular case of bilevel decomposition algorithm an-
alyzed here offers few (if any) practical advantages when compared with the direct
Newton method. In particular, the level of decentralization provided by the ana-
lyzed decomposition algorithm is very similar to that provided by the direct method.
But, in our opinion, our most important contribution is the connection we establish
between the bilevel decomposition algorithms used in industry, which do allow for a
high degree of decentralization, and direct interior-point methods. We think our work
bridges the gap between the incipient local convergence theory of bilevel decomposi-
tion algorithms [2, 15] and the mature local convergence theory of direct interior-point
methods [26, 17, 38, 22].

Finally, we show that bilevel decomposition algorithms that do not solve the
subproblems exactly (or only take a step on the subproblems) are viable at least from
a local convergence point of view. We hope our work will encourage researchers and
practitioners alike to design and apply other bilevel decomposition approaches based
on inaccurate subproblem solutions.
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