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1 Introduction

Motivation. Local quadratic convergence is a natural and very desired property of many
methods in Nonlinear Optimization. However, for interior-point methods the correspond-
ing analysis is not trivial. The reason is that the barrier function is not defined in a
neighborhood of the solution. Therefore, in order to study the behavior of the central
path, we need to employ somehow the separable structure of the functional inequality
constraints. From the very beginning [3], this analysis was based on the Implicit Function
Theorem as applied to Karush-Kuhn-Tucker conditions.

This tradition explains, up to some extend, the delay in developing an appropriate
framework for analyzing the local behavior of general polynomial-time interior-point meth-
ods [11]. Indeed, in the theory of self-concordant functions it is difficult to analyze the
local structure of the solution since we have no access to the components of the barrier
function. Moreover, in general, it is difficult to relate the self-concordant barrier with
functional inequality constraints of the initial optimization problem. Therefore, up to
now, the local superlinear convergence for polynomial-time path-following methods was
proved only for Linear Programming [15, 8] and for Semidefinite Programming problems
[6, 13, 7, 5]. In both cases, the authors use in their analysis the special boundary structure
of the feasible regions and of the set of optimal solutions.

In this paper, we establish the local quadratic convergence of interior-point path-
following methods by employing some geometric properties of the general conic opti-
mization problem. The main structural property used in our analysis is the logarith-
mic homogeneity of self-concordant barrier functions. We propose new path-following
predictor-corrector schemes which work only in the dual space. They are based on an
easily computable gradient proximity measure, which ensures an automatic transforma-
tion of the global linear rate of convergence to the local quadratic rate (under a mild
assumption). Our step-size procedure for the predictor step is related to the maximum
step size to stay feasible. It appears that in order to attain local superlinear convergence
(by an algorithm that follows the central path), we need to tighten the neighborhood of
the central path proportionally to the current duality gap.

Contents. The paper is organized as follows. In Section 2 we introduce the conic primal-
dual problem and define the central path. After that, we pass to a small full-dimensional
dual problem and define the prediction operator. In order to achieve local quadratic
convergence, we introduce two assumptions. One is on the strict dual maximum, and the
second one is on the boundedness of the vector ∇2F∗(s)s∗ along the central path. The
main result of this section is Theorem 2 which demonstrates the quadratic decrease of the
distance to the optimum for the prediction point, measured in an appropriately chosen
fixed Euclidean norm.

In Section 3 we estimate efficiency of the predictor step measured in a local norm
defined by the dual barrier function. Also, we show that the local quadratic convergence
can be achieved by a feasible predictor step.

In Section 4 we prepare for the analysis of polynomial-time predictor-corrector strate-
gies. For that, we introduce a new characteristic of self-concordant barriers, the recession
coefficient. This coefficient bounds the growth of the Hessian of the barrier function along
recession directions. We argue that in many practical situations this coefficient is a small
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absolute constant. We study an important class of barriers with unit recession coefficient
(we call them the barriers with negative curvature). This class includes at least self-scaled
barriers [12] and hyperbolic barriers [4, 1, 14].

In Section 5 we establish some bounds on the growth of a variant of the gradient
proximity measure. We show that we can achieve a local quadratic rate of convergence.
It is important that the decrease of the parameter of the central path along the predictor
direction be related to the distance to the boundary of the feasible solution set. We
show that for local quadratic convergence the centering condition must be satisfied with
increasing accuracy.

In Section 6 we show that the local quadratic convergence can be combined with the
global polynomial-time complexity. We present two methods of this type. One of them
uses the recession coefficient, but it has a cheap computation of the predictor step. For
the second one, the recession coefficient is not needed, but the recession step is more
expensive. Finally, in Section 7 we discuss the results and study two 2D-examples, which
demonstrate that our assumptions are quite natural.

Notation and generalities. In what follows, we denote by E a finite-dimensional linear
space (other variants: H, V), and by E∗ its dual space, composed by linear functions on
E. The value of function s ∈ E∗ at point x ∈ E is denoted by 〈s, x〉. This notation is the
same for all spaces in use.

For an operator A : E→ H∗ we denote by A∗ the corresponding adjoint operator:

〈Ax, y〉 = 〈A∗y, x〉, x ∈ E, y ∈ H.

Thus, A∗ : H→ E∗. A self-adjoint positive-definite operator B : E→ E∗ (notation B � 0)
defines the Euclidean norms for the primal and dual spaces:

‖x‖B = 〈Bx, x〉1/2, x ∈ E, ‖s‖B = 〈s,B−1s〉1/2, s ∈ E∗.

The sense of this notation is determined by the space of arguments. We use the following
notation for ellipsoids in E:

EB(x, r) = {u ∈ E : ‖u− x‖B ≤ r}.

If in this notation parameter r is missing, then r = 1.
For the future references, let us recall some facts from the theory of self-concordant

functions. Most of these results can be found in Section 4 in [9]. We use the following
notation for gradient and Hessian of function Φ:

∇Φ(x) ∈ E∗, ∇2Φ(x) · h ∈ E∗, x, h ∈ E.

Let Φ be a self-concordant function defined on the interior of a convex set Q ⊂ E:

∇3Φ(x)[h, h, h] ≤ 2〈∇2Φ(x)h, h〉3/2, x ∈ intQ, h ∈ E, (1.1)

where ∇3Φ(x)[h1, h2, h3] is the third differential of function Φ at point x along the corre-
sponding directions h1, h2, h3. Note that ∇3Φ(x)[h1, h2, h3] is a trilinear symmetric form.
Thus,

∇3Φ(x)[h1, h2] = ∇3Φ(x)[h2, h1] ∈ E∗,
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and ∇3Φ(x)[h] is a self-adjoint linear operator from E to E∗.
Assume that Q contains no straight line. Then ∇2Φ(u) is nondegenerate for any

u ∈ intQ. Self-concordant function Φ is called ν-self-concordant barrier if

〈∇Φ(u), [∇2Φ(u)]−1∇Φ(u)〉 ≤ ν. (1.2)

For local norms related to self-concordant functions we use the following concise notation:

‖h‖u = 〈∇2Φ(u)h, h〉1/2, h ∈ E,

‖s‖u = 〈s, [∇2Φ(u)]−1s〉1/2, s ∈ E∗.

Thus, inequality (1.2) can be written as ‖∇Φ(u)‖2u ≤ ν.
For u ∈ intQ define the Dikin ellipsoid Wr(u) def= E∇2Φ(u)(u, r). Then Wr(u) ⊂ Q for

all r ∈ [0, 1).

Theorem 1 (Theorem on Recession Direction; see Section 4 in [9] for the proof.) If h is
a recession direction of the set Q, then

‖h‖u ≤ 〈−∇Φ(u), h〉. (1.3)

If v ∈Wr(u), then

〈∇Φ(v)−∇Φ(u), v − u〉 ≥ r2

1+r , r ≥ 0. (1.4)

For r ∈ [0, 1) we have

(1− r)2∇2Φ(u) � ∇2Φ(v) � 1
(1−r)2∇2Φ(u), (1.5)

‖∇Φ(v)−∇Φ(u)‖u ≤ r
1−r , (1.6)

‖∇Φ(v)−∇Φ(u)−∇2Φ(u)(v − u)‖u ≤ r2

1−r . (1.7)

Finally, we need several statements on barriers for convex cones. We call cone K ⊂ E
regular if it is a closed, convex, and pointed cone with nonempty interior. Sometimes it
is convenient to write inclusion x ∈ K in the form x �K 0.

If K is regular, then the dual cone

K∗ = {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K } ,

is also regular. For cone K, we assume available a ν-normal barrier F (x). This means
that F is self-concordant and ν-logarithmically homogeneous:

F (τx) = F (x)− ν ln τ, x ∈ intK, τ > 0. (1.8)

Note that −∇F (x) ∈ intK∗ for every x ∈ intK. Equality (1.8) leads to many interesting
identities:

∇F (τx) = τ−1 · ∇F (x), (1.9)
∇2F (τx) = τ−2 · ∇2F (x), (1.10)
〈∇F (x), x〉 = −ν, (1.11)
∇2F (x) · x = −∇F (x), (1.12)
∇3F (x)[x] = −2∇2F (x), (1.13)
‖∇F (x)‖2x = ν, (1.14)
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where x ∈ intK and τ > 0. Note that the dual barrier

F∗(s) = max
x∈intK

{ −〈s, x〉 − F (x) }

is a ν-normal barrier for cone K∗. The differential characteristics of the primal and dual
barriers are related as follows:

∇F (−∇F∗(s)) = −s, ∇2F (−∇F∗(s)) = [∇2F∗(s)]−1,

∇F∗(−∇F (x)) = −x, ∇2F∗(−∇F (x)) = [∇2F (x)]−1,
(1.15)

where x ∈ intK and s ∈ intK∗.
For normal barriers, the Theorem on Recession Direction (1.3) can be written both in

primal and dual forms:

‖u‖x ≤ 〈−∇F (x), u〉, x ∈ intK,u ∈ K, (1.16)
‖s‖x ≤ 〈s, x〉, x ∈ intK, s ∈ K∗. (1.17)

The following statement is very useful.

Lemma 1 Let F be a ν-normal barrier for K and B � 0. Assume that EB(u) ⊂ K and
for x ∈ intK we have

〈∇F (x), u− x〉 ≥ 0.

Then B � 1
4ν2∇2F (x).

Proof:
Let us fix an arbitrary direction h ∈ E∗. We can assume that

〈∇F (x), B−1h〉 ≥ 0, (1.18)

(otherwise, multiply h by −1). Denote y = u+ B−1h
‖h‖B . Then y ∈ K. Therefore,

‖B−1h‖x
‖h‖B ≤ ‖u‖x + ‖y‖x

(1.16)

≤ 〈−∇F (x), u〉+ 〈−∇F (x), y〉

(1.18)

≤ 2〈−∇F (x), u〉
(1.11)

≤ 2ν.

Thus, B−1∇2F (x)B−1 � 4ν2B−1. 2

Corollary 1 Let x, u ∈ intK and 〈∇F (x), u− x〉 ≥ 0. Then ∇2F (u) � 1
4ν2∇2F (x).

Corollary 2 Let x ∈ intK and u ∈ K. Then ∇2F (x+ u) � 4ν2∇2F (x).

Proof:
Denote y = x+u ∈ intK. Then 〈∇F (y), x− y〉 = 〈−∇F (y), u〉 ≥ 0. Hence, we can apply
Corollary 1. 2

To conclude with notation, let us introduce the following relative measure for directions
in E:

σx(h) = min
ρ≥0
{ρ : ρ · x− h ∈ K} ≤ ‖h‖x, x ∈ intK, h ∈ E. (1.19)
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2 Prediction from neighborhood of central path

Consider the standard conic optimization problem:

min
x∈K
{ 〈c, x〉 : Ax = b } , (2.1)

where c ∈ E∗, b ∈ H∗, A is a linear transformation from E to H∗, and K ⊂ E is a regular
cone. The problem dual to (2.1) is then

max
s∈K∗, y∈H

{〈b, y〉 : s+A∗y = c } . (2.2)

Note that the feasible points of the primal and dual problems move in the orthogonal
subspaces:

〈s1 − s2, x1 − x2〉 = 0 (2.3)

for all x1, x2 ∈ Fp
def= {x ∈ K : Ax = b}, and s1, s2 ∈ Fd

def= {s ∈ K∗ : s+A∗y = c}.
Under the strict feasibility assumption,

∃ x0 ∈ intK, s0 ∈ intK∗, y0 ∈ H : Ax0 = b, s0 +A∗y0 = c, (2.4)

the optimal sets of the primal and dual problems are nonempty and bounded, and there
is no duality gap. Moreover, a primal-dual central path zµ

def= (xµ, sµ, yµ):

Axµ = b,

c+ µ∇F (xµ) = A∗yµ,

sµ = −µ∇F (xµ)

 , µ > 0, (2.5)

is well defined. Note that

〈c, xµ〉 − 〈b, yµ〉 = 〈sµ, xµ〉
(2.5),(1.11)

= ν · µ. (2.6)

The majority of modern strategies for solving the primal-dual problem pair (2.1), (2.2)
suggest to follow this trajectory as µ → 0. On the one hand, it is important that µ be
decreased at a linear rate to attain a polynomial-time complexity. However, in a small
neighborhood of the solution, it is highly desirable to switch on a super-linear rate. Such
a possibility was already discovered for Linear Programming problems [15, 8]. There has
also been significant progress in the case of Semidefinite Programming [6, 13, 7, 5]. In
this paper, we study more general conic problems.

For a fast local convergence of a path-following scheme, we need to show that the
predicted point

ẑµ = zµ − z′µ · µ

enters a small neighborhood of the solution point

z∗ = lim
µ→0

zµ = (x∗, s∗, y∗).

It is more convenient to analyze this situation by looking at y-component of the central
path.
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Note that s-component of the dual problem (2.2) can be easily eliminated:

s = s(y) def= c−A∗y.

Then, the remaining part of the dual problem can be written in a more concise full-
dimensional form:

f∗
def= max

y∈H
{ 〈b, y〉 : y ∈ Q},

Q
def= {y ∈ H : c−A∗y ∈ K∗}.

(2.7)

In view of Assumption (2.4), the interior of set Q is nonempty. Moreover, for this set we
have a ν-self-concordant barrier

f(y) = F∗(c−A∗y), y ∈ intQ.

Since the optimal set of problem (2.7) is bounded, Q contains no straight line. Thus, this
barrier has nondegenerate Hessian at any strictly feasible point. Note that Assumption
(2.4), also implies that the linear transformation A is surjective.

It is clear that y-component of the primal-dual central path zµ coincides with the
central path of the problem (2.7):

b = µ∇f(yµ) = −µA∇F∗(c−A∗yµ)

= −µA∇F∗(sµ)
(1.9),(1.15)

= Axµ, µ > 0.
(2.8)

Let us estimate the quality of the following prediction point:

p(y) def= y + v(y), y ∈ intQ,

v(y) def= [∇2f(y)]−1∇f(y), sp(y) def= s(y)−A∗v(y).

Indeed, in a neighborhood of a non-degenerate solution, the barrier function should be
close to the barrier of a tangent cone centered at the solution. Hence, the relation (1.12)
should be satisfied with a reasonably high accuracy.

For every y ∈ intQ, we have

p(y) = [∇2f(y)]−1 ·
[
∇2f(y)y +∇f(y)

]
= [∇2f(y)]−1 ·

[
A∇2F∗(c−A∗y)A∗y − A∇F∗(c−A∗y)

]
(1.12)

= [∇2f(y)]−1 ·
[
A∇2F∗(c−A∗y)A∗y + A∇2F∗(c−A∗y)(c−A∗y)

]
= [∇2f(y)]−1A∇2F∗(c−A∗y) · c.

Let us choose an arbitrary pair (s∗, y∗) from the optimal solution set of the problem (2.2).
Then,

c = A∗y∗ + s∗.

Thus, we have proved the following representation.
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Lemma 2 For every y ∈ intQ and every optimal pair (s∗, y∗) of dual problem (2.2) we
have

p(y) = y∗ + [∇2f(y)]−1A∇2F∗(s(y)) · s∗. (2.9)

Remark 1 Note that the right-hand side of equation (2.9) has a gradient interpretation.
Indeed, let us fix some s ∈ K∗ and define the function

φs(y) = −〈s,∇F∗(c−A∗y)〉, y ∈ Q.

Then ∇φs(y) = A∇2F (c−A∗y) · s, and, for self-scaled barriers φs(·) is convex (as well as
for the barriers with negative curvature, see Section 4) . Thus, the representation (2.9)
can be rewritten as follows:

p(y) = y∗ + [∇2f(y)]−1∇φs∗(y). (2.10)

Note that [∇2f(y)]−1 in the limit acts as a projector onto the tangent subspace to the
feasible set at the solution.

For some problems with simple structure, we can guarantee that the product of ma-
trix [∇2f(y)]−1 by the vector A∇2F∗(c − A∗y)s∗ is small in norm. However, in more
general situations, we need to apply stronger assumptions. Namely, we are going to show
that, under certain conditions, vector ∇2F∗(c−A∗y)s∗ is bounded and matrix [∇2f(y)]−1

becomes small in norm as y approaches y∗.
The global complexity analysis of interior-point methods is done in an affine-invariant

framework. However, for analyzing the local convergence of these schemes, we need to fix
some norms in the primal and dual spaces. For simplicity, let us choose them Euclidean.
We recall the definitions of Euclidean norms based on B and using B, we define G below:

‖x‖B = 〈Bx, x〉1/2, x ∈ E, ‖s‖B = 〈s,B−1s〉1/2, s ∈ E∗,

G
def= AB−1A∗,

(2.11)

where the operator B : E → E∗ is self-adjoint and positive definite. Thus, using a Schur
complement argument and the fact that A is surjective, we have

A∗G−1A � B. (2.12)

It is convenient to choose B related in a certain way to the primal central path. Let us
define

B = ∇2F (x1) (2.13)

and establish some natural bounds related to the points of the primal central path.

Lemma 3 If µ1 ≤ µ0, then
‖xµ1‖xµ0

≤ ν. (2.14)

In particular, for any µ ≤ 1 we have:

‖xµ‖2B ≤ ν2. (2.15)

Moreover,

∇2F (xµ) � 1
4ν2∇2F (x1)

(2.13)
= 1

4ν2B. (2.16)
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Proof:
Indeed,

‖xµ1‖xµ0

(1.16)

≤ 〈−∇F (xµ0), xµ1〉2 = 1
µ2

0
〈sµ0 , xµ1〉2

(2.5)
= 1

µ2
0
[〈c, xµ1〉 − 〈b, yµ0〉]2

(2.6)

≤ ν2.

The last inequality also uses the fact that 〈c, xµ1〉 ≤ 〈c, xµ0〉. Therefore, by (2.13) we
obtain (2.15). Finally,

〈∇F (x1), xµ − x1〉
(2.5)
= 〈c, x1 − xµ〉 ≥ 0.

Therefore, applying Corollary 1, we get (2.16). 2

Now we can introduce our main assumptions.

Assumption 1 There exists a constant γd > 0 such that

f∗ − 〈b, y〉 = 〈s, x∗〉 ≥ γd‖s− s∗‖B ≡ γd‖y − y∗‖G, (2.17)

for every y ∈ Q (that is s = s(y) ∈ Fd).

Thus, we assume that the dual problem (2.2) admits a sharp optimal solution. We
need one more assumption.

Assumption 2 There exists a constant σd such that for any µ ≤ 1 we have

‖∇2F∗(sµ)s∗‖B ≤ σd. (2.18)

In what follows, we always suppose that these assumptions are valid. Let us look how
they work in some important special cases.

Example 1 Consider the nonnegative orthant K = K∗ = Rn
+ with barriers

F (x) = −
n∑
i=1

lnx(i), F∗(s) = n−
n∑
i=1

ln s(i).

Denote by I∗ the set of positive components of the optimal dual solution s∗. Then denoting
by e the vector of all ones, we have

〈e,∇2F∗(sµ)s∗〉 =
∑
i∈I∗

s
(i)
∗

(s
(i)
µ )2

=
∑
i∈I∗

1

s
(i)
∗

(
s
(i)
∗
s
(i)
µ

)2

≤ ‖s∗‖sµ max
i∈I∗

1

s
(i)
∗

(2.14)

≤ max
i∈I∗

ν

s
(i)
∗
.

Since vector ∇2F∗(sµ)s∗ is nonnegative, we obtain for it an upper bound in terms of
max
i∈I∗

ν

s
(i)
∗

. Note that this bound is finite even for degenerate dual solution.

It is interesting, that we can find a bound for vector F∗(sµ)s∗ based on the properties
of the primal central path. Indeed, for all i ∈ I∗, we have

(
∇2F∗(sµ)s∗)

)(i) = s
(i)
∗

(s
(i)
µ )2

= s
(i)
∗ ·

(x
(i)
µ )2

µ2 = s
(i)
∗ ·

(
x

(i)
µ −x

(i)
∗

µ

)2

.
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Thus, assuming ‖xµ − x∗‖ ≤ O(µ), we get a bound for F∗(sµ)s∗. Note that the latter
assumption is weaker than assuming that the primal problem admits a sharp solution. It
is even weaker than assuming differentiability of the primal trajectory xµ at µ = 0.

For the cone of positive-semidefinite matrices K = K∗ = Sn+, we choose

F (X) = − ln detX, F∗(S) = n− ln detS.

Then,
〈I,∇2F∗(Sµ)S∗〉 = 〈I, S−1

µ S∗S
−1
µ 〉.

It seems difficult to get an upper bound for this value in terms of ‖S∗‖Sµ = 〈S−1
µ S∗S

−1
µ , S∗〉.

However, the second approach also works here:

〈I, S−1
µ S∗S

−1
µ 〉 = µ−2〈X2

µ, S∗〉 = µ−2〈(Xµ −X∗)2, S∗〉.

Thus, we get an upper bound for ‖∇2F∗(Sµ)S∗‖ assuming ‖Xµ−X∗‖ ≤ O(µ). Again, this
condition is weaker than assuming that the primal problem admits a sharp solution. It is
also weaker than assuming differentiability of the primal central path at µ = 0. 2

Let us derive from Assumption 1 that [∇2f(y)]−1 becomes small in norm as y ap-
proaches y∗.

Lemma 4 For every y ∈ intQ, we have

[∇2f(y)]−1 � 4
γ2
d
[f∗ − 〈b, y〉]2 ·G−1. (2.19)

Proof:
Let us fix some y ∈ intQ. Consider an arbitrary direction h ∈ H∗. Without loss of gener-
ality, we may assume that 〈b, [∇2f(y)]−1h〉 ≥ 0 (otherwise, we can consider direction −h).
Since f is a self-concordant barrier, the point

yh
def= y + [∇2f(y)]−1h

〈h,[∇2f(y)]−1h〉1/2

belongs to the set Q. Therefore, in view of inequality (2.17), we have

γd‖yh − y∗‖G ≤ f∗ − 〈b, yh〉 ≤ f∗ − 〈b, y〉.

Hence,
1
γd

[f∗ − 〈b, y〉] ≥ ‖[∇2f(y)]−1h‖G
〈h,[∇2f(y)]−1h〉1/2 − ‖y − y∗‖G

(2.17)

≥ ‖[∇2f(y)]−1h‖G
〈h,[∇2f(y)]−1h〉1/2 −

1
γd

[f∗ − 〈b, y〉].

Thus, for any h ∈ H∗ we have

‖[∇2f(y)]−1h‖2G ≤ 4
γ2
d
[f∗ − 〈b, y〉]2 · 〈h, [∇2f(y)]−1h〉.

This means that

[∇2f(y)]−1G[∇2f(y)]−1 � 4
γ2
d
[f∗ − 〈b, y〉]2[∇2f(y)]−1,
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and (2.19) follows. 2

Now, we can also estimate the size of the Hessian with respect to the norm induced
by G. We define

‖[∇2f(y)]−1‖G
def= max

h∈H∗

{
‖[∇2f(y)]−1h‖G : ‖h‖G = 1

}
.

Corollary 3 For every y ∈ intQ, we have

‖[∇2f(y)]−1‖G ≤ 4
γ2
d
[f∗ − 〈b, y〉]2. (2.20)

Therefore, ‖v(y)‖G ≤ 2ν1/2

γd
[f∗ − 〈b, y〉].

Proof:
Note that

‖[∇2f(y)]−1h‖2G = 〈h, [∇2f(y)]−1G[∇2f(y)]−1h〉, h ∈ H∗.

Hence, (2.20) follows directly from (2.19). Further,

‖v(y)‖2G = 〈G[∇2f(y)]−1∇f(y), [∇2f(y)]−1∇f(y)〉

(2.19)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2〈∇f(y), [∇2f(y)]−1∇f(y)〉.

It remains to use inequality (1.2). 2

Before proving the main result of this section, we need to estimate the norm of the
initial data.

Lemma 5 We have

‖A‖G
def= max

h∈E
{‖Ah‖G : ‖h‖B = 1} ≤ 1,

‖b‖2G ≤ ν.

(2.21)

Proof:
Indeed, for any h ∈ E, we have

‖Ah‖2G = 〈Ah,G−1Ah〉 = max
y∈H

[2〈Ah, y〉 − 〈Gy, y〉]

= max
y∈H

[
2〈A∗y, h〉 − 〈A∗y,B−1A∗y〉

]
≤ max

s∈E∗

[
2〈s, h〉 − 〈s,B−1s〉

]
= ‖h‖2B.
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For justifying the second inequality, note that

‖b‖2G = 〈b,G−1b〉 = max
y∈H

[
2〈b, y〉 − 〈A∗y,B−1A∗y〉

]
= max

y∈H

[
2〈A∗y, x1〉 − 〈A∗y,B−1A∗y〉

]
≤ max

s∈E∗

[
2〈s, x1〉 − 〈s,B−1s〉

]
= 〈Bx1, x1〉

(2.13)
= 〈∇2F (x1)x1, x1〉

(1.11),(1.12)
= ν.

2

We will work with points in a small neighborhood of the central path defined by the
local gradient proximity measure. Denote

N (µ, β) =
{
y ∈ H : γ(y, µ) def= ‖∇f(y)− 1

µb‖y ≤ β
}
, µ ∈ (0, 1], β ∈ (0, 1

2).
(2.22)

This proximity measure has a very familiar interpretation in the special case of Linear
Programming. Denoting by S the diagonal matrix made up from the slack variable s = c−
AT y, notice that Dikin’s affine scaling direction in this case is given by

[
AS−2AT

]−1
b. Our

predictor step corresponds to the search direction
[
AS−2AT

]−1
AS−1e. Our proximity

measure becomes ∥∥∥AS−1e− 1
µb
∥∥∥
AS−2AT

.

Lemma 6 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ (0, 1
2). Then

‖∇2F∗(s(y))s∗‖B ≤ σd(1− β)2

(1− 2β)2
, (2.23)

f∗ − 〈b, y〉 ≤ κ1 · µ, (2.24)

where κ1 = ν + β(β+
√
ν)

1−β .

Proof:
Indeed,

‖s(y)− sµ‖s(y) = 〈∇2F∗(s(y))A∗(y − yµ), A∗(y − yµ)〉1/2

= ‖y − yµ‖y
def= r ≤ β

1−β .

(for the last inequality we used (1.4)). Therefore, by (1.5) we have

∇2F (s(y)) � 1
(1−r)2∇2F (sµ) � (1−β)2

(1−2β)2∇2F (sµ).

Thus,
‖∇2F∗(s(y))s∗‖2B = 〈(B1/2∇2F∗(s(y))B1/2)2B−1/2s∗, B

−1/2s∗〉

≤ (1−β)4

(1−2β)4 ‖∇2F∗(sµ)s∗‖2B.



November 13, 2009 12

Now, (2.23) follows from Assumption 2.
To establish (2.24), note that

1
µ [f∗ − 〈b, y〉] = 1

µ [〈b, y∗ − yµ〉 − 〈b, yµ − y〉]

(2.6)

≤ ν + 〈 bµ , yµ − y〉

= ν + 〈−∇f(y) + b
µ , yµ − y〉+ 〈∇f(y), yµ − y〉

≤ ν + ‖∇f(y)− b
µ‖y · ‖y − yµ‖y + ‖∇f(y)‖y · ‖y − yµ‖y

≤ ν + β β
1−β +

√
ν β

1−β ,

where the last inequality follows from the assumptions of the lemma and (1.2). 2

Now, we can put all our observations together.

Theorem 2 Let dual problem (2.2) satisfy Assumptions 1 and 2. If for some µ ∈ (0, 1]
and β ∈ (0, 1

2) we have y ∈ N (µ, β), then

‖p(y)− y∗‖G ≤ 4σd(1−β)2

γ2
d(1−2β)2 〈b, y − y∗〉2 ≤

4ν(1−β)2σd
γ2
d(1−2β)2 · ‖y − y∗‖2G. (2.25)

Proof:
Indeed, in view of representation (2.9), we have

‖p(y)− y∗‖G ≤ ‖[∇2f(y)]−1‖G · ‖A‖G · ‖∇2F∗(s(y))s∗‖B.

Now, we can use inequalities (2.20), (2.21), and (2.23). For justifying the second inequality,
we apply the second bound in (2.21). 2

3 Efficiency of predictor step

Let us estimate now the efficiency of the predictor step with respect to the local norm.

Lemma 7 If y ∈ N (µ, β), then

‖p(y)− y∗‖y ≤ κ2 · [f∗ − 〈b, y〉] ≤ µ · κ, (3.1)

where κ2 = 2σd(1−β)2

γd(1−2β)2 , and κ = κ1 · κ2.

Proof:
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Indeed,

‖p(y)− y∗‖2y
(2.9)
= 〈A∇2F∗(s(y))s∗, [∇2f(y)]−1A∇2F∗(s(y))s∗〉

(2.19)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2〈A∇2F∗(s(y))s∗, G−1A∇2F∗(s(y))s∗〉

(2.12)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2〈B∇2F∗(s(y))s∗,∇2F∗(s(y))s∗〉.

It remains to use the bounds (2.23) and (2.24). 2

Since ‖y∗ − y‖y ≥ 1, inequality (3.1) demonstrates a significant drop in the distance
to the optimal point after a full predictor step. The following fact is also useful.

Lemma 8 For every y ∈ Q we have A · ∇2F∗(s(y)) · sp(y) = 0.

Proof:
Indeed,

A∇2F∗(s(y))sp(y) = A∇2F∗(s(y))(s(y)−A∗v(y))

(1.12)
= −A∇F (s(y))−∇f(y) = 0.

2

Corollary 4 If Fp is bounded, then the point ∇2F∗(s(y)) · sp(y) /∈ K (therefore, it is
infeasible for the primal problem (2.1)).

We can show now that a large predictor step can still keep dual feasibility. Denote

y(α) = y + αv(y), α ∈ [0, 1].

Theorem 3 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ (0, 1
2). Then, for every r ∈ (0, 1),

the point y(α̂) with
α̂

def= r
r+κ2[f∗−〈b,y〉] (3.2)

belongs to Q. Moreover,

f∗ − 〈b, y(α̂)〉 ≤ κ3 · [f∗ − 〈b, y〉]2, (3.3)

where κ3 = κ2 ·
(

1
r + 2

√
ν

γd

)
.

Proof:
Consider the Dikin ellipsoid Wr(y) = {u ∈ H : ‖u − y‖y ≤ r}. Since Wr(y) ⊂ Q, its
convex combination with point y∗, defined as

Q(y) = {u ∈ H : ‖u− (1− t)y − ty∗‖y ≤ r(1− t), t ∈ [0, 1]},
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is contained in Q. Note that

‖y(α̂)− (1− α̂)y − α̂y∗‖y = α̂‖p(y)− y∗‖y

(3.1)

≤ κ2α̂[f∗ − 〈b, y〉] (3.2)
= r(1− α̂).

Hence, y(α̂) ∈ Q. Further,

f∗ − 〈b, y(α̂)〉 = (1− α̂)[f∗ − 〈b, y〉] + α̂〈b, y∗ − p(y)〉

≤ κ2
r [f∗ − 〈b, y〉]2 + ‖b‖G · ‖p(y)− y∗‖G.

Since ‖b‖G
(2.21)

≤
√
ν and

‖p(y)− y∗‖G
(2.25)

≤ 2κ2
γd

[f∗ − 〈b, y〉]2,

we obtain the desired inequality (3.3). 2

Denote by ᾱ(y), the maximal feasible step along direction v(y):

ᾱ(y) = max
α≥0
{α : y + αv(y) ∈ Q}.

Let us show that ᾱ = ᾱ(y) is big enough. In general,

ᾱ(y) ≥ 1
‖v(y)‖y

(1.2)

≥ 1
ν1/2 . (3.4)

However, in a small neighborhood of the solution, we can establish a better bound.

Corollary 5 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ (0, 1
2). Then

1− ᾱ(y) ≤ κµ
1+κµ , (3.5)

‖y(ᾱ)− y∗‖y ≤ (1 +
√
ν)κµ. (3.6)

Proof:
Since for any r ∈ (0, 1)

ᾱ
(3.2)

≥ α̂ = r
r+κ2[f∗−〈b,y〉] ,

we have 1− ᾱ ≤ κ2[f∗−〈b,y〉]
1+κ2[f∗−〈b,y〉]

(2.24)

≤ κµ
1+κµ . Further,

‖y(ᾱ)− y∗‖y ≤ ‖y(ᾱ)− p(y)‖y + ‖p(y)− y∗‖y
(3.1)

≤ (1− ᾱ)‖v(y)‖y + κ · µ

(1.2)

≤ (1− ᾱ)
√
ν + κ · µ.

It remains to apply the inequality (3.5). 2



November 13, 2009 15

Despite the extremely good progress in function value, we have to worry about the
distance to the central path and we cannot yet appreciate the new point y(α̂). Indeed,
for getting close again to the central path, we need to find an approximate solution to the
auxiliary problem

min
y
{f(y) : 〈b, y〉 = 〈b, y(α̂)〉}.

In order to estimate the complexity of this corrector stage, we need to develop some
bounds on the growth of the gradient proximity measure.

4 Recession coefficient of barrier function

Definition 1 We call γF recession coefficient of the normal barrier F if it is the smallest
positive constant such that for every x ∈ intK and u ∈ K we have

∇2F (x+ u) � γF · ∇2F (x). (4.1)

Clearly, γF ≥ 1. On the other hand, in view of Corollary 2, we have

γF ≤ 4ν2. (4.2)

However, very often this upper bound is very pessimistic. Note that the following main
operations with convex cones do not increase this coefficient.

Theorem 4 1. Let F be a normal barrier for the cone K, and

KA = {x ∈ K : Ax = 0}.

Denote by f the restriction of F onto the relative interior of KA. Then γf ≤ γF .

2. Let Fi, i = 1, 2, be normal barriers for cones Ki ⊂ E. Denote F = F1 + F2. If
int (K1

⋂
K2) 6= ∅, then γF ≤ max{γF1 , γF2}.

3. Let Fi, i = 1, 2, be normal barriers for cones Ki ⊂ Ei. Denote F (x, y) = F1(x) +
F2(y). Then γF ≤ max{γF1 , γF2}.

Thus, all barriers constructed as sums or direct products of small-dimensional cones
have small recession coefficients. On the other hand, restriction of such barriers onto linear
subspaces does not increase the recession coefficient. It remains to note that there exists
an important family of normal barriers with minimal value of the recession coefficient.

Definition 2 Let F be a normal barrier for the regular cone K. We say that F has
negative curvature if for every x ∈ intK and h ∈ K we have

∇3F (x)[h] � 0. (4.3)

Thus, for such a barrier γF = 1. It is clear that self-scaled barriers have negative curvature
(see [12]). Some other important barriers, like the logarithms of hyperbolic polynomials
(see [4]) also share this property.
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Theorem 5 Let K be a regular cone and F be a normal barrier for K. Then, the fol-
lowing statements are equivalent:

1. F has negative curvature;

2. for every x ∈ intK and h ∈ E we have

−∇3F (x)[h, h] ∈ K∗; (4.4)

3. for every x ∈ intK and for every h ∈ E such that x+ h ∈ intK, we have

∇F (x+ h)−∇F (x) �K∗ ∇2F (x)h. (4.5)

Proof:
Let F have negative curvature. Then, for every h ∈ E and u ∈ K we have

0 ≥ ∇3F (x)[h, h, u] = 〈∇3F (x)[h, h], u〉. (4.6)

Clearly, this condition is equivalent to (4.4). On the other hand, from (4.4) we have

∇F (x+ h)−∇F (x)−∇2F (x)h =
1∫
0

∇3F (x+ τh)[h, h] dτ �K∗ 0.

Note that we can replace in (4.5) h by τh, divide everything by τ2, and take the limit as
τ → 0+. Then we arrive back at the inclusion (4.4). 2

Theorem 6 Let the curvature of F be negative. Then for every x ∈ K, we have

∇2F (x)h �K∗ 0, ∀h ∈ K, (4.7)

and, consequently,
∇F (x+ h)−∇F (x) �K∗ 0. (4.8)

Proof:
Let us prove that ∇2F (x)h ∈ K∗ for h ∈ K. Assume first that h ∈ intK. Consider the
following vector function:

s(t) = ∇2F (x+ th)h ∈ E∗, t ≥ 0.

Note that s′(t) = ∇3F (x+ th)[h, h]
(4.4)

�K∗ 0. This means that

∇2F (x)h �K∗ ∇2F (x+ th)h
(1.10)

= 1
t2
∇2F (h+ 1

tx)h.

Taking the limit as t → ∞, we get ∇2F (x)h ∈ K∗. By continuity arguments, we can
extend this inclusion onto all h ∈ K. Therefore,

∇F (x+ h) = ∇F (x) +
1∫
0

∇2F (x+ τh)h dτ �K∗ ∇F (x).

2

As we have proved, if F has negative curvature, then ∇2F (x)K ⊆ K∗, for every
x ∈ intK. This property implies that the situations when both F and F∗ has negative
curvature are very seldom.
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Lemma 9 Let both F and F ∗ have negative curvature. Then K is a symmetric cone.

Proof:
Indeed, for every x ∈ intK we have ∇2F (x)K ⊆ K∗. Denote s = −∇F (x). Since F∗
has negative curvature, then ∇2F∗(s)K∗ ⊆ K. However, since ∇2F∗(s)

(1.15)
= [∇2F (x)]−1,

this means K∗ ⊆ ∇2F (x)K. Thus K∗ = ∇2F (x)K. Now, using the same arguments
as in [12] it is easy to prove that for every pair x ∈ intK and s ∈ intK∗ there exists a
scaling point w ∈ intK such that s = ∇2F (w)x (this w can be taken as the minimizer of
the convex function −〈∇F (w), x〉+ 〈s, w〉). Thus, we have proved that K is homogeneous
and self-dual. Hence, it is symmetric. 2

Remark 2 Lemma 9 shows that the value γF + γF ∗ − 2 can be seen as a measure of the
distance between the pair (F, F∗) and the family of self-scaled barriers.

The following statement demonstrates the importance of the recession coefficient.

Theorem 7 Let K be a regular cone and F be a normal barrier for K. Further let
x, x+ h ∈ intK. Then for every α ∈ [0, 1) we have

1
γF (1+ασx(h))2∇2F (x) � ∇2F (x+ αh) � γF

(1−α)2∇2F (x). (4.9)

Proof:
Indeed,

∇2F (x+ αh) = ∇2F ((1− α)x+ α(x+ h))

(4.1)

� γF · ∇2F ((1− α)x)
(1.10)

= γF
(1−α)2∇2F (x).

Further, denote x̄ = x− h
σx(h) . By definition, x̄ ∈ K. Note that

x = (x+ αh) + ασx(h)
1+ασx(h)(x̄− (x+ αh)).

Therefore, by the second inequality in (4.9), we have

∇2F (x) � γF (1 + ασx(h))2∇2F (x+ αh).

2

5 Bounding the growth of the proximity measure

Let us analyze now our predictor step

y(α) = y + αv(y), α ∈ [0, ᾱ],

where ᾱ = ᾱ(y). Denote s̄ = s(y(ᾱ)) ∈ K∗.
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Lemma 10 For every α ∈ [0, ᾱ), we have

δy(α) def= ‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖G ≤ αγF∗

ᾱ−α ‖∇
2F∗(s(y))s̄‖B. (5.1)

Proof:
Indeed,

δ2
y(α) = 〈G−1(∇f(y(α))− ᾱ

ᾱ−α∇f(y)),∇f(y(α))− ᾱ
ᾱ−α∇f(y)〉

= 〈G−1A∗(∇F∗(s(y(α)))− ᾱ
ᾱ−α∇F∗(s(y))), A∗(∇F∗(s(y(α)))− ᾱ

ᾱ−α∇F∗(s(y)))〉

(2.12)

≤ 〈B(∇F∗(s(y(α)))−∇F∗((1− α
ᾱ)s(y))),∇F∗(s(y(α)))−∇F∗((1− α

ᾱ)s(y))〉.

Note that y(α) = y + α
ᾱ(y(ᾱ)− y). Therefore

s(y(α)) = (1− α
ᾱ)s(y) + α

ᾱ s̄.

Denote s′ = (1− α
ᾱ)s(y) and d = α

ᾱ s̄. Then

∇F∗(s(y(α)))−∇F∗((1− α
ᾱ)s(y)) =

(
1∫
0

∇2F∗(s′ + τd)dτ
)
· d def= C · d.

Note that 0 � C
(4.1)

� γF∗ · ∇2F∗(s′). Therefore,

δ2
y(α) ≤ 〈BCd,Cd〉 ≤ γ2

F∗

(
α
ᾱ

)2 〈B∇2F∗(s′)s̄,∇2F∗(s′)s̄〉

(1.10)
= γ2

F∗

(
α

ᾱ−α

)2
‖∇2F∗(s(y))s̄‖2B.

2

Note that at the predictor stage, we need to choose the rate of decrease of the penalty
parameter (central path parameter) µ as a function of the predictor step size α. Inequality
(5.1) suggests the following dependence:

µ(α) ≈
(
1− α

ᾱ

)
· µ. (5.2)

However, if ᾱ is close to its lower limit (3.4), this strategy may be too aggressive. Indeed,
in a small neighborhood of the point y we can guarantee only

‖∇f(y(α))− (1 + α)∇f(y)‖y = ‖∇f(y(α))−∇f(y)− α∇2f(y)v(y)‖y

(1.7)

≤ α2‖v(y)‖2y
1−α‖v(y)‖y .

(5.3)

In this situation, a more reasonable strategy for decreasing µ looks as follows:

µ(α) ≈ µ
1+α . (5.4)
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It appears that it is possible to combine both strategies (5.2) and (5.4) in a single expres-
sion. Denote

ξᾱ(α) = 1 + αᾱ
ᾱ−α , α ∈ [0, ᾱ).

Note that
ξᾱ(α) = 1 + α+ α2

ᾱ−α = ᾱ
ᾱ−α −

α(1−ᾱ)
ᾱ−α . (5.5)

Let us prove an upper bound for the growth of the local gradient proximity measure along
direction v(y), when the penalty parameter is dropped by the factor ξᾱ(α).

Theorem 8 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ (0, 1
2). Then for y(α) = y + αv(y)

with α ∈ (0, ᾱ) we have

γ
(
y(α), µ

ξᾱ(α)

)
≤ Γµ(y, α) def= γ

1/2
F∗

(
1 + α · σs(y) (−A∗v(y))

)
‖∇f(y(α))− ξᾱ(α)

µ · b‖y

≤ γ
1/2
F∗

(1 + α · σs(y)(−A∗v(y)))
[
γ1(α) + β ·

(
1 + αᾱ

ᾱ−α

)]
,

γ1(α) def= ‖∇f(y(α))− ξᾱ(α)∇f(y)‖y

≤ αµ
ᾱ−α ·

(
κ
√
ν + 2κ1γF∗

γd
·
[
σd(1−β)2

(1−2β)2 + 2κν(1 +
√
ν) 1−β

1−2β

])
.

Proof:
Indeed,

γ
(
y(α), µ

ξᾱ(α)

)
= ‖∇f(y(α))− ξᾱ(α)

µ · b‖y(α)

(4.9)

≤ γ
1/2
F∗

(1 + ασs(y)(−A∗v(y))) · ‖∇f(y(α))− ξᾱ(α)
µ · b‖y.

Further,
‖∇f(y(α))− ξᾱ(α)

µ · b‖y ≤ γ1(α) + ξᾱ(α)‖∇f(y)− 1
µb‖y.

Since y ∈ N (µ, β), the last term does not exceed β · ξᾱ(α). Let us estimate now γ1(α).

γ1(α)
(5.5)

≤ ‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖y + α(1−ᾱ)

ᾱ−α ‖∇f(y)‖y

(3.5)

≤ ‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖y + α

ᾱ−α ·
κµ
√
ν

1+κµ .

For the second inequality above, we also used (1.2). Note that

‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖2y

= 〈[∇2f(y)]−1(∇f(y(α))− ᾱ
ᾱ−α∇f(y)),∇f(y(α))− ᾱ

ᾱ−α∇f(y)〉

(2.19)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2 · ‖∇f(y(α))− ᾱ

ᾱ−α∇f(y)‖2G
(2.24)

≤ 4κ2
1µ

2

γ2
d
· δ2
y(α).
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Moreover,

δy(α)
(5.1)

≤ αγF∗
ᾱ−α ‖∇

2F∗(s(y))s̄‖B

≤ αγF∗
ᾱ−α

[
‖∇2F∗(s(y))s∗‖B + ‖∇2F∗(s(y))(s̄− s∗)‖B

]
(2.23)

≤ αγF∗
ᾱ−α

[
σd(1−β)2

(1−2β)2 + ‖∇2F∗(s(y))(s̄− s∗)‖B
]
.

It remains to estimate the last term.

Denote r = ‖s(y)− sµ‖s(y)

(1.4)

≤ β
1−β . Then

B
(2.16)

≤ 4ν2∇2F (xµ)
(2.5)
= 4ν2∇2F (−µ∇F∗(sµ))

(1.10),(1.15)
= 4ν2

µ2 [∇2F∗(sµ)]−1
(1.5)

≤ 4ν2

µ2(1−r)2 [∇2F∗(s(y))]−1.

Therefore,

‖∇2F∗(s(y))(s̄− s∗)‖B ≤ 2ν
µ(1−r)‖y(ᾱ)− y∗‖y

(3.6)

≤ 2κν(1 +
√
ν) · 1−β

1−2β .

Putting all the estimates together, we obtain the claimed upper bound on γ1(α).
2

Taking into account definition of ξᾱ(α), we can see that our predictor-corrector scheme
with centering parameter β = O(µ) has local quadratic convergence.

6 Polynomial-time path-following method

Let us show now that the predictor-corrector strategy described in Section 5 has polyno-
mial-time complexity.

Lemma 11 Let y ∈ N (µ, β) with β ≤ 1

18γ
1/2
F∗

. Then for all

α ∈
[
0, 1

6 γ
1/2
F∗ max{1,‖v(y)‖y}

]
(6.1)

we have Γµ(y, α) ≤ β′ def= 1
6 .

Proof:
Denote r = ‖v(y)‖y, and r̂ = max{1, ‖v(y)‖y}. For any α ∈ [0, 1

r̂ ) we have

Γµ(y, α)
(1.19)

≤ γ
1/2
F∗

(1 + αr) · ‖∇f(y(α))− ξᾱ(α)
µ · b‖y

(5.5)

≤ γ
1/2
F∗

(1 + αr) ·
(
‖∇f(y(α))− (1 + α)∇f(y)‖y + α2r

ᾱ−α + ξᾱ(α)‖∇f(y)− 1
µ · b‖y

)
(5.3),(3.4)

≤ γ
1/2
F∗

(1 + αr) ·
(

2α2r2

1−αr + β ·
[
1 + α

1−αr

])
≤ γ

1/2
F∗

(1 + αr̂) · 2α2r̂2+β
1−αr̂ .
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Hence, Γµ(y, α)
(6.1)

≤ γ
1/2
F∗

(
1 + 1

6 γ
−1/2
F∗

)
·

2
36
γ−1
F∗+ 1

18
γ
−1/2
F∗

1− 1
6
γ
−1/2
F∗

. Note that the maximum of the

right-hand side of this inequality is attained for γF∗ = 1. Therefore,

Γµ(y, α) ≤
(
1 + 1

6

)
· 6

5 ·
1
9 = 7

45 < 1
6 .

2

By Lemma 11, we can justify the polynomial-time complexity of the predictor-corrector
methods. For the sake of simplicity, let us consider a simple short-step path-following
method applied to a barrier with γF∗ = 1. We set

αk = 1
6·max{1,‖v(yk)‖yk}

, µk+1 = µk
ξᾱ(yk)(αk) ,

pk = yk + αk[∇2f(yk)]−1∇f(yk),

yk+1 = pk − [∇2f(pk)]−1
[
∇f(pk)− b

µk+1

]
.

(6.2)

Theorem 9 Let K be a regular cone and F∗ be a normal barrier for K∗ with negative
curvature. Also let y0 ∈ N (µ0,

1
18) for some µ0 > 0. Then, method (6.2) generates a

sequence of feasible points such that

f∗ − 〈b, yk〉 ≤ µ0κ1 exp
{
− k

1+6ν1/2

}
. (6.3)

Proof:
In view of Lemma 11, we have γ(pk, µk+1) ≤ β′. Therefore, a single Newton step decreases
the local norm of the gradient as follows:

γ(yk+1, µk+1) ≤
(

β′

1−β′
)2

< 1
18 .

Thus, we have yk ∈ N (µk, 1
18) for all k ≥ 0. Therefore,

f∗ − 〈b, yk〉
(2.24)

≤ κ1 · µk.

It remains to note that µk+1

(5.5)

≤ µk
1+αk

, and

1 + αk
(1.2)

≥ 1 + 1
6
√
ν
≥ exp

{
1

1+6ν1/2

}
.

2

In order to apply method (6.2) to barriers with γF∗ > 1, we need to change the
formulae for αk in accordance with (6.1) and introduce several corrector steps ensuring
γ(yk+1, µk+1) ≤ 1

18 . Lemma 11 guarantees that pk belongs to the region of quadratic
convergence of the Newton method. Hence, this corrector stage cannot be long.
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As we have seen in Theorem 8, method (6.2) can be accelerated. Define the following
univariate function:

ηᾱ(α) =
{

2α, α ∈ [0, 1
3 ᾱ],

α+ᾱ
2 , α ∈ [1

3 ᾱ, ᾱ].
(6.4)

This function will be used for updating the length of our predictor step.

Lemma 12 If α ≥ 0 and α+ = ηᾱ(α), then ξᾱ(α+) ≥ 2ξᾱ(α) − 1. Hence, for the
recurrence

αi+1 = ηᾱ(αi), i ≥ 0,

we have ξᾱ(αi) ≥ 1 + α0 · 2i.

Proof:
If α+ = 2α, then ξᾱ(α+) = 1 + 2αᾱ

ᾱ−2α ≥ 1 + 2αᾱ
ᾱ−α = 2ξᾱ(α)− 1. If α+ = α+ᾱ

2 , then

ξᾱ(α+) = 1 + ᾱ(ᾱ+α)
ᾱ−α = ξᾱ(α) + ᾱ2

ᾱ−α ≥ 2ξᾱ(α)− 1.

Therefore, ξᾱ(αi) ≥ 1 + (ξᾱ(α0)− 1) · 2i
(5.5)

≥ 1 + α0 · 2i. 2

Consider the following predictor-corrector process.

Path-following method based on recession coefficient

1. Set µ0 = 1 and find point y0 ∈ N
(
µ0,

1

18γ
1/2
F∗

)
.

2. For k ≥ 0 iterate:
a) Compute ᾱk = ᾱ(yk).
b) Using recurrence
αk,0 = 1

6·γ1/2
F∗ max{1,‖v(yk)‖yk}

, αk,i+1 = ηᾱk(αk,i),

find the maximal i ≡ ik such that Γµk(yk, αk,i) ≤ β′.
c) Set αk = αk,ik , pk = yk + αkv(yk), µk+1 = µk

ξᾱk (αk) .
d) Starting from pk, apply the Newton method for

finding yk+1 ∈ N
(
µk+1,

µk+1

18γ
1/2
F∗

)
.

(6.5)

As for method (6.2), we can prove for (6.5) the polynomial complexity bound:

f∗ − 〈b, yk〉 ≤ µ0κ1 exp
{
− k

1+6 γ
1/2
F∗ ν

1/2

}
. (6.6)

On the other hand, in a small neighborhood of the solution, (6.5) can accelerate up to
local quadratic convergence.

In this scheme we have two search procedures. The recurrence at Step 2b is trying to
maximize the predictor step. Number of iterations in this process cannot be too large.
In fact, each successful iteration results in a significant decrease of the penalty parameter
(see Lemma 12). Therefore, the rate of convergence (6.6) of method (6.5) can be related
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to the total number of steps in this line search procedure. Note that computation of the
estimate Γµk(yk, α) for different values of α is cheap since it does not require new matrix
inversions. We pay for that by the presence of factor γ1/2

F∗
in the rate of convergence (6.6).

However, we have already argued at the beginning of Section 4, that in the majority of
practical problems this factor is a small absolute constant.

The auxiliary minimization process on Step 2d cannot be too long either. Note that
the penalty parameters µk are bounded from below by κ1

ε , where ε is the desired accuracy
of the solution. On the other hand, the point pk belongs to the region of quadratic
convergence of the Newton method. Therefore, the number of iterations on Step 2d is
bounded by O(ln ln κ1

ε ). In Section 7 we will demonstrate on simple examples that the
high accuracy in approximating the trajectory of central path is crucial for local quadratic
convergence.

It is possible to eliminate both from the scheme (6.5) and the estimate (6.6) the reces-
sion coefficient of the barrier function. This can be achieved by increasing the complexity
of predictor step.

Path-following method for general barriers

1. Set µ0 = 1 and find point y0 ∈ N (µ0,
1
18).

2. For k ≥ 0 iterate:
a) Compute ᾱk = ᾱ(yk).
b) Using recurrence
αk,0 = 1

6·max{1,‖v(yk)‖yk}
, αk,i+1 = ηᾱk(αk,i),

find the maximal i ≡ ik such that γ
(
yk(αk,i),

µk
ξᾱk (αk,i)

)
≤ β′.

c) Set αk = αk,ik , pk = yk + αkv(yk), µk+1 = µk
ξᾱk (αk) .

d) Starting from pk, apply the Newton method for
finding yk+1 ∈ N (µk+1,

1
18µk+1).

(6.7)

In this scheme, for computing the value of gradient proximity measure at new points, we
need to compute and invert the Hessian of barrier function. However, the step size in
this procedure is rapidly increased. Therefore, it is easy to prove that the total number
of auxiliary steps ik, which is necessary for computing an ε-solution to our problem is
bounded by O(ν1/2 ln ν

ε ). As in method (6.5), the number of steps at the correction stage
(Step 2d) cannot be large since pk belongs to the region of quadratic convergence of the
Newton method. In any case, if Assumptions 1 and 2 are satisfied, then method (6.7) is
locally quadratically convergent.

7 Discussion

7.1 2D-examples

Let us look now at several 2D-examples illustrating different aspects of our approach. Let
us start with the following problem:

max
y∈R2
{〈b, y〉 : y2 ≥ 0, y1 ≥ y2

2}. (7.1)
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For this problem, we can use the following barrier function:

f(y) = − ln(y1 − y2
2)− ln y2.

We are going to check our conditions for the optimal point y∗ = 0.
Problem (7.1) can be seen as a restriction of the following conic problem:

max
s,y
{〈b, y〉 : s1 = y1, s2 = y2, s3 = 1, s4 = y2, s1s3 ≥ s2

2, s4 ≥ 0}, (7.2)

endowed with the barrier F∗(s) = − ln(s1s3 − s2
2)− ln s4. Note that

∇F∗(s) =
(
−s3

s1s3 − s2
2

,
2s2

s1s3 − s2
2

,
−s1

s1s3 − s2
2

,
−1
s4

)T
.

Denote ω = s1s3 − s2
2. Since in problem (7.2) y∗ = 0 corresponds to s∗ = e3, we have the

following representation:

∇2F∗(s)s∗ = ∇2F∗(s)e3 =
1
ω2
·
(
s2

2,−2s1s2, s
2
1, 0
)T
.

Let us choose in the primal space the norm

〈Bx, x〉 = x2
1 + 1

2x
2
2 + x2

3 + x2
4.

Then ‖∇2F∗(s)s∗‖B = [s2
1 + s2

2]/ω2. Hence, the region ‖∇2F∗(s(y))s∗‖B ≤ σd is formed
by vectors y = (y1, y2) satisfying the inequality

y2
1 + y2

2 ≤ σd(y1 − y2
2)2.

Thus, the boundary curve of this region is given by equation

y1 = y2
2 + 1

σ
1/2
d

√
y2

1 + y2
2,

which has a positive slope [σ1/2
d − 1]−1 at the origin (see Figure 1). Note that the central

path corresponding to the vector b = (−1, 0)T can be found form the equations

1
y1 − y2

2

=
1
µ
,

1
y2

=
2y2

y1 − y2
2

.

Thus, its characteristic equation is y1 = 3y2
2, and, for any value of σd, it leaves the region

of quadratic convergence as µ→ 0. It is interesting that in our example Assumption 2 is
valid if and only if the problem (7.1) with y∗ = 0 satisfies Assumption 1.
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y1

y20

y1 = y2
2

Central path b = (−1, 0)T

y1 = y2
2 + 1

σ
1/2
d

√
y2

1 + y2
2

y1 = y2/[σ
1/2
d − 1]

‖∇2F∗(s(y))s∗‖B ≤ σd

Figure 1. Behavior of ‖∇2F∗(s(y))s∗‖B.

In our second example we need the maximal neighborhood of the central path:

M(β) = Cl

( ⋃
µ∈R
N (µ, β)

)

=
{
y : θ2(y) def= ‖∇f(y)‖2y − 1

‖b‖2y
〈∇f(y), [∇2f(y)]−1b〉2 ≤ β2

}
.

(7.3)

Note that θ(y) = min
t∈R
‖∇f(y)− tb‖y.

Consider the following problem:

max
y∈R2
{y1 : ‖y‖ ≤ 1}. (7.4)

where ‖ · ‖ is the standard Euclidean norm. Let us endow the feasible set of this problem
with the standard barrier function f(y) = − ln(1− ‖y‖2). Note that

∇f(y) = 2y
1−‖y‖2 , ∇2f(y) = 2I

1−‖y‖2 + 4yyT

(1−‖y‖2)2 ,

[
∇2f(y)

]−1 = 1−‖y‖2
2

(
I − 2yyT

1+‖y‖2

)
,
[
∇2f(y)

]−1∇f(y) = 1−‖y‖2
1+‖y‖2 · y.

Therefore,
‖∇f(y)‖2y = 2‖y‖2

1+‖y‖2 ,

and for b = (1, 0) we have

‖b‖2y = 1−‖y‖2
2 · 1−y2

1+y2
2

1+‖y‖2 , 〈∇f(y),
[
∇2f(y)

]−1
b〉 = 1−‖y‖2

1+‖y‖2 · y1.
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Thus,
θ2(y) = 2‖y‖2

1+‖y‖2 −
2

1−‖y‖2 ·
1+‖y‖2

1−y2
1+y2

2
· (1−‖y‖2)2y2

1
(1+‖y‖2)2

= 2
1+‖y‖2

(
‖y‖2 − y2

1(1−‖y‖2)

1−y2
1+y2

2

)
= 2y2

2

1−y2
1+y2

2
.

We conclude that for problem (7.4) the maximal neighborhood of the central path has
the following representation:

M(β) =
{
y ∈ R2 : y2

1 + 2−β2

β2 · y2
2 ≤ 1

}
(7.5)

(see Figure 2).

y1

y2

0

Central path

Large neighborhoodSmall neighborhood

Problem: max
‖y‖≤1

y1.

y

p′

p(y)

y+

Figure 2. Prediction in the absence of strict maximum.

Note that p(y) = 2y
1+‖y‖2 ∈ intQ. If the radii of the small and large neighborhoods of

the central path are fixed, by straightforward computations we can see that the simple
predictor-corrector update y → y+ shown at Figure 2 has local linear rate of convergence.
In order to get a superlinear rate, we need to tighten the small neighborhood of the central
path as µ→ 0.

7.2 Examples of cones with negative curvature

In accordance with the definition (4.3), negative curvature of barrier functions is preserved
by the following operations.
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• If barriers Fi for cones Ki ⊂ Ei, i = 1, 2, have negative curvature, then the curvature
of the barrier F1 + F2 for the cone K1 ⊕K2 is negative.

• If barriers Fi for cones Ki ⊂ E, i = 1, 2, have negative curvature, then the curvature
of the barrier F1 + F2 for the cone K1

⋂
K2 is negative.

• If barrier F for cone K has negative curvature, then the curvature of the barrier
f(y) = F (A∗y) for the cone Ky = {y ∈ H : A∗y ∈ K} is negative.

• If barrier F (x) for cone K has negative curvature, then the curvature of its restriction
onto the linear subspace {x ∈ E : Ax = 0} is negative.

At the same time, we know two important families of cones with negative curvature.

• Self-scaled barriers have negative curvature (see Corollary 3.2(i) in [12]).

• Let p(x) be hyperbolic polynomial. Then the barrier F (x) = − ln p(x) has negative
curvature (see [4]).

Thus, using above mentioned operations, we can construct barriers with negative curva-
ture for many interesting cones. In some situations we can argue that currently, some
nonsymmetric treatments of the primal-dual problem pair have better complexity bounds
than the primal-dual symmetric treatments.

Example 2 Consider the cone of nonnegative polynomials:

K =
{
p ∈ R2n+1 :

2n∑
i=0

pit
i ≥ 0, ∀t ∈ R

}
.

The dual to this cone is the cone of positive semidefinite Hankel matrices. For k =
0 . . . , 2n, denote

Hk ∈ R(n+1)×(n+1) : H(i,j)
k =

{
1, if i+ j = k + 2
0, otherwise

, i, j = 0, . . . , n.

For s ∈ R2n+1 we can define now the following linear operator:

H(s) =
2n∑
i=0

si ·Hi.

Then the cone dual to K can be represented as follows:

K∗ = {s ∈ R2n+1 : H(s) � 0}.

The natural barrier for the dual cone is f(s) = − ln detH(s). Clearly, it has negative
curvature. Note that we can lift the primal cone to a higher dimensional space (see [10]):

K = {p ∈ R2n+1 : pi = 〈Hi, Y 〉, Y � 0, i = 0, . . . , 2n},

and use F (Y ) = − ln detY as a barrier function for the extended feasible set. However,
in this case we significantly increase the number of variables. Moreover, we need O(n3)
operations for computing the value of the barrier F (Y ) and its gradient. On the other
hand, in the dual space the cost of all necessary computations is very low (O(n ln2 n) for
the function value and O(n2 ln2 n) for solution of the Newton system, see [2]). On top of
these advantages, for non-degenerate dual problems, now we have a locally quadratically
convergent path-following scheme (6.5).
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To conclude the paper, let us mention that the negative curvature seems to be a natural
property of self-concordant barriers. Indeed, let us move from some point x ∈ intK along
the direction h ∈ K: u = x+ h. Then the Dikin ellipsoid of barrier F at point x, moved
to the new center u, still belongs to K:

u+ (Wr(x)− x) = h+Wr(x) ⊂ K.

We should expect that the Dikin ellipsoid Wr(u) becomes even larger (in any case, we
should expect that it does not get smaller). This is exactly the negative curvature con-
dition: ∇2F (x) � ∇2F (u). At this moment, it is not clear if it is an attribute of the
barrier or of the cone, or both. In other words, is it possible to construct a barrier with
negative curvature for any convex cone? However, we have already seen that for nonsym-
metric cones this property is not dual-invariant. Another interesting question is related to
existence of the barrier function which ensures a small recession coefficient for arbitrary
regular cone. Up to now, we do not have examples of cones where the recession coefficient
is indeed large (growing with dimension).
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