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1 Introduction

Since the time of Radner’s (1972) paper, the general equilibrium analysis of sequential economies with
incomplete markets has been the subject of extensive research in economic theory. These models, known
as General Equilibrium with Incomplete markets (GEI), represent the most general and versatile tool in
competitive economic theory, as they deal simultaneously with all real and financial markets and their
interactions. The size and complexity of these models often demands the use of numerical methods to
compute their equilibria. Surveys in this area are due to Magill and Shafer (1991), Magill and Quinzii (1996)
and Hens (1998).

The literature on the computation of GEI equilibria is based on path following or homotopy methods.
There are three main approaches to compute equilibria in the GEI model. The first method was given by
DeMarzo and Eaves (1996), who considered the excess demand function defined on prices and elements of the
Grassmannian manifold (see e.g. Duffie and Shafer (1985)). By applying the work of Brown et al. (1996a),
they computed equilibria via a homotopy algorithm. The second algorithm for computing fixed points was
developed by Brown et al. (1996b), who considered the excess demand function to be a function of prices
only. Because this excess demand function is discontinuous, Brown et al. introduced an auxiliary asset to
define a family of homotopies. The third approach based on the work of Schmedders (1998, 1999), who
computed equilibria with homotopy techniques using the first-order conditions of the no-arbitrage agents’
problems. To avoid discontinuities in the excess demand correspondence, he considered one agent with
penalties for transactions on the asset markets instead of assuming lower bounds on short sales. By making
these penalties smaller and smaller, the solutions of the homotopy function move closer and closer to the
GEI equilibrium. Other contributions of note are those of Kubler and Schmedders (2000), Kubler (2001)
and Herings and Kubler (2002).

Homotopy methods possess powerful theoretical properties, but these methods may be inappropriate
from a practical point of view, due to the difficulty of setting up the homotopy function (see Kubler, 2001)
and dealing with inequalities (see Watson, 2000). Furthermore, homotopy methods may fail to produce
a solution even for relatively simple systems of nonlinear equations (e.g. see Nocedal and Wright (1999),
Example 11.2). The focus of this paper is a proposal for an alternative algorithm for problems of practical
relevance that cannot be solved by the existing approaches.

This paper introduces a tailor-made interior-point algorithm to compute equilibria in economies with
incomplete asset markets. We consider a set of optimality conditions which are necessary and sufficient
conditions for the existence of a GEI equilibrium, assuming the standard convexity assumptions for the
agents’ problem. These optimality conditions are the Kuhn-Tucker first-order conditions of the agents’
utility maximization problems, the market clearing and no-arbitrage conditions. A distinctive characteristic
in solving these optimality conditions is that they often include inequalities (e.g. equilibria can be restricted-
domain). Homotopy or continuation methods can provide a solution, but sometimes a difficult one. We
propose an alternative interior-point approach which is tailored to deal effectively with inequality-constrained
nonlinear systems of equations.

Although interior-point methods are closely related to central path continuation methods (see Gill et al.,
1986), the solution procedures are completely different. A relevant property of interior-point methods is their
typical requirement for significantly less function and derivative evaluations and linear algebra operations
than are required by homotopy methods, (see Garcia and Zangwill, 1981). This feature makes interior-
point algorithms an attractive alternative to homotopy when considering large-scale GEI models such as the
pricing of financial assets. In a recent survey, Esteban-Bravo (2004) suggests the application of interior-point
methods to compute equilibria in complete markets. In this paper we fully explore this approach for solving
GEI models, the complexity and scale of which demand efficient algorithms to compute equilibria.

We propose an interior-point algorithm that enjoys some computational advantages over the standard
algorithms. In particular, we introduce two devices for increasing the speed of computations. Following the
Gauss-Newton arguments, the second-order information of the nonlinear elements of the problem is neglected,
a strategy that reduces the number of function evaluations needed. Second, we exploit the sparsity properties
of GEI models. As a consequence, our algorithm finds accurate solutions with less computational costs than
does a standard interior-point method. To be rigorous, we prove that the algorithm globally converges at a
quadratic rate (i.e., — that the algorithm will eventually find an equilibrium if the economy has any).

Computational examples are presented, documenting the fact that the implementation is capable of solv-
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ing relevant examples of GEI markets robustly and efficiently. Even though numerical comparisons lie beyond
the scope of this paper, we compute equilibria for GEI models considered by Schmedders (1998), showing
competitive running times. Larger models are also solved to provide evidence of its strong performance.
Furthermore, we illustrate that the algorithm diverges when we consider economies in which equilibria do
not exist and prove that this algorithm is particularly suited to solving problems in which some or all of
the variables of interest are bounded. Such problems are commonly found in the literature of incomplete
markets, for example, when considering short-selling constraints.

The remainder of the paper is organized as follows. Section 1 presents a two-period general equilibrium
model with incomplete asset markets and the characterization of the equilibrium as the first-order conditions
of the agents’ utility maximization problems, the market clearing, and no-arbitrage conditions. In Section 2
we present an interior-point algorithm to compute such an equilibrium and study its convergence properties.
Finally, the algorithm has been implemented for relevant examples of GEI markets, illustrating its strong
performance, as shown in Section 3.

2 The GEI model

The basic GEI model describes an exchange economy over two time periods (t = 0, 1), with uncertainty over
the state of nature in Period 1. At time t = 0 the economy is in state s = 0 which is known by each of the
I consumers participating in the economy (i.e. all relevant information is symmetric across the economy).
However, it is not known which of the S possible states at time t = 1 will occur. Trade occurs sequentially
over time.

We assume that the markets on which commodities and financial assets are traded are competitive. In
each state there are D goods, and for each good d in state s there exists a spot market with spot price psd.

Hence, the commodity space is R
D(S+1)
+ . For any x ∈ R

D(S+1)
+ , xT denotes the transpose of x, a D (S + 1)-

dimensional row vector. For any x, y ∈ R
D(S+1)
+ , x · y = xTy denotes the inner product of vectors x and y.

There is a finite number C of assets traded on financial markets. Let θi ∈ RC denote the portfolio of traded
assets by the i-th consumer. An asset c can be purchased for a price qc at time t = 0, and delivers a return
across the states at time t = 1. The return of an asset c is described by its asset matrix Ac = (Ac1, ..., A

c
S)
T
,

defined across all states at time t = 1, where Acs is the commodity bundle which asset c delivers for state s.
The matrix Ac can be specified exogenously or be given as a function of some variables observed at t = 1.
The asset c delivers a nominal return V cs = ps · A

c
s in state s. Therefore, the asset structure is summarized

by the asset matrix A (given in units of commodities) and the nominal return matrix V (p):

A
DS×C

=






A111 . . . AC11
...

...
A1SD . . . ACSD




 , V (p)

S×C

=






V 11 (p1) . . . V C1 (p1)
...

...
V 1S (pS) . . . V CS (pS)




 .

We assume that S ≥ C. The completeness condition is important in the context of GEI markets. The
financial markets are said to be complete if rank (V (p)) = S for any p. Under this condition, agents can
insure themselves against any type of contingency in Period t = 1. When rank (V (p)) < S, the financial
markets are said to be incomplete (see Magill and Shafer, 1991).

Each consumer is described by a consumption set R
D(S+1)
+ , a set of traded assets RC , initial endowments

for theD (S + 1) goods in each state wi = (wi0, wi1, ..., wiS) ∈ R
D(S+1)
+ , and a preference relation. The utility

function ui : R
D(S+1)
+ −→ R that represents the i-th consumer’s preferences is assumed to be continuously

differentiable, concave, strictly monotonous and increasing. Given p ∈ R
D(S+1)
+ and q ∈ RC , each consumer

faces the following problem:

maxx,θ ui (xi0, ..., xiS)
s.t. p0 · xi0 ≤ p0 · wi0 − q · θi,

ps · xis ≤ ps ·wis + ps ·As θi, ∀s.
(1)

An equilibrium for the GEI economy is defined to be the prices (p∗, q∗) and the allocation (x∗, θ∗)

satisfying: i) (x∗i , θ
∗

i ) is an optimal solution to Problem (1) , ∀i = 1, ..., I; ii)
I∑

i=1
x∗i =

I∑

i=1
wi, and

I∑

i=1
θ∗i = 0.
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The next theorem provides a characterization of GEI equilibria.

Theorem 1 Characterization of GEI equilibria. Assume rank (As) = D, ∀s. The allocation (x∗, θ∗, p∗, q∗)

is an equilibrium for the economy if and only if there exist δ∗ ∈ R
I(S+1)
++ and (x∗, θ∗, p∗, q∗) ∈ R

ID(S+1)
+ ×

R
C ×R

ID(S+1)
++ ×RC that satisfies the following optimality conditions:






δ∗is∇xisui (x
∗

i )− p
∗T
s = 0, ∀i, ∀s,

p∗T0 (x∗i0 −wi0) + q
∗T θ∗i = 0, ∀i,

p∗Ts (x∗is −wis −Asθ
∗

i ) = 0, ∀i,∀s,
(2)

S∑

s=1

δ∗
i0

δ∗
is

p∗As − φ
∗ = 0, ∀i, (3)






I∑

i=1
x∗i =

I∑

i=1
wi,

I∑

i=1
θ∗i = 0.

(4)

Equation (3) implies that in equilibrium the asset prices q∗ do not allow arbitrage — namely that there

exists a β ∈ RS++ so that
S∑

s=1
βsp

∗As − φ
∗ = 0.

Note that the constraint qualification under differentiability, rank (As) = D, ∀s, does not imply that
the financial markets are complete. For example, if As = As′ , ∀s 
= s

′, and rank (As) = D, we have that
rank (p∗A) = 1 
= S.

3 An interior-point algorithm

In this section we present an interior-point algorithm to compute GEI equilibria using the characterization
given in Theorem 1. To facilitate the exposition, we denote this system of nonlinear equations byH (z∗) = 0 ,
where all the variables are assumed to be lower-bounded by zero (i.e. z∗ = (δ∗, x∗, θ∗, p∗, φ∗) ∈ R

N
+ ).

Reformulating as a least-squares problem and introducing logarithmic barrier terms in order to remove the
non-negativity bounds, we introduce the unconstrained problem:

min
1

2
‖H (z)‖22 − µ log z, (5)

where µ > 0 is a scalar called the barrier parameter. By letting µ converge to zero, the sequence of solutions{
z∗µ
}
to (5) converges to a solution z∗ of min ‖H (z)‖22 .We also consider a tolerance parameter ǫSIZE, which

forces the solutions
{
z∗µ
}
to satisfy

∥∥H
(
z∗µ
)∥∥2
2
≤ ǫSIZE. To ensure that the local minimizer z∗ is a solution

of the original nonlinear system H (z∗) = 0, the tolerance parameter is decreased from one barrier problem
to the next and must converge to zero. Therefore, we aim to compute the sequence of solutions to (5) with∥∥H

(
z∗µ
)∥∥2
2
≤ ǫSIZE.

A minimizer for problem (5) must satisfy the perturbed Karush-Kuhn-Tucker (KKT) conditions:

J(z)TH(z)− µZ−1 = 0,

where J(z) denotes the Jacobian matrix of H(z); Z = diag (z) defines a diagonal matrix, the diagonal entries

of which are the components of vector z; and Z−1 is the inverse matrix of Z. Let e = (1, ..., 1)T denote the
vector of ones. Notice that Ze = z and Z−1e = (1/ z1, ..., 1/ zn) .

Introducing an auxiliary variable w, so that W = µZ−1 where W = diag (w), the KKT conditions can
be rewritten as follows:

J(z)TH(z)−w = 0,
Z W − µe = 0.

(6)

Note that w ∈ RN+ because the vector z has N components lower bounded by zero.
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In essence, an interior-point method consists of the application of Newton’s method to find a solution to
the nonlinear system (6). Newton’s method provides search directions (∆z,∆w) from the first-order Taylor
series expansion for (6) about the values (z,w) . Let (zk, wk) be the current iterate. Then the search direction
(∆z,∆w) is the solution of the following system of linear equations:

(
JTk Jk + LkHk −I

Wk Zk

)(
∆z
∆w

)
= −

(
JTk Hk −wk
Zk Wk − µk e

)
, (7)

whereHk = H (zk) denotes the systemH evaluated at (zk, wk) , Jk = J(zk) denotes Jacobian ofHk evaluated
at (zk, wk), and Lk denotes the Hessian ofH evaluated at (zk, wk) ; and the next iterate (zk+1, wk+1) is defined
as (zk, wk) + (∆z,∆w) . Rather than solving each system (7) as the standard interior-point method would
do, we are content with an approximate solution (zk, wk) satisfying

(
JTk Jk −I
Wk Zk

)(
∆z
∆w

)
= −

(
JTk Hk −wk
Zk Wk − µk e

)
. (8)

In other words, we omit the second-order information of the system of equations H(z) = 0. The second-order
term LkHk can be neglected, as Hk is small near the solution zk of the (6). Most of the computational cost
of an interior-point method is associated with the computation of the search direction. By exploiting the
special features of our problem, we reduce the computational cost within the algorithm in terms of function
evaluations and number of iterations.

In addition, the next iterate (zk+1, wk+1) should be forced to remain strictly positive, a requirement that
is achieved by rescaling (∆z,∆w) . To ensure this requirement, scalars αzk and αwk must be chosen such
that zk + αzk ∆z > 0 and wk + αwk∆w > 0. These parameters are called steplength parameters. Therefore,
at iteration k,

αzk = min

{
1,min

{
−
zki

∆zi
s.t. ∆zi < 0

}}
, and

αwk = min

{
1,min

{
−
wki

∆wi
s.t. ∆wi < 0

}}
,

where (zki, wki) and (∆zi,∆wi) are the i-th component of vectors (zk, wk) and (∆z,∆w) . An additional
condition on αzk is required to ensure global convergence of {zk}; namely, the scalar αzk should be chosen

such that the objective function 1
2 ‖H (z)‖

2
2−µ log z decreases sufficiently in each iteration zk (Armijo’s rule)

and the choice αzk is not too far from a minimizer of the objective function (Goldstein’s rule). If these
requirements are not satisfied, αzk should be modified. Because these criteria help us to find an appropriate
step length αzk , they are called line-search methods. This procedure relies on a univariate function called
merit function m (α) , to measure the progress of the algorithm. A suitable merit function for our algorithm
is

m (α) =
1

2
‖H(z + α∆z)‖22 − µ log ( z + α∆z) .

(Other examples of merit functions can be found in Nocedal and Wright, 1999). Then αzk results in a
sufficient decrease if

m (αzk) ≤ m (0) + ρ αzk ▽m (0)T ∆z (9)
∣∣∣∇m (αzk)

T ∆z
∣∣∣ ≤ η

∣∣∣∇m (0)T ∆z
∣∣∣ (10)

where 0 < ρ < η < 1. Otherwise αzk should be reduced until conditions (9) and (10) are satisfied. In
particular, when αzk does not satisfy (9) and (10), then we consider an update of the steplength as αzk/ 2.

The complete iteration of the algorithm requires an update of the barrier parameter µ. This update should
be carefully defined to obtain a rapidly convergent algorithm. The choice of µ is based on the satisfaction
of the complementarity conditions ZW = µ. Then the new value of µ at the k -th iteration is:

µk+1 = γ
zTk wk

n
, (11)
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where 0 ≤ γ < 1 and n is the dimension of vector z. This definition ensures that µ→ 0 if Problem (5) has
a solution. When we choose γ close to 0, we are requiring a rapid convergence of µ to 0. The choice of the
updating parameter γ may significantly affect the efficiency of the overall method.

The algorithm terminates when the following stopping criteria are satisfied:

∥∥∥∥

(
JTH −w
ZW − µ e

)∥∥∥∥
2

2

≤ ǫSIZE, (12)

‖H (z)‖22 ≤ ǫTOL. (13)

The stopping criterion (12), hereafter called the first stopping criterion, is related to the fulfilment of the
first-order KKT conditions for problem (5) and guarantees the boundedness of the variables. The stopping
criterion (13) , which we call the second stopping criterion, guarantees satisfaction of the optimality conditions
for the existence of equilibria under convexity assumptions. Therefore, if the algorithm converges, it converges
to an equilibrium of the economy.

3.1 Practical implementation issues

The algorithm described in the preceding section includes certain parameters and conditions that have not
yet been completely specified. In the following paragraphs we indicate how these implementation issues were
treated.

3.1.1 Choosing the initial point

The algorithm performs better if the starting point (z0, w0) , where z0 = (δ0, x0, θ0, p0, φ0) meets the bound
constraints. For simplicity, the algorithm sets the auxiliary variables w0 and δ0, θ0, p0, φ0 equal to a vector
of ones and x0 equal to the initial endowment.

3.1.2 Choosing the parameters

In our implementation, a current iterate is considered optimal when ǫTOL = 10−14 and ǫSIZE = 10−10. The
Armijo and Goldstein parameters are ρ = 0.0001 and η = 0.9. The choice of the parameter µ is based on the
satisfaction of the complementarity conditions and depends on the parameter γ. Typically, γ = 0.1.

3.1.3 Computing the search direction

The computationally most expensive part of an interior-point algorithm is the computation of the Newton
search direction, because this calculation involves the solution of a potentially large system of linear equations.
It is important to note that the matrix (

JTk Jk −I
Wk Zk

)
(14)

is sparse — that it contains a significant number of zero-valued elements. Note that matrices I, Wk, and Zk
are diagonal and, furthermore, that Jk is of the form:

Jk =






∇xu ∇2xu 0 −I 0
0 P V X U

0 0 0 ΦA 0
0 I 0 0 0
0 0 I 0 0





,

where∇xu and∇
2
xu are diagonal matrices because the vector has the form (u1 (x10, ..., x1S) , ..., uI (xI0, ..., xIS)) ;

P is the diagonal matrix of the prices vector (p0, p1, ..., pS) ; X is the diagonal matrix of the consumption
allocations for all consumers (x10, ..., x1S, ..., xi0, ..., xiS, ..., xI0, ..., xIS) ; Φ is the diagonal matrix of the aux-
iliary variables (δ10, ..., δ1S, ..., δi0, ..., δiS , ..., δI0, ..., δIS) ; V is the full matrix of returns; and U is an auxiliary
matrix, respectively defined as

V =

(
q

−A

)
; U =

(
e1×C
0S×C

)
.

5



This sparsity can and should be exploited to improve the computational efficiency. In the computational
results reported in the next section, we exploit the sparsity properties of the full matrix (14), which reduces
computation time by eliminating operations on zero elements.

3.2 The algorithm

In the preceding description of the algorithm, we have considered simple bounds of the form z∗ ≥ 0 in order
to simplify the exposition. The generalization of this algorithm to problems such that H (z∗) = 0 where
l ≤ z∗ ≤ u is straightforward. Some of the entries in l could be equal to −∞, and some of those in u could
be equal to ∞. If we rewrite the problem as H (z∗) = 0 with z∗ − l ≥ 0 and u − z∗ ≥ 0, then the finite
bounds will be included in the objective function via logarithmic barrier terms, and therefore we consider
two auxiliary variables w1 = µ (z − l)

−1
and w2 = µ (u− z)

−1
.

A summary of the proposed interior-point algorithm is:

Step 1. Select the parameters ρ ∈ (0, 1) , θ ∈ (0, 1) , γ ∈ [0, 1) , the tolerance ǫSIZE, and the final stop
tolerance ǫTOL. Initialize variables

(
z,w1, w2

)
and set the initial value of the barrier parameter µ as

µ = γ
(z − l)

T
w1 + (u− z)

T
w2

2N
. (15)

Step 2. Evaluate the objective function and its derivatives at
(
z,w1, w2

)
. Repeat until

∥∥∥∥∥∥




JTH −w1 +w2

(Z − L)W1 − µ e
(U − Z)W 2 − µ e





∥∥∥∥∥∥
≤ ǫTOL

and (13) are satisfied:

Step 2.1. Compute a Newton search direction:



JTJ −I I

W 1 (Z − L) 0
−W 2 0 (U − Z)








∆z
∆w1

∆w2



 = −




JTH −w1 +w2

(Z − L)W 1 − µ e
(U − Z)W 2 − µ e



 .

Step 2.2. Compute scalars αz, αw1 and αw2 such that:

αz = min

{
1,min

{
−
zi

∆zi
s.t. ∆zi < 0

}}
,

αw1 = min

{
1,min

{
−
w1i
∆w1i

s.t. ∆w1i < 0

}}
,

αw2 = min

{
1,min

{
−
w2i
∆w2i

s.t. ∆w2i < 0

}}
,

and update αz until (9) and (10) are satisfied.

Step 2.3. Update variables as z + αz ∆z and w + αw∆w.

Step 2.4. Update parameter µ as described in (15).

There are many different types of interior-point algorithms with certain common mathematical themes
having to do with the logarithmic barrier function. The distinguishing feature of our algorithm is the use of a
Gauss-Newton approximation of the search direction. In Appendix A we analyze the convergence properties
of this variant and prove that our algorithm will find an equilibrium if the economy has any. However, when
there are no equilibria, our algorithm diverges (or converges to infinity), because the matrix J is singular
(due to the collinearity of the returns matrix). As a consequence, the search direction ∆z is infinite. Example
3 in the next section illustrates the behavior of the algorithm when there are no equilibria. In Appendix A
we also prove that our algorithm converges quadratically, which broadly means that the number of correct
figures in zk eventually doubles at each step.
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4 Numerical examples

The algorithm has been implemented in MATLAB 6.5 on an Intel Centrino PentiumM 1.6 GHz with machine
precision 10−16. The first example is intended to show how the algorithm is set up and to compute a GEI
equilibrium.

Example 2 Two-period exchange economy. DeMarzo and Eaves (1996).

Consider a two-period exchange economy with three consumers, three states in the second period, two

assets, and two goods. Each consumer i has a utility function of the form ui(x) =
3∑

s=1
πs
(
B − xαis1x

1−αi
s2

)
,

with parameters B = 57, π =
(
1, 13 ,

1
3 ,

1
3

)
, α1 = α2 =

3
4 and α3 =

1
4 . The agent’s endowments are w1 = w2 =

(10, 10; 25, 20; 20, 20; 15, 20)T and w3 = (20, 20; 5, 10; 10, 10; 15, 20)
T
. The asset matrix A is given by

AT =

[
1 0 1 0 1 0
2 -1 1 0 2 -1

]
.

For this example, H (·) = 0 is a system of 52 equations with 52 variables (the auxiliary variables δ∗ ∈ R12++
and the equilibrium (x∗, θ∗, p∗, φ∗) ∈ R40). Taking as an initial point δ0 = e, x10 = w1, x20 = w2, x20 = w3
and θ0, p0, φ0 = e, where e is a vector of ones, the algorithm converges in 0.56 seconds (20 iterations) with
an error of ǫSIZE = 10−14. Table 1 shows the iterates of the portfolio allocations for each iteration until
convergence. θ (i, c) denotes the portfolio decision of the asset c by agent i.

Iterations
θ
(1,1)

θ
(1,2)

θ
(2,1)

θ
(2,2)

θ
(3,1)

θ
(3,2)

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 7.5882 -7.4157 13.6431 -13.4706 -20.3205 21.7970
3 5.3402 -3.1748 11.1594 -7.7269 -16.4392 10.9132
4 1.6257 -4.5227 10.2507 -12.8887 -11.8786 17.4080
5 4.5801 -6.4406 8.3884 -9.3628 -12.9683 15.8037
6 1.6009 -5.3987 2.5987 -6.2855 -4.1996 11.6842
7 -1.2995 -3.9109 -1.0984 -4.0964 2.3979 8.0074
8 -0.7307 -4.3251 -0.7121 -4.3375 1.4428 8.6626
9 -0.6793 -4.4071 -0.6604 -4.4248 1.3397 8.8319

10 -0.6463 -4.4258 -0.6464 -4.4253 1.2927 8.8512
11 -0.6359 -4.4387 -0.6342 -4.4404 1.2700 8.8791
12 -0.6355 -4.4379 -0.6356 -4.4378 1.2711 8.8757
13 -0.6340 -4.4397 -0.6338 -4.4398 1.2678 8.8795
14 -0.6342 -4.4393 -0.6342 -4.4393 1.2685 8.8786
15 -0.6340 -4.4395 -0.6340 -4.4396 1.2680 8.8791
16 -0.6341 -4.4395 -0.6341 -4.4395 1.2681 8.8790
17 -0.6340 -4.4395 -0.6340 -4.4395 1.2681 8.8790
18 -0.6340 -4.4395 -0.6340 -4.4395 1.2681 8.8790
19 -0.6340 -4.4395 -0.6340 -4.4395 1.2681 8.8790
20 -0.6340 -4.4395 -0.6340 -4.4395 1.2681 8.8790

Table 1: Iterates of the portfolio allocations approaching convergence in Example 2.

Figure 1 shows the values of the first and second stopping criteria and the computation time for each
iteration until convergence, which reveal the strong performance of the algorithm, even though it started
from a poor initial point.

7



0 10 20
0

2

4

6

8

10

12
x 10

4

iterations

1s
t s

to
pp

in
g 

cr
ite

rio
n

0 10 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

iterations

2n
d 

st
op

pi
ng

 c
rit

er
io

n

0 10 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

iterations

C
P

U
(s

)
Figure 1. The 1st and 2nd stopping criteria and the cumulative CPU time (s) until convergence.

The following computations are intended to demonstrate how the algorithm behaves in large-scale mar-
kets.

Example 3 Large-scale computations.

We consider four variations of the two-period exchange economy described in DeMarzo and Eaves (1996).
All the models consider a two-period exchange economy with two goods, two assets with the asset matrix A
given in Example 1, and three states in the second period. Endowments and constants of the utility function
were randomly generated using: wi ∼ U [0.75, 1.25] and αi ∼ U [0, 1] for each consumer i. However, Model 1
considers 3 agents, Model 2 has 15 agents, Model 3 consists of 30 agents, and Model 4 has 60 agents. Table 2
shows the number of variables and equations for each model and the number of iterations and running times
until convergence with an error of ǫSIZE = 10

−14. For all models, the algorithm converges to an equilibrium
in a moderate number of iterations, which illustrates its rapid convergence. The scale of the problem only
affects the cost of computation, mainly because of the cost of function evaluations.

Number variables/equations Number of iterations CPU (seconds)
Model 1: 3 agents 52 22 .51
Model 2: 15 agents 260 26 4.09
Model 3: 30 agents 520 29 20.71
Model 4: 60 agents 1040 32 216.89

Table 2: Number of iterations and running times for four different models.

The third example illustrates the behavior of the algorithm if the economy has no equilibrium.
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Example 4 One-period exchange economy with no equilibria.

Suppose there is no first period. Consider a one-period exchange economy with two consumers, two states,
two assets, and two goods. Each consumer i has a utility function of the form Ui(x) = ui (x1)+ui (x2) , with

ui (x1) =
1

3
log (xs1) +

2

3
log (xs2) , ui (x2) =

2

3
log (xs1) +

1

3
log (xs2) .

The agent’s endowments are w1 = (1−̟, 1−̟,̟,̟)
T and w2 = (̟,̟, 1−̟, 1−̟)

T for some positive
̟ < 1/ 2. For this example, H (δ∗, x∗, θ∗, p∗, φ∗) = 0 is a system of 20 equations with 20 variables. We
assume that there are bounds only on the auxiliary variables δ∗ ∈ R4++, i.e. l ≤ δ

∗ with l = (0, 0, 0, 0) .
This economy has no equilibrium (see Hart, 1975) and our algorithm does not converge. The collinearity

of the return matrix makes system (7) incompatible, and consequently the algorithm indicates that an
unbounded search direction in the portfolios iterates should be taken from the initial point (the computed
search direction is infinite). In other words, the algorithm fails to converge.

The following example is intended to illustrate that this algorithm can effectively deal with inequality-
constrained nonlinear systems of equations.

Example 5 Two-period exchange economy with short-selling constraints.

The easiest way to guarantee the existence of equilibria in GEI models is to impose a short-sales constraint
(see Hart, 1975). We impose exogenous bounds on the portfolio variables of Example 4 to illustrate the
practicability of our algorithm in solving inequality-constrained nonlinear system of equations.

Consider Example 4 with lower bounds on portfolios, i.e. θ ≥ −E for some E ∈ R4+. Again, we must solve
the same system of 20 equations and 20 variables as before, H (δ∗, x∗, θ∗, p∗, φ∗) = 0, but now there is a lower
bound l on the auxiliary variables δ∗ and portfolios θ∗, i.e. l ≤ (δ∗, θ∗) with l = (0, 0, 0, 0,−E,−E,−E,−E) .
Assuming that ̟ = .3 and E = 1, the algorithm converges to the equilibrium in 0.39 seconds (41 iterations)
with an error of ǫSIZE = 10

−14. Table 3 shows the last iterates of the portfolio allocations for each iteration
until convergence.

Iterations
θ

(1,1)
θ

(1,2)
θ

(2,1)
θ

(2,2)
30 0.119 0.094 -0.119 -0.094
31 0.1198 0.0955 -0.1198 -0.0955
32 0.1373 0.0747 -0.1373 -0.0747
33 0.137 0.0734 -0.137 -0.0734
34 0.1366 0.075 -0.1366 -0.075
35 0.1358 0.0752 -0.1358 -0.0752
36 0.126 0.0847 -0.126 -0.0847
37 0.1258 0.0845 -0.1258 -0.0845
38 0.126 0.0842 -0.126 -0.0842
39 0.126 0.0842 -0.126 -0.0842
40 0.126 0.0842 -0.126 -0.0842
41 0.126 0.0842 -0.126 -0.0842
42 0.126 0.0842 -0.126 -0.0842

Table 3: Last iterates of the portfolio allocations approaching convergence in Example 5.

Note that the lower bounds on the portfolios are not binding, but they prevent the problem of rank-
deficiency faced in Example 4. Essentially, when bounds on the portfolio allocations are considered, it
becomes necessary to search numerically for new auxiliary variables w. Given (8), the search direction of
(z,w) is computed from:

(
JTJ + Z−1W

)
∆z = −

(
JTF − µ Z−1e

)
,

∆w = Z−1W∆z −W + µ Z−1e.
9



In Example 4, the search direction ∆z of zk was defined as:

(
JTJ + diag (w1/ δ, 0, ..., 0)

)
∆z = −

(
JTF − µ Z−1e

)
,

where diag (w1/ δ, 0, ..., 0) is the diagonal matrix, the diagonal entries of which are the components of vector
(w1/ δ, 0, ..., 0) . However, in the case in which there are bounds on portfolios, the search direction ∆z of zk
is given as: (

JTJ + diag (w1/ δ, 0, ..., 0, w2/ θ, 0, ., 0)
)
∆z = −

(
JTF − µ Z−1e

)
.

The term w2/ θ is non-null by definition and its summation corrects the singularity of JTJ ; therefore, the
economy has an equilibrium.

As the interior-point approach treats lower bounds on portfolio allocations as a barrier function−µ log (θ +E)
and the degree of influence of the barrier term is determined by the size of µ which goes to zero as k →∞,
in certain instances these bounds can be considered as a computational artifact to help the computation of
equilibria.

5 Summary and conclusions

In this paper we describe an efficient algorithm for the computation of equilibria in general equilibriummodels
with incomplete asset markets. The procedure is based on an interior-point method to define the search
direction for the new iterates. Particular care has been taken to reduce the computational cost, avoiding
the use of second-order information for the more complicated elements of the problem. The algorithm has
proven to be globally convergent and the local convergence rate is quadratic.

Given its practicability and efficiency, this algorithm seems to be a promising alternative for computing
equilibria when the existing homotopy continuation approaches are difficult to apply.

6 Appendix A. Convergence properties of the algorithm

To prove convergence properties of the proposed algorithm, we should have sufficient descent on the merit
function in every iteration, and this function should be bounded below. The global convergence of the
algorithm is obtained under the following assumptions:

A.1. The second derivatives of H are Lipschitz continuous on the region defined by the bounds.

A.2. Strict complementarity holds at all first-order KKT points.

A.3. The matrix J has full rank at all first-order KKT points and for a positive constant M,

1

M
‖v‖2 ≤ vTJT Jv ≤M ‖v‖2 .

A.4. The iterates {zk} generated by the algorithm remain in a compact set.

For the sake of a clearer presentation, denote wk =
(
w1k, w

2
k

)T
. We start by stating the boundedness of

dual variables.

Lemma 6 For a fixed µ, the lower bounds and the upper bounds of the box constraints in the dual step-size

rule are bounded away from zero and bounded from above, if the corresponding components of zk are also

bounded above and away from zero.

Proof. See Yamashita (1998).
As a consequence, the elements of Z−1k Wk are bounded above and non-zero and, by Assumption A.3,

there exists a positive constant N such that 1
N
‖v‖2 ≤ vT

(
JTk Jk + Z

−1
k Wk

)
v ≤ N ‖v‖2 .

We now show that ∆z is a descent direction for the merit function m (α) .
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Theorem 7 For a fixed µ, ∆z is a descent direction for the merit function m (α) , i.e. ▽m (0)T ∆z ≤ 0.

Proof. Note that the direction ∆z is given as:
(
JTk Jk + Z

−1
k Wk

)
∆z = −

(
JTk Hk − µ Z

−1
k e

)
.

Then
∆zT ▽m (0) = ∆zT

(
JTk Hk − µX

−1e
)
= −∆zT

(
JTk Jk + Z

−1
k Wk

)
∆z −N ‖∆z‖

2
≤ 0.

By definition, the step size α is always bounded. We next prove that α is also non-zero.

Lemma 8 The step size α is always bounded and non-zero.

Proof. Assume that α is reduced infinitely. This means that the descent condition does not hold;
therefore

m (0)−m (α) ≤ −ρ α ▽m (0)
T
∆zT , for all α. (16)

From the Taylor expansion, we have m (α)−m (0) = α▽m (0)T ∆z+ o (α) . Then for a small enough α,
using Theorem 7,

m (α)−m (0)− ρ α ▽m (0)T ∆zT = (1− ρ) α ▽m (0)T ∆zT ≤ 0

which contradicts (16) .
The next two results prove the global convergence of the algorithm for a fixed µ.

Lemma 9 For a fixed µ, assume also that at any initial point z0, the set {z : m (zk;µ) ≤m (z0;µ)} is

bounded. Then lim
k→∞

‖∆z‖ = 0.

Proof. Assume lim
k→∞

‖∆z‖ ≥ ε > 0. Using the descent lemma (see Bertsekas p. 553)

m (zk+1;µ)−m (zk;µ) ≤ α▽m (zk)
T ∆z +

1

2
Kα2 ‖∆z‖2 ≤

1

2
Kα2 ‖∆z‖2

for some positive constant K, as m is a Lipschitz continuous function and ∆z is a descent direction of the
merit function m, using Theorem 7.

By hypothesis, the sequence {m (zk;µ)} converges and lim
k→∞

(m (zk;µ)−m (zk+1;µ)) = 0, thus

m (zk;µ)−m (zk+1;µ) ≥
1

2
Lα2 ‖∆z‖

2
→ 0,

which implies ‖∆z‖ → 0, using Lemma 8.

Theorem 10 For a fixed µ, the algorithm terminates at a point, satisfying the perturbed optimality condi-

tions (6) .

Proof. As ∆w = −
(
Wk − µ Z

−1
k e+ Z−1k Wk∆z

)
and lim

k→∞
‖∆z‖ = 0, by Lemma 9, the following holds:

lim
k→∞

∥∥wk +∆w − µ Z−1k e
∥∥ = 0.

Therefore, there exists a vector w∗ such that lim
k→∞

‖wk +∆w‖ = µ Z
−1
∗
e. Furthermore, the first equation of

system (6) satisfies (
JTk Jk + Z

−1
k Wk

)
∆z = −

(
JTk Hk − µ Z

−1
k e

)
,

and letting k →∞,
lim
k→∞

∥∥JTk Hk − µ Z
−1
k e

∥∥ = 0,

i.e. there exists a z∗ such that JT
∗
H∗ − µ Z−1∗ e = 0. Then (z∗, w∗) is a solution of the perturbed optimality

conditions (6) .
The convergence of the algorithm can be proven using the next theorem.
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Theorem 11 Suppose that Assumptions A.1 to A.4 hold. The limit of sequence {(zk, wk)} exists and sat-

isfies the optimality conditions of Problem (5) .

Proof. Note that the definition of µk ensures that {µk} is positive and monotonically decreasing with
µ→ 0. Thus, it follows from theorems 10 and 11 that the algorithm terminates at a point (zk, wk), satisfying
the optimality conditions of Problem (5) .

Using analogous arguments to those discussed in Akrotirianakis and Rustem (2000), it is satisfied
lim
k→∞

‖Fµ (zk, wk)‖2 = 0.

Next we prove the Q-quadratic convergence of the algorithm. First we present an auxiliary result. Denote

Fµ (zk, wk) =

(
JTk Hk −wk
Zk Wk − µk e

)
, Hµ (zk, wk) =

(
JTk Jk −I
Wk Zk

)
.

Lemma 12 Suppose that Assumptions A.1 to A.4 hold. Then

‖Λk − I‖ ≤ O (‖Fµ (zk, wk)‖) +O (µk) ,

where Λk = diag (αk) .

Proof. See Yamashita and Yabe (1996).
Using this lemma, we establish the quadratic convergence of the algorithm.

Theorem 13 Suppose that Assumptions A.1 to A.4 hold and that the sequence {(zk, wk)} generated by the

proposed algorithm converges to the solution (z∗, w∗) . Assume that µk = O (‖Fµ (zk, wk)‖) . Then there exists

ε > 0 such that for all (z0, w0) ∈ B ((z∗, w∗) , ε) , the sequence {(zk, wk)} is well defined and converges to

(z∗, w∗) Q-quadratically.

Proof. Denote hk = (zk, wk) and h∗ = (z∗, w∗) . Since h0 ∈ B (h∗, ε) , ‖h0 − h
∗‖ < ε. Assume

‖hk − h∗‖ < ε, then

hk+1 − h
∗ = hk +Λk (∆z,∆w)− h

∗ = hk − ΛkHµ (hk)
−1
Fµ (hk)− h

∗ =

= Hµ (zk, wk)
−1 [ΛkFµ (h

∗)− ΛkFµ (hk) +Hµ (zk, wk) (hk − h
∗)] =

= ΛkHµ (zk, wk)
−1 [Fµ (h

∗)−Fµ (hk)−Hµ (zk, wk) (hk − h
∗)] + (Λk − 1) (hk − h

∗) .

Taking Euclidean norms, we have

‖hk+1 − h
∗‖ ≤

∥∥∥Hµ (zk, wk)
−1
∥∥∥O

(
‖hk − h

∗‖
2
)
+ ‖Λk − 1‖ ‖hk − h

∗‖ ≤

≤ O
(
‖hk − h

∗‖2
)
+ [O (‖Fµ (hk)‖) +O (µk)] ‖hk − h

∗‖ .

From Assumption A.1, H is Lipschitz continuous, and therefore there exists a constant N > 0 such that,
for all (zk, wk) ∈ B ((z

∗, w∗) , ε) ,

‖Fµ (hk)‖ = ‖Fµ (hk)−Fµ (h
∗)‖ ≤ N ‖hk − h

∗‖ .

Then there exists a constant ξ > 0, such that ‖hk+1 − h∗‖ ≤ ξ ‖hk − h∗‖
2
. Hence the sequence {(zk, wk)}

converges Q-quadratically to (z∗, w∗).
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